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On an Invariance Problem for Parameterized1

Concurrent Systems2

Marius Bozga and Lucas Bueri and Radu Iosif3

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France4

Abstract5

We consider concurrent systems consisting of replicated finite-state processes that synchronize6

via joint interactions in a network with user-defined topology. The system is specified using a7

resource logic with a multiplicative connective and inductively defined predicates, reminiscent of8

Separation Logic [19]. The problem we consider is if a given formula in this logic defines an invariant,9

namely whether any model of the formula, following an arbitrary firing sequence of interactions,10

is transformed into another model of the same formula. This property, called havoc invariance, is11

quintessential in proving the correctness of reconfiguration programs that change the structure of12

the network at runtime. We show that the havoc invariance problem is many-one reducible to the13

entailment problem φ |= ψ, asking if any model of φ is also a model of ψ. Although, in general,14

havoc invariance is found to be undecidable, this reduction allows to prove that havoc invariance is15

in 2EXP, for a general fragment of the logic, with a 2EXP entailment problem.16
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1 Introduction21

The parameterized verification problem asks to decide whether a system consisting of an22

arbitrary number of finite-state processes that communicate via synchronized (joint) actions23

satisfies a specification, such as deadlock freedom, mutual exclusion or a temporal logic24

property e.g., every request is eventually answered. The literature in this area has a wealth25

of decidability and complexity results (see [3] for a survey) classified according to the26

communication type (e.g., rendez-vous, broadcast) and the network topology e.g., rings where27

every process interacts with its left/right neighbours, cliques where each two process may28

interact, stars with a controller interacting with unboundedly many workers, etc.29

As modern computing systems are dynamically adaptive, recent effort has been put into30

designing reconfigurable systems, whose network topologies change at runtime (see [12] for a31

survey) in order to address maintenance (e.g., replacement of faulty and obsolete components32

by new ones, firmware updates, etc.) and internal traffic issues (e.g., re-routing to avoid33

congestion in a datacenter [18]). Unfortunately the verification of dynamic reconfigurable34

systems (i.e., proving the absence of design errors) remains largely unexplored. Consequently,35

such systems are prone to bugs that may result in e.g., denial of services or data corruption1.36

Proving correctness of parameterized reconfigurable networks is tackled in [1], where37

a Hoare-style program logic is proposed to write proofs of reconfiguration programs i.e.,38

programs that dynamically add and remove processes and interactions from the network39

during runtime. The assertion language used by these proofs is a logic that describes sets of40

configurations defining the network topology and the local states of the processes. The logic41

views processes and interactions as resources that can be joined via a separating conjunction,42

1 Google reports on a cascading cloud failure due to reconfiguration: https://status.cloud.google.
com/incident/appengine/19007
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in the spirit of Separation Logic [19]. The separating conjunction supports local reasoning,43

which is the ability of describing reconfigurations only with respect to those components and44

interactions that are involved in the mutation, while disregarding the rest of the system’s45

configuration. Moreover, the separating conjunction allows to concisely describe networks of46

unbounded size, that share a similar architectural style (e.g., pipelines, rings, stars, trees) by47

means of inductively defined predicates.48

Due to the interleaving of reconfigurations and interactions between components, the49

annotations of the reconfiguration program form a valid proof under so-called havoc invariance50

assumptions, stating global properties about the configurations, that remain, moreover,51

unchanged under the ongoing interactions in the system. These assumptions are needed52

to apply the sequential composition rule that infers a Hoare triple {φ} P; Q {ψ} from two53

premisses {φ} P {θ} and {θ} Q {ψ}, where P and Q are reconfiguration actions that add54

and/or remove processes and communication channels. Essentially, because the states of the55

processes described by the intermediate assertion θ might change between the end of P and56

the beginning of Q, this rule is sound provided that θ is a havoc invariant formula.57

This paper contributes to the automated generation of reconfiguration proofs, by a giving58

a procedure that discharges the havoc invariance side conditions. The challenge is that a59

formula of the configuration logic (that contains inductively defined predicates) describes an60

infinite set of configurations of arbitrary sizes. The main result is that the havoc invariance61

problem is effectively many-one reducible to the entailment problem φ |= ψ, that asks if62

every model of a formula φ is a model of another formula ψ. Here ψ is the formula whose63

havoc invariance is being checked and φ defines the set of configurations γ′ obtained from a64

model γ of ψ, by executing one interaction from γ. The reduction is polynomial if certain65

parameters are bound by a constant (i.e., the arity of the predicates, the size of interactions66

and the number of predicate atoms is an inductive rule), providing a 2EXP upper bound67

for a fragment of the logic with a decidable (2EXP) entailment problem [4, §6]. Having a68

polynomial reduction motivates, moreover, future work on the definition of fragments of lower69

(e.g., polynomial) entailment complexity (see e.g., [9] for a fragment of Separation Logic with70

a polynomial entailment problem), that are likely to yield efficient decision procedures for71

the havoc invariance problem as well. In addition, we provide a 2EXP-hard lower bound72

for the havoc invariance problem in this fragment of the logic (i.e., assuming predicates of73

unbounded arity) and show that havoc invariance is undecidable, when unrestricted formulæ74

are considered as input. For space reasons, the technical proofs are given in Appendix A.75

Related Work Specifying parameterized concurrent systems by inductive definitions is76

reminiscent of network grammars [20, 16, 13], that use inductive rules to describe systems77

with linear (pipeline, token-ring) architectures obtained by composition of an unbounded78

number of processes. In contrast, we use predicates of unrestricted arities to describe network79

topologies that can be, in general, more complex than trees. Moreover, we write inductive80

definitions using a resource logic, suitable also for writing Hoare logic proofs of reconfiguration81

programs, based on local reasoning [8].82

Verification of network grammars against safety properties (reachability of error configur-83

ations) requires the synthesis of network invariants [21], computed by rather costly fixpoint84

iterations [17] or by abstracting (forgetting the particular values of indices in) the composition85

of a small bounded number of instances [14]. In previous work, we have developped an86

invariant synthesis method based on structural invariants, that are synthesized with little87

computational effort and prove to be efficient in many practical examples [5, 6].88

The havoc invariance problem considered in this paper is, however, different from safety89

checking and has not been addressed before, to the best of our knowledge. An explaination is90

that verification of reconfigurable systems has received fairly scant attention, relying mostly91
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Figure 1 Inductive Specification and Reconfiguration of a Token Ring

on runtime verification [7, 10, 15, 11], instead of deductive verification, reported in [1]. In [1]92

we addressed havoc invariance with a set of inference rules used to write proofs manually,93

whereas the goal of this paper is to discharge such conditions automatically.94

1.1 A Motivating Example95

Consider, for instance, a system consisting of a finite but unbounded number of processes,96

called components in the following. The components execute the same machine with states97

T and H, denoting whether the component has a token (T) or a hole (H). The components98

are placed in a ring, each component having exactly one left and one right neighbour, as in99

Fig. 1 (a). A component without a token may receive one, by executing a transition H in−→ T,100

simultaneously with its left neighbour, that executes the transition T out−−→ H simultaneously,101

as in Fig. 1 (a). Note that there can be more than one token, moving independently in the102

system, such that no token overtakes another token. The configurations of the token ring103

system are described by the following inductive rules:104

ringh,t()← ∃x∃y . 〈x.out, y.in〉 ∗ chainh,t(y, x)105

chainh,t(x, y)← ∃z. [x]@q ∗ 〈x.out, z.in〉 ∗ chainh′,t′(z, y), for both q ∈ {H,T}106

chain0,1(x, x)← [x]@T chain1,0(x, x)← [x]@H chain0,0(x, x)← [x]107

where h′ def=
{

max(h− 1, 0) , if q = H
h , if q = T and t′ def=

{
max(t− 1, 0) , if q = T
t , if q = H108

109

The predicate ringh,t() describes a ring with at least h (t) components in state H (T). The110

ring consists of an interaction between the ports out and in of two components x and y,111

respectively, described by 〈x.out, y.in〉 and a separate chain of components between x and112

y, described by chainh,t(y, x). Inductively, a chain consists of a component [x]@q in state113

q ∈ {H,T}, an interaction 〈x.out, z.in〉 and a separate chainh′,t′(z, y), where h′ and t′ are114

the least numbers of components in state H and T, respectively, after the removal of the115

component x. Fig. 1 (b) depicts the unfolding of the inductive definition of ringh,t() with116

the existentially quantified variables z from the above rules α-renamed to z1, z2, etc.117

A reconfiguration action is an atomic creation or deletion of a component or interaction.118

A reconfiguration sequence is a finite sequence of reconfiguration actions that takes as input a119

mapping of program variables to components and executes the actions from the sequence, in120

interleaving with the interactions in the system. For instance, the reconfiguration sequence121

from Fig. 1 (c) takes as input the mapping of x and y to two adjacent components in the token122

ring, removes the interaction 〈x.out, y.in〉 by executing disconnect(x.out, y.in) and creates123

a new component in state H (by executing new(x,H)) that is connected in between x and y124

CVIT 2016
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via two new interactions created by executing connect(z.out, y.in) and connect(x.out, z.in),125

respectively. Fig. 1 (c) shows a proof (with annotations in curly braces) of the fact that126

outcome of the reconfiguration of a ring of components is a ring whose least number of127

components in state H is increased from one to two. This proof is split into several subgoals:128

1. Entailments required to apply the consequence rule of Hoare logic e.g., ring1,1() |=129

∃x∃y . 〈x.out, y.in〉 ∗ chain1,1(y, x). The entailment problem has been addressed in [4,130

§6], with the definition of a general fragment of the configuration logic, for which the131

entailment problem is decidable in double exponential time.132

2. Hoare triples that describe the effect of the atomic reconfiguration actions e.g., {〈x.out, y.in〉∗133

chain1,1(y, x)}disconnect(x.out, y.in){chain1,1(y, x)}. These are obtained by applying134

the frame rule to the local2 specifications of the atomic actions. The local specification of135

reconfiguration actions and the frame rule for local actions are described in [1, §4.2].136

3. Havoc invariance proofs for the annotations marked with (‡) in Fig. 1 (c). For instance, the137

formula chain1,1(y, x) is havoc invariant because the interactions in a chain of components138

will only move tokens to the right without creating more or losing any, hence there will139

be the same number of components in state H (T) no matter which interactions are fired.140

2 Definitions141

We denote by N the set of positive integers, including zero. For a set A, we denote A1 def= A,142

Ai+1 def= Ai × A, for all i ≥ 0, where × denotes the Cartesian product, and A+ def=
⋃
i≥1A

i.143

The cardinality of a finite set A is denoted by ||A||. By writing A ⊆fin B we mean that A is a144

finite subset of B. Given integers i and j, we write [i, j] for the set {i, i+ 1, . . . , j}, assumed145

to be empty if i > j. For a function f : A→ B, we denote by f [ai ← bi]i∈[1,n] the function146

that maps ai into bi for each i ∈ [1, n] and agrees with f everywhere else.147

2.1 Configurations148

We model a parallel system as a hypergraph, whose vertices are components (i.e., the nodes149

of the network) and hyperedges are interactions (i.e., describing the way the components150

communicate with each other). The components are taken from a countably infinite set C,151

called the universe. We consider that each component executes its own copy of the same152

behavior, represented as a finite-state machine B = (P,Q,−→), where P is a finite set of153

ports, Q is a finite set of states and −→⊆ Q×P ×Q is a transition relation. Intuitively, each154

transition q p−→ q′ of the behavior B is triggerred by a visible event, represented by the port p.155

The universe C and the behavior B = (P,Q,−→) are considered to be fixed in the following.156

A configuration is a snapshot of the system, describing the topology of the network157

(i.e., the set of present components and interactions) together with the local state of each158

component, formally defined below:159

I Definition 1. A configuration is a tuple γ = (C, I, %), where:160

C ⊆fin C is a finite set of components, that are present in the configuration,161

I ⊆fin (C × P)+ is a finite set of interactions, where each interaction is a sequence162

(ci, pi)i∈[1,n] ∈ (C× P)n that binds together the ports p1, . . . , pn of the pairwise distinct163

components c1, . . . , cn, respectively. The ordered sequence of ports (p1, . . . , pn) is called164

an interaction type and we denote by P+ the set of interaction types.165

2 A Hoare triple {φ} P {ψ} is local if it mentions only those components and interactions added or
deleted by P. Local specifications are plugged into a global context by the frame rule that infers
{φ ∗ F} P {ψ ∗ F} from {φ} P {ψ} if the variables modified by P are not free in F .
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% : C → Q is a state map associating each (possibly absent) component, a state of the166

behavior B, such that the set {c ∈ C | %(c) = q} is infinite, for each q ∈ Q.167

We denote by Γ the set of configurations.168

The last condition requires that there is an infinite pool of components in each state q ∈ Q;169

since C is infinite and Q is finite, this condition is feasible.170

I Example 2. The configurations of the system from Fig. 1 (a) are ({c1, . . . , cn}, {(ci, out,171

c(i mod n)+1, in) | i ∈ [1, n]}, %), where % : C→ {H,T} is a state map. The ring topology is172

given by components {c1, . . . , cn} and interactions {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}. �173

Note that Def. 1 allows configurations with interactions that involve absent components174

i.e., not from the set C of present components in the given configuration. The following175

definition distinguishes such configurations:176

I Definition 3. A configuration γ = (C, I, %) is said to be tight if and only if for any177

interaction (ci, pi)i∈[1,n] ∈ I we have {ci | i ∈ [1, n]} ⊆ C and loose otherwise.178

For instance, every configuration of the system from Fig. 1 (a) is tight and becomes loose if179

a component is deleted.180

2.2 Configuration Logic181

Let V and A be countably infinite sets of variables and predicates, respectively. For each182

predicate A ∈ A, we denote its arity by #A. The formulæ of the Configuration Logic (CL)183

are described inductively by the following syntax:184

φ := emp | [x] | 〈x1.p1 , . . . , xn.pn〉 | x@q | x = y | x 6= y | A(x1, . . . , x#A) | φ ∗ φ | ∃x . φ185

where x, y, x1, . . . ∈ V, q ∈ Q and A ∈ A. A formula [x], 〈x1.p1 , . . . , xn.pn〉, x@q and186

A(x1, . . . , x#A) is called a component, interaction, state and predicate atom, respectively. We187

use the shorthand [x]@q def= [x] ∗ x@q. Intuitively, a formula [x]@q ∗ [y]@q′ ∗ 〈x.out, y.in〉 ∗188

〈x.in, y.out〉 describes a configuration consisting of two distinct components, denoted by the189

values of x and y, in states q and q′, respectively, and two interactions binding the out port190

of one to the in port of the other component.191

A formula with no occurrences of predicate atoms (resp. existential quantifiers) is called192

predicate-free (resp. quantifier-free). A qpf formula is both predicate- and quantifier-free. A193

variable is free if it does not occur in the scope of a quantifier and fv(φ) is the set of free194

variables of φ. A substitution φ[xi/yi]i∈[1,n] replaces simultaneously every free occurrence of195

xi by yi in φ, for all i ∈ [1, n]. The size of a formula φ is the total number of occurrences of196

symbols needed to write it down, denoted by size(φ).197

The only connective of the logic is the separating conjunction ∗. Intuitively, φ1 ∗ φ2198

means that φ1 and φ2 hold separately, on disjoint parts of the same configuration. Its formal199

meaning is coined by the following definition of composition of configurations:200

I Definition 4. The composition of two configurations γi = (Ci, Ii, %), for i = 1, 2, such that201

C1 ∩ C2 = ∅ and I1 ∩ I2 = ∅, is defined as γ1 • γ2
def= (C1 ∪ C2, I1 ∪ I2, %). The composition202

γ1 • γ2 is undefined if C1 ∩ C2 6= ∅ or I1 ∩ I2 6= ∅.203

I Example 5. Let γi = ({ci}, {(ci, out, c3−i, in)}, %) be configurations, for i = 1, 2. Then204

γ1 • γ2 = ({c1, c2}, {(c1, out, c2, in), (c2, out, c1, in)}, %). �205

The meaning of the predicates is given by a set of inductive definitions:206

I Definition 6. A set of inductive definitions (SID) ∆ consists of rules A(x1, . . . , x#A)← φ.207

CVIT 2016
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Note that having distinct parameters in a rule is without loss of generality, as e.g., a rule208

A(x1, x1) ← φ can be equivalently written as A(x1, x2) ← x1 = x2 ∗ φ. As a convention,209

we shall always use the names x1, . . . , x#A for the parameters of a rule that defines A. An210

example of a SID is given in §1.1.211

The size of a SID is size(∆) def=
∑

A(x1,...,x#A)←φ∈∆ size(φ) + #A + 1. Other paramet-212

ers, relevant for complexity evaluation, are the maximal (1) arity #(∆) def= max{#A |213

A(x1, . . . , x#A) ← φ ∈ ∆} of a defined predicate, (2) size of an interaction type N(∆) def=214

max{n | 〈y1.p1 , . . . , yn.pn〉 occurs in ∆}, and (3) number of predicate atoms H(∆) def= max{h |215

A(x1, . . . , x#A)← ∃y1 . . . ∃ym . φ ∗ ∗ h
`=1B`(z`), φ is a qpf formula}.216

The semantics of CL formulæ is defined by a satisfaction relation γ |=ν
∆ φ between217

configurations and formulæ. This relation is parameterized by a store ν : V→ C mapping218

the free variables of a formula into components from the universe (possibly absent from γ)219

and an SID ∆. The definition of the satisfaction relation is by induction on the structure of220

formulæ, where γ = (C, I, %) is a configuration (Def. 1):221

γ |=ν
∆ emp ⇐⇒ C = ∅ and I = ∅

γ |=ν
∆ [x] ⇐⇒ C = {ν(x)} and I = ∅

γ |=ν
∆ 〈x1.p1 , . . . , xn.pn〉 ⇐⇒ C = ∅ and I = {(ν(x1), p1, . . . , ν(xn), pn)}

γ |=ν
∆ x@q ⇐⇒ γ |=ν

∆ emp and %(ν(x)) = q

γ |=ν
∆ x ∼ y ⇐⇒ γ |=ν

∆ emp and ν(x) ∼ ν(y), for all ∼∈ {=, 6=}
γ |=ν

∆ A(y1, . . . , y#A) ⇐⇒ γ |=ν
∆ φ[x1/y1, . . . , x#A/y#A], for some rule

A(x1, . . . , x#A)← φ from ∆
γ |=ν

∆ φ1 ∗ φ2 ⇐⇒ there exist γ1 and γ2, such that γ = γ1 • γ2 and
γi |=ν

∆ φi, for all i = 1, 2
γ |=ν

∆ ∃x . φ ⇐⇒ γ |=ν[x←c]
∆ φ, for some c ∈ C

222

If γ |=ν
∆ φ, we say that the pair (γ, ν) is a ∆-model of φ. If φ is a predicate-free formula, the223

satisfaction relation does not depend on the SID, written γ |=ν φ. A formula φ is satisfiable224

if and only if it has a model. A formula φ ∆-entails a formula ψ, written φ |=∆ ψ, if and only225

if any ∆-model of φ is a ∆-model of ψ. Two formulæ are ∆-equivalent, written φ ≡∆ ψ if and226

only if φ |=∆ ψ and ψ |=∆ φ. A formula φ is ∆-tight if γ is tight (Def. 3), for any ∆-model227

(γ, ν) of φ. We omit mentioning ∆ whenever it is clear from the context or not needed.228

2.3 The Havoc Invariance Problem229

This paper is concerned with the havoc invariance problem i.e., the problem of deciding230

whether the set of models of a given CL formula is closed under the execution of a sequence231

of interactions. The execution of an interaction (ci, pi)i∈[1,n] synchronizes transitions labeled232

by the ports p1, . . . , pn from the behaviors (i.e., replicas of the state machine B) of c1, . . . , cn,233

respectively. This joint execution of several transitions in different components of the system234

is formally described by the step relation below:235

I Definition 7. The step relation =⇒ ⊆ Γ× (C× P)+ × Γ is defined as:236

(C, I, %)
(ci,pi)i∈[1,n]========⇒ (C, I, %′) if and only if (ci, pi)i∈[1,n] ∈ I and %′ = %[ci ← q′i]i∈[1,n]

where %(ci) = qi and qi
pi−→ q′i is a transition of B, for all i ∈ [1, n]

237

The havoc relation ∗ is the reflexive and transitive closure of the relation ⊆ Γ2: (C, I, %) 238

(C, I, %′) if and only if (C, I, %)
(ci,pi)i∈[1,n]========⇒ (C, I, %′), for some interaction (ci, pi)i∈[1,n] ∈ I.239
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I Example 8. Let γi = ({c1, c2, c3}, {(ci, out, ci mod 3+1, in) | i ∈ [1, 3]}, %i), for i ∈ [1, 3] be240

configurations, where %1(c1) = %1(c2) = H, %1(c3) = T, %2(c1) = T, %2(c2) = %2(c3) = H,241

%3(c1) = %3(c3) = H, %3(c2) = T. Then we have γi  ∗ γj , for all i, j ∈ [1, 3]. �242

Two interactions (c1, p1, . . . , cn, pn) and (ci1 , pi1 , . . . , cin , pin) such that {i1, . . . , in} =243

[1, n], are equivalent from the point of view of the step relation, since the set of executed244

transitions is the same; nevertheless, we chose to distinguish them in the following, for reasons245

of simplicity. Note, moreover, that the havoc relation does not change the component or the246

interaction set of a configuration, only its state map.247

I Definition 9. Given an SID ∆ and a predicate A, the problem HavocInv[∆,A] asks whether248

for all γ, γ′ ∈ Γ and each store ν, such that γ |=ν
∆ A(x1, . . . , x#A) and γ  ∗ γ′, it is the case249

that γ′ |=ν
∆ A(x1, . . . , x#A)?250

I Example 10. Consider a model γ = ({c1, . . . , cn}, {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}, %)251

of the formula ring1,1() i.e., having the property that %(ci) = H and %(cj) = T for at least252

two indices i 6= j ∈ [1, n], where the SID that defines ring1,1() is given in §1.1. Similar to253

Example 8, in any configuration γ′ = ({c1, . . . , cn}, {(ci, out, c(i mod n)+1, in) | i ∈ [1, n]}, %′)254

such that γ  ∗ γ′, we have %′(ck) = H and %′(c`) = T, for some k 6= ` ∈ [1, n], hence γ′ is a255

model of ring1,1(), meaning that ring1,1() is havoc invariant. Examples of formulæ that are256

not havoc invariant include e.g., [x]@T ∗ 〈x.out, y.in〉 ∗ [y]@H. �257

Without loss of generality, we consider the havoc invariance problem only for single258

predicate atoms. This is because, for any formula φ, such that fv(φ) = {x1, . . . , xn}, one may259

consider a fresh predicate symbol (i.e., not in the SID) Aφ and add the rule Aφ(x1, . . . , xn)← φ260

to the SID. Then φ is havoc invariant if and only if Aφ(x1, . . . , xn) is havoc invariant.261

3 From Havoc Invariance to Entailment262

We describe a many-one reduction of the havoc invariance (Def. 9) to the entailment problem,263

following three steps. Given an instace HavocInv[∆,A] of the havoc invariance problem, the264

SID ∆ is first translated into a tree automaton recognizing trees labeled with predicate-free265

formulæ, that symbolically encode the set of ∆-models of the predicate atom A(x1, . . . , x#A).266

Second, we define a structure-preserving tree transducer that simulates the effect of executing267

exactly one interaction from such a model. Third, we compute the image of the language268

recognized by the first tree automaton via the transducer, as a second tree automaton, which269

is translated back into another SID ∆ defining one or more predicates A1, . . . ,Ap, among270

other. Finally, we prove that HavocInv[∆,A] has a positive answer if and only if each of the271

entailments {Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A)}pi=1 produced by the reduction, hold.272

For the sake of self-containment, we recall below the definitions of trees, tree automata273

and (structure-preserving) tree transducers. Let (Σ,#) be a ranked alphabet, where each274

symbol α ∈ Σ has an associated arity #α ≥ 0. A tree over Σ is a finite partial function275

t : N∗ ⇀fin Σ, whose domain dom(t) ⊆fin N∗ is both prefix-closed i.e., u ∈ dom(t), for all276

u, v ∈ N∗, such that u · v ∈ dom(t), and complete i.e., {n ∈ N | u · n ∈ dom(t)} = [1,#t(u)],277

for all u ∈ dom(t). Given u ∈ dom(t), the subtree of t rooted at u is the tree t|u, such that278

dom(t|u) def= {w | u · w ∈ dom(t)} and t|u(w) def= t(u · w). We denote by T(Σ) the set of trees279

over a ranked alphabet Σ.280

A tree automaton (TA) is a tuple A = (Σ,S,F , δ), where Σ is a ranked alphabet,281

S is a finite set of states, F ⊆ S is a set of final states and δ is a set of transitions282

α(s1, . . . , s#a) −→ s; when #α = 0, we write α −→ s instead of α() −→ s. A run of A over283
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a tree t is a function π : dom(t) → S, such that, for all u ∈ dom(t), we have π(u) = s if284

(t(u))(π(u · 1), . . . , π(u ·#t(u))) −→ s ∈ δ. Given a state q ∈ S, a run π of is q-accepting if285

and only if π(ε) = q, in which case A is said to q-accept t. We denote by Lq(A) the set of286

trees q-accepted by A and let L(A) def=
⋃
q∈F Lq(A). A language L is recognizable if and only287

if there exists a TA A, such that L = L(A).288

A tree transducer (TT) is a tree automaton over an alphabet of pairs T = (Σ2,S,F , δ),289

such that #α = #β = n, for each transition (α, β)(s1, . . . , sn) −→ s ∈ δ. Intuitively, a290

transition of the transducer reads a symbol α from the input tree and writes another symbol291

β to the output tree, at the same position. Cleary, any tree t : N∗ ⇀fin Σ2 with labels from292

the set of pairs {(α, β) ∈ Σ2 | #α = #β} can be viewed as a pair of trees (t1, t2) over Σ, such293

that dom(t1) = dom(t2) = dom(t). In order to define the image of a tree language via a294

transducer, we define (i) projection L↓i
def= {ti | (t1, t2) ∈ L}, for all i = 1, 2, where L ⊆ T(Σ2),295

and (ii) cylindrification L↑i def= {(t1, t2) | ti ∈ L}, for all i = 1, 2, where L ⊆ T(Σ). The image296

of a language L ⊆ T(Σ) via a transducer T is the language T (L) def=
(
L↑1 ∩ L(T )

)
↓2. It is297

manifest that T (L) is recognizable whenever L is recognizable.298

3.1 From SID to Tree Automata and Back299

We define a two-way connection between SIDs and TAs, as follows:300

1. Given a finite SID ∆ we define a TA A∆, whose states qA are named after the predicates301

A that occur in ∆ and whose alphabet consists of the predicate-free formulæ from the302

rules of ∆, with variables mapped to canonical names, together with a tuple of arities,303

needed for later bookkeeping. Each tree t ∈ LqA(A∆) defines a unique predicate-free304

formula Φ(t), such that the ∆-models of a predicate atom A(x1, . . . , x#A) are exactly the305

models of some Φ(t), for t ∈ LqA(A∆).306

2. Conversely, given a TA A over an alphabet of formulæ annotated with arities, the tuple of307

arities associated with each alphabet symbol allows to define a SID ∆A, whose predicates308

Aq are named after the states q of the TA, such that the models of the formulæ Φ(t),309

such that t ∈ Lq(A) are exactly the ∆A-models of the predicate atom Aq(x1, . . . , x#Aq ).310

Let us fix a countably infinite set of variables Ṽar def= {x̃i | i ≥ 1} ∪ {z̃(`)
i | i, ` ≥ 1}, with the311

understanding that x̃i are canonical names for the variables from the left-hand side and312

z̃
(`)
i are canonical names for the variables occurring in the `-th predicate atom from the313

right-hand side of a rule. An alphabet symbol α = 〈ψ, a0, . . . , ah〉 consists of a predicate-free314

formula ψ and a tuple of positive integers a0, . . . , ah ∈ N, such that fv(ψ) = {x̃i | i ∈ [1, a0]}∪315

{z̃(`)
i | ` ∈ [1, h], i ∈ [1, a`]}. We take the arity of such a symbol to be #α def= h and denote316

by Σ̃ the (infinite) set of alphabet symbols. Trees labeled with symbols from Σ̃ define317

predicate-free characteristic formulæ, as follows:318

I Definition 11. Given a tree t ∈ T(Σ̃), where t(ε) = 〈∃y1 . . . ∃ym . φ, a0, . . . , ah〉 with φ a
qpf formula, and a node u ∈ N∗, we define the qpf characteristic formula:

Ψu(t) def= φ[x̃j/xuj ]
j∈[1,a0][z̃

(`)
j /xu·`j ]

`∈[1,h],j∈[1,a`][yj/y
u
j ]
j∈[1,m] ∗ ∗`∈[1,h] Ψu·`(t|`)

Assuming that t(v) = 〈∃y1 . . . ∃ymv . φv, av0, . . . , a
v
h〉, for all v ∈ dom(t), we consider also the319

predicate-free formula Φu(t) = (∃xu·vj )v∈dom(t)\{ε}, j∈[1,av
0 ](∃yu·vj )v∈dom(t), j∈[1,mv ] . Ψu(t).320

I Example 12. We consider a system whose components form a tree, in which each parent321

sends a request (req) to and receives replies (reply) from both its children. In addition, the322

leaves of the tree form a ring, with the out port of each leaf connected to the in port of its323



Marius Bozga and Lucas Bueri and Radu Iosif 23:9

[x̃1]@q0

∃n1∃r1∃n2∃`2 . [x̃1] ∗ 〈x̃1.req, x̃2.reply, x̃3.reply〉 ∗ 〈r1.in, `2.out〉
z̃

(1)
1 = n1 ∗ z̃(1)

2 = x̃2 ∗ z̃(1)
3 = r1 ∗ z̃(2)

1 = n2 ∗ z̃(2)
2 = `2 ∗ z̃(2)

3 = x̃3

∃n1∃r1∃n2∃`2 . [x̃1] ∗ 〈x̃1.req, x̃2.reply, x̃3.reply〉 ∗ 〈r1.in, `2.out〉

z̃
(1)
1 = n1 ∗ z̃(1)

2 = x̃2 ∗ z̃(1)
3 = r1 ∗ z̃(2)

1 = n2 ∗ z̃(2)
2 = `2 ∗ z̃(2)

3 = x̃3

∃n1∃r1∃n2∃`2 . [x̃1] ∗ 〈x̃1.req, x̃2.reply, x̃3.reply〉 ∗ 〈r1.in, `2.out〉

z̃
(1)
1 = n1 ∗ z̃(1)

2 = x̃2 ∗ z̃(1)
3 = r1 ∗ z̃(2)

1 = n2 ∗ z̃(2)
2 = `2 ∗ z̃(2)

3 = x̃3

β β

[x̃1]@q0 [x̃1]@q0[x̃1]@q0

β β

[x̃1]@q1 [x̃1]@q0[x̃1]@q0 [x̃1]@q0

∃n∃`∃r . 〈r.out, `.inp〉 ∗ z̃(1)
1 = n ∗ z̃(1)

2 = ` ∗ z̃(1)
3 = r

Figure 2 Tree Labeled with Formulæ Encoding a System from Example 12

right neighbour. The system is described by the following inductive definitions:324

Root()←∃n∃`∃r . 〈r.out, `.in〉 ∗Node(n, `, r) (1)325

Node(n, `, r)←∃n1∃r1∃n2∃`2 . [n] ∗ 〈n.req, n1.reply, n2.reply〉 ∗ 〈r1.in, `2.out〉 ∗326

Node(n1, `, r1) ∗Node(n2, `2, r) (2)327

Node(n, `, r)←[n]@q0 Node(n, `, r)← [n]@q1 (3)328
329

Fig. 2 shows a tree t ∈ T(Σ̃) describing an instance of the system, where Σ̃ = {α, β, γ0, γ1}:330

α
def=〈∃n∃`∃r . 〈r.out, `.in〉 ∗ z̃(1)

1 = n ∗ z̃(1)
2 = ` ∗ z̃(1)

3 = r, 0, 3〉331

β
def=〈∃n1∃r1∃n2∃`2 . [n] ∗ 〈n.req, `.reply, r.reply〉 ∗ 〈r1.in, `2.out〉 ∗332

z̃
(1)
1 = n1 ∗ z̃(1)

2 = ` ∗ z̃(1)
3 = r1 ∗ z̃(2)

1 = n2 ∗ z̃(2)
2 = ` ∗ z̃(2)

3 = r, 3, 3, 3〉333

γ0
def=〈[x̃1]@q0, 3〉 γ1

def= 〈[x̃1]@q1, 3〉334
335

For simplicity, Fig. 2 shows only the formulæ, not the arity lists of the alphabet symbols. �336

The models of the characteristic formula Ψε(t) of a tree t ∈ T(Σ̃) define walks in the337

tree that correspond to chains of equalities between variables. Formally, a walk in t is a338

sequence of nodes u1, . . . , un ∈ dom(t), such that ui is either the parent or a child of ui+1,339

for all i ∈ [1, n− 1]. Note that a walk can visit the same node of the tree several times. In340

particular, if the characteristic formula Ψε(t) is tight (i.e., has only tight models in the sense341

of Def. 3) there exist equality walks between the node containing an interaction atom and342

the nodes where these variables are instantiated by component atoms. For instance, walks343

between the root containing 〈r.out, `.in〉 and the left- and right-most leafs, labeled with344

component atoms that associate elements of C to the variables ` and r are shown in Fig. 2.345

I Lemma 13. Let t ∈ T(Σ̃) be a tree, such that Ψε(t) is tight, (γ, ν) be a model of Ψε(t)346

and yv, zw be two variables that occur in a component and interaction atom of Ψε(t),347

respectively. Then ν(yv) = ν(zw) if and only if there exists a walk u1, . . . , un in t and348

variables yv = xu1
i1
, . . . , xun

in
= zw, such that either xuj

ij
and xuj+1

ij+1
are the same variable, or349

the equality atom x
uj

ij
= x

uj+1
ij+1

occurs in Ψε(t), for all j ∈ [1, n− 1].350

Let ∆ be a fixed and finite SID in the following. We build a TA A∆ that recognizes the351

∆-models of each predicate atom defined by ∆, in the sense of Lemma 16 below.352

IDefinition 14. We associate each rule r : A(x1, . . . , x#A)← ∃y1 . . . ∃ym . φ∗∗ `∈[1,h] B`(z`1, . . . , z`#B`
) ∈353

∆, where φ is a qpf formula, with the alphabet symbol:354

αr
def=
〈
∃y1 . . . ∃ym .

(
φ ∗∗ `∈[1,h], i∈[1,#B`] z̃

(`)
i = z`i

)
[xj/x̃j ]j∈[1,#A],#A,#B1, . . . ,#Bh

〉
355
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Let A∆
def= (Σ∆,S∆, δ∆) be a TA, where Σ∆

def= {αr | r ∈ ∆}, S∆
def= {qA | A ∈ Def(∆)} and356

δ∆
def= {αr(qB1 , . . . , qBh

)→ qA | r ∈ ∆}.357

I Example 15 (contd. from Example 12). The TA corresponding to the SID in Ex-358

ample 12 is A∆ = (Σ̃,S∆, δ∆), where Σ̃ = {α, β, γ0, γ1}, S∆ = {qRoot , qNode} and δ∆ =359

{α(qNode)→ qRoot , β(qNode, qNode)→ qNode, γ0 → qNode, γ1 → qNode}. �360

The following lemma proves that the predicate-free formulæ corresponding (in the sense361

of Def. 11) to the trees recognized by A∆ in a state qA define the ∆-models of the predicate362

atom A(x1, . . . , x#A):363

I Lemma 16. For any predicate A ∈ Def(∆), configuration γ, store ν and node u ∈ N∗, we364

have γ |=ν
∆ A(xu1 , . . . , xu#A) if and only if γ |=ν Φu(t), for some tree t ∈ LqA(A∆).365

Conversely, given a tree automaton A = (Σ,S, δ), we construct a SID ∆A that defines366

the models of the predicate-free formulæ corresponding (Def. 11) to the trees recognized367

by A (Lemma 19). We assume that the alphabet Σ consists of symbols 〈ψ, a0, . . . , ah〉 of368

arity h, where ψ is a predicate-free formula with free variables fv(ψ) = {x̃i | i ∈ [1, a0]} ∪369

{z̃(`)
i | ` ∈ [1, h], i ∈ [1, a`]} and that the transitions of the TA meet the requirement:370

IDefinition 17. A TA A is SID-compatible iff for any transitions 〈ψ, a0, . . . , ah〉(q1, . . . , qh) −→371

q0 and 〈ψ′, a′0, . . . , a′h〉(q′1, . . . , q′h) −→ q′0 of A, we have qi = q′i only if ai = a′i, for all i ∈ [0, h].372

Let us fix a SID-compatible TA A = (Σ,S, δ) for the rest of this section.373

I Definition 18. The SID ∆A has a rule:374

Aq0(x1, . . . , xa0)←∃y1
1 . . . ∃yhah

. φ[x̃i/xi]i∈[1,a0][z̃
(`)
i /y`i ]`∈[1,h], i∈[1,a`] ∗ ∗ `∈[1,h]Aq`

(y`1, . . . , y`a`
)375376

for each transition 〈φ, a0, . . . , ah〉(q1, . . . , qh) −→ q0 of A and those rules only.377

The following lemma states that ∆A defines the set of models of the characteristic formulæ378

(Def. 11) of the trees recognized by A.379

I Lemma 19. For any state q ∈ S, configuration γ, store ν and node u ∈ N∗, we have380

γ |=ν
∆A Aq(xu1 , . . . , xu#Aq

) if and only if γ |=ν Φu(t), for some tree t ∈ Lq(A).381

3.2 Encoding Havoc Steps by Tree Transducers382

The purpose of this section is the definition of a transducer that simulates one havoc step.383

Before giving its definition, we note that the havoc invariance problem can be equivalently384

defined by considering the transformation induced by a single havoc step, instead of an385

arbitrary sequence of steps. The following lemma can be taken as an equivalent definition:386

I Lemma 20. HavocInv[∆,A] has a positive answer if and only if, for all γ, γ′ ∈ Γ and each387

store ν, such that γ |=ν
∆ A(x1, . . . , x#A) and γ  γ′, it is the case that γ′ |=ν

∆ A(x1, . . . , x#A).388

We fix a SID ∆ for the rest of this section and recall the existence of a fixed finite-state389

behavior B = (P,Q,−→) with ports P, states Q and transitions q p−→ q′ ∈ Q × P ×Q. We390

define a transducer Tτ parameterized by a given interaction type τ = (p1, . . . , pn) ∈ P+. The391

havoc step transducer is the automata-theoretic union of the typed transducers over the set392

of interaction types that occurs in ∆.393

Given a tree t ∈ T(Σ̃), an interaction-typed transducer Tτ (1) guesses an interaction atom394

〈z1.p1 , . . . , zn.pn〉 that occurs in some label of t, (2) tracks the equality walks (Lemma 13)395

between each variable zi and the component atom [xi]@qi that defines the store value of zi396
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(β, β)

emp(γ0, γ0) emp(γ0, γ0) emp(γ0, γ0) emp(γ0, γ0) b̃1 = x̃1(γ0, γ1)

b̃2 = x̃2 emp

b̃2 = x̃2

b̃2 = x̃2 ∗ b̃1 = x̃3

b̃2 = ẽ2 ∗ b̃1 = ẽ1

emp b̃1 = x̃3

b̃1 = x̃3

emp(γ0, γ0)b̃2 = x̃1(γ1, γ0) emp(γ0, γ0)

(β, β) (β, β)

(β, β)

(β, β)

(α, α)

(β, β) (β, β)

Figure 3 Tree Transducer for the Interactions of Type (out, in) in the System from Fig. 2

and its current state, and (3) replaces each state component atom [xi]@qi by [xi]@q′i, where397

qi
pi−→ q′i is a transition from B, for each i ∈ [1, n]. The output of the transducer is a tree398

t′ ∈ T(Σ̃), that symbolically encodes the effect of executing some interaction of type τ over t.399

The main challenge in defining Tτ is that the equality walks between an interaction atom400

〈z1.p1 , . . . , zn.pn〉 and the component atoms instatiating the variables z1, . . . , zn may visit a401

tree node more than once. To capture this, the transducer will guess at once the equalities402

summarizing the different fragments of the walk that lie in the currently processed subtree of403

t. Accordingly, the states of Tτ are conjunctions of equalities, with special variables b̃i (resp.404

ẽi) indicating whether a component (resp. interaction) atom has already been encountered405

in the current subtree, intuitively marking the beginning (resp. end) of the walk.406

For an interaction type τ = (p1, . . . , pn), let T̃Varτ
def= {x̃i | i ∈ [1,#(∆)]}∪{b̃i, ẽi | i ∈ [1, n]}407

and let Eq(T̃Varτ ) be the set of separating conjunctions of equality atoms i.e., ϕ def=∗i∈I xi =408

yi, such that fv(ϕ) ⊆ T̃Varτ . Note that ∃x . ϕ, for ϕ ∈ Eq(T̃Varτ ), is equivalent to a formula409

from Eq(T̃Varτ ) obtained by eliminating the quantifier: either x occurs in an atom x = y for410

a variable y distinct from x then (∃x . ϕ) ≡ ϕ[x/y], or x 6∈ fv(ϕ), in which case (∃x . ϕ) ≡ ϕ.411

I Definition 21. The transducer Tτ
def= (Σ2

∆,Sτ ,Fτ , δτ ), where τ = (p1, . . . , pn), is as follows:412

Sτ = {ϕ ∈ Eq(T̃Varτ ) | ϕ 6|= (b̃i = b̃j), ϕ 6|= (ẽi = ẽj), ϕ 6|= (b̃i = ẽj), for any i 6= j},413

Fτ = {ϕ ∈ Sτ | ϕ |=∗ i∈[1,n](b̃i = ẽi)}, and414

δτ contains transitions of the form (α, α′)(ϕ1, . . . , ϕh) −→T ϕ where:415

α = (∃y1 . . . ∃ym . ψ, a0, . . . , ah) and α′ = (∃y1 . . . ∃ym . ψ′, a0, . . . , ah), where ψ and416

ψ′ are qpf formulæ such that fv(ψ) = fv(ψ′) ⊆ T̃Varτ ∪ {y1, . . . , ym},417

there exists a set I = {i1, . . . , ir} ⊆ [1, n], variables ξ1, . . . , ξr ∈ fv(ψ) and transitions418

q1
pi1−−→ q′1, . . . , qr

pir−−→ q′r in B, such that ψ = (∗ k∈[1,r][ξk]@qk) ∗ η and ψ′ =419

(∗ k∈[1,r][ξk]@q′k) ∗ η, for some qpf formula η,420

there exists a set J ∈ {∅, [1, n]}, such that ψ contains an interaction atom 〈ζ1.p1 , . . . , ζn.pn〉421

if J = [1, n],422

the sets I and {i ∈ [1, n] | b̃i ∈ fv(ϕ`)}`∈[1,h] are pairwise disjoint,423

at most one of the sets J , {i ∈ [1, n] | ẽi ∈ fv(ϕ`)}`∈[1,h] is not empty,424

ϕ is the result of eliminating the quantifiers from the separating conjunction of equalities:425

∃z̃(1)
1 . . . ∃z̃(h)

ah
∃y1 . . . ∃ym . ∗`∈[1,h]ϕ`[x̃j/z̃

(`)
j ]j∈[1,a`] ∗ ∗ k∈[1,r]b̃ik = ξk ∗ ∗ `∈J ẽ` = ζ` ∗ ψeq426

where ψeq is the separating conjunction of the equality atoms from ψ.427

I Example 22. (contd. from Examples 12 and 15) Fig. 3 shows a run of the transducer428

T(out,in), that describes the symbolic execution of the interaction corresponding to the429

〈r.out, `.in〉 interaction atom from the root of the tree in Fig. 2. The states of the transducer430

are separating conjunctions of equality atoms, enclosed within square boxes. The transducer431

replaces the component atoms γ1 = 〈[x̃1]@q1, 3〉 with γ0 = 〈[x̃1]@q0, 3〉 (resp. γ0 with γ1) in432

the left-most (resp. right-most) leaf of the tree. �433
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Let L ⊆ T(Σ̃) be an arbitrary language. The following lemmas prove that the transducer434

Tτ from Def. 21 correctly simulates a havoc step produced by an interaction of type τ .435

I Lemma 23. For each tree t ∈ L, such that Φε(t) is tight, configurations γ = (C, I, %), γ′ ∈ Γ436

and store ν, such that γ |=ν Φε(t) and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and437

(ci, pi)i∈[1,n] ∈ I, there exists a tree t′ ∈ T(p1,...,pn)(L), such that γ′ |=ν Φε(t′).438

Note that the condition of Φε(t) having only tight models is necessary to avoid in-439

teractions (ci, pi)i∈[1,n] that fire by “accident” i.e., when the interaction is created by440

an atom 〈ζ1.p1 , . . . , ζn.pn〉, with the components c1, . . . , cn created by component atoms441

[ξ1]@q1, . . . , [ξn]@qn, such that the equality ξi = ζi is not the consequence of Φε(t), for some442

i ∈ [1, n]. The effect of such interactions is not captured by the transducer introduced by Def.443

21. Tightness is, moreover, a necessary condition of Lemma 13, that ensures the existence444

of equality walks between the variables occurring in an interaction atom and those of the445

atoms creating the components to which these variables are mapped, in a model of Φε(t).446

I Lemma 24. For each tree t′ ∈ T(p1,...,pn)(L), configuration γ′ ∈ Γ and store ν, such that447

γ′ |=ν Φε(t′), there exists a configuration γ = (C, I, %) and a tree t ∈ L, such that γ |=ν Φε(t)448

and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and (ci, pi)i∈[1,n] ∈ I.449

3.3 The Main Result450

We establish the main result of this section, which is a many-one reduction of the havoc451

invariance to the entailment problem. The result is sharpened by proving that the reduction452

(i) preserves the class of the SID (see Def. 25 below), and (ii) is polynomial when several453

parameters of the SID are bounded by constants and simply exponential otherwise. In par-454

ticular, a class-preserving polynomial reduction ensures that the decidability and complexity455

upper bounds of the entailment problem carry over to the havoc invariance problem.456

I Definition 25. For two predicate-free formulæ φ and ψ, we write φ ' ψ if and only if457

they become equivalent when dropping the state atoms from both. For an arity-preserving458

equivalence relation ∼ ⊆ A × A (i.e., #A = #B, for all A ∼ B), for any two rules r1 and459

r2, we write r1 ≈ r2 if and only if r1 = A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . φ ∗ ∗ `∈[1,h]B`(z`),460

r2 = A′(x1, . . . , x#A′) ← ∃y′1 . . . ∃y′p . ψ ∗ ∗ `∈[1,h]B′`(u`), ∃y1 . . . ∃ym . φ ' ∃y′1 . . . ∃y′p . ψ,461

A ∼ A′ and B` ∼ B′`, for all ` ∈ [1, h]. For two SIDs ∆1 and ∆2, we write ∆1 � ∆2 if and462

only if for each rule r1 ∈ ∆1 there exists a rule r2 ∈ ∆2, such that r1 ≈ r2. We denote by463

∆1 ≈ ∆2 the conjunction of ∆1 � ∆2 and ∆2 � ∆1.464

If A1 ∼ A2 and ∆1 ≈ ∆2 then ∆1-models of A1(x1, . . . , x#A1) differ from the ∆2-models465

of A2(x1, . . . , x#A1) only by a renaming of the states occurring within state atoms. This is466

because any derivation of the satisfaction relation γ |=ν
∆1

A1(x1, . . . , x#A1) can be mimicked467

(modulo the state atoms that may change) by a derivation of γ |=ν
∆2

A2(x1, . . . , x#A2), and468

viceversa. We are now in the position of stating the main result of this section:469

I Theorem 26. Assuming that A(x1, . . . , x#A) is a ∆-tight formula, each instance HavocInv[∆,A]470

of the havoc invariance problem can be reduced to a set {Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A)}pi=1471

of entailments, where ∆ ≈ ∆, for an arity-preserving equivalence relation ∼ ⊆ A× A, such472

that Ai ∼ A, for all i ∈ [1, p]. The reduction is polynomial, if #(∆), N(∆) and H(∆) are473

bounded by constants and simply exponential, otherwise.474
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4 Decidability and Complexity475

We prove the undecidability of the havoc invariance problem (Def. 9) using a reduction from476

the universality of context-free languages, a textbook undecidable problem [2].477

I Theorem 27. The HavocInv[∆,A] problem is undecidable.478

The undecidability proof for the havoc invariance problem uses an argument similar to479

the one used to prove undecidability of the entailment problem [4, Theorem 4]. We leverage480

further from this similarity and carve a fragment of CL with a decidable havoc invariance481

problem, based on the reduction from Theorem 26. For self-containment reasons, we recall482

the definition of a CL fragment for which the entailment problem is decidable (see [4, §6]483

for more details and proofs). This definition relies on three, easily checkable, syntactic484

restrictions on the rules of the SID and a decidable semantic restriction on the models of a485

predicate atom defined by the SID. The syntactic restrictions use the notion of profile:486

I Definition 28. The profile of a SID ∆ is the pointwise greatest function λ∆ : A→ pow(N),487

mapping each predicate A into a subset of [1,#A], such that, for each rule A(x1, . . . , x#A)← φ488

from ∆, each atom B(y1, . . . , y#B) from φ and each i ∈ λ∆(B), there exists j ∈ λ∆(A), such489

that xj and yi are the same variable.490

The profile identifies the parameters of a predicate that are always replaced by a variable491

x1, . . . , x#A in each unfolding of A(x1, . . . , x#A), according to the rules in ∆; it is computed492

by a greatest fixpoint iteration, in polynomial time.493

I Definition 29. A rule A(x1, . . . , x#A)← ∃y1 . . . ∃ym . φ ∗ ∗ h
`=1B`(z`1, . . . , z`#B`

), where φ494

is a qpf formula, is said to be:495

1. progressing (P) if and only if φ = [x1]∗ψ, where ψ consists of interaction atoms involving496

x1 and (dis-)equalities, such that
⋃h
`=1{z`1, . . . , z`#B`

} = {x2, . . . , x#A} ∪ {y1, . . . , ym},497

2. connected (C) if and only if, for each ` ∈ [1, h] there exists an interaction atom in ψ that498

contains both z`1 and a variable from {x1} ∪ {xi | i ∈ λ∆(A)},499

3. equationally-restricted (e-restricted or R) if and only if, for every disequality x 6= y from500

φ, we have {x, y} ∩ {xi | i ∈ λ∆(A)} 6= ∅.501

A SID ∆ is progressing (P), connected (C) and e-restricted (R) if and only if each rule in ∆502

is progressing, connected and e-restricted, respectively.503

I Example 30. For example, the rules for the chainh,t(x1, x2) predicates from the SID in504

§1.1 are PCR, but not the rules for ringh,t() predicates, that are neither progressing nor505

connected. The latter can be replaced with the following PCR rules:506

ringh,t(x)← ∃y∃z . [x]@q ∗ 〈x.out, z.in〉 ∗ chainh′,t′(z, y) ∗ 〈y.out, x.in〉, for all h, t ∈ N507
508

Similarly, rule (2) for the Node predicate is PCR, but not rules (1) and (3), from Example 12.509

In order to obtain a SID that is PCR, these rules can be replaced with, respectively:510

Root(n)←∃n1∃`1∃r1∃n2∃`2∃r2 . [n] ∗ 〈n.req, n1.reply, n2.reply〉 ∗ 〈r1.in, `2.out〉 ∗511

Node(n1, `1, r1) ∗Node(n2, `2, r2)512

Node(n, `, r)←[n] ∗ 〈n.req, `.reply, r.reply〉 ∗ 〈`.in, r.out〉 ∗ Leaf (`) ∗ Leaf (r) Leaf (n)← [n] �513514

A first property is that PCR SIDs define only tight configurations (Def. 3), a prerequisite515

for the reduction from Theorem 26:516

I Lemma 31. Let ∆ be a PCR SID and let A ∈ Def(∆) be a predicate. Then, for any517

∆-model (γ, ν) of A(x1, . . . , x#A), the configuration γ is tight.518

CVIT 2016
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The last restriction for the decidability of entailments relates to the degree of the models519

of a predicate atom. The degree of a configuration is defined in analogy with the degree of a520

graph as the maximum number of interactions involving a component:521

IDefinition 32. The degree of a configuration γ = (C, I, %) is defined as δ(γ) def= maxc∈C δc(γ),522

where δc(γ) def= ||{(c1, p1, . . . , cn, pn) ∈ I | c = ci, i ∈ [1, n]}||.523

For instance, the configuration of the system from Fig. 1 (a) has degree two. The degree524

boundedness problem DegreeBound[∆,A] asks, given a predicate A and a SID ∆, if the set525

{δ(γ) | γ |=∆ ∃x1 . . . ∃x#A . A(x1, . . . , x#A)} is finite. This problem is decidable [4, Theorem526

3]. The entailment problem A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B) is known527

to be decidable for PCR SIDs ∆, provided, moreover, that DegreeBound[∆,A] holds:528

I Theorem 33 ([4]). The entailment problem A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B),529

where ∆ is PCR and DegreeBound[∆,A] has a positive answer, is in 2EXP, if #(∆) and N(∆)530

are bounded by constants and in 4EXP, otherwise.531

Back to the havoc invariance problem, we give first a lower bound using a reduction from532

the entailment problem A(x1, . . . , x#A) |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B), where ∆ is a533

PCR SID and HavocInv[∆,A] has a positive answer. To the best of our efforts, we could not534

prove that the entailment problem is 2EXP-hard under the further assumption that #(∆) is535

bounded by a constant, which leaves the question of a matching lower bound for the havoc536

invariance problem open, in this case.537

I Lemma 34. The HavocInv[∆,A] problem for PCR SIDs ∆, such that DegreeBound[∆,A]538

has a positive answer, is 2EXP-hard.539

The main result of this section is a consequence of Theorems 26 and 33. In the absence540

of a constant bound on the parameters #(∆), N(∆) and H(∆), the entailment resulting541

from the reduction (Theorem 26) is of simply exponential size in the input and the time542

complexity of solving the entailments is 4EXP(Theorem 33), yielding a 5EXP upper bound:543

I Theorem 35. The HavocInv[∆,A] problem, for PCR SIDs such that DegreeBound[∆,A]544

has a positive answer is in 2EXP, if #(∆), N(∆) and H(∆) are bounded by constants and in545

5EXP, otherwise.546

5 Conclusions547

We have considered a logic for describing sets of configurations of parameterized concurrent548

systems, with user-defined network topology. The havoc invariance problem asks whether549

a given formula in the logic is invariant under the execution of the system starting from550

each configuration that is a model of a formula. An algorithm for this problem uses a551

many-one reduction to the entailment problem, thus leveraging from earlier results on the552

latter problem. We study the decidability and complexity of the havoc invariance problem553

and show that a doubly-exponential algorithm exists for a fairly general fragment of the logic,554

that encompasses all our examples. This result is relevant for automating the generation of555

correctness proofs for reconfigurable systems, that change the network topology at runtime.556
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A Proofs623

I Lemma 13. Let t ∈ T(Σ̃) be a tree, such that Ψε(t) is tight, (γ, ν) be a model of Ψε(t)624

and yv, zw be two variables that occur in a component and interaction atom of Ψε(t),625

respectively. Then ν(yv) = ν(zw) if and only if there exists a walk u1, . . . , un in t and626

variables yv = xu1
i1
, . . . , xun

in
= zw, such that either xuj

ij
and xuj+1

ij+1
are the same variable, or627

the equality atom x
uj

ij
= x

uj+1
ij+1

occurs in Ψε(t), for all j ∈ [1, n− 1].628

Proof of Lemma 13. By Def. 11, each equality atom within Ψε(t) is of the form xu = yv,629

such that either u = v, u is the parent of v, or u is a child of v in t. Suppose, for a contradiction,630

that there is no walk u1, . . . , un ∈ dom(t) with the above property. Then we build a loose631

model (γ′, ν′) of Ψε(t). Let γ = (C, I, %), c = ν(xu) and c ∈ C \ (C ∪ {ci | (ci, pi)i∈[1,n] ∈ I})632

be a component not occurring in γ. We define (γ′, ν′) as follows:633

γ′ = (C, I ′, %), where I ′ = {(ci, pi)i∈[1,n] ∈ I | c 6∈ {c1, . . . , cn}} ∪ {(c′i, pi)i∈[1,n] |634

(ci, pi)i∈[1,n] ∈ I, c ∈ {c1, . . . , cn}, c′i = ci if ci 6= c and c′i = c otherwise}.635

for each variable x ∈ V, we have ν′(x) = c if Ψε(t) |= zw = x and ν′(x) = ν(x), otherwise.636

Clearly, γ′ is loose, because c occurs in an interaction from I ′ but c 6∈ C. We conclude by637

showing (γ′, ν′) |= Ψε(t), by induction on the structure of t. However, this contradicts with638

the assumption that Ψε(t) is tight, which concludes the proof. J639

I Lemma 16. For any predicate A ∈ Def(∆), configuration γ, store ν and node u ∈ N∗, we640

have γ |=ν
∆ A(xu1 , . . . , xu#A) if and only if γ |=ν Φu(t), for some tree t ∈ LqA(A∆).641

Proof of Lemma 16. For a store ν, we denote by ν[xi/yi]i∈[1,n] the store that maps xi to642

ν(yi) and agrees with ν everywhere else.643

“⇒” By induction on the definition of the satisfaction relation γ |=ν
∆ A(xu1 , . . . , xu#A). As-644

sume that there exists a rule r ∈ ∆ of the form A(x1, . . . , x#A) ← ∃y1 . . . ∃ym . φ ∗645

∗ `∈[1,h] B`(z`1, . . . , z`#B`
), where φ is a qpf formula, and a store ν′ such that ν′(xj) = ν(xuj )646

for all j ∈ [1,#], where γ = γ0 • . . . • γh is such that γ0 |=ν′ φ and γ` |=ν′

∆ B`(z`1, . . . , z`#B`
),647

for all ` ∈ [1, h]. Hence, we obtain γ` |=
ν′`
∆ B`(xu·`1 , . . . , xu·`#B`

), where ν′`
def= ν′[xu·`i /z`i ]i∈[1,#B`],648

for all ` ∈ [1, h]. By the induction hypothesis, there exist trees t` ∈ LqB`
(A∆), such that649

γ` |=
ν′`
∆ Φu·`(t`), for each ` ∈ [1, h]. We define the tree t as:650

dom(t) def= {ε} ∪
⋃
`∈[1,h] ` · dom(t`),651

t(ε) def= 〈ψ,#A,#B1, . . . ,#Bh〉, where ψ
def= ∃y1 . . . ∃ym .

(
φ∗∗

`∈[1,h]
i∈[1,#B` ]̃

z
(`)
i = z`i

)
[xi/x̃i]i∈[1,#A],652

t|`
def= t`, for all ` ∈ [1, h].653

By the definition of A∆ and t, we obtain t ∈ LqA(A∆) and we are left with proving that654

γ |=ν
∆ Φu(t). To this end, we define the store ν′′, such that:655

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817


Marius Bozga and Lucas Bueri and Radu Iosif 23:17

ν′′(xuj ) = ν(xuj ), for all j ∈ [1,#A],656

ν′′(yuk ) = ν′(yk), for all k ∈ [1,m],657

ν′′(xu·`i ) = ν′`(xu·`i ), for all i ∈ [1,B`] and ` ∈ [1, h].658

By the definition of ν′′, we obtain:659

γ |=ν′′

∆ ψ[x̃i/xui ]i∈[1,#A][z̃
(`)
i /xu·`i ]

i∈[1,#B`]
`∈[1,h]

[yk/yuk ]k∈[1,m] ∗ ∗ `∈[1,h]Φu·`(t|`)660

leading to γ |=ν
∆ Φu(t), because ν′′ agrees with ν over xu1 , . . . , xu#A.661

”⇐” Let t ∈ LqA(A∆) be a tree such that γ |=ν Φu(t). We proceed by induction on the662

structure of t. Let be αr
def= t(ε) the label of the root of t, and t|1, . . . , t|h be the subtrees663

rooted in the children of the root of t (h can be equal to 0 if t consists of a leaf). Since664

t ∈ LqA(A∆), there exists a rule r ∈ ∆ and a transition αr(qB1 , . . . , qBh
)→ qA in A∆, where r665

is of the form A(x1, . . . , x#A)← ∃y1 . . . ∃ym . φ∗∗ `∈[1,h] B`(z`1, . . . , z`#B`
), for a qpf formula666

φ, such that t|` ∈ LqB`
(A∆), for all ` ∈ [1, h]. By Def. 14, we have:667

αr =
〈
∃y1 . . . ∃ym .

(
φ ∗ ∗

`∈[1,h]
i∈[1,#B` ]̃

z
(`)
i = z`i

)
[xi/x̃i]i∈[1,#A],#A,#B1, . . . ,#Bh

〉
668

Since γ |=ν Φu(t), by Def. 11, there exists a store ν′ that agrees with ν over xu1 , . . . , xu#A and669

configurations γ = γ0 • . . . • γh, such that:670

γ0 |=ν′
(
φ ∗ ∗

`∈[1,h]
i∈[1,#B`]

xu·`i = z`i

)
[xi/xui ]i∈[1,#A][yk/yuk ]k∈[1,m],671

γ` |=ν′ Φu·`(t|`), for all ` ∈ [1, h].672

Since t|` ∈ LqB`
(A∆), by the inductive hypothesis we obtain γ` |=ν′

∆ B`(xu·`1 , . . . , xu·`#B`
), for673

all ` ∈ [1, h]. Let us define the store:674

ν′′
def= ν′[z`i/xu·`i ]̀

∈[1,h]
i∈[1,#B`]

[yk/yuk ]k∈[1,m]675

We obtain γ |=ν′′

∆ φ∗∗ `∈[1,h]B`(z`1, . . . , z`#B`
), hence γ |=ν

∆ ∃y1 . . . ∃ym . φ∗∗ `∈[1,h]B`(z`1, . . . , z`#B`
),676

leading to γ |=ν
∆ A(xu1 , . . . , xu#A). J677

I Lemma 19. For any state q ∈ S, configuration γ, store ν and node u ∈ N∗, we have678

γ |=ν
∆A Aq(xu1 , . . . , xu#Aq

) if and only if γ |=ν Φu(t), for some tree t ∈ Lq(A).679

Proof of Lemma 19. Let A denote the automaton A∆A and q denote the state qAq of A680

(Def. 14). By Lemma 16, we have γ |=ν
∆A Aq(xu1 , . . . , xu#Aq

) if and only if γ |=ν Φu(t), for681

some tree t ∈ Lq(A). It is sufficient to prove that for each tree t ∈ Lq(A) there exists a682

tree t ∈ Lq(A) such that Φu(t) is equivalent to Φu(t), and viceversa. The last point is a683

consequence of the one-to-one mapping between the transitions of A and those of A:684

〈φ, a0, . . . , ah〉(q1, . . . , qh)→ q0 ∈ δ
⇐⇒ by Def. 18
Aq0(x1, . . . , xa0)← ∃y1

1 . . . ∃y1
a1
. . . ∃yh1 . . . ∃yhah

. φ[x̃i/xi]i∈[1,a0][z̃
(`)
i /y`i ] `∈[1,h]

i∈[1,a`]

∗ ∗ `∈[1,h]Aq`
(y`1, . . . , y`a`

) ∈ ∆A

⇐⇒ by Def. 14 and quantifier elimination
〈φ, a0, . . . , ah〉(q1, . . . , qh)→ q0 ∈ δ∆A

685

J686
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I Lemma 20. HavocInv[∆,A] has a positive answer if and only if, for all γ, γ′ ∈ Γ and each687

store ν, such that γ |=ν
∆ A(x1, . . . , x#A) and γ  γ′, it is the case that γ′ |=ν

∆ A(x1, . . . , x#A).688

Proof of Lemma 20. Let StepInv[∆,A] be the decision problem from the statement of the689

Lemma and prove that StepInv[∆,A] ⇐⇒ HavocInv[∆,A]. “⇒” Let γ, γ′ ∈ Γ and ν, such690

that γ |=ν
∆ A(x1, . . . , x#A) and γ  ∗ γ′. Then there exist configurations γ = γ0, . . . , γn = γ′,691

such that γi  γi+1, for all i ∈ [0, n− 1]. Proving γ′ |=ν
∆ A(x1, . . . , x#A) goes by induction692

over n ≥ 0. For the base case n = 0, we have γ = γ′ and there is nothing to prove. For the693

inductive step n > 0, we have γn−1 |=ν
∆ A(x1, . . . , x#A) by the inductive hypothesis. Then694

γn−1  γ′ and γ′ |=ν
∆ A(x1, . . . , x#A) follows, by the hypothesis StepInv[∆,A]. “⇐” Trivial,695

because  ⊆  ∗. J696

I Lemma 23. For each tree t ∈ L, such that Φε(t) is tight, configurations γ = (C, I, %), γ′ ∈ Γ697

and store ν, such that γ |=ν Φε(t) and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and698

(ci, pi)i∈[1,n] ∈ I, there exists a tree t′ ∈ T(p1,...,pn)(L), such that γ′ |=ν Φε(t′).699

Proof of Lemma 23. Let γ def= (C, I, %) and t(u) def= 〈φu, au0 , . . . , auh〉, for each u ∈ dom(t).700

Because γ |=ν Φε(t), by Def. 11, there exists a store ν′ that agrees with ν over fv(Φε(t)),701

such that γ |=ν′ Ψε(t). The proof is split into the following steps:702

(1) Since there exists an interaction (ci, pi)i∈[1,n], such that γ
(ci,pi)i∈[1,n]========⇒ γ′, we define the703

tree t′ based on this interaction. By Def. 7, it must be the case that ci ∈ C, for all i ∈ [1, n],704

(ci, pi)i∈[1,n] ∈ I and γ′ = (C, I, %′), where %′ = %[ci ← q′i]i∈[1,n] and qi
pi−→ q′i is a transition705

in B, for each i ∈ [1, n]. For all i ∈ [1, n], since ci ∈ C, there exists a unique node wi ∈ dom(t)706

and a variable ξi ∈ {xwi

ki
, ywi

`i
}, for some ki, `i ≥ 1, such that ν′(ξi) = ci and [ξi]@qi occurs707

in Ψε(t), for some qi ∈ Q. Then the tree t′ is defined as dom(t′) = dom(t) and:708

t′(wi) = 〈ψwi , awi
0 , . . . , awi

h 〉, where ψwi is obtained from φwi by replacing the atom709

[x̃ki ]@qi (resp. [yki ]@qi) with [x̃ki ]@q′i (resp. [yki ]@q′i),710

t′(u) = t(u), for all u ∈ dom(t) \ {w1, . . . , wn}.711

The check of γ′ |=ν′ Ψε(t′) follows from the definition of t′ and %′ = %[ci ← q′i]i∈[1,n].712

(2) We prove that (t, t′) ∈ L(T(p1,...,pn)) by building an accepting run π : dom(t) ⇀fin S(p1,...,pn)713

of T(p1,...,pn) over (t, t′). For each node u ∈ dom(t), the formula π(u) is the separating714

conjunction of the following equality atoms:715

x̃i = x̃j , where Ψu(t|u) |= xui = xuj , for all i, j ∈ [1, au0 ],716

x̃j = b̃i, where Ψu(t|u) |= xuj = ξi, for all i ∈ [1, n] and j ∈ [1, au0 ],717

x̃j = ẽi, where Ψu(t|u) |= xuj = ζi, for all i ∈ [1, n] and j ∈ [1, au0 ],718

b̃i = ẽi, where Ψu(t|u) |= ξi = ζi, for all i ∈ [1, n].719

It is easy to check that π is indeed a run of T(p1,...,pn), by Def. 21. We are left with proving720

that π is accepting i.e., that π(ε) ∈ F(p1,...,pn). Let 〈ζ1.p1 , . . . , ζn.pn〉, where ζi ∈ {xw0
ki
, yw0
`i
},721

for some ki, `i ≥ 1, be the interaction atom of Ψε(t), such that ν′(ζi) = ci, for all i ∈ [1, n].722

Since Ψε(t) is satisfiable, there is exactly one such node in dom(t). Because Φε(t) is tight, the723

formula Ψε(t) is tight and, by Lemma 13, there exists an equality walk between the nodes wi724

and w0, for all i ∈ [1, n]. By the definition of π, we obtain π(ε) |= b̃i = ẽi for all i ∈ [1, n],725

thus π(ε) ∈ F(p1,...,pn).726

J727

I Lemma 24. For each tree t′ ∈ T(p1,...,pn)(L), configuration γ′ ∈ Γ and store ν, such that728

γ′ |=ν Φε(t′), there exists a configuration γ = (C, I, %) and a tree t ∈ L, such that γ |=ν Φε(t)729

and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some c1, . . . , cn ∈ C and (ci, pi)i∈[1,n] ∈ I.730
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Proof of Lemma 24. Let γ′ def= (C, I, %′). Because γ′ |=ν Φε(t′), by Def. 11, there exists a731

store ν′, such that γ′ |=ν′ Ψε(t′). Moreover, since t′ ∈ T(p1,...,pn)(L), there exists a tree t ∈ L,732

such that dom(t) = dom(t′), (t, t′) ∈ L(T(p1,...,pn)) and let π : dom(t) → S(p1,...,pn) be an733

accepting run of T(p1,...,pn) over (t, t′). By Def. 21, for each u ∈ dom(t), the state π(u) is734

the separating conjunction of all equalities entailed by Ψu(t|u). Since π is accepting, we735

have π(ε) |= ∗ i∈[1,n]b̃i = ẽi. By Def. 21, there exists nodes u, v ∈ dom(t) and variables736

ξi and ζi, such that, for all i ∈ [1, n], the component atom [ξi]@qi (resp. [ξi]@q′i) occurs in737

t(u) (resp. t′(u)), for a transition qi
pi−→ q′i of B, and the interaction atom 〈ζ1.p1 , . . . , ζn.pn〉738

occurs in both t(v) and in t′(v). We define the state map % = %′[ν′(ξi)← qi]i∈[1,n] and let739

γ = (C, I, %). We are left with proving that γ |= Φε(t) and γ
(ν′(ξi),pi)i∈[1,n]===========⇒ γ′, which are740

both easy checks.741

J742

I Theorem 26. Assuming that A(x1, . . . , x#A) is a ∆-tight formula, each instance HavocInv[∆,A]743

of the havoc invariance problem can be reduced to a set {Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A)}pi=1744

of entailments, where ∆ ≈ ∆, for an arity-preserving equivalence relation ∼ ⊆ A× A, such745

that Ai ∼ A, for all i ∈ [1, p]. The reduction is polynomial, if #(∆), N(∆) and H(∆) are746

bounded by constants and simply exponential, otherwise.747

Proof of Theorem 26. Let HavocInv[∆,A] be an instance of the havoc invariance problem.748

We denote by I(∆) the set of types τ = (p1, . . . , pn) of an interaction atom 〈y1.p1 , . . . , yn.pn〉749

that occurs in ∆. Let A∆ be the tree automaton from Def. 14 and let:750

T =
(

Σ2
∆,

⋃
τ∈I(∆)

Sτ ,
⋃

τ∈I(∆)

Fτ ,
⋃

τ∈I(∆)

δτ

)
751

be the automata-theoretic union of the transducers Tτ , taken over all τ ∈ I(∆). Let A be the752

tree automaton that recognizes the language T (LqA(A∆)). The states of A are pairs of the753

form (qB, ϕ), where B ∈ Def(∆) and ϕ ∈ Sτ , for some τ ∈ I(∆). Moreover, the final states of754

A are of the form (qA, ϕ), where ϕ ∈ Fτ , for some τ ∈ I(∆). Let ∆ def= ∆A be the SID from755

Def. 18 relative to A and let {Ai | i ∈ [1, p]} def= {A(qA,ϕ) | ϕ ∈ Fτ , τ ∈ I(∆)} be the set of756

predicates corresponding to the final states of A. It is easy to check that A is SID-compatible757

(Def. 17) and that #Ai = #A, for all i ∈ [1, p]. For a store ν, we denote by ν[xi/yi]i∈[1,n] the758

store that maps xi to ν(yi) and agrees with ν everywhere else. We prove that HavocInv[∆,A]759

has a positive answer if and only if Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A) holds, for all760

i ∈ [1, p].761

“⇒” Let γ′ be a configuration and ν be a store, such that γ′ |=ν
∆

Ai(x1, . . . , x#A), for762

some i ∈ [1, p]. Let ν′ def= ν[xεi/xi]i∈[1,#A] be a store, such that γ′ |=∆ Ai(xε1, . . . , xε#A). By763

Lemma 19, there exista a tree t′ ∈ L(qA,ϕ)(A), for a final state (qA, ϕ) of T(p1,...,pn), for some764

interaction type (p1, . . . , pn) ∈ I(∆), such that γ′ |=ν′ Φε(t′). By Lemma 24, there exists a765

tree t ∈ LqA(A∆) and a configuration γ, such that γ |=ν Φε(t) and γ
(ci,pi)i∈[1,n]========⇒ γ′, for some766

interaction (ci, pi)i∈[1,n] from γ. By Lemma 16, we obtain that γ |=ν′

∆ A(xε1, . . . , xε#A), leading767

to γ |=ν
∆ A(x1, . . . , x#A). By the hypothesis that HavocInv[∆,A] has a positive answer, we768

obtain that γ′ |=ν
∆ A(x1, . . . , x#A). Since the choices of γ′ and i were arbitrary, we obtain769

Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A), for all i ∈ [1, p].770

“⇐” Let γ, γ′ be configurations and ν be a store, such that γ |=ν A(x1, . . . , x#A) and771

γ
(ci,pi)i∈[1,n]========⇒ γ′, for some interaction (ci, pi)i∈[1,n] from γ. Let ν′ def= ν[xεi/xi]i∈[1,#A] be772
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a store such that γ |=ν′

∆ A(xε1, . . . , xε#A). By Lemma 16, there exists a tree t ∈ LqA(A∆),773

such that γ |=ν′ Φε(t). By the assumption in the statement, since A(x1, . . . , x#A) and hence774

A(xε1, . . . , xε#A) is ∆-tight, and every model of Φε(t) is an ∆-model of A(xε1, . . . , xε#A), we obtain775

that Φε(t) is tight. Since γ
(ci,pi)i∈[1,n]========⇒ γ′, there exists a tree t′ ∈ T(p1,...,pn)(LqA(A∆)) =776

L(qA,ϕ)(A), such that γ′ |=ν′ Φε(t′), where ϕ is a final state of T(p1,...,pn), by Lemma 23.777

By the definition of ∆ and of the predicates A1, . . . ,Ap, by Lemma 16, we obtain γ′ |=ν′

∆
778

Ai(xε1, . . . , xε#A), for some i ∈ [1, p]. We obtain γ′ |=ν
∆

Ai(x1, . . . , x#A) and the hypothesis779

Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A) yields γ′ |=ν
∆ A(x1, . . . , x#A). Since the choices of γ780

and γ′ were arbitrary, we obtain that HavocInv[∆,A] has a positive answer.781

To prove ∆ ≈ ∆, consider the relation B ∼ A(qB,ϕ), for all B ∈ A and all states782

ϕ ∈
⋃
τ∈I(∆) Sτ . Because A is SID-compatible, we have #B = #A(qB,ϕ), for all B ∈ A,783

hence ∼ is arity-preserving. By the definition of ∆, for each rule B0(x1, . . . , x#B0) ←784

∃y1 . . . ∃ym . φ ∗ ∗ h
`=1B`(z`1, . . . , z`#B`

) from ∆ there exists a rule:785

A(qB0 ,ϕ0) ← ∃y′1 . . . ∃y′p . ψ ∗ ∗ h
`=1A(qB`,ϕ`

)(u`1, . . . , u`#B`
) (4)786

787

in ∆, such that ∃y1 . . . ∃ym . φ ' ∃y′1 . . . ∃y′p . ψ. The last equivalence between predicate-free788

formulæ is because ∃y′1 . . . ∃y′p . ψ is obtained from ∃y1 . . . ∃ym . φ by changing state atoms789

and introducing equality atoms of which one of the variable is existentially quantified (see790

Def. 14, Def. 21 and Def. 18). Viceversa, each rule of the form (4) in ∆ stems from a rule in791

∆, where the same equivalences hold. We conclude that ∆ ≈ ∆, by Def. 25.792

Finally, we compute an upper bound on the time necessary to build ∆ from ∆. Note793

that the number of interaction atoms, and hence the number of interaction types τ ∈ I(∆),794

that occur in ∆ is bounded by size(∆). The number of states in each transducer Tτ ,795

for some τ ∈ I(∆), is bounded by the number of partitions of [1,#(∆) + N(∆)], that is796

2O((#(∆)+N(∆))·log(#(∆)+N(∆)). This is because each state Eq(T̃Varτ ) corresponds (modulo797

logical equivalence) to a partition of the set {x̃1, . . . , x̃#A} ∪ {b̃i, ẽi | i ∈ [1,N(∆)]} of the798

parameters of some predicate A ∈ Def(∆) to which the variables b̃i, ẽi, for i = 1, . . . , n are799

added and the number of partitions of this set is aymptotically bounded by (#A + n)(#A+n).800

The size of the transducer alphabet is the number of pairs (α, β), such that α =801

〈φ, a0, . . . , ah〉, β = 〈ψ, a0, . . . , ah〉, φ stems from a rule in ∆ and ψ differs from φ by a802

renaming of states in at most n state atoms, for n ≤ N(∆). Let M be the maximum number803

of variables that occurs free or bound in a rule in ∆ and B be the maximum number of804

outoing transitions q p−→ q′ in the behavior B = (P,Q,−→). Clearly M ≤ size(∆), whereas805

B is a constant, because B is considered to be fixed i.e., not part of the input of the havoc806

invariance problem. Then, for each qpf formula that occurs in ∆, the number of alphabet807

symbols of the form (〈φ, a0, . . . , ah〉, 〈ψ, a0, . . . , ah〉) is at most:808 ∑N(∆)
i=1

(
M
i

)
·Bi ≤ BN(∆) ·

∑N(∆)
i=0

(
M
i

)
≤ BN(∆) ·

∑N(∆)
i=0

Mi

i! = BN(∆) ·
∑N(∆)
i=0

N(∆)i

i! ·
(

M
N(∆)

)i
≤ BN(∆) ·

(
M

N(∆)

)N(∆)
·
∑N(∆)
i=0

N(∆)i

i!

≤
(
B·M ·e
N(∆)

)N(∆)
≤ (B · size(∆))N(∆)

809

Given alphabet symbols α = 〈φ, a0, . . . , ah〉, β = 〈ψ, a0, . . . , ah〉 and states ϕ0, . . . , ϕh,810

the time required to decide on the existence of a transition (α, β)(ϕ1, . . . , ϕh) → ϕ0 is811
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O((size(φ) +
∑h
i=0 size(ϕi))3) = O(size(∆)3 · (#(∆) + N(∆))3) = O(size(∆)3), because elim-812

inating existential quantifiers from and checking equivalence between separating conjunctions813

of equality atoms is cubic in the number of variables, using a standard Floyd-Warshall closure814

algorithm. Summing up, the time needed to compute the transducer T as the union of815

T(p1,...,pn), for all (p1, . . . , pn) ∈ I(∆) is bounded by:816

size(∆)N(∆)+3 · 2O(H(∆)·(#(∆)+N(∆))·log(#(∆)+N(∆))
817

This is because there are at most (B · size(∆))N(∆) · ||S(p1,...,pn)||H(∆)+1 transitions of the form818

(α, β)(q1, . . . , qh) −→ q0 in T(p1,...,pn) and their enumeration requires time simply exponential819

in H(∆). Since the translation between a SID and a tree automaton takes linear time,820

the above is an upper bound for the reduction of the HavocInv[∆,A] instance of the havoc821

invariance problem to the set
{

Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A)
}p
i=1 of instances of the822

entailment problem. The reduction is thus polynomial, if #(∆), N(∆) and H(∆) are constant823

and simply exponential, otherwise. J824

I Theorem 27. The HavocInv[∆,A] problem is undecidable.825

Proof of Theorem 27. A context-free grammar G = (Σ, N, T, S,∆) consists of a finite set826

N of nonterminals, a finite set T of words over a finite alphabet Σ, called terminals, a start827

symbol S ∈ N and a finite set ∆ of productions of the form A → w, where A ∈ N and828

w ∈ (N ∪ T )∗. Given finite strings u, v ∈ (N ∪ T )∗, the relation uB v replaces a nonterminal829

A of u by the right-hand side w of a production A→ w and B∗ denotes the reflexive and830

transitive closure of B. The language of G is the set L(G) of finite strings w ∈ T ∗, such831

that S B∗ w. The universality problem asks, given a grammar G, whether Σ∗ ⊆ L(G)? Let832

G = (Σ, N, T, S,∆) be a context-free grammar and assume w.l.o.g. the following:833

Σ = {0, 1}, because every symbol can be encoded as a binary string,834

G does not produce the empty word or the single letter words 0 and 1; computing a835

grammar G′ such that L(G′) = L(G) \ {ε, 0, 1} is possible and we can reduce from the836

modified universality problem Σ≥2 def= {w ∈ Σ∗ | |w| ≥ 2} ⊆ L(G′) instead of the original837

problem Σ∗ ⊆ L(G).838

G is in Greibach normal form i.e., contains only production rules of the form Y0 →839

aY1 . . . Yk, where Y0, . . . , Yk ∈ N , for some k ≥ 0 and a ∈ Σ.840

We define the behavior B = ({p}, {q0, q1},−→), where q0
p−→ q1 and q1

p−→ q1. We encode the841

language Σ≥2 by the following set of rules, that define the binary predicate symbols X0(x, y)842

and X1(x, y) below:843

X0(x, y) ← ∃z . [x]@q0 ∗ 〈x.p, z.p〉 ∗ X1(z, y)
X0(x, y) ← ∃z . [x]@q1 ∗ 〈x.p, z.p〉 ∗ X0(z, y)
X1(x, y) ← [x]@q1 ∗ x = y

X1(x, y) ← ∃z . [x]@q1 ∗ 〈x.p, z.p〉 ∗ X1(z, y)

844

Note that X0(x, y) defines those configurations encoding words of length at least two, with845

exactly one component in state q0 and the rest of the components in state q1. To encode846

the language L(G), we use a binary predicate symbol Yi(x, y), where i ∈ [1, n], for each847

nonterminal from the set N = {Y1, . . . , Yn} and encode each production rule of G of the848

form Yi0 → aYi1 . . . Yik , for some k ≥ 0, by a rule:849

Yi0(x, y) ← ∃z1 . . . ∃zk . [x]@q1 ∗ 〈x.p, z1.p〉 ∗ ∗ k−1
`=1 Yi`(z`, z`+1) ∗ Yik (zk, y)850

Note that Yi(x, y) encodes the words produced by G starting with nonterminal Yi, by a chain851

configurations, in which all components are in a state q1. In particular, the parameter y is852
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not bound to an present component, allowing to compose Yi with other predicate atoms Yj .853

Finally, we define the predicate A by the following rules:854

A(x, y) ← X0(x, y)
A(x, y) ← Y0(x, y) ∗ [y]@q1

855

assuming w.l.o.g. that Y0 is the starting nonterminal of G. Let ∆ be the SID consisting856

of the rules above. We prove that Σ≥2 ⊆ L(G) if and only if for any configurations γ, γ′857

and each store ν, such that γ |=ν
∆ A(x, y) and γ  ∗ γ′, we have γ′ |=ν

∆ A(x, y). “⇒”858

Let γ, γ′ and ν be such that γ |=ν
∆ A(x, y) and γ  ∗ γ′. If γ = γ′ we are done, so we859

assume γ = (C, I, %) and γ′ = (C, I, %′), where % 6= %′. By the definition of B, the only860

possibility is that %′ = %[c← q1], for some component c ∈ C, such that %(c) = q0. But then861

γ |=ν
∆ X0(x, y). Since γ encodes a word w ∈ Σ≥2, we have w ∈ L(G), by the hypothesis,862

hence γ′ |=ν
∆ Y0(x, y) ∗ [y]@q1 and γ′ |=ν

∆ A(x, y) follows, by the definition of ∆. “⇐” Let863

w ∈ Σ≥2 be a word and let γ = (C, I, %) be a configuration such that %(c) = q0, for some c ∈ C864

and %(c′) = q1, for all c′ ∈ C \ {c}. By the definition of ∆, we have γ |=ν
∆ X0(x, y) for a store865

ν, hence γ |=ν
∆ A(x, y). Let γ′ = (C, I, %[c← q1]). By the hypothesis, we have γ′ |=ν

∆ A(x, y),866

hence γ′ |=ν
∆ Y0(x, y) ∗ [y]@q1 is the only possibility. Then we obtain w ∈ L(G), again by867

the definition of ∆. J868

I Lemma 31. Let ∆ be a PCR SID and let A ∈ Def(∆) be a predicate. Then, for any869

∆-model (γ, ν) of A(x1, . . . , x#A), the configuration γ is tight.870

Proof of Lemma 31. Let (C, I, %) be a configuration and ν be a store, such that (C, I, %) |=ν
∆871

A(x1, . . . , x#A). Let (ci, pi)i∈[1,n] ∈ I be an interaction for which we shall prove that872

c1, . . . , cn ∈ C. The proof goes by induction on the definition of the satisfaction relation.873

Assume that (C, I, %) |=ν′

∆ [x1] ∗ ψ ∗ ∗ h
`=1B`(z`1, . . . , z`B`

), for a store ν′ that agrees with874

ν over x1, . . . , x#A, where ψ is a separating conjunction of interaction atoms. Then there875

exist configurations γ0, . . . , γh, such that (C, I, %) = γ0 • . . . • γh, γ0 |=ν′ [x1] ∗ ψ and876

γ` |=ν′

∆ B`(z`1, . . . , z`#B`
). We distinguish two cases:877

There exists an interaction atom 〈y1.p1 , . . . , yn.pn〉 in ψ such that ν′(yi) = ci, for all878

i ∈ [1, n]. Since ∆ is progressing, by Def. 29, we have y1, . . . , yn ∈
⋃h
`=1{z`1, . . . , z`#B`

}.879

By [4, 12], we obtain ν′(yj) ∈ C`, for each yj ∈ {z`1, . . . , z`#B`
}, such that γ` = (C`, I`, %).880

Consequently, we have {c1, . . . , cn} ⊆
⋃h
`=1 C` ⊆ C, because (C, I, %) = γ0 • . . . • γh.881

Else, the induction hypothesis applies to γ` |=ν′

∆ B`(z`1, . . . , z`#B`
), for some ` ∈ [1, h].882

J883

I Lemma 34. The HavocInv[∆,A] problem for PCR SIDs ∆, such that DegreeBound[∆,A]884

has a positive answer, is 2EXP-hard.885

Proof of Lemma 34. By reduction from the 2EXP-complete entailment problem A(x1, . . . , x#A) |=∆886

∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B), where ∆ is PCR and the set {δ(γ) | γ |=∆ ∃x1 . . . ∃x#A . A(x1, . . . , x#A)}887

is finite [4, Thm. 4]. Let us fix the above instance of the entailment problem and assume888

w.l.o.g. that there are no occurrences of state atoms in ∆ — the proof of the lower bound889

from [4, Thm. 4] is actually independent on the occurrences of state atoms in the rules of890

the SID. Let B = (P, {q0, q1}, {q0
p−→ q1, q1

p−→ q1 | p ∈ P}) be a behavior, where P is a finite891

set of ports that subsumes the ports occurring in an interaction atom from ∆. Moreover,892

assume w.l.o.g that:893

1. A does not occur on the right-hand side of a rule in ∆ — each such occurrence of a894

predicate atom A(z1, . . . , z#A) can be replaced by A0(z1, . . . , z#A), where A0 is a fresh895

predicate with the same definition as A,896
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2. each rule that defines A has at least one occurrence of a predicate atom — rules of897

the form A(x1, . . . , x#A)← φ, where φ has no predicate atoms can be removed without898

affecting the 2EXP-hardness result from [4, Thm. 4] because only a finite subset of the899

∆-models of A(x1, . . . , x#A) (modulo renaming of components) gets lost.900

We define the following copies of ∆:901

∆0 is the following set of rules:902

A(x1, . . . , x#A)←∃y1 . . . ∃ym . [x1]@q0 ∗ ψ, where903

A(x1, . . . , x#A)← ∃y1 . . . ∃ym . [x1] ∗ ψ ∈ ∆904

and ψ contains no component atoms905

906

B′(x1, . . . , x#B′)←∃y1 . . . ∃ym . [x1]@q1 ∗ ψ, where907

B′(x1, . . . , x#B′)← ∃y1 . . . ∃ym . [x1] ∗ ψ ∈ ∆,908

A 6= B′ and ψ contains no component atoms909
910

∆1 is the following set of rules:911

B′(x1, . . . , x#B)←∃y1 . . . ∃ym . [x1]@q1 ∗ ψ, where912

B′(x1, . . . , x#B)← ∃y1 . . . ∃ym . [x1] ∗ ψ ∈ ∆,913

and ψ contains no component atoms914
915

Let ∆ be the union of ∆0 and ∆1 to which the following rules are added, for a fresh predicate916

A of the same arity as A:917

A(x1, . . . , x#A)←∃y1 . . . ∃ym . [x1]@q ∗ ψ, where918

A(x1, . . . , x#A)← ∃y1 . . . ∃ym . [x1]@q ∗ ψ ∈ ∆0919

920

A(x1, . . . , x#A)←∃x#A+1 . . . ∃x#B∃y1 . . . ∃ym . [x1]@q ∗ ψ, where921

B(x1, . . . , x#B)← ∃y1 . . . ∃ym . [x1]@q ∗ ψ ∈ ∆922
923

We prove that HavocInv[∆,A] has a positive answer if and only if A(x1, . . . , x#A) |=∆924

∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B).925

“⇒” Let γ = (C, I, %) be a configuration and ν be a store such that γ |=ν
∆ A(x1, . . . , x#A).926

Let γ0 = (C, I, %0) be the configuration such that %0(ν(x1)) = q0 and %0(c) = q1, for927

all c ∈ C \ {ν(x1)}. By the definition of ∆0, we have γ0 |=ν
∆0

A(x1, . . . , x#A), hence also928

γ0 |=ν
∆

A(x1, . . . , x#A). Let γ1
def= (C, I, %1), where %1 = %0[ν(x1)← q1]. Since ∆ is progressing929

and connected, by the assumption (2) above, there exists an interaction involving ν(x1),930

then γ1 is the result of executing that interaction in γ0, hence γ0  ∗ γ1. By the hypothesis931

HavocInv[∆,A], we obtain γ1 |= A(x1, . . . , x#A) and, since %1(c) = q1 for all c ∈ C, it must932

be the case that γ1 |=ν
∆1
∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B). Since no state atoms occur in ∆,933

we obtain γ |=∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B), by the definition of ∆1.934

“⇐” Let γ = (C, I, %) and γ′ = (C, I, %′) be configurations and ν be a store such that935

γ |=ν
∆

A(x1, . . . , x#A) and γ  ∗ γ′. If γ = γ′ there is nothing to prove. Otherwise, the only936

possibility is that %(ν(x1)) = q0 and %′(ν(x1)) = q1. Then we have γ |=ν
∆0

A(x1, . . . , x#A),937

by the definition of ∆ and γ |=ν
∆ A(x1, . . . , x#A) follows from the assumption that there are938

no state atoms in ∆. By the hypothesis, we obtain γ |=ν
∆ ∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B),939
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hence γ′ |=ν
∆1
∃x#A+1 . . . ∃x#B . B(x1, . . . , x#B), by the definition of ∆1, leading to γ′ |=∆940

A(x1, . . . , x#A).941

We conclude observing that the construction of ∆ takes time linear in the size of ∆. J942

I Theorem 35. The HavocInv[∆,A] problem, for PCR SIDs such that DegreeBound[∆,A]943

has a positive answer is in 2EXP, if #(∆), N(∆) and H(∆) are bounded by constants and in944

5EXP, otherwise.945

Proof of Theorem 35. If #(∆), N(∆) and H(∆) are bounded by constants, each instance946

HavocInv[∆,A] of the havoc invariance problem can be converted, in polynomial time, into947

several instances
{

Ai(x1, . . . , x#A) |=∆∪∆ A(x1, . . . , x#A)
}p
i=1 of the entailment problem,948

such that Ai ∼ A, for all i ∈ [1, p] and ∆ ' ∆, by Theorem 26. Hence ∆ is PCR and949

DegreeBound[∆,Ai] has a positive answer, for each i ∈ [1, p]. By Theorem 33, the entailment950

problems can be answered in 2EXP for each of these instances, hence HavocInv[∆,A] can be951

answered in 2EXP, as well. Otherwise, if either #(∆), N(∆) or H(∆) are unbounded, the952

entailments are produced in time simply exponential (Theorem 26) and can be answered in953

4EXP in their size (Theorem 33), yielding a 5EXP upper bound. J954
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