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Bigger Picture 
 
Autonomous atomic-scale computations can significantly accelerate catalyst development, 
but the necessary (software) infrastructure is not yet widely adopted or even known in the 
community. Particularly, reinforcement learning is well adapted to the needs of targeted 
catalyst development with reduced human cost. Accounting for catalyst stability under 
working conditions is challenging, but achievable by a combination of high-throughput 
computations and machine-learning. Autonomous computations should be complemented 
by autonomous laboratories, which allow high-throughput experimentation and catalyst 
optimization through machine-learning, but require large investments from research 
facilities. 

 

Summary 
 
Autonomous atomistic computations are excellent tools to accelerate the development of 
heterogeneous (electro-)catalysts. In this perspective, we critically review the achieved 
progress to accelerate high-throughput screening aimed at identifying promising catalyst 
materials, via databases, workflow managers and machine-learning techniques. Outstanding 
challenges are also discussed extensively: the modification and stability of catalyst surfaces 
under realistic reaction conditions is key for meaningful predictions. Furthermore, adequately 
accounting for solvent effects remains a topic of active research particularly relevant for 
biomass transformations and electrocatalysis. Finally, efficient, autonomous workflows for 
investigating active sites of amorphous catalysts remain underdeveloped. The computations 
can also be supplemented with autonomous laboratories, which allow to perform 
sophisticated experiments driven by artificial intelligence-augmented design of experiments, 
reducing human-time investment for optimizing synthesis and reaction conditions as well as 
catalyst characterizations. The combination of autonomous computations and laboratories 
promise to power the dearly needed transition to a sustainable chemical industry. 
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UN Sustainable Goals 
 
SDG9: Industry, Innovation and Infrastructure 
 

Introduction 
 
Heterogeneous (electro-)catalysis is at the heart of the production of chemicals, from 
refineries and petrochemicals to the manufacture of ammonia and sulfuric acid. While these 
processes have been studied and optimized over decades, the very recent political action, 
promising to drastically reduce CO2 emissions, calls upon chemists to devise novel catalysts 
to achieve more efficient catalytic conversion. These catalysts not only need to be highly 
active, but also stable under long-term operating conditions.1 
 
Two prototypical examples are water-splitting and biomass conversion.2 Stable, energy-
efficient water-splitting catalysts based on Earth-abundant materials (e.g., transition-metal 
dichalcogenides), in combination with renewable electricity, typically from wind or solar-
power, would allow us to temporarily store energy from intermittent sources on a grid level. 
Such “green” hydrogen would also be a decarbonized chemical that can be used throughout 
the industry. In particular, the Haber-Bosch process, responsible for ammonia production and 
thus essentially all nitrogen atoms in chemical compounds from polymers to colorants, 
fertilizers and drugs, currently relies on hydrogen produced via methane reforming, releasing 
large amounts of CO2.3 Biomass conversion based on ligno-cellulosic feedstocks is also a 
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promising avenue for transitioning from the petrochemical industry to a renewable, carbon-
neutral industry producing all the commodities (plastics, detergents, etc) via new pathways. 
In biomass conversion, the major challenge compared with the current petrochemical 
processes is that the bio-sourced molecules are highly oxygenated and much less volatile than 
the petrochemicals. Hence, catalysts working efficiently in water have to be developed.4 
Ideally, the two aspects (hydrogen production and biomass conversion) could be coupled for 
a sustainable energy future.5 
 

Accelerating catalyst development with workflow managers and databases 
 
In this section we discuss the various tools that have become available to accelerate atomistic 
computations relevant to the understanding and design of heterogeneous catalysis. The main 
focus is dedicated to workflow managers, but data repositories and automated transition 
state searches are also succinctly reviewed and summarized in Table 1. 
 
Mass- (and charge-) transport have a significant impact on the overall kinetics and depend on 
the meso-scale properties of the catalytic layer as illustrated for CO2 reduction6 and solar 
hydrogen production.7 However, the intrinsic activity of a catalyst is determined by its atomic-
scale structure and sets an upper maximum to the performance. In heterogeneous (electro-
)catalysis, this intrinsic activity, which is the focus of the current perspective, is intimately 
connected to the complex interface between the solid catalyst and either gas-phase (typical 
for petrochemistry) or the (aqueous) liquid-phase, typical for electrocatalysis and biomass 
conversion. Note, that our perspective mostly covers metallic and transition-metal 
oxide/sulphide catalysts, but does not address porous catalysts such as zeolites and metal-
organic frameworks. 
 
The kinetics over heterogeneous catalyst has been extensively studied by computations over 
the last decades, most of the time under idealized conditions.8,9 Typically, the catalyst model 
is a single-crystal surface on which a single adsorbate is placed. Furthermore, the vast majority 
of studies focuses on small (1-2 carbon atoms) reactants and intermediates. These simplified 
surface models lend themselves for high-throughput in silico screening studies,10,11 which 
generally require a workflow manager. The main purpose of a workflow manager in 
computational chemistry is to orchestrate all the computations to run on supercomputer 
facilities, tracking failures, correcting the most basic errors and dynamically adapting settings 
when necessary. In general, the workflow manager can also be used to construct the starting 
geometries and to chain computations, e.g., screening adsorption modes and only performing 
frequency computations for the lowest energy ones. Furthermore, the workflow manager can 
also be responsible to store the results in a database and thus to avoid redundancies. 
 
In practice, several workflow managers have either been adapted from material screening to 
screening of adsorption modes, or specifically developed for this purpose. One of the most 
abstract and complete workflow managers is AiiDA,12,14 which not only automates the 
execution of workflows and the storage of the generated data, but also scrupulously keeps 
track of the provenance of the data along a workflow and allows integrated storage of the 
obtained results on the MaterialsCloud repository.16 An alternative is provided by AFLOW,18,20 
which is a high-throughput computational framework with an associated database,22 geared 
towards bulk properties of materials, but is also capable of generating and analyzing surface 
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free energies for various high-index surfaces in complex multi-component compounds and 
nanoparticles. AFLOW is also directly applicable to estimate stabilities of explored structures, 
e.g., by automatically determining formation energies and constructing binary convex hulls 
for alloys. Similarly, the MaterialsProject24 has developed a suite of programs to manage 
workflows (called FireWorks13), generate input files (Pymatgen15) and correct common 
failures (Custodian). Failure management is one of the difficult to efficiently automate aspects 
of computational catalysis: On the one hand there are technical failures (errors in input files, 
failures of hardware) and on the other hand there are unphysical results due to convergence 
failures (electronic structure or geometry) or initial geometries that are too far from the 
intended optimized geometries. Finally, the ASE toolkit28 also provides the possibility to 
create and manage complex workflows if the user creates the super-structure: ASE provides 
all the necessary elementary bricks, but is not a workflow manager in itself. For example, the 
Atomic Simulation Recipes rely on ASE to carry out “routine” workflows, called “recipes”.30 
The interface between the recipe and the high-performance computing facility that carries 
out the individual tasks is provided by MyQueue.32  Atomate34, which is a bundled version of 
the MaterialsProject tools, has, for instance, been specifically extended in order to allow high-
throughput screening of CO2 reduction reaction intermediates (i.e., CO) on semi-conductor 
surfaces, automatically identifying surface terminations, their relative surface energies and 
optimizing the adsorbates on automatically identified adsorption sites.17 Similarly, the  
Generalized Adsorption Simulator for Python, GASpy, has been developed to rapidly screen 
surface free energies and adsorption energies of small molecules on (inter-)metallic 
surfaces.37 The exploitation of graph-theory allows CatKit39 to feature the unique capability 
of explicitly handling bi-dentate adsorption modes of small molecules, significantly expanding 
the applicability and efficiency in heterogeneous catalysis applications. Bayesian Optimisation 
Structure Search, BOSS, accelerates the orientational exploration of adsorption modes via a 
Bayesian surrogate model, thus reducing the number of DFT computations required to 
identify low-energy adsorption modes.86 
 
In contrast to rigid, small adsorbates that can be handled by several adsorption generation 
tools, flexible, polyfunctional molecules, typical for biomass, pose the challenge of dealing 
with the vast phase-space of adsorption configurations. Screening this configurational space 
has very recently been proposed based on a reductionist’s approach to the problem, i.e., 
converting it into a series of chemically intuitive “decisions”. The following efficient, though 
transparent, approach has been implemented in DockOnSurf:42 First, the conformational 
space is sampled in the absence of the surface. Then, the conformations are adsorbed on the 
surface by combining possible anchoring points (functional groups on the molecule) with 
adsorption sites on the surface, together with a rotational sampling to explore the relative 
orientations of the molecule with respect to the surface normal. Finally, non-physical 
configurations (where the adsorbate collides with the surface) are identified, adjusted or 
removed. DockOnSurf has, for instance, automatically generated low-energy configurations 
of sorbitol on hematite. In this example, the lowest energy conformation in the gas-phase 
leads to an adsorption mode that is 0.9 eV above the most stable adsorbate conformation. 
Inspection of the different adsorption modes reveals that internal hydrogen-bonding 
inherited from the gas-phase conformation makes several functional unavailable for strong 
interactions with the surface. In contrast, a conformer with a higher moment of inertia (2500 
vs 2000 amu Å2), which exposes more of its functional groups, leads to the lowest adsorption 
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configuration. This demonstrates that adsorbing gas-phase configurations other than the 
lowest-energy conformer is crucial for polyfunctional molecules.  
 
Workflow managers have been instrumental for producing large databases, mostly dedicated 
to materials properties. For an extensive review on materials databases the reader is referred 
to ref 19. For example, the database of Materials Project contains elastic tensors for more than 
1200 materials, which has been driven by a Fireworks workflow and covers about five times 
more inorganic materials than all experimentally known databases on elastic tensors13. 
Similarly, ASR has been used to construct a dedicated database of 2D materials (C2DB).21 
C2DB contains 4000 entries, covering a large variety of materials, their energies and a large 
range of properties, from atomic charges and vibrational spectra up to photophysical 
properties relevant to photo-electrocatalysis such as effective masses, exciton binding 
energies, etc. Analogously, the exfoliation energies of more than 5000 2D materials have been 
computed by an AiiDA driven workflow and deposited on the MaterialsCloud repository.23 
Another typical example is the Open Quantum Materials Database (OQMD),47 which is an 
extensive database of crystal structures and provides computational estimates of their 
formation energies, which can be conveniently compared to experiment. To build this 
database, the authors have developed an on-purpose workflow manager (qmpy). The most 
relevant purposedly-built database for heterogeneous catalysis comes from the Open 
Catalyst Project and is currently called OC20.25 This database combines surfaces from more 
than 5000 unique unary, binary and ternary bulk materials retrieved from Materials Project 
with 86 adsorbates (ranging from H, N, O to functionalized C2 and N2 species). OC20 has been 
constructed based on a combination of established libraries such as pymatgen and CatKit39, 
the latter for managing the adsorption process. Finally, we also mention NOMAD-lab,82 which 
is a user-driven database, with associated tools for analysis and machine-learning. The central 
idea behind NOMAD-lab is that the larger the database, the more powerful it is and that 
computational chemists around the world are constantly generating data that could be 
integrated in such an overarching database, fully embracing the “big-data” paradigm. In other 
words, in contrast to the “purpose-built” databases mentioned above, NOMAD-lab is a 
repository for long-term storage and sharing of computational data. While this means that 
data is heterogeneous (setups, codes, etc), the initiative augments individual efforts of high-
throughput computations by collecting and sharing the various datasets. This diversity of 
origins of data allows comparisons and cross-validations between various methods and 
computational setups.  
 
Beyond the determination of the adsorption modes and corresponding thermodynamics of a 
reaction scheme, determining reaction kinetics requires the determination of activation 
energies. Automating, or at least accelerating, the location of transition states is an active 
field of research. For example, PathFinder has been specifically developed to speed up the 
location of transition states in ionic materials, exploiting charge density profiles to improve 
the initial guess of the minimum energy pathway.26 In a related spirit, Opt'n Path27 performs 
the interpolation not in the commonly used Cartesian coordinates but in chemically 
meaningful internal coordinates, providing sensible starting points for initializing nudged-
elastic band computations29 or any of the accelerated equivalents, such as the approxNEB26 
reflective-middle-image NEB31, the Bayesian-augmented NEB33 or the Gaussian Process 
Regression augmented NEB.35 In a comparison for CO2 activation by platinum, the later 
method has been found to be particularly robust among the accelerated NEB methods.36 Last 
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but not least, AFIR,58 a computationally very intensive, but fully automated procedure to 
locate unknown transition states, has also been transposed to heterogeneous catalysis. 
Applied to the oxidation of CO on Pt(111), the method was capable of automatically 
identifying relevant diffusion pathways and various C-O bond formation mechanisms, leading 
to CO2 or CO3, spanning 133 local minima, 272 approximate and 26 true transition states. The 
latter have been selected based on a microkinetic model identifying the kinetic bottlenecks 
in the reaction network.38   
 

Merging machine-learning and workflow managers: autonomous computations 
 
The following section discusses how machine learning and in particular reinforcement 
learning can be combined with workflow managers in order to reach autonomous 
computations, i.e., efficient, self-regulating workflows, limiting “useless” computations. 
 
High-throughput computations, as discussed above, are very powerful. Nevertheless, in order 
to efficiently search through the vast chemical space of possible catalysts, the screening can, 
and should be, accelerated by surrogate models (see Figure 1 for a schematic overview). 
Surrogate models are mathematical functions that try to predict the outcome of a costly 
computation based on much simpler to obtain descriptors, such as geometric fingerprints, 
graphs or intrinsic material properties such as the d-band center. These surrogate models 
nowadays mostly rely on machine learning (ML),40 gradually replacing their ancestor which is 
a linear scaling relationship.41 Despite this trend towards sophisticated ML, the prediction of 
transition state energies for hydrodeoxygenation (particularly relevant for biomass 
conversion) demonstrated that linear models lead to essentially the same quality as more 
advanced, non-linear models.43 Nevertheless, in general, machine-learning holds high 
promises for accelerating molecule, material,44,45 drug46 and catalyst48,49 development based 
on a data-driven paradigm. Note that surrogate models in the context of catalysis design can 
be classified into two broad categories: (i) interatomic potentials (also called machine learning 
potentals, MLP) that are used as an alternative to DFT and (ii) effective models that are used 
to circumvent energy evaluations of atomistic models altogether. In the remainder of the text 
we are concerned with the latter approaches unless stated otherwise. Combining surrogate-
models with more expensive DFT computations allows to arrive at autonomous 
computational workflows, where the surrogate models are used to decide which additional 
computations need to be carried out to either (in)validate the prediction of the model or to 
make the model more robust (see Figure 1). Such a surrogate-model driven workflow has, for 
instance, been applied to discover novel (nearly stable) binary materials,50 and to the 
screening of hydrogen evolution/oxidation catalysts,51 where the compromise between 
activity and stability is key (see Figure 2a and 2b). The same basic principles can be applied to 
reaction networks, where the surrogate model is used to predict adsorption and activation 
energies, while microkinetic and DFT simulations are used to ascertain rate-limiting steps and 
their energetics. This scheme is illustrated by Figure 2c, where the reaction network of syngas 
to C2 species over Rh(111) is extensively studied. Even though the full reaction network is 
considered, only about 50% of the intermediates and even only 10% of all transition states 
have been explicitly been determined, while the energetics of the others are estimated via 
surrogate models.52 
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Figure 1. Overall schematic for autonomous catalyst discovery up to experimental testing. Numbers give rough 
estimates of considered systems and/or computations. Key aspects are highlighted in color, starting from a 
database (gold) that is continuously updated by a workflow manager, surrogate-model based screening (dark 
red) of active sites and the optimization of promising leads via reinforcement learning (dark green). The kinetics 
of the most promising candidates have to be assessed (teal), before experiments optimize (typically relying on 
Bayesian optimization) the synthesis and reaction conditions (light blue). 

In order to deliver on the promise of accelerating catalyst design, we now have to transition 
from “proof-of-principle” demonstrations, where the goal was to demonstrate the power of 
ML (like the usage of OC20 for training graph-convolutional neural networks for replacing DFT 
energy evaluations by MLPs25), to problem-driven applications, i.e., actually developing novel 
catalysts, such as demonstrated for CO2 electroreduction.53 In this context, generative models 
become a corner stone. A generative model is a function proposing structures outside of the 
training set. In the simplest case a generative model is able to combine a given number of 
building blocks. For molecules, it would, for example, be able to suggest adding functional 
groups. For a catalyst, it could propose surface modifications (adsorbates, defects) and 
substitutional doping. Of course one can load a database with potential active sites and screen 
their activity for a given reaction. However, first, the particular reaction conditions should be 
automatically taken into account so that only stable catalysts and their relevant surface state 
are considered; and second, it would be much more powerful to organize the chemical 
universe of catalysts in an explorable manner. While this has been successfully achieved for 
organic molecules54,55 and, as an extension, partially to porous solids with organic building 
blocks,56 to the best of our knowledge no equivalent algorithm exists for metals, sulphides, 
oxides, MXenes, etc. The reason for this lack of generative models is enrooted in chemistry: 
for organic chemistry, the algorithm can rely on well-established valence-based rules, while 
such a simple classification does not apply to solids and their surfaces. Similarly, the large 
diversity of surfaces, and thus of potential active sites, limits “universal” generative models 
that would allow prediction of the adsorption site and geometry of adsorbates on the catalyst, 
in analogy to what has been achieved for conformations of organic molecules.76 Once 
reasonable structures are available, running the corresponding DFT computations in a high-
throughput workflow is feasible, limiting useless computations. Then, the DFT results can be 

Define 
chemical space

Database Thermodynamic
Surrogate 

Model

Screening
- Intermediates
- Surface state

- Stability
Best 

Candidates

DFT

Reinforcement 
Learning

Initialize

Update

Determination of
Kinetics

Experimental
Optimization

- Synthesis 
- Reaction conditions

DFT-based
Transition 

states

Microkinetics

Rate limiting
steps

Kinetic
Surrogate model

Most promising 
system

1

10

104

103

102



 8 

conveniently analyzed by ab initio thermodynamics78 to identify the resting state of the 
catalyst and the energy requirements to create vacancies in the adsorbate layer etc.  
 
In the absence of these “universal” generative models, and in combination with the “problem-
driven” ML studies, we are advocating to increasingly rely on reinforcement learning (RL) 
techniques. The core of reinforcement learning is the policy that is being learned which 
maximizes a defined reward. This technique has been very successful for learning strategy 
games: for example AlphaGo is based on RL.57 In chemistry, RL is not yet widely adopted by 
the community, but we believe that this will change soon: RL has already proven its efficiency 
in optimizing various chemistry-relevant functions. For instance, RL has been trained not only 
for efficiently optimizing geometries of organic molecules,59 but also for determining the 
lowest energy pathway in the complex Haber-Bosch reaction over Fe(111), effectively 
learning chemical kinetics.60 Furthermore, RL has been applied to construct efficient training 
sets for MLPs61,62 and even to identify efficient, highly accurate, compressions of wave 
functions.63 The power of RL relies on two complementary aspects: On the one hand, RL is 
typically applied as an active learning framework, i.e. the training set is constructed on the 
fly, according to the needs of the model being trained and the promising regions being 
explored. Active learning limits the number of “useless” computations, so that only 
comparably small training sets are required. Being able to train surrogate models with small 
training sets is all the more important when applying ML to solve novel problems for which 
the required training set is not established beforehand. RL is also ideally suited for transfer 
learning: Having learned an optimal policy for one problem might be an excellent starting 
point for learning an optimal policy on a related problem. This has, for instance, been applied 
to the wave function compression, where the policy for optimal selection of Slater 
determinants around equilibrium distance has been shown to significantly accelerate the 
identification of the optimal combination of Slater determinants for stretched distances.63  
Transfer learning is also closely linked to combining information from different sources. Take, 
for instance, surrogate models, DFT computations and experiment. Combining these three 
sources of information in an optimal way is not obvious, but under the condition that they 
show reasonably similar trends, the algorithms on how to minimize the overall cost for solving 
a given optimization problem have now been developed.87 Moreover, given that RL is, by 
construction, problem and system oriented, devising generative models is more manageable: 
Within a class of systems it is rather natural to select the sites of interest, both for surface 
modifications (typically substitutional doping) and adsorption sites.  
 

 
Figure 2. Surrogate-model based estimates of a) activity and b) stability, of hydrogen evolution and oxidation 
catalysts. Taken from ref 51. c) Representation of the convergence of the syngas to C2 species over Rh(111) 
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network. At each iteration, DFT computations are added for key intermediates and transition states. Less than 
10% of transition states and 60% of the intermediates are required. Taken from ref 52. 

Challenges to be addressed 
 
In the following section, we outline four major challenges for autonomous workflows applied 
to catalysis: (i) solvation effects, (ii) maintaining a curated database and making it efficiently 
searchable via well-crafted descriptors, (iii) efficient workflows for complex interfaces, 
including surface states reflecting the reaction conditions, (iv) workflows for exploring 
amorphous catalysts. 
 
In the next 5 years or so, the community will have to embrace the challenge of dealing with 
the solvent: While implicit solvents have been available in the molecular community for more 
than thirty years,64 only the last 5-10 years have seen their implementation and application 
in heterogeneous catalysis.65 While these implicit solvent models are ideally suited for high-
throughput computations and very valuable for electrocatalysis66, they tend to significantly 
underestimate solvation effects, especially on metals, where the electrostatic interactions 
(captured by implicit solvents) is negligible compared to the near-chemisorption of solvent 
and complex many-body effects are non-negligible even for small adsorbates.67–69 Therefore, 
competitive adsorption between general adsorbates and solvent molecules has to be 
considered.70 The development of generally applicable hybrid molecular mechanics/quantum 
mechanics solvation models70–72 or approximations thereof73,74 is likely to become the most 
adapted strategy, provided transferable force fields with an acceptable accuracy can be 
devised.75 Alternatively, purposedly built MLPs (as very recently illustrated in the context of 
electrocatalysts77) could become standard practice once a robust autonomous workflow for 
their fitting has been developed. Ultimately, these computationally rather heavy solvation 
models might be replaced by some surrogate ML models in the spirit of implicit solvent 
models, but with improved accuracy compared to the electrostatics-based101,103 current state 
of the art. However, given the scarcity of benchmark data, we believe that this will only come 
in a second stage, estimated to be 5-10 years ahead of us, when atomistic models have been 
made available to generate the necessary benchmark data. 
 
Given the data-driven nature of ML, one might argue that establishing and maintaining large 
database is key. This not only allows to avoid duplicating computations, but allows to train 
models with existing data, for instance to initialize surrogate models.79 In the context of 
catalysis, the databases are most useful for defining the search space: Which types of surfaces 
exist? – What types of active sites could be envisioned? Currently, the largest such database 
is OC20.25 To unleash the power of such databases, the user should also be able to judge the 
stability and feasibility of a given structure. Hence, a “feasible surface” database with 
experimentally observed surface structures would be particularly valuable, together with the 
corresponding conditions. Depending on the in situ/operando experimental characterization 
technique, the surface state can now be precisely determined, especially with scanning-
tunneling microscopy or transmission electron microscopy.106 Establishing the corresponding 
database could be seen as an analogue to the protein data bank80 or the open reaction 
database81 but for surfaces. The user might then investigate the evolution of the structure 
under his particular conditions or trying to adapt the reaction conditions towards the ones 
under which the promising surface has already been observed. In line with the move towards 
open-science and big-data,  the community as a whole would also benefit from one, unified 
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database which will be continuously fed by the computations performed and published, 
which is the goal of NOMAD-lab82. Having one, huge, database would also enable automatic, 
self-driven identification of outliers (i.e., wrong/unconverged computations), so that 
extracting curated datasets would become easy. Even beyond dataset curation, robust data 
consistency checks, in order to filter out erroneous computations, will need to be developed 
in order to fully benefit from autonomous computations. On a related topic, the development 
of suitable descriptors (graphs, fingerprints) for surfaces would make these databases more 
searchable and would allow to classify the entries: well-crafted descriptors make surrogate 
models more robust and thus more useful. Typically used descriptors are simple cut-off 
distances,83  Behler-Parinello’s symmetry functions84 or the smooth overlap of atomic 
positions.85 Improved descriptors (see ref 113 for a comparison) might ultimately lead to 
powerful generative models that allow to efficiently explore chemical space. 
 
Active sites not resembling a single-crystal surface are still very challenging to address.  First 
of all, the active site might be at a triple-phase boundary (catalyst, support and reaction 
medium). While such systems have been regularly described in the literature, high-
throughput construction and evaluation of their activity has, to the best of our knowledge, 
not been reported. Nevertheless, the BOSS scheme provides a promising avenue towards an 
efficient construction of complex interfaces as illustrated by the C60-TiO2 interface,86 or the  
tetracyanoethylene/Cu(111) interface.88 Similarly, MPInterfaces allows one to efficiently 
construct solid/solid or solid/ligand interfaces.116 Second, the surface state might evolve 
under the reaction conditions:89 ranging from coverage with solvent or reaction 
intermediates to surface reconstruction or even catalyst decomposition/dissolution. These 
modifications of the surface state by the reaction medium are still inadequately tackled, even 
though they lend themselves for autonomous computations, as adding/removing adsorbates 
can be automatized efficiently. An instructive example on how the reaction conditions can 

influence the reactivity is provided by the evolution of Pt7 clusters supported on -alumina 
under C-H activation conditions. Extensive computations predict that the cluster dynamically 
reconstructs as a function of the reaction progress, changing shape and hydrogen coverage.90 
 
Finally, amorphous catalysts can, from an experimental point of view, be as convenient as 
crystalline ones, or even more promising due to potentially higher specific surface area. It is 
only very recently that grain-boundaries can be conveniently constructed automatically.120 
From an atomistic modelling point of view, amorphous catalysts are very delicate to address 
(see ref 91 for an remarkable study of Pt nanowires as hydrogen evolution catalysts and ref 92 
for the extensive modelling of high-entropy alloys), as not even the starting position of the 
atoms is well known and a validation of a given model compared to experiment is necessarily 
very indirect. For example, MoS3 is discussed as a potential hydrogen evolution catalyst, but 
its atomic structure remains debated with various experiments leading to characteristics that 
are difficult to reconcile with a single atomistic model.93 
 

Towards self-driven experimental laboratories 
 
In this final section we review the progress in autonomous laboratories, i.e., hardware that is 
managed by artificial intelligence, enabling high-throughput, reproducible catalysis synthesis, 
characterizations and performance tests. 
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The impressive progress in terms of conceptualization and building both the software125 and 
hardware solutions for autonomous experimentations offers a bright perspective to the field 
of heterogeneous (electro-)catalysis. In particular, autonomous laboratories have been 
shown to be well suited to optimize a given chemical system. In other words, the boundaries 
of the problem need to be defined by the user, while the “recipe” of the synthesis is optimized 
via a surrogate model with experimental factors as inputs. This has been, for example, 
demonstrated for the synthesis of nanoparticles with a specific shape.94 Note, that even the 
shape analysis can be fully automatized by coupling automated TEM with machine-learning 
image processing techniques.95 A similar approach has also been demonstrated for optimizing 
the synthesis protocol of few-layer WTe2,96 or for determining optimal organic additives for 
Cu-based CO2 reduction electrocatalysts.97 These studies also perfectly illustrate that the 
experimental search space is much more restricted (only one material) compared to 
computational screenings (see also Figure 1). However, the feasibility of given active sites can 
only be estimated on a very rough level based on computations, so that dedicated 
experiments are required to tune synthesis conditions that might be able to lead to the 
sought-after active sites and validate the results experimentally.98,99 Autonomous high-
throughput experimentation has been developed several years ago to explore a vast chemical 
compounds space, e.g., metals, organics, organometallics, inorganic solids, etc.100 As a result, 
researchers were able to discover new chemical compounds with more exotic properties than 
that of conventional synthesis and have obtained big data on catalysts at an unprecedented 
scale and speed.102 However, since high-throughput experimentation is more cost intensive 
that the conventional approach, design of experiments involving catalyst synthesis, 
characterization and testing should be carefully planned to maximize information output with 
minimum number of experiments. 
 
With rapid progress in automation control, combinatorial high-throughput synthesis of 
catalysts can be made fully autonomous with the aid of a guided-robotics arm connected to 
the control system. Thus, optimized parameter conditions, e.g., catalyst composition, mixing 
sequence, reaction treatments, and so on can be obtained with minimal human 
intervention.104,105,107 For instance, sputtering is a versatile process for catalyst synthesis in 
both laboratory and industrial scale, enabling deposition of a thin film of catalyst with 
controllable thickness. High-throughput depositions allow creating a library of catalyst 
materials with a controllable composition gradient and a large range of film thickness.108 This 
is usually done using robotic arm-assisted sputtering in which the precursors are sputtered 
through a series of masks consisting of some overlaying masks. The masking combination is 
dependent on the pre-designed catalyst composition. For instance, combinatorial synthesis 
of binary catalysts by sputtering deposition uses binary masks made of primary and secondary 
masks. For ternary catalyst composition, a ternary mask is used with the composition of 
primary, secondary, and tertiary masks. The outcomes of thin-film library materials entirely 
depend on the composition of the catalysts and the reaction condition under which the 
experiments are conducted. The approach is suitable for synthesizing ternary, quaternary, or 
even higher-order mixtures of elements to produce a thousand catalysts in a parallel reactor 
in a concise amount of time.99 
 
On the other hand, pulsed laser deposition offers rapid and homogeneous deposition of many 
materials using an ablation from a high-energy UV laser. This method has also been adopted 
for the combinatorial catalyst library, which uses a typical series of quaternary masks in a so-
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called multi-plume pulsed-laser deposition system.109 The autonomous robotic arm helps to 
rotate the samples holders that usually house pellet precursors and subsequent transfer for 
post-treatment or characterization. The use of robotic arms is also employed in the sol-gel 
synthesis of catalysts. A library of catalysts is typically prepared autonomously by robotic arm 
and pipette to take precursor solutions and transfer them to small vials (2-5 ml capacity) as 
microreactors in which the sol-gel reaction occurs.110 More recently, jet dispensing equipped 
in the automatic printing technology (see Figure 3a) was utilized for high-throughput 
synthesis of a library of cocrystals.111 Precursor ink was formulated with a predetermined 
concentration to prepare the gradient library in parallel. The method guarantees a faster 
speed of fluid dispending with a highly accurate compositional gradient, thus reducing the 
amount of experimentation and saving production time. The record has achieved 1,000,000 
formulations within one operating hour.111  
 
While combinatorial synthesis involves the preparation of vast arrays of the gradient 
materials, high-throughput characterization accelerates the discovery of structure-property 
relationships.112 High-throughput characterization can be made fully autonomous by the 
robotic arm. An example is the development of automated rotating sample changer for X-ray 
diffraction to identify crystallographic features of catalysts. In D8 ADVANCE, developed by 
Bruker, which can measure up to 90 samples in parallel, the robot arm transfers the sample 
to the rotation sample stage, allowing permanent rotation and automatic positioning 
adjacent to the X-ray beam.114 It can be equipped with AUTO-CHANGER consisting of a loading 
station for up to 6 sample magazine towers, a robotic sample handler with integrated gripper, 
and a rotation sample stage mounted to the goniometer. When a magazine tower is loaded 
or removed for refilling the new set of samples, the machine automatically detects it. 
Moreover, the handling gripper and transfer robot ensures safe transportation of sample to 
and from the measurement setup. For crystallography under cryogenic conditions, RoboDiff 
has been developed and has processed more than 20,000 molecules, including catalysts (see 
Figure 3b).115 A robotic sample changer has also been installed in a small-angle X-ray 
scattering setup that can perform hundreds of measurement automatically with small sample 

consumption (± 5 L).117  
 
Raman spectroscopy is a powerful and non-destructive tool to obtain surface properties of 
catalysts and elucidate reaction mechanisms.118 In a modern high-throughput Raman 
technology setup, a robotic system is employed to move samples and acquire data. This is 
typically done by the deposition of molecular or solid catalysts onto the multi-well plate 
attached to an automated sample stage.119 Achieving laser beam focus is one of biggest 
challenges in measuring high-throughput Raman spectra for non-experts, and thus autofocus 
technology is developed to allow laser beam refocusing during sample holder rotation.121 
Several advanced Raman technologies such as UV resonance Raman spectroscopy, surface-
enhanced Raman spectroscopy, time- and spatially resolved Raman spectroscopy can also 
gather information on how catalytic mechanisms occur by probing the solutions or reactions 
intermediates for catalytic CO2 reduction, water splitting, water purification, etc.122  
 
High-throughput catalyst testing is of great significance in accelerating catalyst 
development.123 For instance, automated analysis of catalytic products can be performed by 
gas chromatography-mass spectrometry (GC-MS) and high-performance liquid 
chromatography, using a robotic handling pipette that is designed to provide reliable and 
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accurate liquid injection, sample preparation and pretreatment. Having a miniaturized 
electrochemical workstation is convenient for conducting parallel catalyst testing, which aims 
to shrink chemical laboratories to lab-on-a-chip system. Microfluidic reactors are 
sophisticated setups used to test catalyst activity. Their advantages are their versatility, small 
volumes, fast operation speeds, capability of parallelization, as well as well-controlled 
parameters (e.g., temperature, pressure, etc).124 For example, researchers have studied a 
gradient catalyst consisting of Cu, Pd and Au (CuxPdyAu(1-x-y) alloy) connected to individual 
microfluidic channels, where each end of channel is accessible by a programmable and 
movable liquid handling robot-equipped GC-MS nozzle which rapidly screens 100 H2/D2 
exchange products within 10 minutes.126  
 
For larger catalytic systems, a lab-made high-throughput catalyst testing setup has been 
established for oxidative methane coupling which screens 20 catalysts under 216 different 
conditions.123 This can be achieved by the use of pneumatically actuated diaphragm valves in 
autosampler which is connected to a diaphragm pump and the inlet of a quadrupole mass 
spectrometer (see Figure 3c). Developing a parallel module that evaluates the activity of solid-
state catalysts simultaneously is one of the future interests in the field. The 16-parallel high-
throughput reactor systems, developed by hte GmbH, are specially designed to screen multi-
catalytic reactions in a wide range of process parameters, to operate in gas and liquid feed 
streams, to perform in plug-flow, fix-bed, and trickle-bed reactors, and to couple with online 
GC-MS or offline analysis. It covers a broad range of catalyst volumes from small quantities of 
solid powders to massive quantities of shaped materials.127 All of these operations are 
autonomous to reduce human error during preparation, handling, and testing of catalysts.  
 
Finally, all the experimental results, including the raw data and metadata containing the 
experimental parameters, should be transferred automatically to cloud-based servers, which 
can then be analyzed by automated-data analysis and visualization tools.128 The most critical 
role of high-throughput experimentation is to find the structure-activity relationship of the 
catalyst. Thus, the algorithm developed for automated data analysis should estimate or 
predict the optimum synthesis condition as feedback to the high-throughput 
experimentation. This is an ideal concept of data-guided combinatorial synthesis and data-
driven catalysts discovery. One can extend this framework to additional parameters to make 
further predictions, enabling faster and more efficient catalyst development. 
 
 
 
 
 
 
 
 
 
 
Figure 3. High-throughput experimentation for catalyst development. a) Jet dispensing printing technology. 
Taken from ref 111.  b) RoboDiff for cryogenic diffraction measurement. Taken from ref 115. c) High-throughput 
catalyst testing system for oxidative coupling of methane. Taken from ref 123. 
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Table 1 Synoptic table of workflow managers and related tools. 

Tool Brief description of main characteristics Ref. 

AiiDA High-level workflow manager, keeping track of 
data provenance. Can be coupled to the 
MaterialsCloud repository.16 

12,14 

AFLOW Workflow manager for high-throughput in silico 
screenings. Results can be easily stored in 
AFLOWlib.22 

18,20 

Atomate Workflow manager, input file generation and 
failure management developed by the 
MaterialsProject.24 The workflow can move from 
bulk structures to surfaces, enumeration of 
adsorption sites, adsorbing small adsorbates on 
them and computing a wide range of properties. 

34 

ASE Toolkit to manipulate and carry out computations, 
ranging from bulks to molecules, driven by DFT or 
empirical potentials. 

28 

ASR Collection of “recipes” for the computation of 
almost any property derived from electronic 
structure computations. Heavily depends on ASE. 

30 

MyQueue Manager for submitting (interdependent) 
individual computations, useful for high-
throughput screenings. 

32 

GASpy Dynamic database (unknown entries will be 
computed upon request) and workflow manger, 
including predefined workflows for adsorption 
energy computations from bulks and molecules to 
surface and adsorption site enumeration. 

37 

DockOnSurf Workflow for screening adsorption modes of 
flexible, polyfunctional molecules on user-defined 
adsorption sites. 

42 

Qmpy Workflow and database manager for screening 
bulk materials and their properties, including 
formation energies, with VASP. Built for OQMD. 

47 

CatKit Tool to generate initial structures of adsorbates 
on surfaces. It exploits graph-theory and 
symmetry to enumerate all unique adsorption 
sites and to adsorb mono or bi-dentate 
adsorbates along high-symmetry directions. 

39 

BOSS Workflow for screening adsorption modes while 
reducing costly DFT computations by accelerating 
geometry optimizations via Bayesian 
optimization. 

86 

NOMAD-lab Repository for results from most electronic 
structure codes. Raw-output files are stored, 
minimizing information loss. 

82 
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AFIR Algorithm to automatically determine transition 
states for arbitrary reactions. 

58 

Dscribe Library implementing various atomic structure-
based descriptors. 

113 

ChemOS High-level operating system for coupling 
automated laboratory equipment with machine-
learning. 

125 

MISO Algorithm optimally combining information from 
hierarchical levels with increasing cost and 
decreasing uncertainty. 

87 

Atomsk Toolkit to create grain-boundaries and bulk 
dislocations. 

120 

MPInterfaces Toolkit to generate complex interfaces, heavily 
depends on the tools underlying Atomate. 

116 

 

Conclusions 
 
In summary, we firmly believe that catalyst development can be accelerated by high-
throughput, autonomous computations that identify promising (active) and realistic (under 
given reaction conditions) catalyst surfaces. Given the excessive complexity to predict the 
feasibility and (long-term) stability of a given catalyst from first principles atomistic 
computations, our vision for optimal theory-guided catalyst design consists of in silico 
screening of the chemical space to identify promising compositions and active site motives by 
high-throughput, autonomous computations. This screening of the chemical space is followed 
by experimental ML-enhanced optimization of the synthesis protocol and the reaction 
conditions to achieve active and stable catalysts within the computationally identified family. 
This experimental optimization can integrate any user-defined cost function, for example a 
trade-off between price, activity and stability. With time, the autonomous laboratories might 
become as available as supercomputing facilities, opening a new branch of catalysis research, 
requiring skills somewhere between experimental and computational sciences. 
 
Will these autonomous workflows and laboratories replace trained, highly-skilled 
researchers? – This seems rather unlikely to us. Rather, we believe that automating the 
tedious parts of catalyst development should be seen as a liberating action, enabling chemists 
and chemical engineers to focus on developing promising hypotheses and efficient ways of 
testing them, rather than spending their time on the Edisonian trial and error approach. 
Similarly, computational chemists could focus on making models more relevant, coming up 
with good descriptors and generating insight, rather than having to spend time on repetitive 
and error-prone human-based, construct and collect, actions. Furthermore, recent advances 
in extracting knowledge from data sets in terms of human interpretable hypothesis are an 
exciting step towards the generation of general rules and insights129 and thus making the 
intellectual journey through chemical space even more enjoyable. 
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