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Abstract. According to a scalar theory of gravity with a preferred frame, electromagnetism
in the presence of a gravitational field implies that there is an additional energy tensor, which
might contribute to dark matter. The expression of this tensor is determined by a mere scalar
p, that depends on the EM field and (for a weak field) on the Newtonian gravitational field.
We briefly recall why this tensor arises and how the EM field in a galaxy can be calculated.
The data fields that enter the PDE for the scalar field p oscillate very quickly in space and
time, as does the EM field. This prevents integration of that PDE at the relevant galactic scale.
Therefore, a homogenization of that PDE has to be operated. We discuss in some detail three
possible ways of applying the homogenization theory to that PDE: time, space, or spacetime
homogenization. The second and third ways may lead to feasible, albeit heavy calculations.

1. Introduction
Although an unseen, exotic form of matter seems to make up the dominant part in the mass
of galaxies and clusters of galaxies, the problem of identifying what this “dark matter” could
be made of has been and remains one of the big enigmas in contemporary physics. The rea-
son for the present work is that it turns out [1] that, according to an alternative, relativistic
theory of gravity with a preferred frame: In the presence of both a gravitational field and an
electromagnetic (EM) field, there must indeed appear some exotic “interaction energy” Einter,
which should be distributed in space, and be gravitationally active. This has been found while
searching [2, 3, 1] for a consistent formulation, in that theory of gravity, of the Maxwell equations
in the presence of gravitation — the aim was thus not to invent a new candidate for dark matter.

That energy Einter could nevertheless contribute to the dark matter. It depends on the EM
field (E,B) and the gravity field. The theory of gravity that we refer to, based on a scalar field
only, is called “scalar ether theory” or SET; see Ref. [4]. To check if Einter might indeed build
a “dark halo” around a galaxy, we should be able to compute the Interstellar Radiation Field
(hereafter ISRF) as a solution of the Maxwell equations — because the equations that govern
Einter [1] contain the Maxwell field (E,B) and its first-order derivatives. However, the existing
models for the ISRF focus on radiation transfer (e.g. [5, 6, 7, 8, 9, 10]) and do not produce
an EM field (E,B), even less one that would be an exact solution of the Maxwell equations.
Hence, we built from scratch a model that does produce an exact solution of the Maxwell equa-
tions [12]. That model is based on axial symmetry (of the galaxy and the ISRF) as a relevant



approximation. It turns out that there exists an explicit representation for all axisymmetric so-
lutions of the source-free Maxwell equations [11]. The model makes predictions for the Spectral
Energy Density (SED) of the ISRF, that are close to those of the existing models [13]. Except
for one thing: the new model predicts extremely high values of the SED on the galaxy’s axis [14].

Our current work, of which this paper is a progress report, is as follows: Using the axisym-
metric model of the ISRF in a galaxy as an exact Maxwell EM field, just mentioned, we seek
to compute the interaction energy density field Einter in the weak gravitational field of a galaxy.
Beyond the EM field, Einter depends also on the Newtonian potential U , more precisely on
∂t(∇U). The time derivative ∂t is taken in the preferred frame (“ether”) E . Hence the field
Einter will depend on the velocity V of the center of the galaxy w.r.t. E .

Before exposing our present work, in the next two sections we shall briefly summarize the
foregoing steps [1, 11, 12].

2. Interaction tensor in SET
The equations of electrodynamics on general relativity (GR) simply rewrite those of special
relativity (SR) by using the “comma goes to semicolon” rule: , ν → ; ν , i.e.: partial derivatives
are replaced by covariant derivatives. That is not possible in SET, for the Dynamical Equation
for the energy(-momentum-stress) tensor T is not generally T λν;ν = 0 (which rewrites T λν,ν = 0
valid in SR). In SET, the first group of the Maxwell equations is unchanged. The second group
was obtained by applying the Dynamical Equation of SET to a charged medium in the presence
of Lorentz force, assuming that (as is the case in GR):

Total energy tensor T = T charged medium + T field. (1)

The additivity (1) leads to a form of Maxwell’s second group in SET [2, 15]. But that form
of Maxwell’s second group in SET predicts charge production/destruction at untenable rates,
and hence has to be discarded [3]. The additivity assumption (1) is contingent and may be
abandoned. It means introducing an “interaction” energy tensor T inter such that

T (total) = T charged medium + T field +T inter . (2)

In the work [1], it has been found that the assumption that T inter should be Lorentz-invariant
in the situation of special relativity (SR), i.e. when the “physical” spacetime metric γ is
Minkowski’s metric γ0 (γ0

µν = ηµν in Cartesian coordinates), leads unambiguously to the
following definition in the general case:

Tµinter ν := p δµν , or (Tinter)µν := p γµν . (3)

(Note that this is generally-covariant.) It has also been shown that the additional equation
made necessary by the additional unknown: the scalar field p, can then be consistently imposed
to be the equation for charge conservation. In that way, the electrodynamics of SET is a closed
system of PDE’s that satisfies charge conservation. The “interaction energy”

Einter := T 00
inter = pγ00 (4)

may be regarded as (macroscopic) “dark matter”, because (i) it is not localized inside usual
matter: we have p 6= 0 at a generic point; (ii) it is gravitationally active: T 00

inter contributes to
T 00 which is the source of the gravitational field in SET; (iii) it is not usual matter (e.g. no
velocity can be defined for the medium having Tµinter ν as energy tensor, since, when considered



in coordinates that are Cartesian at the event considered, the tensor (3) is invariant under local
Lorentz transformations).

Moreover, the scalar PDE that determines the first approximation of the scalar field p in a
given general EM field and in a given weak gravitational field with Newtonian potential U has
been obtained. Its initial form is (Eq. (69) in Ref. [1]): 1

(−Gµν p,ν),µ = −f, (5)

where Gµν (noted G µν
1 in Ref. [1]) are the components of an antisymmetric spacetime tensor

G: the inverse tensor of the EM field tensor made with the components of (E,B) — the EM
field of the first approximation, that obeys the flat-spacetime Maxwell equations. In addition,
in Eq. (5), we have

f := c−3
(
ei∂TU

)
,i

(
1 +O

(
c−2
))
, (6)

in which ei (i = 1, 2, 3) are the components of a spatial vector e also made with the components
of (E,B). Using the antisymmetry of Gµν , Eq. (5) can be rewritten [1] as:(

dp

dt

)
u

:=
∂p

∂t
+ u.∇p = S, (7)

in which the source field S and the spatial vector field u are given, both depending on (E,B),
and with the source S depending also on ∇∂TU . Thus, in principle, p obtains by integrating S
along the curves dx

dt = u(t,x) [1].

3. Maxwell model of the ISRF
To check if Einter might build a “dark halo”, we must have the Interstellar Radiation Field in
a galaxy (ISRF) as a Maxwell field. In Ref. [12], a model has been proposed to calculate the
ISRF as an exact solution of the Maxwell equations. Note that this is of astrophysical interest,
independently of the problem of checking what has just been mentioned. See e.g. Ref. [14],
Sect. 2, for a short presentation of the model. Here we shall provide only the main elements of
that model, as follows:

(i) We assume axial symmetry. This is a relevant approximation for many galaxies. The z
axis is taken as the symmetry axis.

(ii) We consider the source-free Maxwell equations. Indeed, we want to describe the ISRF at
a galactic scale, not in the stars (which are the primary source of the ISRF) or in their neigh-
borhood.

(iii) We consider a finite set of frequencies (ωj) (j = 1, ..., Nω), thus a finite number of time-
harmonic source-free Maxwell fields. The number of frequencies of a simulation, Nω, determines
how accurately the continuous spectrum is represented for that simulation.

(iv) We use a theorem [11] that expresses any time-harmonic axisymmetric source-free
Maxwell field as the sum of two such fields, obtained from two scalar potentials Az and A′z.

1 Equation (5) is valid in coordinates xµ that are Cartesian for the flat spacetime metric γ0 of SET and adapted
to the preferred frame. Thus the time coordinate is x0 = cT with T the preferred time of the theory, and the
spatial coordinates are Cartesian for the Euclidean spatial metric g0 of SET [1]. The l.h.s. of (5) is invariant
under a Lorentz transformation of γ0, but the r.h.s. is so only if that transformation is internal to the preferred
frame.



Moreover, in the relevant “totally-propagating” case, each of these potentials depends only on
a “spectrum” function of one variable, S = S(k) with k the axial wave number. In addition, for
a galaxy, the logic of the model (points (v) and (vi) below) leads one to assume that Az = A′z
[14], thus one spectrum function Sj for each frequency ωj (j = 1, ..., Nω).

(v) An axisymmetric galaxy is schematized as a finite set {xi ; i = 1, ...imax} of point-like
“stars”, given by their cylindrical coordinates ρ, φ, z, which are drawn with specific probability
laws ensuring axisymmetry and representativity.

(vi) The model is fixed by the spectrum functions Sj (j = 1, ..., Nω), approximated by
their discretized values Snj (n = 1, ..., N). For each frequency ωj , to determine the values
Snj (n = 1, ..., N), we do a least-squares fitting of a sum of spherical potentials:

Σj :=

imax∑
i=1

ϕxi ωj . (8)

The potential ϕxi ωj is the outgoing spherical solution of the wave equation with frequency ωj ,
emanating from the star at point xi .

4. Calculation of u and S
In order to integrate Eq. (7), we have to be able to compute the values of the vector field u and
the source S at any given event (t,x). The explicit expressions of u and S were given in Ref.
[1]. Setting Π := E.B, we get immediately from Eqs. (73)-(77) there, that 2

u =
E ∧∇Π− (∂tΠ)B

B.∇Π
, (10)

S =
div (e ∂tU)

c3B.∇ 1
Π

, (11)

where the spatial (3-)vector e (Eq. (68) in Ref. [1]) is easily shown to be

e =
1

cµ0

(
E +

c2B2 −E2

2Π
B

)
(12)

(here µ0 is the vacuum permeability). Since A′jz = Ajz for the model EM field, it follows that

here c2B2 − E2 = 0, see Eq. (19) in Ref. [14]. Thus e = E/(cµ0). With the free Maxwell
equations, we have div E = 0, so the numerator of (11) is E.∇(∂tU)/(cµ0).

The calculation of u was numerically implemented, and tried with the model of the Milky
Way, already investigated [12, 13, 14]. As could be expected in view of Eq. (10), the time
variation of u is on the scale of the quasi-period of the EM field, and its space variation is on
the scale of its wavelengths, thus both are extremely small as compared with the relevant scales
for a galaxy. Therefore, it is numerically unfeasible to integrate on a galactic scale the PDE (7)
for the scalar field p.

2 We must assume that E.B 6= 0 [2]. It is not valid for the simple and most known solutions of the Maxwell
equations: purely electric or purely magnetic fields, usual plane waves, dipole field [3]. However, it is generally
true, because a real EM field is a combination of simple solutions and, if one adds two solutions (E1,B1), (E2,B2)
of the standard Maxwell equations such that E1.B1 = 0 and E2.B2 = 0, then (E1+E2,B1+B2) is also a solution,
but

(E1 + E2).(B1 + B2) = E1.B2 + E2.B1, (9)

which generally is not zero. In short, E.B depends non-linearly on the field (E,B).



5. Homogenization of the PDE for the scalar field p
We want to obtain information on the field of interaction energy, thus on the scalar field p, at the
macroscopic scale of a galaxy. But to do this, what is at our disposal is the PDE (5) or the PDE
(7) — whereas either equation involves fields that vary on a very microscopic scale, e.g. Eq. (7)
involves the fields u and S. This situation is typical of the homogenization theory, which has
been developed mostly for periodic media — see e.g. Refs. [16, 17, 18]. The aim of this kind of
theory is to get “homogenized” PDE’s allowing one to describe the medium at the macroscopic
scale. Note that for Eq. (7) the “medium” is, essentially, characterized by the pair of given
heterogeneous fields (u, S). For Eq. (5), the “medium” is characterized by the pair of given
heterogeneous fields (G, f). Actually, for a real galaxy, that “medium” is quasi-periodic rather
than periodic, but the structure of the homogenized equations is the same for a quasi-periodic
medium as for a truly periodic medium [18, 19]. The most important difference is that, in the
first case, the elementary cell and/or the data fields within the cell, vary with the macroscopic
position. (See in Subsects. 5.1–5.3 below for the relevant definitions of the elementary cell.) We
note also that the homogenization theory has often been applied to the EM field, e.g. [17, 20],
thus obtaining homogenized Maxwell equations, that apply to some specific situation — in the
case of Refs. [17, 20], an anisotropic linear medium with permittivity and permeability tensors
that vary with the position at a very small scale (and in a periodic way). However, these works
do not seem to be relevant to the problem of homogenizing the PDE’s (5) or (7). Two obvious
points are: (i) a galaxy (thus a set of stars in the first place) cannot be regarded as a medium
of the kind just mentioned. (ii) What has to be homogenized here, is the PDE for the scalar
field p, not the Maxwell equations for the ISRF. Anyway, the ISRF in a galaxy does oscillate at
the extremely small time and space scales mentioned above.

The homogenization technique considers two variables related by a small parameter ε: a
“slow” variable, say s, which is the one that browses the medium at the macroscopic scale as is
sought for, and the “quick” variable, s/ε, of which an O(1) variation will browse the period of the
medium, which is very small as evaluated in terms of the slow variable. Several different frames
can thus be envisaged for the homogenization of the PDE’s (5) or (7), depending on which set
of variables is considered for the homogenization: the time variable, the space variables, or the
spacetime variables.

5.1. Time homogenization of Eq. (7)
We will first illustrate the technique in the case of the time variable, thus we will outline the
application to Eq. (7) of the time homogenization technique as proposed (for the mechanics
of heterogeneous materials) by Guennouni [21]. The idea of the method is to consider two
“separated” time scales: a “quick” time τ and a “slow” time t, with τ = t/T , where T � 1 is
the period of the quick variation (here that of the EM radiation field), when expressed in terms
of the “slow” time variable t. Thus T � t — here the galactic time scale: t ' r/c with r a
galactic distance, hence the ratio t/T ' r/λ has a huge value ' 1025: we have here a very good
separation of scales. The elementary cell is one interval of periodicity, thus [0, T ] in terms of the
slow variable t, and [0, 1] in terms of the quick variable τ = t/T . Formally, one assumes that
the given fields u and S, as well as the boundary values for p (which shall not be precised), have
the form

u = u(x, t, τ) = λ(t, τ)u∗(x), S = S(x, t, τ) = µ(t, τ)S∗(x), ... (13)

where λ and µ are τ -periodic of period 1.

Setting

uT (x, t) := u

(
x, t,

t

T

)
, ..., (14)



one has a boundary value problem πT for p, depending smoothly on T . Its solution field pT (x, t)
defines a field depending on two time variables:

p (x, t, τ) := pT (x, t) with T =
t

τ
. (15)

The total time derivative is

dpT

dt
=

∂

∂t

(
p

(
x, t,

t

T

))
=
∂p

∂t
+

1

T

∂p

∂τ
. (16)

One states an asymptotic expansion as T → 0 for the unknown field:

pT (x, t) = p0(x, t, τ)T 0 + p1(x, t, τ)T +O(T 2)

(
τ =

t

T

)
, (17)

where p0 and p1 are τ -periodic of period 1. Note that, since λ and µ in Eq. (13) are assumed
τ -periodic, the given fields u and S are “already developed”: Eq. (13) provides their expansions,
those expansions having only the T 0 term. Using (16) and (17) in (7) and identifying powers,
we get

order T−1 :
∂p0

∂τ
= 0 i.e. p0 = p0(x, t), order T 0 :

∂p0

∂t
+
∂p1

∂τ
+ u.∇p0 = S. (18)

Averaging the last equation over the period T , according to

f̄(x, t) :=

∫ 1

0
f(x, t, τ)dτ , (19)

yields
∂p0

∂t
+ ū.∇p0 = S̄, (20)

the sought-for time-averaged equation. Note that, from (18)1, it follows that p0 = p̄. Thus, the
time-homogenized equation (20) differs from the “microscopic” starting equation (7) merely by
the fact that time-averaged fields are substituted for the fields entering (7), both for the given
fields u and S and for the unknown field p. This was not a priori obvious: a naive averaging of
Eq. (7) would leave us with u.∇p in the place of ū.∇p0 ≡ ū.∇p̄.

Thus, the application of the time homogenization technique to Eq. (7) is quite
straightforward, at least formally. (We did not investigate the convergence as T → 0.) However,
the data fields that are obtained after the time-averaging, ū and S̄, have still the very rapid
spatial variation, at the scale of the typical wavelength. As a result: as it is the case for the
starting equation (7), again it is numerically unfeasible to integrate Eq. (20) on a galactic
scale. This has been checked numerically, after having implemented the calculations of the time
averages of u and S. We give some indications about the latter calculations below.

5.1.1. Time-averaging u and S The Maxwell model of the ISRF provides each of the six
components of E and B in the form

F (q)(t,x) = Re

Nω∑
j=1

C
(q)
j (x)e−iωjt

 (q = 1, ..., 6). (21)



Then, Π := E.B expands on the e−i(ωj+ωk)t ’s and e−i(ωj−ωk)t ’s. Hence, E ∧ ∇Π, (∂tΠ)B,
and B.∇Π, which enter (10) and (11), expand on the e−iΩκt ’s and e−iΨκt ’s, with κ =
(j, k,m), Ωκ = ωj + ωk + ωm, Ψκ = ωj + ωk − ωm. Those three fields time-average to
zero, because ωj + ωk − ωm does not vanish, not any more than (of course) ωj + ωk + ωm . But
equations (10) and (11) for u and S involve ratios of these fields. Thus we have to compute the
time average of a ratio of two trigonometric polynomials: 3

Q(t) =
Re
(∑

j Cje
−iωjt

)
Re (

∑
kDke−iωkt)

=

∑
j Cje

−iωjt + C?j e
iωjt∑

kDke−iωkt +D?
ke

iωkt

=
∑
j

1∑
k
Dk
Cj
e−i(ωk−ωj)t +

D?k
Cj
ei(ωk+ωj)t

+
1∑

k
Dk
C?j
e−i(ωk+ωj)t +

D?k
C?j
ei(ωk−ωj)t

. (22)

We compute that, to an often quite good approximation,〈
1

a+
∑

κ bκe
−iΩκt

〉
' 1

a
. (23)

With this approximation, we get

Q̄ '
∑
j

1
Dj
Cj

+
1
D?j
C?j

= 2
∑
j

Re
(
Cj
Dj

)
. (24)

5.2. Space homogenization of Eq. (7)
The (space) homogenization of a PDE governing a medium with a fine periodic microstructure
has been studied notably in Refs. [16, 17], followed by very numerous works. Here we will outline
the space homogenization of Eq. (7) by adapting the work of Caillerie [18]. We assume that the
given fields u and S are defined in the spatial elementary cell Y , a rectangular parallelepiped
with sides parallel to the Cartesian axes, as functions of the “quick” spatial variable y, and can
be extended to Y -periodic functions of y defined in the whole space. This means essentially
that each of them, along with its derivatives, takes the same value at corresponding points on
opposite faces of the parallelepiped Y . As in the time homogenization described above, one
considers a boundary value problem for (7) depending on a small parameter ε (in the place of T )
— ε can be considered as the size of the cell (its dimension in the direction of the first coordinate
axis, say), that size being expressed in terms of the slow space variable x such that y = x/ε. To
do so one defines 4

uε(x, t) = u
(x

ε
, t
)
, (25)

and the like for S. As in Eq. (17), one states an asymptotic expansion as ε→ 0 for the solution
field:

pε(x, t) = p0 (x,y, t) ε0 + p1 (x,y, t) ε+O(ε2), y =
x

ε
, (26)

where p0 and p1 are Y -periodic in the quick space variable y. Similarly with Eq. (16), the total
spatial derivatives are given by

dpε

dxi
=

∂

∂xi

(
p
(
x,

x

ε
, t
))

=
∂p

∂xi
+

1

ε

∂p

∂yi
. (27)

3 The indices in Eq. (22) browse in general a different set as compared with the set {1, ..., Nω} of the frequencies
of the EM field.
4 This is somewhat different from Eq. (13) that was adapted to Eq. (7) from the presentation of the time-
homgenization technique in Ref. [21]. However, it is equivalent in practice, because actually we have indeed just
one field u, not a family of fields. Thus Eq. (25) defines such a family (uε) from the data of the unique field u.



Then, inserting (26) in (7) using (27), and identifying powers, we get

order ε−1 :
∂p0

∂yj
uj = 0, order ε0 :

∂p0

∂t
+

(
∂p0

∂xj
+
∂p1

∂yj

)
uj = S. (28)

We note that, in contrast with the time homogenization case (see Eq. (18)1), inserting the
expansions (26) into the PDE (7) does not necessarily imply that p0 is independent of the quick
variable y. 5 However, it is consistent to assume that p0 is independent of y: clearly, Eq. (28)1

is then automatically satisfied. Another difficulty as compared with the time homogenization
case, as well as with the works [18, 21], is the following one. The volume integration, over the
elementary cell Y , of the main (zero-order) equation, Eq. (28)2, does not in the most general
case leave us with a PDE for the averaged fields. Assuming that p0 is independent of y implies
obviously that

p0(x, t) :=
1

|Y |

∫
Y
p0(x,y, t) dy = p0(x, t) (29)

(where |Y | is the volume of Y ), so that P := p0 = p0 is indeed an averaged field. With this, the
integration of Eq. (28)2 over Y gives us

|Y |
(
∂P

∂t
+ uj

∂P

∂xj

)
+

∫
Y

u.∇yp1(x,y, t) dy = |Y | S(x, t). (30)

The integral on the l.h.s. may be rewritten as∫
Y

u.∇yp1(x,y, t) dy =

∫
∂Y

u.n p1dΣ−
∫
Y
p1divyu dy = −

∫
Y
p1 divyu dy, (31)

the last equality resulting from the fact that p1 and u are Y -periodic in y, so that u.n p1 takes
opposite values at corresponding points on opposite faces of Y . However, the integral on the
rightmost side of (31) has no apparent reason to vanish in general. If it can be neglected, we
can rewrite Eq. (30) as (

dP

dt

)
u

:=
∂P

∂t
+ uj

∂P

∂xj
= S(x, t), (32)

an equation for the averaged fields. Assuming that the same equation is valid for the relevant
case of quasi-periodic fields u and S, it would then remain to implement the calculation of the
spatially-averaged fields u and S and the integration of Eq. (32).

5.3. Spacetime homogenization of Eq. (5)
Equation (5) for p has exactly the same form as the stationary heat conduction equation for
the temperature θ (see Eq. (18) in Ref. [18]), except for the fact that here we have a spacetime
equation instead of a spatial equation. That is, the tensor G is a spacetime second-order
tensor, that plays the role played in Ref. [18] by the spatial second-order tensor of thermal
conductivity, K. Therefore, we can easily adapt the work [18]. Again, one considers a boundary
value problem for (5) depending on a small parameter ε: ε can be considered as the size of the

5 In the case of the stationary heat conduction equation for the temperature θ, studied in Ref. [18], the fact that
θ0 is independent of the quick variable is not obtained directly (in contrast with the equation studied in Ref. [21], as
well as for Eq. (7) with the time homogenization). Nevertheless, this fact does follow from the expanded equation
of the lowest order, by using the weak form of this equation together with the periodic boundary conditions
and the fact that the quadratic form associated with K is coercive (D. Caillerie, private communication). Here
the argument valid for the heat equation does not apply and, clearly, Eq. (28)1 does not necessarily imply that
∇yp0 = 0.



spacetime elementary cell Υ, that size being expressed in terms of the slow spacetime variable
X = (t,x). To do so one defines, similarly to Eq. (21) of Ref. [18]:

Gε(X) = G

(
X

ε

)
, (33)

and the like for f . (The latter is a minor difference with Ref. [18], in which f is considered
independent of ε.) As in Eqs. (17) and (26), one states an asymptotic expansion as ε → 0 for
the solution field (cf. Eq. (22) of Ref. [18]):

pε(X) = p0 (X,Y) ε0 + p1 (X,Y) ε+O(ε2), Y =
X

ε
, (34)

where p0 and p1 are Υ-periodic in the quick spacetime variable Y = (τ,y). A difference with the
heat conduction case is that the inverse EM field tensor G is antisymmetric, instead of being
symmetric as is the conductivity tensor K. Therefore the quadratic form associated with G is
identically zero. This prevents us from using the argument used in the former case (see Footnote
5) to show that the first term in the expansion (here p0) is independent of the quick variable,
here Y. As in Subsect. 5.2, we nevertheless still may assume that p0 = p0(X). Then, just the
same calculations of Ref. [18] do apply, substituting G for K, p for θ, and defining, as in Eq.
(20) of Ref. [18]:

q := −G.∇Xp. (35)

In particular, the following expanded equation is derived (Eq. (25b) in Ref. [18]):

divXq0 + divYq1 + f = 0, (36)

with (Eqs. (26a) and (26b) in Ref. [18]):

q0 = −G. (∇Xp0 +∇Yp1), (37)

q1 = −G.∇Xp1. (38)

(The ∇Yp2 term does not appear, for we stop the expansion (34) at p1.) By integrating (36) on
the spacetime cell Υ, the following homogenized equation is derived (Eq. (27) in Ref. [18]):

divX 〈q0〉+ 〈f〉 = 0, (39)

with the angular brackets denoting the average over the spacetime cell:

〈A〉 (X) :=

∫
Υ
A(X,Y)dY/

∫
Υ

dY. (40)

Moreover, as with the heat conduction case, the average field 〈q0〉 is calculated by using a
homogenized tensor (Eq. (45) in Ref. [18]):

〈q0〉 = −GH.∇Xp0, (41)

the latter having the form (Eq. (46) in Ref. [18]):

GH = 〈G.(1 +∇Yχ)〉. (42)

Note that, with Eq. (41), the homogenized PDE (39) has just the same form as the starting
“microscopic” equation (5). However, the homogenized tensor GH is not in general the average
of the microscopic tensor G: in Eq. (42), the spacetime vector χ is the solution of a boundary
value problem on the spacetime cell Υ (transposed from Eq. (31) in Ref. [18]). Due to this fact,
the application of this method to the actual numerical solution of Eq. (5) looks heavy at first
sight: in the relevant quasi-periodic case, we would have to solve that boundary value problem
on a representative cell neighbouring an integration point in the macroscopic spacetime domain
considered, and this, a priori, for any integration point — though possibly less often, depending
on the variability that would be found for GH.



6. Conclusion
In the alternative gravity theory “SET”, electromagnetism in the presence of gravitation de-
mands to introduce an additional energy tensor T inter, depending on a scalar field p. This exotic
energy tensor might contribute to dark matter. To check this, we developed a model of the
interstellar radiation field that provides it as an exact Maxwell field. Then we may calculate
the fields u and S that determine p and T inter through the PDE (7). But the very quick varia-
tion of u and S, both in time and in space, makes it unfeasible to integrate (7) on a galactic scale.

Therefore, we discussed the application of the homogenization theory. Together with the
choice of the precise form for the PDE: either (5) or (7), each choice of a set of variables for
the homogenization: time variable, space variables, or spacetime variables, determines a specific
homogenization process.

• For Eq. (7) with the time variable alone (“time homogenization”), the PDE stays unchanged
but with time-averaged fields: Eq. (20). However, the data fields that are obtained after
the time-averaging, ū and S̄, have still the very rapid spatial variation, at the scale of the
typical wavelength. As a result, it is numerically unfeasible to integrate Eq. (20) on a
galactic scale.

• For Eq. (7) with the space variables alone (“spatial homogenization”), an equation for the
spatially-averaged unknown field P = p0 is obtained if the integral (31) can be neglected,
and that equation again is the same as the starting equation, though with spatially-averaged
data fields u and S, Eq. (32). This equation seems to be a tractable one for an integration at
the galactic scale — provided the spatial averaging at a given time also sufficiently smooths
out the time variation.

• Equation (5) for p has precisely the same form as the stationary heat conduction equation for
the temperature studied in Ref. [18], except for the fact that here it is a spacetime equation
instead of a spatial equation. Hence, many results of Ref. [18] translate immediately into
results for the “spacetime homogenization” of Eq. (5). The homogenized equation, Eq. (39)
with (41), has the same form as the starting equation (5), but here the homogenized tensor
GH is not the average of the microscopic tensor G. The calculation of GH involves the
solution of a boundary value problem on the spacetime cell. In the relevant quasi-periodic
case, we would have to solve that boundary value problem at many different points in the
macroscopic spacetime domain considered.
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