
HAL Id: hal-03826254
https://hal.science/hal-03826254

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Installation and monitoring procedures
Tanguy Kerdoncuff, Fabrice Guillemin

To cite this version:
Tanguy Kerdoncuff, Fabrice Guillemin. Installation and monitoring procedures. [Technical Report]
Acklio. 2022. �hal-03826254�

https://hal.science/hal-03826254
https://hal.archives-ouvertes.fr

Installation and monitoring procedures

Project Deliverable D.4.1.1

INTELLIGENTSIA project

Executive summary
This document describes the practical setup and external usage of the IoT platform
based on Long Range Wide Area Network (LoRaWAN) and deployed for the experi-
ments of the Intelligentsia project.

Authors: Tanguy Kerdoncuff

Revised by: Fabrice Guillemin

Approved by: Fabrice Guillemin

Date: October 24, 2022

Contents

Acronyms . 3

1 Introduction 4

2 Delivery and Integration planning 5

3 Platform Architecture 6

4 Onboarding 8
4.1 Device onboarding . 8
4.2 gateway onboarding . 8
4.3 IP Application onboarding . 8

5 Logs and metrics 9
5.1 Metrics . 9
5.2 Logs . 10

6 Instrumentalizing the platform 11
6.1 Direct platform interaction . 11

6.1.1 Kubernetes control . 11
6.1.2 Controlling deployed products . 12

6.2 Kubernetes automation . 12
6.3 Prometheus automation . 13

1

List of Figures

3.1 General Platform Architecture . 7

5.1 Logs and metrics export elements . 9

6.1 Platform control . 11

2

Acronyms

API Application Programming Interface.

CPU Central Processing Unit.

IoT Internet of Things.
IP Internet Protocol.

LNS LoRaWaN Network Server.
LoRaWAN Long Range Wide Area Network.

RAM Random Access Memory.
REST Representational state transfer.

SCHC Static Context Header Compression.

VPN Virtual Private Network.

3

Chapter 1

Introduction

This document is a deliverable of the Intelligentsia project and is a contribution to workpackage
4 Proof of Concept and Experimentation by presenting the details of the experimental platform
where the findings of the projects will be demonstrated and evaluated. It consists of the items
of an Internet of Things (IoT) network deployed in situ (namely, the gateways and devices)
and the cloud elements for the core network and the final IoT data exploitation servers. Its
general architecture is presented in Section 3. All the elements considered are implemented by
using state of the art industrial products with which members of the consortium already have
experience, and are able to adapt to the need of the project.

The cloud elements themselves are hosted on a kubernetes cluster dedicated to the project,
which will not only host the containers implementing the core networks, but also metrics and log
gathering tools used to feed the decision engine. These tools, as well as the entry points that the
decision engine will use to control the platform are described in Sections 5 and 6, respectively.

4

Chapter 2

Delivery and Integration planning

Table 2.1 presents the different tasks planned for the delivery of the platform. The first part
relates to the setup of the IoT communication chain, with most of the interaction happening
between Acklio and Aguila, in order to configure the devices, gateways, LoRaWaN Network
Servers (LNSs), IPCore and application server that will implement the use cases considered by
the project.

The second part contains the tasks responsible for interfacing the platform to the project’s
controller. One the one hand, the logs and metrics gathered in the cluster need to be forwarded
to this controller; these aspects are described in Section 5. Then, the controller will need entry
points to the platform in order to perform the actions determined by the decision engine ; these
aspects are addressed in Section 6.

Task Partners

IoT Communication chain setup (part 1)
Lorawan gateway purchase and agent configuration Acklio
Additional gateway logging and metric tools Acklio
Gateway shipping to deployment site Acklio
Gateway deployment and connectivity validation Acklio,Aguila
LNS Access opened Acklio
Simple Lorawan connectivity test Acklio,Aguila
Acklio SDK Integration Acklio,Aguila

Platform integration to controller (part 2)
Kubernetes access opened Acklio
Log export setup Acklio,?
Prometheus Mirroring Acklio,?

Table 2.1: Platform delivery tasks

5

Chapter 3

Platform Architecture

Figure 3.1 presents the general architecture of the IoT testbed, in terms of communication chain.
It is divided into three blocks, which are, from the left to the right

- The Field elements, regrouping the IoT devices as well as the gateways. End devices and
gateways will be deployed at the same location in order to ensure proper radio coverage.
A first device deployment site has been identified at Aguila premises, but other may be
decided later in the project.

– The IoT devices are manufactured by Aguila and respond to the use cases addressed
in this work. An integration work between Acklio and Aguila will also be performed
for these devices in order to experiment with the Static Context Header Compression
(SCHC) standard.

– The Gateways will be packaged by Acklio, with pre-configured gateway agent letting
them connect securely to the cloud elements of the platform. Additional logging and
monitoring tools will be added to the gateways before dispatch (see Section 5).

- The Edge cloud elements represent the network core interfacing the (potentially non In-
ternet Protocol (IP)) IoT world with the classical Internet. These elements are hosted on
a kubernetes cluster in the Acklio cloud.

– The platform contains LNS instances (Acklio or Chirpstack), each consisting of a
series of containers. Their configuration can be tweaked, and the number of different
instances can be adapted in order to experiment with the different slicing strategies
identified in the project.

– The platform also feature IPCore instance(s) that interface upstream of the LNSs.
They reception the Lorawan payload and rebuild the original IP packets they contain,
before forwarding the device’s traffic over the internet, to its final destination.

- Finally, the central cloud represents the place where packets are actually exploited in
the respective use cases. Depending on the experiment, classic LoRaWAN application
server, receiving payloads over HTTP, Websocket or other means, or IP Application server
receiving the device traffic directly through a Virtual Private Network (VPN). Deployment
of these servers can be done in the Acklio cloud, although some experiment may be ran
more effectively if whichever partner piloting a given experiment has direct access to both
ends of the communication chain.

6

D.4.1.1 Installation and monitoring procedures WP4

End devices Lorawan Gateway LNS

LNS 2

...

LNS N

IPCore Acklio VPN Agent IP Applica-
tion Server

Classic Lorawan
Application Server

Field elements
Aguila Offices

Edge Cloud
Acklio Cloud

Central Cloud
location TBD

MQTT/SSL GRPC IP

HTTPs/WSS/MQTTs/...

Figure 3.1: General Platform Architecture

ANR INTELLIGENTSIA project 7

Chapter 4

Onboarding

4.1 Device onboarding

Devices will need register to one of the vLNS available on the cluster. This should, at least in
the first phases, be done manually through the chirpstack web interface, refer to their online
documentation [1] for details.

4.2 gateway onboarding

Gateways should have already been configured by Acklio for backbone connectivity to the plat-
form’s cloud elements. Depending on the experiment, further configuration may be required, in
particular for band selection and channel allocation. Again, refer to the chirpstack documenta-
tion for more details [1].

4.3 IP Application onboarding

By using the Acklio IPCore, one can receive IP traffic from IoT devices. In order to enable
connectivity of a given IP prefix between the cloud elements of the platform, and the final
destination of these IP packets, we rely on a VPN client deployed in the central cloud. Final
customers will therefore be delivered an archive containing the client binary, access certificates
and a readme. More details on this connection can be found in Section 3

8

Chapter 5

Logs and metrics

5.1 Metrics

Figure 5.1 presents the platform’s logging and monitoring architecture. This platform’s mon-
itoring relies on prometheus. This open source software has been gaining popularity in the
devops community since its original creation at SoundCloud. Prometheus relies on the scraping
of HTTP endpoint that expose metrics in order to populate its time series database. With its
current level of adoption, many other applications have made the choice of exposing prometheus
metrics, it is in particular the case of chirpstack.

Node Exporter PushProx Client

Gateway Agent

PushProx Server

Node Exporter

Cadvisor

Fluentd

Prometheus

Node Exporter

Cadvisor

LNS Containers

Fluentd

Field elements
Aguila Offices Kubernetes Worker

Kubernetes
Worker 2

Scraping

Scraping

Tunnel Scraping

Container Logs

Gateway agent logs

Prometheus
Federation

Fluentd export

Fluentd export

Figure 5.1: Logs and metrics export elements

In this platform, the target for prometheus scraping will be the following

- The containers of the Chirpstack LNSs providing LoRaWAN related time series.

- The nodeexporter service, that publishes metrics relating to a linux machine’s state (Cen-
tral Processing Unit (CPU) usage, Random Access Memory (RAM), Traffic, IOps, etc).
The use of a kubernetes daemonset ensures that exactly one copy of this software runs on
each worker node of the cluster. It is also able to interface with prometheus in order to

9

D.4.1.1 Installation and monitoring procedures WP4

discover scrapeable endpoint, meaning that time series are automatically built as soon as
a new machine joins the cluster.

- The cadvisor service, that publishes information on docker containers that run on a docker
host (CPU usage, RAM, Traffic, IOps, etc). Usually this was done by an external software
but now this feature is inbuilt in kubernetes, enabling to get detailed statistics on each
container running on the cluster.

- Gateways also have prometheus metric sources, with both the chirpstack agent endpoint
and an instance of nodeexporter. In order to query these sources, usually inside an op-
erator’s network, we rely on the pushprox prometheus component [6], with components
gateway and cluster side.

Prometheus time series will then be analyzed outside of the cluster. While it is possible
to directly interrogate the prometheus instance in k8s, we should avoid putting stress on this
instance and apply our algorithms on an external time series database. This is done by running
a second instance of prometheus wherever the controller is hosted, and relying on prometheus
federation to have the controller side prometheus instace scrape the time series of the edge cloud
side prometheus instance.

5.2 Logs

We rely on fluentd in order to export the logs of all containers in the platform. Each worker
node runs a copy of fluentd which accesses the logs files of the other containers running on the
same machine. These logs are enriched with kubernetes metadata such as namespaces, labels
or deployment modes, then forwarded to their destination outside the cluster. Many output
formats are supported, and documented in [2].

ANR INTELLIGENTSIA project 10

Chapter 6

Instrumentalizing the platform

Figure 6.1 presents different interactions in the platform. In this section we detail in particular
how the Application Programming Interfaces (APIs) of different elements can be exploited, how
Kubernetes itself offers automation tools, and also precise some interesting prometheus features.

Controller K8S API Server K8S Control Plane

LNS IPCore

LNS IPCore

Prometheus
k8s control

product
api control

auto metric
feedback

Daemonsets

Autoscalers

Deployments

Kubernetes Masters

Kubernetes Workers

Namespace 1

Namespace 2
(a)

(b)

(c)

REST
API

Figure 6.1: Platform control

6.1 Direct platform interaction

6.1.1 Kubernetes control

Many LNSs have made the choice to make their services available via series of docker containers.
While this already helps deployment and administration by running these LNSs on docker hosts,
they remain tied to a single Linux host and its limitations in terms of resources. In order to
cope with use cases with high availability requirements or considerable traffic peaks, scaling up
the docker deployment to multiple nodes is necessary. Technologies such as docker swarm or
kubernetes provide this functionality; this project will use the latter.

The most straighforward way of interacting with this platform would therefore be through
the kubernetes API, in the same manner one would administer any cluster. This is presented by
the k8s control node of Figure 6.1. Kubernetes’s very rich API is already detailed in [3], and we
will not enter into details in this document. It is however relevant to note that one can directly
call this API through an HTTP client as a standard Representational state transfer (REST)
API, or by using its official client: kubectl.

11

D.4.1.1 Installation and monitoring procedures WP4

Kubernetes comes with a pretty accurate role based permission system, allowing the admin-
istrator to determine the scope of what element of the cluster a user or a program is allowed to
interact with, and with which actions. As shown in Figure 6.1 it is for example possible to give
access to the entire cluster as shown in (a), or to a given namespace (b), or even to a series of
elements, as for example in (c) the containers of an LNS (this is usually done by labeling objects
when initially creating them).

6.1.2 Controlling deployed products

Figure 6.1 also presents how the platform controller can directly access the different products of
the cluster.

- Both the LNS and the IPCore have REST APIs that can be instrumentalized by the
controller in order to control the data flows. One could for example dynamically allocate
channels to a slice by configuring them on the LNS, or create an entire IP network for a
given family of devices by configuring both the IPCore and the LNS. Both products come
with onboard API documentation provided by swaggerui [7].

- Prometheus can also be addressed through a REST API. This can in particular be useful
to automatically mute alerts after the appropriate measures have been taken, but could
also be relevant in order to configure alerts on the fly, or even dynamically configure new
scraping targets (e.g. addition of a new agent on a shared gateway).

6.2 Kubernetes automation

Deploying containers on kubernetes is done by writing configuration elements to its control
plane (the master nodes), which are then responsible to translating this configuration into active
containers executed on the master nodes. These configuration elements are many, and control
container related aspects, but also storage, networking, security, etc. The detail of these elements
can be found in the official kubernetes documentation [4]. We will however shortly mention a
few of them here.

- Deployments are some of the simplest elements. They represent a series of containers
with their associated metadata, and how many replica of each are requested. This can
for example be relevant when delay sensitive tasks need to be parallelised. This project’s
controller could for example use the API to adjust the replica parameter of a deployment
in order to scale up or down its processing.

- Horizontal Pod Autoscaler are elements that allow the internal automation of such scaling
up. They target a given workload and are given a metric threshold that each replica of this
workload should not cross. If the threshold appears to be crossed, the autoscaler will then
scale up the workload create new pods, thus balancing the load between more containers
(and potentially, underlying machines).

- Daemonsets are kubernetes workloads that will ensure that every worker node in a collec-
tion (or all of them) run a given pod. This is in particular useful for prometheus gathering
containers (each monitoring the worker node executes) or elements where proximity to all
other pods is interesting (network ingress, database cache). In the latter, more accurate
deployment strategies can be used in order to define affinities or anti-affinities between
services.

It is possible to control, how such workloads are scheduled on nodes, by setting policies that
place containers that share a lot of traffic on the same node, or on the contrary spread containers
with high resource usage over different machines. It is also possible to restrict pod scheduling
to reserved nodes, dedicating for example a set of worker nodes to a given slice.

ANR INTELLIGENTSIA project 12

D.4.1.1 Installation and monitoring procedures WP4

Security wise, kubernetes can be configured to enforce namespace isolation. This lets the
administrator assign containers to separate namespaces and prevent inter namespace network
communication, thus making lateral movements much more difficult for attackers. Combined
with slice-dedicated worker nodes, quite satisfactory separation can be achieved inside a cluster.

6.3 Prometheus automation

Since this project relies on prometheus in order to gather metrics, the prometheus ([5]) executor is
worth mentioning. This service plugs itself in prometheus’s alert routing, e.g. when a prometheus
alert is created, instead, or in parallel of sending a mail, it may be sent to the prometheus
executor for automated recovery actions. The executor will react to incoming alerts by executing
predefined commands, with possible filtering depending on the labels of the alert.

ANR INTELLIGENTSIA project 13

Bibliography

[1] Chirpstack lns. https://www.chirpstack.io/.

[2] Fluentd output formats. https://docs.fluentd.org/output.

[3] Kubernetes api. https://kubernetes.io/docs/concepts/overview/kubernetes-api/.

[4] Kubernetes concepts. https://kubernetes.io/docs/concepts/.

[5] Prometheus executor. https://github.com/imgix/prometheus-am-executor.

[6] Prometheus pushprox. https://github.com/prometheus-community/PushProx.

[7] Swagger ui. https://swagger.io/tools/swagger-ui/.

14

https://www.chirpstack.io/
https://docs.fluentd.org/output
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/
https://github.com/imgix/prometheus-am-executor
https://github.com/prometheus-community/PushProx
https://swagger.io/tools/swagger-ui/

	Acronyms
	Introduction
	Delivery and Integration planning
	Platform Architecture
	Onboarding
	Device onboarding
	gateway onboarding
	IP Application onboarding

	Logs and metrics
	Metrics
	Logs

	Instrumentalizing the platform
	Direct platform interaction
	Kubernetes control
	Controlling deployed products

	Kubernetes automation
	Prometheus automation

