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• A consistent treatment of the adsorbate/surface, adsorbate/solvent and
surface/solvent interactions is necessary for accurate activation energies

• Locating transition states for electrocatalytic reactions is now possible
via model Hamiltonians, grand-canonical DFT, constrained molecular
dynamics and combinations thereof
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Abstract

Electrocatalysis is a promising technology for clean energy conversion.
The prediction of activation energies is essential for reliably modeling elec-
trocatalytic processes. Currently a compromise is necessary between model
complexity (electrochemical potential, electrode/electrolyte interface) and
the accuracy of the resulting activation energies. We provide an overview
on the approaches and recent advances in methods and models to identify
transition states and thus activation energies in heterogeneous electrocatal-
ysis, covering a large range of methods from model Hamiltonians to fully
atomistic descriptions. We also discuss specific examples and highlight the
strengths and weaknesses of each approach.
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1. Introduction

Converting electrical energy produced with low carbon emissions (e.g.,
wind and solar power), into chemicals such as hydrogen [1], ammonia [2]
and CO2 reduction products [3] seems very attractive to reduce the carbon
footprint of the chemical industry. Therefore, the last two decades have
seen a surge of interest in improving electrocatalysts. Concomitantly, com-
putational chemistry has matured enough to accelerate the design of novel
heterogeneous catalysts [4], especially when combined with experiments [5].
However, determining transition states for heterogeneous electrocatalysis is
not straightforward and has remained a niche. The absence of reliable acti-
vation energies ultimately hampers the in silico design of electrocatalysts.

The thermodynamics of electrocatalytic reactions is well described via the
Nernst equation: the electrochemical potential allows to drive reactions that
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are endothermic under standard conditions. A first step towards the under-
standing of the kinetics of electrochemical reactions is provided by Marcus’s
theory:[6] For ”outer sphere” electron transfer (i.e., no direct interaction
between the reactant and the electrode, see Figure 1) the kinetics of the
reaction is determined by the reaction free energy (∆G) and the reorganiza-
tion energy (λ). λ measures the energy required to adopt the product-like
arrangement of the reactant and the surrounding solvent before the electron
transfer. In heterogeneous electrocatalysis, the reaction is occurring at the
interface between the solid electrocatalyst and the liquid electrolyte. Hence,
the fundamental reaction step is an ”inner sphere” electron transfer with a
direct interaction between the reactant and the electrode (see Figure 1).[7]
Due to the complexity and system specificity of the interface and the inter-
action of the reactant with the catalyst, the solvent and the electrolyte, the
equivalent to the ”universal” Marcus theory is absent for these inner-sphere
processes.

Phenomenological rate equations have been developed to model the ki-
netics for inner sphere processes, with the Buttler-Volmer equation being the
most famous one. The reader interested in rate equations for electrocatalysis
is referred to the thorough review in ref [8]. According to these equations, the
reorganization energy is an important factor for the kinetics of inner sphere
processes, but the coupling of the energy levels of the adsorbate and the elec-
trode has to be considered as well. For example, the density of state around
the Fermi level directly impacts the electron transfer, which means that the
band-gap of semi-conductors is problematic in electrocatalysis [9]. Further-
more, the reactant competes with the solvent/electrolyte for the adsorption
sites on the catalyst. Hence, the activation energy required for adsorption
can be critical for the overall reaction kinetics.[10]

Even though the atomistic modelling of electrocatalysis has a long history,
[11] it is only since the introduction of the computational hydrogen electrode
(CHE)[12] by Norskov and co-workers that such studies are performed on a
routine basis. The success of CHE is mainly due to its computational ease,
which itself is derived from the assumption that only the thermodynamics of
the reaction intermediates need to be considered, i.e., that identifying tran-
sition states is not necessary. The validity of this hypothesis has recently
been revealed to be highly system-specific.[13] Given the excellent ratio of
insight gained to computational expense of CHE, the modelling of transition
states has been somewhat neglected by the community [5]. Nevertheless,
quantitative experimental data on the relative stability of intermediates is
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Figure 1: Schematic illustration of the mechanism of electrode reactions: (a) In an outer-
sphere redox process, the reactant and product molecule (M) with its functional groups
(pink) do not interact strongly with the electrode surface. (b) In an inner-sphere (cat-
alytic) redox process, reactants, intermediates, and/or products interact strongly with the
electrode surface (specific adsorption) and the electrode catalyzes the bond rearrangements
for the functional group in contact with the catalyst (yellow).
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unavailable, so that the quality of the approximations of the CHE cannot
be precisely determined. In contrast, kinetic information (rates, Tafel slopes
etc.) can be measured experimentally. Therefore, first-principles based ki-
netic simulations are required to validate theoretical models.[14, 15, 16]
Thus, one has to determine (potential-dependent) activation energies and,
therefore, identify transition states.[17] The potential-dependent activation
energies are a first, necessary, step towards more approximate (linear-scaling-
based) estimates that can then be used for catalyst screenings.[18, 19, 20] As
discussed in the recent literature, [21, 13, 22] the success of the CHE-derived
catalyst screenings without the consideration of potential-dependent surface
states and activation barriers is at least partially a happy coincidence.

Electronic structure theory, such as density functional theory (DFT),
is the tool of choice to determine activation energies from first principles.
The electrode potential is equivalent to the workfunction, i.e., the energy to
add/remove an electron to/from the system. For the popular CHE, DFT
computations are performed at ”constant charge”, i.e., the number of elec-
trons is fixed by the user and the workfunction is a result of the self-consistent
field process. Alternatively (see section 3.3), in grand-canonical (GC) DFT
the number of electrons is a variable that is adjusted to perform computa-
tions at ”constant potential”.[23, 24, 25] Thus, GC-DFT gives direct access
to potential dependent activation energies. Note that only charge-neutral
unit cells can be simulated by periodic DFT. Hence, in CHE the unit-cells
are always neutral by construction and in GC-DFT a counter-charge (either
uniform [26], based on the Poisson-Boltzmann equation or a combination
thereof [27]) is included.

In combination with GC-DFT, modelling the solvent and electrolyte is
necessary to achieve realistic capacities,[28, 29] the competitive adsorption
between reactants and the solvent,[30] and electrolyte specific solvation envi-
ronments. [31] Furthermore, the reorganization energy (λ), associated with
a charge-transfer reaction, is one of the key components of the activation
energy. Hence, solvation effects have to be carefully determined for acti-
vation energies in electrocatalysis. Unfortunately, however, accurately and
efficiently treating solvation effects at solid/liquid interface remains an out-
standing challenge.[32, 33, 34] Implicit solvation models are the most prac-
tical approaches, but have been found to significantly underestimate the
solvation effects at metal/water interfaces.[35, 36, 37] This might be con-
nected to the pronounced many-body effects of water molecules on noble
metal surfaces,[38] which are inherently absent in implicit solvent models
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that focus on electrostatic interactions.
In this review we outline the most relevant approaches to identify tran-

sition states and activation energies in heterogeneous electrocatalysis. We
focus on the (physical or atomistic) model that describes the potential en-
ergy surface and only mention on passing the most important algorithms to
actually identify the transition states. Furthermore, we do not reproduce
any formulas, which can all be found in the original articles cited.

2. Potential Free Energy Surfaces from Model Hamiltonians

One possibility to understand the potential dependence of activation en-
ergies in electrocatalyis is to set up a ”model Hamiltonian”. This approach
is perfectly illustrated by the work of Schmickler and co-workers.[39] Two
ingredients are combined: (i) Marcus’ theory for electron transfers that em-
phasizes the role of the reorganization energy λ. ii) The physical Anderson-
Newns Hamiltonian for the interaction of adsorbates with the electrode.

In practice, a two or three dimensional potential energy is generated for
electrocatalytic reaction, with the common choice of the dimensions being
(i) the distance (z) of the center of mass of the molecule from the electrode,
(ii) the bond distance (r), and (iii) the polarization state of the solvent (q),
which corresponds to the total charge of the reactive complex. In Figure 2,
the adsorbate is assumed to be in close (constant) contact with the electrode.
The minimum at (r = 0, q = 0) corresponds to the physisorbed adsorbate
(atomic orbital occupations (〈n〉) of 2). When the two fragments are well
separated (r > 1.5) a charge-transfer occurs (q = 2), leading to formally ionic
adsorbates (〈n〉=4)on the surface.

Based on the PES, the minimum energy path (and thus the difference be-
tween the saddle point and the energy minimum, i.e., the activation energy)
can then been identified by well established algorithms such as the nudged
elastic band (NEB) or various string-based methods as is, for example, dis-
cussed in ref [40].

Just like in the theories of Marcus [41] and Levich-Dogonadze ([42]), it is
the parametrization of the effective solvent coordinate q that represents the
main challenge: E(q) describes the energy change of the system as a func-
tion of the charge state of the system (before/after an electron transfer). The
current approach consists of parameterizing the model Hamiltonian based on
density functional theory (DFT) and molecular dynamics studies (MD). As
mentioned in the introduction, determining accurate solvation effects at the
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Figure 2: Schematic illustration of the mechanism of electrode reactions:Potential energy
surface for a reaction of electron transfer and bond-breaking. The upper part shows the
potential energy as a function of the solvent coordinate q and the deviation r from the
equilibrium bond distance of the molecule. In the lower part, the color code shows the
occupation of the adsorbate atomic orbitals, while the contour lines (and numbers) show
the potential energy. Reprinted from Reference [39] Copyright (2021), with permission
from Elsevier.
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solid/liquid interface is a formidable challenge. Hence, the parametrized sol-
vation effects in model Hamiltonians have to be considered with at least as
much caution as for DFT-based approaches. Unfortunately, these shortcom-
ings are currently unavoidable.

Ref [43] presents a typical application of this model Hamiltonian to the
alkaline Volmer step (H2O + e–+ Surf −−→ H@Surf + OH– ). The model
demonstrated that the desolvation of OH– and the intrinsic energy require-
ment for breaking the O-H bond in H2O is responsible for the slow hydrogen
evolution reaction (HER) in alkaline compared to acidic conditions.

Other recent applications of model Hamiltonians include the CO2 reduc-
tion reactions on a gold electrode [44], as well as the electrochemical reduction
of Ni(II)complexes [45]. They illustrate the insight that can be gained from
model Hamiltonians, which continue to be refined [46, 47].

3. Atomistic Models for the Electrocatalytic Interface

Model Hamiltonians discussed in the section above provide an effective
(parametrized) description of the free energy surface. In contrast, energies
of atomistic models evaluated by DFT provide a first principles description
of the electrocatalyst: the precise adsorption mode of complex adsorbates
(e.g., glycerol[48]) and the atomic details (defects, co-adsorbates and cov-
erage effects[30, 14]) can be included. Furthermore, the distribution of the
electrons within the system is obtained as the result from the self-consistent
field process. This means that in the standard constant charge computations
the electrochemical potential and the charge transfer from/to adsorbates are
a result of the computation. Since electrocatalysis is an inner sphere pro-
cess, one can assume that the transition state is located at a point where the
electrochemically active species is in close contact with the electrode. There-
fore, most atomistic studies in heterogeneous electrocatalysis focus on the
chemical reaction once the reactants are adsorbed and do not assess the en-
ergy required to transport the reactants from the bulk through the electrical
double layer to the surface.

3.1. From CHE to Transition States

The computational hydrogen electrode (CHE) model introduced by Norskov
and co-workers [12] is, without doubt, the most popular approach in electro-
catalysis. CHE adopts a constant charge framework, i.e., the workfunction
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is not controlled and might thus change along a reaction coordinate. Fur-
thermore, CHE is mostly applied in the presence of an ice-layer to mimic the
solvent or in complete absence of explicit solvent molecules. In its original
formulation CHE only applies to thermodynamics, i.e. in the CHE framework
the electrochemical potential only affects reaction steps where the stoichiom-
etry of the computed system changes. In other words, the relative energies
of adsorbed species only shift as a function of the electrochemical potential
when an H atom (1

2
H2 
 H+ + e−) is added or removed from the system.

Since the stoichiometry cannot change at the transition state, CHE does not
affect activation energies.

The determination of activation free energies at constant charge and sto-
ichiometry can still be performed using standard algorithms for identifying
the ”static” (0 K) TS, to which thermal free energy corrections can be added
via statistical mechanics. The free energy difference between the reactant
and the transition state corresponds to the activation free energy. This ap-
proach for locating TS is well validated at the solid/gas interface, where close
agreement with experimental measurements can be obtained.[49, 50] Tech-
nically, transition states are usually located by a combination of the nudged
elastic band (NEB) [51] and dimer method [52] or applying the climbing im-
age variant of NEB [53]. These methods require about 103 energy evaluations
in order to locate a TS. The various methods have been efficiently applied in
heterogeneous electrocatalysis, such as in the conversion of CO2 [54], water
splitting [55], the oxygen evolution reaction [56] and the hydrogen evolution
reaction [57].

In practice, the electroactive species (e.g., H3O
+ + e– ) is placed close

to the surface and the transfer of the proton to the surface (or adsorbate)
is studied. While still being used in the community (e.g., ref [58]), this
approach comes with a major drawback: The effective potential felt by the
adsorbates change significantly (up to 2 V) between initial (H3O

+ + e–+
Surf) and final state (H@Surf + H2O) [59]. Hence, such an ”initial” state
is likely an ”artificial” high-energy state compared to having the proton in
solution and the electron in the electrode. On the one hand, the solvation of
the proton requires a large number of water molecules to be well represented
[60], which is not compatible with practical unit-cells. On the other hand,
the accompanying electron leads to a large surface charge density and thus
to a very negative effective electrode potential [61]. To illustrate how such a
model can skew results take, for instance, the case of the reduction of CO2 to
formic acid (see Figure 3): While the TS towards the carboxyl intermediate
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Figure 3: Schematic of (a) an electro-reduction (H+ + e– ) and (b) a surface mediated
”chemical” reduction leading to two different reaction intermediates (COOH and HCOO,
respectively) during CO2 reduction. While reaction (b) shares common features with
heterogeneous catalysis, reaction (a) is typical for electrocatalysis.

(a) might require the intervention of a H3O
+ +e– pair and thus all the issues

just discussed, the TS leading to the formyl intermediate (b) does not involve
such a ”charge-separated”, high-energy initial state. Hence, one can expect
imbalanced accuracy between the two competing reaction paths.

3.2. Cell/Charge Extrapolation Method

In order to overcome the abrupt change in potential during the reaction
from the initial state to the TS and then the final state, the generalized CHE
method by Norskov and co-workers [62] has been used to extrapolate the re-
sults from small and medium sized unit-cells to achieve a constant-potential
description, corresponding to the hypothetical infinite size unit cell [63]. In
practice, the typical water/proton cluster mentioned in section 3.1 is replaced
by an explicit layer of water molecules supplemented by a varying number
of H atoms. This makes the method somewhat dependent on the specific
structure of the water layer. Furthermore, consistently placing various re-
action intermediates and transition states (including of flexible molecules)
in an explicit layer of solvent is at best cumbersome, if not impossible, and
the situation is even worse if non-aqueous electrolytes are investigated. Last
but not least, the model and methodology is computationally very intensive,
making it impractical for complex reaction mechanisms.
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To address this challenge in a more computationally tractable way, Janik
et al. developed a simple approach to evaluate potential-dependent activation
barriers of elementary steps in a CHE-like spirit and applied it to the CO2

electroreduction mechanism on Cu electrodes [64, 65]. The activation energy
at 0 V vs RHE is determined at constant (zero) charge, but the barrier is then
assumed to have a potential dependence that is proportional to the change
in the surface dipole moment between the TS and the initial state (IS).
This model is a first order approximation, assuming that the electrostatic
interaction between the surface and the electric double layer dominates and
that the IS and TS (and thus their dipole moments) do not change as a
function of the electrochemical potential.

Subsequently, Norskov et al. proposed a more rigorous, yet almost equally
simple method that relies on the change in workfunction between the TS and
the IS, combined with an estimate of the effective charge of the corresponding
intermediates [66, 67]. The results obtained by this charge extrapolation
method for the proof of principle reaction (HER) were shown to agree well
with the predictions of the cell extrapolation method.[67] However, the charge
extrapolation method depends, by construction, on the scheme applied for
determining atomic charges: given that the two popular choices (Bader and
Hirshfeld charges) differ up to a factor ten[68] significant differences can
be obtained. Nevertheless, well behaved trends have been extracted by this
method for proton coupled electron transfer (PCET) reactions.[20] Note, that
just like Janik’s model, this charge-extrapolation method assumes that the
TS structure does not significantly change as a function of the electrochemical
potential.

3.3. Grand-Canonical DFT for Transition States

The charge or cell extrapolation methods described in section 3.2 com-
pute the electrode workfunction but do not control it explicitly. Furthermore,
they rely on a constant charge model when searching for transition states.
After pioneering work by Liu and co-workers [69] and based on a series of
developments of the grand-canonical (GC) DFT approach (see ref [70, 71]
for a review), Head-Gordon et al. proposed an elegant way to explicitly con-
trol the electrode potential in DFT [72], allowing the search for transition
states while maintaining a constant potential at each step along a path with
minimal free energy. In this GC-DFT scheme the electrode potential is var-
ied by changing the number of electrons, while the system is solvated and
neutralized by the Poisson-Boltzmann equation.[73]
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The tremendous advantage of GC-DFT is that it also seamlessly assesses
the impact of the electrode potential on formally ”chemical” steps, i.e., where
the electrochemical couple (typically H+ + e– ) is not involved. For example,
the activation energies for the C-C bond formation of CO@Cu(100) show a
significant potential dependence (see Figure 4).[72] Intriguingly, these com-
putations predict an unusual behavior: even though the product gets sta-
bilized when moving towards reducing potentials, the transition state gets
destabilized. This can be rationalized by electrostatic repulsion between the
partially negatively charged reacting CO adsorbates, leading to an ”early”
transition state. Nevertheless, shortcomings of the implicit solvation model
for these charged species cannot be completely excluded at this stage. As a
counter example of the potential dependence of this ”chemical” step, barri-
ers for some ”proton transfer steps” resembling the one of Fig 3b were found
to only exhibit a small potential dependence [74], demonstrating that the
potential dependence of activation barriers has to be assessed for each type
of reaction. The use of GC-DFT for electrocatalytic barriers is now well
accepted as illustrated by applications to the HER mechanism on MoS2 [75]
and the electrochemical promotion of catalysis for methane oxidation [76].

The main limitation of GC-DFT is that it introduces all the limitations of
using a continuum model for the solvent and electrolyte distribution. [29, 77]
These limitations are, however, also intimately connected with the strength of
GC-DFT: the use of implicit solvation models, in combination with the rigor
of constant-potential computations, is the most practical approach to assess
potential dependence of activation barriers for entire reaction networks.

3.4. Fully Explicit Electrocatalytic Interfaces

The previously discussed (also called ”static”) methods neglect the dy-
namics of the solvent involved in ion transfer reactions and do not take into
account the entropic barriers encountered in electrochemical reactions. In
order to identify transition states in the presence of explicit solvents, the
”static” NEB/dimer algorithms are no longer applicable: the degrees of free-
dom of the liquid have to be sampled at the reaction temperature, not op-
timized at 0 K. Hence, constrained molecular dynamics (CMD), also called
”accelerated” or ”biased” MD, has to be applied. The most widely used
CMDs are thermodynamic integration (TI) [78], Umbrella sampling (US)[79]
and metadynamics (MTD)[80]. In CMD the molecular dynamics simulation
is performed in presence of either a constraint, strictly imposed via a La-
grange multiplier (TI), or a biasing (Gaussian (MTD) or harmonic (US))
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Figure 4: Relative free energy at different potential values of the initial configuration, tran-
sition state, and final configuration for formation of CO dimer. Reprinted with permission
from [72]. Copyright (2021) American Chemical Society.

potential. This constraint imposes the conversion of the system from the
reactants to the products via the transition state.[81] CMD is computation-
ally significantly more expensive than the ”static” methods, as they require
some 104−105 of energy evaluations of the interface. The advantage of these
dynamic methods is, however, that thermal effects (e.g., surface deforma-
tions) are more accurately captured than when optimizing transition states
at 0 K.[82] US and TI directly yield a free energy profile, on which the acti-
vation energy can be read from the energy difference between the energy at
the minimum and the saddle point. MTD generates a free energy surface in
a 2 or higher dimensional space, just like model Hamiltonians. Identifying
the transition sates on these surfaces is then achieved as mentioned in sec-
tion 2. Goddard and co-workers have shown that entropic corrections can
be derived from CMD and metadynamics for fully solvated electrochemical
interfaces.[83] Their study featured for the first time a fully explicit electro-
chemical interface model for a complete electrochemical reaction path. This
fully atomistic molecular dynamics description of the interface allowed to
uncover the mechanism of CO2 reduction to methane: the simulations pre-
dicted that the so far overlooked CHOH* intermediate is the branching point
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between methanol and methane.[83]
With the ever increasing computational power, CMD has become increas-

ingly popular to investigate the effect of explicit solvent models on electro-
catalytic reactions.[84] For example, detailed studies have been performed for
the oxygen evolution [78, 85, 56] and NH3 electro-oxidation [86] reactions.

However, CMD simulations are generally performed in a constant-charge
environment (see ref [87] for a noteworthy exception), which means that the
barrier determined by this method is not at a fixed workfunction (electro-
chemical potential). Instead, the charge extrapolation scheme proposed by
Nørskov et al. [67] can be applied to correct the potential dependence of the
electrochemical barriers.

Overall, CMD is inefficient for simulating a full network of complex re-
actions. Nevertheless, fully explicit solvation models may be required to
discriminate between reaction paths that are as radically different as hydro-
genation from H@surf and the electro-hydrogenation via H+ + e– , depicted
in Figure 3.

4. Combining Model Hamiltonians with GC-DFT

As discussed in Section 2, model Hamiltonians have transparent inter-
pretations for the described physical/chemical phenomena in the sense that
the role of the solvent and adsorbate reorganization can be analyzed sep-
arately from the interaction with the electrode and the electron transfer.
However, this insight comes at the cost of parameters that are difficult to
obtain in a consistent manner. Hence, a sensitivity analysis of the cho-
sen parameters might be required to ensure robust conclusions. In com-
parison to model Hamiltonians, current DFT methods provide a coherent
treatment of the reaction and its environment, but are computationally too
expensive. Moreover, dynamically adding/removing counterions to keep the
potential constant during a (electro-)chemical transformation is currently
unfeasible in DFT, limiting its grand-canonical formulation to implicit sol-
vent/electrolyte descriptions. Recently, Melander and co-workers have pro-
posed to overcome these respective limitations by combining a general rate
theory with a Schmickler-Newns-Anderson model Hamiltonian extended to
the grand-canonical ensemble [88, 89, 90].

The main strength of Melander’s work is that the potential dependent
activation energy is written in terms of a fixed potential reorganization en-
ergy, which is analogous to Marcus λ, and a potential-dependent reaction en-
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ergy. This is achieved by extending Empirical Valence Bond (EVB) theory to
grand-canonical ensembles, called GC-EVB. GC-EVB is illustrated by iden-
tifying the transition state geometries for the adiabatic Au-catalyzed acidic
Volmer reaction using (constrained) GC-DFT [88]. While the application of
this framework might be too cumbersome for routine work, it is sufficiently
practical for gaining chemical and electrocatalytical insight for important re-
actions and rationalizing surprising experimental results. Hence, we foresee a
bright future for this or similar approaches, like the independently developed
method by Abild-Pedersen and co-workers that is equally EVB-based.[91]

5. Conclusion

The last decade has brought a wide-spread use of thermodynamic DFT
descriptions of heterogeneous electrocatalysis. We are convinced that eval-
uating potential-dependent activation energies constitutes the next step in
computational electrocatalyst rationalization and design. Herein, we have
reviewed the available methods to evaluate activation energies in heteroge-
neous electrocatalysis, ranging from model Hamiltonians to standard DFT,
GC-DFT and combinations thereof. From our perspective, GC-DFT is the
most versatile approach to assess potential-dependent activation energies.
However, practically and rigorously combining GC-DFT with explicit sol-
vent/electrolyte simulations remains challenging due to the large number of
atoms and extensive phase-space sampling associated with a representative
description of solid/liquid interface. Therefore, the area of finding the best
compromise between model complexity, predictive accuracy and gained in-
sight will remain active in the foreseeable future.
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