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Bigger Picture

Introduction

Heterogeneous (electro-)catalysis is at the heart of the production of chemicals, from refineries and petrochemicals to the manufacture of ammonia and sulfuric acid. While these processes have been studied and optimized over decades, the very recent political action, promising to drastically reduce CO2 emissions, calls upon chemists to devise novel catalysts to achieve more efficient catalytic conversion. These catalysts not only need to be highly active, but also stable under long-term operating conditions. [START_REF] Hu | Heterogeneous Catalysis: Enabling a Sustainable Future[END_REF] Two prototypical examples are water-splitting and biomass conversion. [START_REF] Reina | Heterogeneous Catalysis for Energy Applications[END_REF] Stable, energyefficient water-splitting catalysts based on Earth-abundant materials (e.g., transition-metal dichalcogenides), in combination with renewable electricity, typically from wind or solarpower, would allow us to temporarily store energy from intermittent sources on a grid level. Such "green" hydrogen would also be a decarbonized chemical that can be used throughout the industry. In particular, the Haber-Bosch process, responsible for ammonia production and thus essentially all nitrogen atoms in chemical compounds from polymers to colorants, fertilizers and drugs, currently relies on hydrogen produced via methane reforming, releasing large amounts of CO2. [START_REF] Marakatti | Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis[END_REF] Biomass conversion based on ligno-cellulosic feedstocks is also a promising avenue for transitioning from the petrochemical industry to a renewable, carbonneutral industry producing all the commodities (plastics, detergents, etc) via new pathways. In biomass conversion, the major challenge compared with the current petrochemical processes is that the bio-sourced molecules are highly oxygenated and much less volatile than the petrochemicals. Hence, catalysts working efficiently in water have to be developed. [START_REF] Huo | Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review[END_REF] Ideally, the two aspects (hydrogen production and biomass conversion) could be coupled for a sustainable energy future. [START_REF] Simoes | Electrochemical Valorisation of Glycerol[END_REF] 

Accelerating catalyst development with workflow managers and databases

In this section we discuss the various tools that have become available to accelerate atomistic computations relevant to the understanding and design of heterogeneous catalysis. The main focus is dedicated to workflow managers, but data repositories and automated transition state searches are also succinctly reviewed and summarized in Table 1.

Mass-(and charge-) transport have a significant impact on the overall kinetics and depend on the meso-scale properties of the catalytic layer as illustrated for CO2 reduction [START_REF] Kas | Electrochemical CO2 reduction on nanostructured metal electrodes: fact or defect?[END_REF] and solar hydrogen production. [START_REF] Modestino | Mass transport aspects of electrochemical solar-hydrogen generation[END_REF] However, the intrinsic activity of a catalyst is determined by its atomicscale structure and sets an upper maximum to the performance. In heterogeneous (electro-)catalysis, this intrinsic activity, which is the focus of the current perspective, is intimately connected to the complex interface between the solid catalyst and either gas-phase (typical for petrochemistry) or the (aqueous) liquid-phase, typical for electrocatalysis and biomass conversion. Note, that our perspective mostly covers metallic and transition-metal oxide/sulphide catalysts, but does not address porous catalysts such as zeolites and metalorganic frameworks.

The kinetics over heterogeneous catalyst has been extensively studied by computations over the last decades, most of the time under idealized conditions. [START_REF] Norskov | The nature of the active site in heterogeneous metal catalysis[END_REF][START_REF] Van Santen | Modern heterogeneous catalysis: an introduction[END_REF] Typically, the catalyst model is a single-crystal surface on which a single adsorbate is placed. Furthermore, the vast majority of studies focuses on small (1-2 carbon atoms) reactants and intermediates. These simplified surface models lend themselves for high-throughput in silico screening studies, [START_REF] Greeley | Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[END_REF][START_REF] Norskov | Towards the computational design of solid catalysts[END_REF] which generally require a workflow manager. The main purpose of a workflow manager in computational chemistry is to orchestrate all the computations to run on supercomputer facilities, tracking failures, correcting the most basic errors and dynamically adapting settings when necessary. In general, the workflow manager can also be used to construct the starting geometries and to chain computations, e.g., screening adsorption modes and only performing frequency computations for the lowest energy ones. Furthermore, the workflow manager can also be responsible to store the results in a database and thus to avoid redundancies.

In practice, several workflow managers have either been adapted from material screening to screening of adsorption modes, or specifically developed for this purpose. One of the most abstract and complete workflow managers is AiiDA, [START_REF] Huber | AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance[END_REF][START_REF] Uhrin | Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows[END_REF] which not only automates the execution of workflows and the storage of the generated data, but also scrupulously keeps track of the provenance of the data along a workflow and allows integrated storage of the obtained results on the MaterialsCloud repository. [START_REF] Talirz | Materials Cloud, a platform for open computational science[END_REF] An alternative is provided by AFLOW, [START_REF] Curtarolo | AFLOW: An automatic framework for high-throughput materials discovery[END_REF][START_REF] Calderon | The AFLOW standard for highthroughput materials science calculations[END_REF] which is a high-throughput computational framework with an associated database, [START_REF] Curtarolo | AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations[END_REF] geared towards bulk properties of materials, but is also capable of generating and analyzing surface free energies for various high-index surfaces in complex multi-component compounds and nanoparticles. AFLOW is also directly applicable to estimate stabilities of explored structures, e.g., by automatically determining formation energies and constructing binary convex hulls for alloys. Similarly, the MaterialsProject 24 has developed a suite of programs to manage workflows (called FireWorks [START_REF] Jain | FireWorks: a dynamic workflow system designed for high-throughput applications[END_REF] ), generate input files (Pymatgen [START_REF] Ong | Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis[END_REF] ) and correct common failures (Custodian). Failure management is one of the difficult to efficiently automate aspects of computational catalysis: On the one hand there are technical failures (errors in input files, failures of hardware) and on the other hand there are unphysical results due to convergence failures (electronic structure or geometry) or initial geometries that are too far from the intended optimized geometries. Finally, the ASE toolkit 28 also provides the possibility to create and manage complex workflows if the user creates the super-structure: ASE provides all the necessary elementary bricks, but is not a workflow manager in itself. For example, the Atomic Simulation Recipes rely on ASE to carry out "routine" workflows, called "recipes". [START_REF] Gjerding | Atomic Simulation Recipes: A Python framework and library for automated workflows[END_REF] The interface between the recipe and the high-performance computing facility that carries out the individual tasks is provided by MyQueue. [START_REF] Mortensen | MyQueue: Task and workflow scheduling system[END_REF] Atomate [START_REF] Mathew | Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows[END_REF] , which is a bundled version of the MaterialsProject tools, has, for instance, been specifically extended in order to allow highthroughput screening of CO2 reduction reaction intermediates (i.e., CO) on semi-conductor surfaces, automatically identifying surface terminations, their relative surface energies and optimizing the adsorbates on automatically identified adsorption sites. [START_REF] Andriuc | Automated Adsorption Workflow for Semiconductor Surfaces and the Application to Zinc Telluride[END_REF] Similarly, the Generalized Adsorption Simulator for Python, GASpy, has been developed to rapidly screen surface free energies and adsorption energies of small molecules on (inter-)metallic surfaces. [START_REF] Tran | Dynamic Workflows for Routine Materials Discovery in Surface Science[END_REF] The exploitation of graph-theory allows CatKit [START_REF] Boes | Graph Theory Approach to High-Throughput Surface Adsorption Structure Generation[END_REF] to feature the unique capability of explicitly handling bi-dentate adsorption modes of small molecules, significantly expanding the applicability and efficiency in heterogeneous catalysis applications. Bayesian Optimisation Structure Search, BOSS, accelerates the orientational exploration of adsorption modes via a Bayesian surrogate model, thus reducing the number of DFT computations required to identify low-energy adsorption modes. [START_REF] Todorović | Bayesian inference of atomistic structure in functional materials[END_REF] In contrast to rigid, small adsorbates that can be handled by several adsorption generation tools, flexible, polyfunctional molecules, typical for biomass, pose the challenge of dealing with the vast phase-space of adsorption configurations. Screening this configurational space has very recently been proposed based on a reductionist's approach to the problem, i.e., converting it into a series of chemically intuitive "decisions". The following efficient, though transparent, approach has been implemented in DockOnSurf: [START_REF] Martí | DockOnSurf: A Python Code for the High-Throughput Screening of Flexible Molecules Adsorbed on Surfaces[END_REF] First, the conformational space is sampled in the absence of the surface. Then, the conformations are adsorbed on the surface by combining possible anchoring points (functional groups on the molecule) with adsorption sites on the surface, together with a rotational sampling to explore the relative orientations of the molecule with respect to the surface normal. Finally, non-physical configurations (where the adsorbate collides with the surface) are identified, adjusted or removed. DockOnSurf has, for instance, automatically generated low-energy configurations of sorbitol on hematite. In this example, the lowest energy conformation in the gas-phase leads to an adsorption mode that is 0.9 eV above the most stable adsorbate conformation. Inspection of the different adsorption modes reveals that internal hydrogen-bonding inherited from the gas-phase conformation makes several functional unavailable for strong interactions with the surface. In contrast, a conformer with a higher moment of inertia (2500 vs 2000 amu Å 2 ), which exposes more of its functional groups, leads to the lowest adsorption configuration. This demonstrates that adsorbing gas-phase configurations other than the lowest-energy conformer is crucial for polyfunctional molecules.

Workflow managers have been instrumental for producing large databases, mostly dedicated to materials properties. For an extensive review on materials databases the reader is referred to ref [START_REF] Himanen | Data-Driven Materials Science: Status, Challenges, and Perspectives[END_REF] . For example, the database of Materials Project contains elastic tensors for more than 1200 materials, which has been driven by a Fireworks workflow and covers about five times more inorganic materials than all experimentally known databases on elastic tensors [START_REF] Jain | FireWorks: a dynamic workflow system designed for high-throughput applications[END_REF] . Similarly, ASR has been used to construct a dedicated database of 2D materials (C2DB). [START_REF] Haastrup | The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals[END_REF] C2DB contains 4000 entries, covering a large variety of materials, their energies and a large range of properties, from atomic charges and vibrational spectra up to photophysical properties relevant to photo-electrocatalysis such as effective masses, exciton binding energies, etc. Analogously, the exfoliation energies of more than 5000 2D materials have been computed by an AiiDA driven workflow and deposited on the MaterialsCloud repository. [START_REF] Mounet | Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds[END_REF] Another typical example is the Open Quantum Materials Database (OQMD), [START_REF] Kirklin | The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies[END_REF] which is an extensive database of crystal structures and provides computational estimates of their formation energies, which can be conveniently compared to experiment. To build this database, the authors have developed an on-purpose workflow manager (qmpy). The most relevant purposedly-built database for heterogeneous catalysis comes from the Open Catalyst Project and is currently called OC20. [START_REF] Chanussot | Open Catalyst 2020 (OC20) Dataset and Community Challenges[END_REF] This database combines surfaces from more than 5000 unique unary, binary and ternary bulk materials retrieved from Materials Project with 86 adsorbates (ranging from H, N, O to functionalized C2 and N2 species). OC20 has been constructed based on a combination of established libraries such as pymatgen and CatKit [START_REF] Boes | Graph Theory Approach to High-Throughput Surface Adsorption Structure Generation[END_REF] , the latter for managing the adsorption process. Finally, we also mention NOMAD-lab, [START_REF] Draxl | The NOMAD laboratory: from data sharing to artificial intelligence[END_REF] which is a user-driven database, with associated tools for analysis and machine-learning. The central idea behind NOMAD-lab is that the larger the database, the more powerful it is and that computational chemists around the world are constantly generating data that could be integrated in such an overarching database, fully embracing the "big-data" paradigm. In other words, in contrast to the "purpose-built" databases mentioned above, NOMAD-lab is a repository for long-term storage and sharing of computational data. While this means that data is heterogeneous (setups, codes, etc), the initiative augments individual efforts of highthroughput computations by collecting and sharing the various datasets. This diversity of origins of data allows comparisons and cross-validations between various methods and computational setups.

Beyond the determination of the adsorption modes and corresponding thermodynamics of a reaction scheme, determining reaction kinetics requires the determination of activation energies. Automating, or at least accelerating, the location of transition states is an active field of research. For example, PathFinder has been specifically developed to speed up the location of transition states in ionic materials, exploiting charge density profiles to improve the initial guess of the minimum energy pathway. [START_REF] Rong | An efficient algorithm for finding the minimum energy path for cation migration in ionic materials[END_REF] In a related spirit, Opt'n Path 27 performs the interpolation not in the commonly used Cartesian coordinates but in chemically meaningful internal coordinates, providing sensible starting points for initializing nudgedelastic band computations [START_REF] Henkelman | A climbing image nudged elastic band method for finding saddle points and minimum energy paths[END_REF] or any of the accelerated equivalents, such as the approxNEB [START_REF] Rong | An efficient algorithm for finding the minimum energy path for cation migration in ionic materials[END_REF] reflective-middle-image NEB [START_REF] Mathiesen | R-NEB: Accelerated Nudged Elastic Band Calculations by Use of Reflection Symmetry[END_REF] , the Bayesian-augmented NEB [START_REF] Koistinen | Nudged elastic band calculations accelerated with Gaussian process regression[END_REF] or the Gaussian Process Regression augmented NEB. [START_REF] Garrido Torres | Low-Scaling Algorithm for Nudged Elastic Band Calculations Using a Surrogate Machine Learning Model[END_REF] In a comparison for CO2 activation by platinum, the later method has been found to be particularly robust among the accelerated NEB methods. [START_REF] Meyer | Machine Learning in Computational Chemistry: An Evaluation of Method Performance for Nudged Elastic Band Calculations[END_REF] Last but not least, AFIR, 58 a computationally very intensive, but fully automated procedure to locate unknown transition states, has also been transposed to heterogeneous catalysis. Applied to the oxidation of CO on Pt(111), the method was capable of automatically identifying relevant diffusion pathways and various C-O bond formation mechanisms, leading to CO2 or CO3, spanning 133 local minima, 272 approximate and 26 true transition states. The latter have been selected based on a microkinetic model identifying the kinetic bottlenecks in the reaction network. [START_REF] Sugiyama | Understanding CO oxidation on the Pt(111) surface based on a reaction route network[END_REF] 

Merging machine-learning and workflow managers: autonomous computations

The following section discusses how machine learning and in particular reinforcement learning can be combined with workflow managers in order to reach autonomous computations, i.e., efficient, self-regulating workflows, limiting "useless" computations.

High-throughput computations, as discussed above, are very powerful. Nevertheless, in order to efficiently search through the vast chemical space of possible catalysts, the screening can, and should be, accelerated by surrogate models (see Figure 1 for a schematic overview). Surrogate models are mathematical functions that try to predict the outcome of a costly computation based on much simpler to obtain descriptors, such as geometric fingerprints, graphs or intrinsic material properties such as the d-band center. These surrogate models nowadays mostly rely on machine learning (ML), [START_REF] Chen | A Critical Review of Machine Learning of Energy Materials[END_REF] gradually replacing their ancestor which is a linear scaling relationship. [START_REF] Bligaard | The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[END_REF] Despite this trend towards sophisticated ML, the prediction of transition state energies for hydrodeoxygenation (particularly relevant for biomass conversion) demonstrated that linear models lead to essentially the same quality as more advanced, non-linear models. [START_REF] Abdelfatah | Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning[END_REF] Nevertheless, in general, machine-learning holds high promises for accelerating molecule, material, [START_REF] Moosavi | The Role of Machine Learning in the Understanding and Design of Materials[END_REF][START_REF] Pollice | Data-Driven Strategies for Accelerated Materials Design[END_REF] drug [START_REF] Bannigan | Machine learning directed drug formulation development[END_REF] and catalyst [START_REF] Schlexer Lamoureux | Machine Learning for Computational Heterogeneous Catalysis[END_REF][START_REF] Toyao | Machine Learning for Catalysis Informatics: Recent Applications and Prospects[END_REF] development based on a data-driven paradigm. Note that surrogate models in the context of catalysis design can be classified into two broad categories: (i) interatomic potentials (also called machine learning potentals, MLP) that are used as an alternative to DFT and (ii) effective models that are used to circumvent energy evaluations of atomistic models altogether. In the remainder of the text we are concerned with the latter approaches unless stated otherwise. Combining surrogatemodels with more expensive DFT computations allows to arrive at autonomous computational workflows, where the surrogate models are used to decide which additional computations need to be carried out to either (in)validate the prediction of the model or to make the model more robust (see Figure 1). Such a surrogate-model driven workflow has, for instance, been applied to discover novel (nearly stable) binary materials, [START_REF] Montoya | Autonomous intelligent agents for accelerated materials discovery[END_REF] and to the screening of hydrogen evolution/oxidation catalysts, [START_REF] Back | In silico discovery of active, stable, COtolerant and cost-effective electrocatalysts for hydrogen evolution and oxidation[END_REF] where the compromise between activity and stability is key (see Figure 2a and2b). The same basic principles can be applied to reaction networks, where the surrogate model is used to predict adsorption and activation energies, while microkinetic and DFT simulations are used to ascertain rate-limiting steps and their energetics. This scheme is illustrated by Figure 2c, where the reaction network of syngas to C2 species over Rh(111) is extensively studied. Even though the full reaction network is considered, only about 50% of the intermediates and even only 10% of all transition states have been explicitly been determined, while the energetics of the others are estimated via surrogate models. [START_REF] Ulissi | To address surface reaction network complexity using scaling relations machine learning and DFT calculations[END_REF] Figure 1. Overall schematic for autonomous catalyst discovery up to experimental testing. Numbers give rough estimates of considered systems and/or computations. Key aspects are highlighted in color, starting from a database (gold) that is continuously updated by a workflow manager, surrogate-model based screening (dark red) of active sites and the optimization of promising leads via reinforcement learning (dark green). The kinetics of the most promising candidates have to be assessed (teal), before experiments optimize (typically relying on Bayesian optimization) the synthesis and reaction conditions (light blue).

In order to deliver on the promise of accelerating catalyst design, we now have to transition from "proof-of-principle" demonstrations, where the goal was to demonstrate the power of ML (like the usage of OC20 for training graph-convolutional neural networks for replacing DFT energy evaluations by MLPs [START_REF] Chanussot | Open Catalyst 2020 (OC20) Dataset and Community Challenges[END_REF] ), to problem-driven applications, i.e., actually developing novel catalysts, such as demonstrated for CO2 electroreduction. [START_REF] Zhong | Accelerated discovery of CO2 electrocatalysts using active machine learning[END_REF] In this context, generative models become a corner stone. A generative model is a function proposing structures outside of the training set. In the simplest case a generative model is able to combine a given number of building blocks. For molecules, it would, for example, be able to suggest adding functional groups. For a catalyst, it could propose surface modifications (adsorbates, defects) and substitutional doping. Of course one can load a database with potential active sites and screen their activity for a given reaction. However, first, the particular reaction conditions should be automatically taken into account so that only stable catalysts and their relevant surface state are considered; and second, it would be much more powerful to organize the chemical universe of catalysts in an explorable manner. While this has been successfully achieved for organic molecules [START_REF] Zhou | Optimization of Molecules via Deep Reinforcement Learning[END_REF][START_REF] Krenn | Selfreferencing embedded strings (SELFIES): A 100% robust molecular string representation[END_REF] and, as an extension, partially to porous solids with organic building blocks, [START_REF] Yao | Inverse design of nanoporous crystalline reticular materials with deep generative models[END_REF] to the best of our knowledge no equivalent algorithm exists for metals, sulphides, oxides, MXenes, etc. The reason for this lack of generative models is enrooted in chemistry: for organic chemistry, the algorithm can rely on well-established valence-based rules, while such a simple classification does not apply to solids and their surfaces. Similarly, the large diversity of surfaces, and thus of potential active sites, limits "universal" generative models that would allow prediction of the adsorption site and geometry of adsorbates on the catalyst, in analogy to what has been achieved for conformations of organic molecules. [START_REF] Wang | Improving Conformer Generation for Small Rings and Macrocycles Based on Distance Geometry and Experimental Torsional-Angle Preferences[END_REF] Once reasonable structures are available, running the corresponding DFT computations in a highthroughput workflow is feasible, limiting useless computations. Then, the DFT results can be conveniently analyzed by ab initio thermodynamics [START_REF] Reuter | Composition, structure, and stability of ${\mathrm{RuO}}_{2}(110)$ as a function of oxygen pressure[END_REF] to identify the resting state of the catalyst and the energy requirements to create vacancies in the adsorbate layer etc.

In the absence of these "universal" generative models, and in combination with the "problemdriven" ML studies, we are advocating to increasingly rely on reinforcement learning (RL) techniques. The core of reinforcement learning is the policy that is being learned which maximizes a defined reward. This technique has been very successful for learning strategy games: for example AlphaGo is based on RL. [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] In chemistry, RL is not yet widely adopted by the community, but we believe that this will change soon: RL has already proven its efficiency in optimizing various chemistry-relevant functions. For instance, RL has been trained not only for efficiently optimizing geometries of organic molecules, [START_REF] Ahuja | Learning to Optimize Molecular Geometries Using Reinforcement Learning[END_REF] but also for determining the lowest energy pathway in the complex Haber-Bosch reaction over Fe(111), effectively learning chemical kinetics. [START_REF] Lan | Discovering Catalytic Reaction Networks Using Deep Reinforcement Learning from First-Principles[END_REF] Furthermore, RL has been applied to construct efficient training sets for MLPs [START_REF] Zhang | Active learning of uniformly accurate interatomic potentials for materials simulation[END_REF][START_REF] Staub | Replacing Chemical Intuition by Machine Learning: a Mixed Design of Experiments -Reinforcement Learning Approach to the Construction of Training Sets for Model Hamiltonians[END_REF] and even to identify efficient, highly accurate, compressions of wave functions. [START_REF] Goings | Reinforcement Learning Configuration Interaction[END_REF] The power of RL relies on two complementary aspects: On the one hand, RL is typically applied as an active learning framework, i.e. the training set is constructed on the fly, according to the needs of the model being trained and the promising regions being explored. Active learning limits the number of "useless" computations, so that only comparably small training sets are required. Being able to train surrogate models with small training sets is all the more important when applying ML to solve novel problems for which the required training set is not established beforehand. RL is also ideally suited for transfer learning: Having learned an optimal policy for one problem might be an excellent starting point for learning an optimal policy on a related problem. This has, for instance, been applied to the wave function compression, where the policy for optimal selection of Slater determinants around equilibrium distance has been shown to significantly accelerate the identification of the optimal combination of Slater determinants for stretched distances. [START_REF] Goings | Reinforcement Learning Configuration Interaction[END_REF] Transfer learning is also closely linked to combining information from different sources. Take, for instance, surrogate models, DFT computations and experiment. Combining these three sources of information in an optimal way is not obvious, but under the condition that they show reasonably similar trends, the algorithms on how to minimize the overall cost for solving a given optimization problem have now been developed. [START_REF] Herbol | Cost-effective materials discovery: Bayesian optimization across multiple information sources[END_REF] Moreover, given that RL is, by construction, problem and system oriented, devising generative models is more manageable: Within a class of systems it is rather natural to select the sites of interest, both for surface modifications (typically substitutional doping) and adsorption sites. 

Challenges to be addressed

In the following section, we outline four major challenges for autonomous workflows applied to catalysis: (i) solvation effects, (ii) maintaining a curated database and making it efficiently searchable via well-crafted descriptors, (iii) efficient workflows for complex interfaces, including surface states reflecting the reaction conditions, (iv) workflows for exploring amorphous catalysts.

In the next 5 years or so, the community will have to embrace the challenge of dealing with the solvent: While implicit solvents have been available in the molecular community for more than thirty years, [START_REF] Tomasi | Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent[END_REF] only the last 5-10 years have seen their implementation and application in heterogeneous catalysis. [START_REF] Mathew | Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[END_REF] While these implicit solvent models are ideally suited for highthroughput computations and very valuable for electrocatalysis [START_REF] Abidi | Atomistic modeling of electrocatalysis: Are we there yet?[END_REF] , they tend to significantly underestimate solvation effects, especially on metals, where the electrostatic interactions (captured by implicit solvents) is negligible compared to the near-chemisorption of solvent and complex many-body effects are non-negligible even for small adsorbates. [START_REF] Zhang | Solvation effects on DFT predictions of ORR activity on metal surfaces[END_REF][START_REF] Heenen | Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches[END_REF][START_REF] Rendón-Calle | Substantial improvement of electrocatalytic predictions by systematic assessment of solvent effects on adsorption energies[END_REF] Therefore, competitive adsorption between general adsorbates and solvent molecules has to be considered. [START_REF] Clabaut | Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations[END_REF] The development of generally applicable hybrid molecular mechanics/quantum mechanics solvation models [START_REF] Clabaut | Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations[END_REF][START_REF] Saleheen | Liquid-Phase Modeling in Heterogeneous Catalysis[END_REF][START_REF] Zhang | Free Energies of Catalytic Species Adsorbed to Pt(111) Surfaces under Liquid Solvent Calculated Using Classical and Quantum Approaches[END_REF] or approximations thereof [START_REF] Weitzner | Toward Engineering of Solution Microenvironments for the CO2 Reduction Reaction: Unraveling pH and Voltage Effects from a Combined Density-Functional-Continuum Theory[END_REF][START_REF] Jeanmairet | Tackling Solvent Effects by Coupling Electronic and Molecular Density Functional Theory[END_REF] is likely to become the most adapted strategy, provided transferable force fields with an acceptable accuracy can be devised. [START_REF] Clabaut | Ten Facets, One Force Field: The GAL19 Force Field for Water-Noble Metal Interfaces[END_REF] Alternatively, purposedly built MLPs (as very recently illustrated in the context of electrocatalysts [START_REF] Naserifar | Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next-Generation Electrocatalysts[END_REF] ) could become standard practice once a robust autonomous workflow for their fitting has been developed. Ultimately, these computationally rather heavy solvation models might be replaced by some surrogate ML models in the spirit of implicit solvent models, but with improved accuracy compared to the electrostatics-based 101,103 current state of the art. However, given the scarcity of benchmark data, we believe that this will only come in a second stage, estimated to be 5-10 years ahead of us, when atomistic models have been made available to generate the necessary benchmark data.

Given the data-driven nature of ML, one might argue that establishing and maintaining large database is key. This not only allows to avoid duplicating computations, but allows to train models with existing data, for instance to initialize surrogate models. [START_REF] Yamada | Predicting Materials Properties with Little Data Using Shotgun Transfer Learning[END_REF] In the context of catalysis, the databases are most useful for defining the search space: Which types of surfaces exist? -What types of active sites could be envisioned? Currently, the largest such database is OC20. [START_REF] Chanussot | Open Catalyst 2020 (OC20) Dataset and Community Challenges[END_REF] To unleash the power of such databases, the user should also be able to judge the stability and feasibility of a given structure. Hence, a "feasible surface" database with experimentally observed surface structures would be particularly valuable, together with the corresponding conditions. Depending on the in situ/operando experimental characterization technique, the surface state can now be precisely determined, especially with scanningtunneling microscopy or transmission electron microscopy. 106 Establishing the corresponding database could be seen as an analogue to the protein data bank [START_REF] Burley | Protein Data Bank: the single global archive for 3D macromolecular structure data[END_REF] or the open reaction database [START_REF] Kearnes | The Open Reaction Database[END_REF] but for surfaces. The user might then investigate the evolution of the structure under his particular conditions or trying to adapt the reaction conditions towards the ones under which the promising surface has already been observed. In line with the move towards open-science and big-data, the community as a whole would also benefit from one, unified database which will be continuously fed by the computations performed and published, which is the goal of NOMAD-lab [START_REF] Draxl | The NOMAD laboratory: from data sharing to artificial intelligence[END_REF] . Having one, huge, database would also enable automatic, self-driven identification of outliers (i.e., wrong/unconverged computations), so that extracting curated datasets would become easy. Even beyond dataset curation, robust data consistency checks, in order to filter out erroneous computations, will need to be developed in order to fully benefit from autonomous computations. On a related topic, the development of suitable descriptors (graphs, fingerprints) for surfaces would make these databases more searchable and would allow to classify the entries: well-crafted descriptors make surrogate models more robust and thus more useful. Typically used descriptors are simple cut-off distances, [START_REF] Gu | Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening[END_REF] Behler-Parinello's symmetry functions [START_REF] Behler | Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces[END_REF] or the smooth overlap of atomic positions. [START_REF] Bartók | On representing chemical environments[END_REF] Improved descriptors (see ref 113 for a comparison) might ultimately lead to powerful generative models that allow to efficiently explore chemical space.

Active sites not resembling a single-crystal surface are still very challenging to address. First of all, the active site might be at a triple-phase boundary (catalyst, support and reaction medium). While such systems have been regularly described in the literature, highthroughput construction and evaluation of their activity has, to the best of our knowledge, not been reported. Nevertheless, the BOSS scheme provides a promising avenue towards an efficient construction of complex interfaces as illustrated by the C60-TiO2 interface, [START_REF] Todorović | Bayesian inference of atomistic structure in functional materials[END_REF] or the tetracyanoethylene/Cu(111) interface. [START_REF] Egger | Charge Transfer into Organic Thin Films: A Deeper Insight through Machine-Learning-Assisted Structure Search[END_REF] Similarly, MPInterfaces allows one to efficiently construct solid/solid or solid/ligand interfaces. 116 Second, the surface state might evolve under the reaction conditions: [START_REF] Yoon | Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy[END_REF] ranging from coverage with solvent or reaction intermediates to surface reconstruction or even catalyst decomposition/dissolution. These modifications of the surface state by the reaction medium are still inadequately tackled, even though they lend themselves for autonomous computations, as adding/removing adsorbates can be automatized efficiently. An instructive example on how the reaction conditions can influence the reactivity is provided by the evolution of Pt7 clusters supported on -alumina under C-H activation conditions. Extensive computations predict that the cluster dynamically reconstructs as a function of the reaction progress, changing shape and hydrogen coverage. [START_REF] Sun | Global Activity Search Uncovers Reaction Induced Concomitant Catalyst Restructuring for Alkane Dissociation on Model Pt Catalysts[END_REF] Finally, amorphous catalysts can, from an experimental point of view, be as convenient as crystalline ones, or even more promising due to potentially higher specific surface area. It is only very recently that grain-boundaries can be conveniently constructed automatically. 120 From an atomistic modelling point of view, amorphous catalysts are very delicate to address (see ref [START_REF] Gu | Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End Simulation[END_REF] for an remarkable study of Pt nanowires as hydrogen evolution catalysts and ref [START_REF] Batchelor | High-Entropy Alloys as a Discovery Platform for Electrocatalysis[END_REF] for the extensive modelling of high-entropy alloys), as not even the starting position of the atoms is well known and a validation of a given model compared to experiment is necessarily very indirect. For example, MoS3 is discussed as a potential hydrogen evolution catalyst, but its atomic structure remains debated with various experiments leading to characteristics that are difficult to reconcile with a single atomistic model. 93

Towards self-driven experimental laboratories

In this final section we review the progress in autonomous laboratories, i.e., hardware that is managed by artificial intelligence, enabling high-throughput, reproducible catalysis synthesis, characterizations and performance tests.

The impressive progress in terms of conceptualization and building both the software 125 and hardware solutions for autonomous experimentations offers a bright perspective to the field of heterogeneous (electro-)catalysis. In particular, autonomous laboratories have been shown to be well suited to optimize a given chemical system. In other words, the boundaries of the problem need to be defined by the user, while the "recipe" of the synthesis is optimized via a surrogate model with experimental factors as inputs. This has been, for example, demonstrated for the synthesis of nanoparticles with a specific shape. [START_REF] Tao | Nanoparticle synthesis assisted by machine learning[END_REF] Note, that even the shape analysis can be fully automatized by coupling automated TEM with machine-learning image processing techniques. [START_REF] Yao | Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos[END_REF] A similar approach has also been demonstrated for optimizing the synthesis protocol of few-layer WTe2, [START_REF] Xu | Machine Learning Driven Synthesis of Few-Layered WTe 2 with Geometrical Control[END_REF] or for determining optimal organic additives for Cu-based CO2 reduction electrocatalysts. [START_REF] Guo | Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction[END_REF] These studies also perfectly illustrate that the experimental search space is much more restricted (only one material) compared to computational screenings (see also Figure 1). However, the feasibility of given active sites can only be estimated on a very rough level based on computations, so that dedicated experiments are required to tune synthesis conditions that might be able to lead to the sought-after active sites and validate the results experimentally. [START_REF] Mccullough | Highthroughput experimentation meets artificial intelligence: a new pathway to catalyst discovery[END_REF][START_REF] Ludwig | Discovery of new materials using combinatorial synthesis and highthroughput characterization of thin-film materials libraries combined with computational methods[END_REF] Autonomous highthroughput experimentation has been developed several years ago to explore a vast chemical compounds space, e.g., metals, organics, organometallics, inorganic solids, etc. 100 As a result, researchers were able to discover new chemical compounds with more exotic properties than that of conventional synthesis and have obtained big data on catalysts at an unprecedented scale and speed. 102 However, since high-throughput experimentation is more cost intensive that the conventional approach, design of experiments involving catalyst synthesis, characterization and testing should be carefully planned to maximize information output with minimum number of experiments.

With rapid progress in automation control, combinatorial high-throughput synthesis of catalysts can be made fully autonomous with the aid of a guided-robotics arm connected to the control system. Thus, optimized parameter conditions, e.g., catalyst composition, mixing sequence, reaction treatments, and so on can be obtained with minimal human intervention. 104,105,107 For instance, sputtering is a versatile process for catalyst synthesis in both laboratory and industrial scale, enabling deposition of a thin film of catalyst with controllable thickness. High-throughput depositions allow creating a library of catalyst materials with a controllable composition gradient and a large range of film thickness. 108 This is usually done using robotic arm-assisted sputtering in which the precursors are sputtered through a series of masks consisting of some overlaying masks. The masking combination is dependent on the pre-designed catalyst composition. For instance, combinatorial synthesis of binary catalysts by sputtering deposition uses binary masks made of primary and secondary masks. For ternary catalyst composition, a ternary mask is used with the composition of primary, secondary, and tertiary masks. The outcomes of thin-film library materials entirely depend on the composition of the catalysts and the reaction condition under which the experiments are conducted. The approach is suitable for synthesizing ternary, quaternary, or even higher-order mixtures of elements to produce a thousand catalysts in a parallel reactor in a concise amount of time. [START_REF] Ludwig | Discovery of new materials using combinatorial synthesis and highthroughput characterization of thin-film materials libraries combined with computational methods[END_REF] On the other hand, pulsed laser deposition offers rapid and homogeneous deposition of many materials using an ablation from a high-energy UV laser. This method has also been adopted for the combinatorial catalyst library, which uses a typical series of quaternary masks in a so-called multi-plume pulsed-laser deposition system. 109 The autonomous robotic arm helps to rotate the samples holders that usually house pellet precursors and subsequent transfer for post-treatment or characterization. The use of robotic arms is also employed in the sol-gel synthesis of catalysts. A library of catalysts is typically prepared autonomously by robotic arm and pipette to take precursor solutions and transfer them to small vials (2-5 ml capacity) as microreactors in which the sol-gel reaction occurs. 110 More recently, jet dispensing equipped in the automatic printing technology (see Figure 3a) was utilized for high-throughput synthesis of a library of cocrystals. 111 Precursor ink was formulated with a predetermined concentration to prepare the gradient library in parallel. The method guarantees a faster speed of fluid dispending with a highly accurate compositional gradient, thus reducing the amount of experimentation and saving production time. The record has achieved 1,000,000 formulations within one operating hour. 111 While combinatorial synthesis involves the preparation of vast arrays of the gradient materials, high-throughput characterization accelerates the discovery of structure-property relationships. 112 High-throughput characterization can be made fully autonomous by the robotic arm. An example is the development of automated rotating sample changer for X-ray diffraction to identify crystallographic features of catalysts. In D8 ADVANCE, developed by Bruker, which can measure up to 90 samples in parallel, the robot arm transfers the sample to the rotation sample stage, allowing permanent rotation and automatic positioning adjacent to the X-ray beam. 114 It can be equipped with AUTO-CHANGER consisting of a loading station for up to 6 sample magazine towers, a robotic sample handler with integrated gripper, and a rotation sample stage mounted to the goniometer. When a magazine tower is loaded or removed for refilling the new set of samples, the machine automatically detects it. Moreover, the handling gripper and transfer robot ensures safe transportation of sample to and from the measurement setup. For crystallography under cryogenic conditions, RoboDiff has been developed and has processed more than 20,000 molecules, including catalysts (see Figure 3b). 115 A robotic sample changer has also been installed in a small-angle X-ray scattering setup that can perform hundreds of measurement automatically with small sample consumption (± 5 L). 117 Raman spectroscopy is a powerful and non-destructive tool to obtain surface properties of catalysts and elucidate reaction mechanisms. 118 In a modern high-throughput Raman technology setup, a robotic system is employed to move samples and acquire data. This is typically done by the deposition of molecular or solid catalysts onto the multi-well plate attached to an automated sample stage. 119 Achieving laser beam focus is one of biggest challenges in measuring high-throughput Raman spectra for non-experts, and thus autofocus technology is developed to allow laser beam refocusing during sample holder rotation. 121 Several advanced Raman technologies such as UV resonance Raman spectroscopy, surfaceenhanced Raman spectroscopy, time-and spatially resolved Raman spectroscopy can also gather information on how catalytic mechanisms occur by probing the solutions or reactions intermediates for catalytic CO2 reduction, water splitting, water purification, etc. 122 High-throughput catalyst testing is of great significance in accelerating catalyst development. 123 For instance, automated analysis of catalytic products can be performed by gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography, using a robotic handling pipette that is designed to provide reliable and accurate liquid injection, sample preparation and pretreatment. Having a miniaturized electrochemical workstation is convenient for conducting parallel catalyst testing, which aims to shrink chemical laboratories to lab-on-a-chip system. Microfluidic reactors are sophisticated setups used to test catalyst activity. Their advantages are their versatility, small volumes, fast operation speeds, capability of parallelization, as well as well-controlled parameters (e.g., temperature, pressure, etc). 124 For example, researchers have studied a gradient catalyst consisting of Cu, Pd and Au (CuxPdyAu(1-x-y) alloy) connected to individual microfluidic channels, where each end of channel is accessible by a programmable and movable liquid handling robot-equipped GC-MS nozzle which rapidly screens 100 H2/D2 exchange products within 10 minutes. 126 For larger catalytic systems, a lab-made high-throughput catalyst testing setup has been established for oxidative methane coupling which screens 20 catalysts under 216 different conditions. 123 This can be achieved by the use of pneumatically actuated diaphragm valves in autosampler which is connected to a diaphragm pump and the inlet of a quadrupole mass spectrometer (see Figure 3c). Developing a parallel module that evaluates the activity of solidstate catalysts simultaneously is one of the future interests in the field. The 16-parallel highthroughput reactor systems, developed by hte GmbH, are specially designed to screen multicatalytic reactions in a wide range of process parameters, to operate in gas and liquid feed streams, to perform in plug-flow, fix-bed, and trickle-bed reactors, and to couple with online GC-MS or offline analysis. It covers a broad range of catalyst volumes from small quantities of solid powders to massive quantities of shaped materials. 127 All of these operations are autonomous to reduce human error during preparation, handling, and testing of catalysts.

Finally, all the experimental results, including the raw data and metadata containing the experimental parameters, should be transferred automatically to cloud-based servers, which can then be analyzed by automated-data analysis and visualization tools. 128 The most critical role of high-throughput experimentation is to find the structure-activity relationship of the catalyst. Thus, the algorithm developed for automated data analysis should estimate or predict the optimum synthesis condition as feedback to the high-throughput experimentation. This is an ideal concept of data-guided combinatorial synthesis and datadriven catalysts discovery. One can extend this framework to additional parameters to make further predictions, enabling faster and more efficient catalyst development. 

Conclusions

In summary, we firmly believe that catalyst development can be accelerated by highthroughput, autonomous computations that identify promising (active) and realistic (under given reaction conditions) catalyst surfaces. Given the excessive complexity to predict the feasibility and (long-term) stability of a given catalyst from first principles atomistic computations, our vision for optimal theory-guided catalyst design consists of in silico screening of the chemical space to identify promising compositions and active site motives by high-throughput, autonomous computations. This screening of the chemical space is followed by experimental ML-enhanced optimization of the synthesis protocol and the reaction conditions to achieve active and stable catalysts within the computationally identified family. This experimental optimization can integrate any user-defined cost function, for example a trade-off between price, activity and stability. With time, the autonomous laboratories might become as available as supercomputing facilities, opening a new branch of catalysis research, requiring skills somewhere between experimental and computational sciences.

Will these autonomous workflows and laboratories replace trained, highly-skilled researchers? -This seems rather unlikely to us. Rather, we believe that automating the tedious parts of catalyst development should be seen as a liberating action, enabling chemists and chemical engineers to focus on developing promising hypotheses and efficient ways of testing them, rather than spending their time on the Edisonian trial and error approach. Similarly, computational chemists could focus on making models more relevant, coming up with good descriptors and generating insight, rather than having to spend time on repetitive and error-prone human-based, construct and collect, actions. Furthermore, recent advances in extracting knowledge from data sets in terms of human interpretable hypothesis are an exciting step towards the generation of general rules and insights 129 and thus making the intellectual journey through chemical space even more enjoyable.
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 2 Figure 2. Surrogate-model based estimates of a) activity and b) stability, of hydrogen evolution and oxidation catalysts. Taken from ref 51 . c) Representation of the convergence of the syngas to C2 species over Rh(111)
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 3 Figure 3. High-throughput experimentation for catalyst development. a) Jet dispensing printing technology. Taken from ref 111 . b) RoboDiff for cryogenic diffraction measurement. Taken from ref 115 . c) High-throughput catalyst testing system for oxidative coupling of methane. Taken from ref 123 .

Table 1

 1 Synoptic table of workflow managers and related tools.

	Tool	Brief description of main characteristics	Ref.
	AiiDA	High-level workflow manager, keeping track of	12,14
		data provenance. Can be coupled to the
		MaterialsCloud repository. 16	
	AFLOW	Workflow manager for high-throughput in silico	18,20
		screenings. Results can be easily stored in
		AFLOWlib. 22		
	Atomate	Workflow manager, input file generation and	34
		failure management developed by the
		MaterialsProject. 24 The workflow can move from
		bulk structures to surfaces, enumeration of
		adsorption sites, adsorbing small adsorbates on
		them and computing a wide range of properties.
	ASE	Toolkit to manipulate and carry out computations,	28
		ranging from bulks to molecules, driven by DFT or
		empirical potentials.	
	ASR	Collection of "recipes" for the computation of	30
		almost any property derived from electronic
		structure computations. Heavily depends on ASE.
	MyQueue	Manager for submitting (interdependent)	32
		individual computations, useful for high-
		throughput screenings.	
	GASpy	Dynamic database (unknown entries will be	37
		computed upon request) and workflow manger,
		including predefined workflows for adsorption
		energy computations from bulks and molecules to
		surface and adsorption site enumeration.
	DockOnSurf	Workflow for screening adsorption modes of	42
		flexible, polyfunctional molecules on user-defined
		adsorption sites.	
	Qmpy	Workflow and database manager for screening	47
		bulk materials and their properties, including
		formation energies, with VASP. Built for OQMD.
	CatKit	Tool to generate initial structures of adsorbates	39
		on surfaces. It exploits graph-theory and
		symmetry to enumerate all unique adsorption
		sites and to adsorb mono or bi-dentate
		adsorbates along high-symmetry directions.
	BOSS	Workflow for screening adsorption modes while	86
		reducing costly DFT computations by accelerating
		geometry	optimizations	via	Bayesian
		optimization.		
	NOMAD-lab	Repository for results from most electronic
		structure codes. Raw-output files are stored,
		minimizing information loss.	
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