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ABSTRACT  This paper focuses on the construction of a fast though accurate gas 25 

radiation model based on a Recurrent Neural Network (RNN) formulation. The model is 26 

founded on recent works in which a solution to a non-uniform technique proposed by 27 

Godson in the 50s was derived explicitly. The method uses a non-linear transformation 28 

of a set of physical / geometrical paths, directly related to a non-uniform path which is 29 

first discretized into uniform sub-layers, into a sequence of equivalent absorption 30 

lengths. This process, studied thoroughly within the frame of the development of the l-31 

distribution approach, can be naturally handled using an algorithm that takes the form 32 

of an RNN model. The method is assessed against LBL calculations in non-uniform high 33 

temperature gaseous media and found to provide more accurate results than a CKD 34 

(Correlated K-Distribution) model with 16 gray gases. This paper is the first to suggest 35 

an RNN to treat radiative transfer in non-uniform gaseous media. Moreover, all the 36 

weights involved in the RNN have a clear physical meaning so that the structure of the 37 

RNN can be readily interpreted, avoiding the black box disadvantage of most brute force 38 

machine learning strategies.   39 

 40 

Keywords: gas radiation, Godson, l-distribution, Propagative Form, Recurrent Neural 41 

Network. 42 

  43 



3 
 

1. INTRODUCTION 44 

There have been several attempts in the recent literature to apply methods based on 45 

Machine Learning, including artificial neural networks, to radiative transfer and gas 46 

radiation modeling. For instance, refs. [1,2], that are not strictly restricted to gaseous 47 

media as considered in the present work, are two examples of application of machine 48 

learning techniques to solve the RTE. More related to gas radiation, in ref. [3], a machine 49 

learning strategy is used to replace look-up tables in the Full Spectrum Correlated-k 50 

(FSCK) method. Applying neural networks instead of look-up tables was shown to 51 

reduce significantly the overall computational cost of the FSCK method (both in terms of 52 

memory requirements and computation time) without modifying the quality of the FSCK 53 

model itself. More recently, in ref. [4], a feedforward neural network strategy is 54 

described to model directly gas path transmissivities in atmospheric applications. Errors 55 

of a few percent of the full transmission scale, i.e.  [0,1], were obtained in this work over 56 

non-uniform atmospheric paths.  57 

The present work is an extension of a recent paper [5] in which a reformulation of the l-58 

distribution approach in terms of neural network was mentioned but not derived in full 59 

details. The aim of the present paper is to describe this formulation. The modeling 60 

strategy is based on previous works in which explicit functional forms were derived for 61 

the solution of Godson’s implicit equation [6]. This solution is shown here to be naturally 62 

written in a Recurrent Neural Network form (RNN) involving Exponential Linear Units 63 

(ELU) as activation functions. The present method is, to the best of the authors’ 64 

knowledge, the first to consider RNNs to model non-uniform gas path transmissivities. 65 

Compared to existing machine learning strategies, that apply brute force neural network 66 

methods, the present formulation provides an RNN whose coefficients are fully based on 67 

physical modeling. The interpretability of all coefficients appearing in the RNN model is 68 

thus possible, as compared with other methods for which neural networks mostly act as 69 

black boxes. The modeling strategy is applied here in the context of high temperatures 70 

but it can be extended to atmospheric paths with minor modifications. It bridges an old 71 

idea (from the 50s) with modern algorithmic developments in probably one of its 72 

optimal ways.  73 

Almost 70 years ago, in 1953 [6], Warren L. Godson introduced three methods to extend 74 

uniform gas radiation models from uniform (ref. [6] was limited to Elssasser’s model) to 75 
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non-uniform configurations. Among these methods, one of them led to the widely used 76 

Curtis-Godson (CG) approximation, fully derived in 1955 within the frame of the 77 

statistical narrow band model for Lorentz lines [7]. The great success of the CG 78 

approximation has almost obliterated the potential of the two other methods proposed 79 

in [6], even if one of them was shown from the early beginning to be superior to CG. 80 

Deficiencies of the CG approximation in cases of highly non-uniform configurations were 81 

observed and studied in the 70s, leading to the Lindquist-Simmons (LS) approximation 82 

[8]. This method suggests a new starting point for the treatment of non-uniformities 83 

based on the derivative of the transmission function with respect to the gas path length. 84 

The LS method usually provides a more accurate and physical treatment of non-uniform 85 

paths than CG [9], but introduces some asymmetries in the non-uniform model. A 86 

compendium of existing versions of the CG and LS approximations can be found in 87 

[9,10]. 88 

Godson’s method was reintroduced in the 70s by Weinreb and Neuendorffer [11], but 89 

instead of the Elsasser’s model used in [6], a polynomial approximation of 90 

transmissivities was applied. Several direct applications of Godson’s method to 91 

atmospheric configurations can be found, under the names Pseudo Mass Approximation 92 

(PMA) or Emissivity Growth Approximation (EGA) in refs. [12-14]. In the high 93 

temperature literature, Modest [15] uses a technique similar to Godson’s method within 94 

the frame of k-distribution models and calls it the Scaled-k method. No reference to 95 

Godson’s work is made in ref. [15]. All these works (PMA, EGA, Scaled-k) have two 96 

elements in common. The first one is that Godson’s method is found to be very accurate 97 

when assessed against LBL calculations. When such results are available, Godson’s 98 

method is also found to be as accurate (in most cases more accurate) than the widely 99 

used CKD method. The second one is that no one of them have attempted to justify 100 

physically the reasons that could explain the accuracy of this non-uniform method.  101 

The development of the l-distribution approach [16] has led recently to the concept of 102 

quasi-scaled spectra. This assumption, which is a physical/statistical model of 103 

relationship between spectra in distinct thermophysical states, was introduced in ref. 104 

[17]. It allows understanding most of the properties of Godson’s method. Among them, it 105 

provides an explanation of the asymmetry of Godson’s method in strongly non-uniform 106 

configurations, a property noticed from the early beginning, but almost absent from all 107 
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the papers cited previously [12-15]. This problem of asymmetry is studied in depths in 108 

refs. [5,17]. 109 

The three techniques (Godson’s, Scaled-k and l-distribution methods) share similarities 110 

but are fundamentally different. For instance, the Scaled-k method requires the 111 

definition of a reference state of the gas whereas Godson’s and l-distribution methods do 112 

not. The Scaled-k and Godson’s methods rely on iterative techniques to find a solution of 113 

the model’s implicit equation (see Eq. (7) later in the paper), whereas in l-distribution a 114 

semi-analytical solution of the same equation is used. Consequently, the approach used 115 

in l-distribution allows treating non-uniform paths very efficiently, compared to the two 116 

other iterative methods. In the Scaled-k and Godson’s methods, the implicit equation 117 

used to define an effective scaling factor is introduced without reference to any physical 118 

model. In l-distribution, on the other hand, the implicit equation is founded on the 119 

assumption of quasi-scaling of gas spectra in distinct thermophysical states as noticed 120 

previously. Additional details on how the quasi-scaling property connects with Godson’s 121 

method are provided later in this paper. 122 

The l-distribution method was up to now mostly studied in its Archimedean copula 123 

version. The main advantage of such a formalism is to help understanding and 124 

controlling the properties of the non-uniform model and its impact on the calculation of 125 

transmissivities of non-uniform paths using known results from copula theory. Its main 126 

disadvantage is to make the model probably hard to understand at first sight for possible 127 

users not familiar with the concept of copula and/or gas radiation modeling. 128 

Nevertheless, recently, we have shown [5] that the copula formulation of the l-129 

distribution approach can be equivalently written in a propagative form, in which only 130 

relationships between equivalent absorption lengths are used. The possibility to 131 

reformulate the method in a neural network version was also suggested in the same 132 

reference. The same mathematical results as used in the copula version of the model can 133 

be applied in the propagative formulation, as they are rigorously equivalent. However, 134 

the propagative version is probably simpler to understand. This propagative form, 135 

including its recurrent neural network formulation, is the main focus of the present 136 

work. 137 
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The paper is structured as follows. In the second section, the main assumptions used to 138 

treat non-uniform paths in the l-distribution approach are detailed. This allows 139 

obtaining a definition of effective scaling factors (that is to say scaling coefficients that 140 

depend on the gas path length) that coincides with Godson’s method. The third section is 141 

devoted to an approximation of the quantities used in the l-distribution method using 142 

simple relationships. The resulting uniform method, that involves a three coefficients 143 

transmission model, is described and assessed against LBL calculations. The same 144 

uniform cases as used in ref. [18] are treated to illustrate the quality of the 145 

parameterization. The fourth section is devoted to a reformulation of the key elements 146 

of Section 3 in terms of recurrent neural networks. As will be shown, the propagative 147 

version of the l-distribution approach can be naturally written in a neural form using 148 

Exponential Linear Units (ELU) as activation functions without losing its physical 149 

interpretation. This reformulation, which is the main result of the present work, 150 

provides a proof of the relevance of application of RNN structures for non-uniform gas 151 

radiation modeling. 152 

This work, even if it is mostly restricted to a simplified though very accurate model and 153 

not to real LBL datasets, is the first to suggest an RNN as a non-uniform gas model. It 154 

bridges physics and statistical/machine learning points of view in probably one of its 155 

optimal ways.      156 
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2. FROM SCALED / QUASI-SCALED SPECTRA TO GODSON’S METHOD 157 

The concept of scaled spectra is among the most important ones in non-uniform gas 158 

radiation modeling. Even Correlated k-distribution (Ck / CKD) methods rely on this 159 

assumption, although the scaling coefficient is not in this case a constant for all values of 160 

the absorption coefficient, but depends on it directly. Scaling assumes a linear 161 

relationship between gas spectra in distinct thermophysical states, a property that is 162 

obviously verified at LBL scale for single wavenumbers. 163 

The hypothesis of scaled spectra assumes the existence of a constant coefficient, written 164 

from now on U, such that the spectral absorption coefficients of the gas in two 165 

thermophysical states (subscripts 1 and 2) are related by the linear relationship: 166 

 
, 2 ,1

U
 

    (1) 167 

When gas spectra are scaled, one has for any gas path length L: 168 

        2 , 2 ,1 1

1 1
e x p e x pL L d U L d U L

 

 

 

     
 

 

 

        
 

   (2) 169 

The band averaged transmissivity of a non-uniform path in the gas (length L1 in state 1 170 

and L2 in state 2) is then: 171 

      1 2 1 2 ,1 1 , 2 2 1 1 2

1
, e x pL L L L d L U L

 

 



    


 



      


  (3) 172 

A similar relationship can be obtained if one considers n scaled spectra. 173 

For the analysis of more general situations for which gas spectra are not truly scaled, a 174 

slight reformulation of the scaled model is required. It is provided below. 175 

As band averaged transmissivities are strictly decreasing functions of pathlengths over 176 

absorbing bands that do not contain transparency regions of the gas, they are invertible. 177 

This means that one can define, for any transmission function, its inverse l. This is the 178 

main principle of the l-distribution approach. Using this inverse l, one can rewrite Eq. (3) 179 

in two equivalent forms: 180 

- Archimedean copula 
1 1

C  version [5,19,20]: 181 
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           1 2 1 2 1 1 1 1 2 2 1 1 ,1 1 ,1 1

1
, ,  w h e re : , e x pL L C L L C X Y X Y d

  

 



     


  



       
   


 l l182 

 (4) 183 

- Propagative version [5]: 184 

        1 2 1 2 1 1 2 1 2 1 2 1 1 1 1 2 2
,  w h ere : L L L L L U L L L

   
   

   
     o ol l  (5) 185 

In Eq. (5), the symbol “ o ” represents the functional composition, i.e., given two functions 186 

f and g one has    f g x f g x   
o . In the case of truly scaled gas spectra, all three 187 

formulations provided by Eqs. (3-5) are rigorously equivalent. These relationships can 188 

be readily extended to any n layer non-uniform path and remain exact as soon as all gas 189 

spectra encountered along the non-uniform path are rigorously scaled. 190 

In practice, gas spectra are not perfectly scaled. However, in the case of small gradients 191 

of temperature or pressure, it was shown in ref. [17] that real gas spectra can be 192 

considered as quasi-scaled, i.e., given two distinct spectra, it is reasonable to assume that 193 

the two transmission functions can be connected to each other by: 194 

            

1

2 1 1

0 0

, , 0 ,1L u L d F u u L d F u
  

       



  
              (6) 195 

in which a non-constant positive scaling coefficient u is introduced. In Eq. (6), F is the 196 

distribution function of the variable u. 197 

In quasi-scaling, we thus assume that the two spectra can be related to each other by a 198 

spectral scaling function which is statistically independent from at least one of the two 199 

spectra. Obviously, if the density of the distribution function F of variable u is a Dirac, 200 

this relationship provides the scaled model.  201 

Defining explicitly the variable u is complicated in a general frame unless gas spectra 202 

follow rigorously the quasi-scaled property, which is rare (almost as rare as truly 203 

correlated gas spectra). However, application of the mean value theorem to Eq. (6) 204 

shows that for any gas path length L, there exists a particular value of the variable , for 205 

which the corresponding scaling coefficient, that will be from now on written u(L), is 206 

such that:  207 
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      

1

2 1 1

0

L u L d u L L
  

    
  

           (7) 208 

The mean value theorem thus replaces the problem of specification of the distribution 209 

function of scaling coefficients, F, by an implicit equation that only involves as input data 210 

the uniform transmissivities. As these transmissivities are usually known (but their 211 

functional form depends on the uniform model selected), the application of the quasi-212 

scaling assumption is always possible. This property of Godson’s method was already 213 

emphasized in ref. [11]. It should be noticed that the implicit formulation of the quasi-214 

scaling approximation is also similar to the definition of the strictly increasing function 215 

that relates the spectra in Ck / CKD method: in both cases, the explicit link between the 216 

spectra does not need to be fully specified, only its existence is assumed and its effect is 217 

formulated through an implicit relationship. 218 

The implicit equation set by Eq. (7) can be solved easily using the formalism introduced 219 

recently in the l-distribution approach and briefly reminded in the next section. 220 

  221 



10 
 

3. FROM GODSON’S METHOD TO L-DISTRIBUTION 222 

It is out of the scope of the present paper to fully redevelop the set of equations related 223 

to the l-distribution approach. Interested readers can find a comprehensive description 224 

of the technique in ref. [16]. We only remind here some of the most important results 225 

(Section 3.1) and show how, based on this general theory, one can propose simple 226 

though accurate estimate of narrow band transmissivities of high temperature gaseous 227 

paths (section 3.2). The simplified model, that involves three parameters, is first 228 

described in uniform cases and its extension to non-uniform paths is then detailed in 229 

Section 4. Several test cases in uniform scenarios are provided that illustrate the 230 

accuracy of the method when assessed against LBL calculations. 231 

3.1. TABULATION OF UNIFORM LBL TRANSMISSIVITES IN THE L-232 

DISTRIBUTION METHOD  233 

The l-distribution approach can be introduced as follows. Most LBL data are provided in 234 

terms of absorption coefficients. At high spectral resolution, LBL sets contain a large 235 

number of spectral values. In many applications: 1/ there is no real interest for high 236 

resolution data as only spectral averages (from narrow bands up to the full spectrum) 237 

gas radiative properties are needed. This is the case for heat transfer applications but 238 

also for radiative imaging studies in which the band width is fixed by the imaging device, 239 

and 2/ over spectral intervals, the integral form of the radiative transfer equation 240 

involves spectrally averaged transmissivities (weighted by the Planck function in the 241 

case of wide bands or over the full spectrum). Calculating these non-uniform 242 

transmissivities using LBL data requires a two-step process: 1/ (path integral) for each 243 

wavenumber inside the band, evaluate the sum of all contributions (sum of 
, i i

L


 ) 244 

encountered along the path and, 2 / (spectral averaging) evaluate the non-uniform 245 

transmissivity by averaging all these spectral contributions. 246 

Based on these observations, a real gain in terms of computational cost could be 247 

expected if one could tabulate directly LBL transmissivities since one part of the process 248 

(calculation of band averaged transmissivities from high resolution LBL data) required 249 

to solve the RTE would be avoided. In other words, if LBL transmissivities could be 250 

precalculated in advance, an important reduction of the computational cost could be 251 
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anticipated. This is the main idea behind the uniform model used in the l-distribution 252 

method. 253 

In order to tabulate LBL data in transmission form, we first generate an approximate 254 

model (formally the same as the SNB model for Lorentz lines using the Malkmus’ 255 

distribution of linestrengths [9] and the second order k-moment model [21]) called in 256 

refs. [5,16] the “germ” model. Its coefficients are given by the set of equations (no optical 257 

filter is considered here – more general formula involving such an optical filter are 258 

provided in ref. [5]): 259 

 
1

P
k d





 




 


  (8-a) 260 

 1 1

R

d
k





 





 


  (8-b) 261 

 
1

P R
k k


 


 (8-c) 262 

Eqs. (8-a) and (8-b) are the definitions of the Planck and Rosseland mean absorption 263 

coefficients of the gas over the spectral band   respectively. Eq. (8-c) is a parameter 264 

that measures the overlapping between spectral lines. Indeed, it coincides exactly with 265 

the overlapping parameter of the SNB model for Lorentz lines with Malkmus’ 266 

distribution of linestrengths if the real gas spectrum follows rigorously the assumptions 267 

of this SNB model [9].  268 

As can be seen from the definitions (8.a-c), all the parameters involved in the “germ” 269 

model can be evaluated as simple integrals over the absorption coefficients taken from a 270 

LBL dataset. 271 

Then, one can notice that the germ model (all quantities related to the “germ” model are, 272 

as in ref. [5], represented by an index “0”) is invertible and its inverse is analytical. The 273 

direct model and its inverse are given respectively as: 274 

  0

2
e x p 1 1

P
k L

L
 


 


  

      
 

   

 (9-a) 275 
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  

2

0
1 ln 1

2
P

X X
k

  

 


  

      
   

 (9-b) 276 

By definition, the inverse 
0


  is such that: 277 

  0 0
L L

 


 
  
 

 (10) 278 

The LBL transmissivity in the gas is defined as: 279 

    
1

e x pL L d






  






  


  (11) 280 

Using Eq. (10), we can rewrite this equation as: 281 

    0
L G r L

 
 

 
 
 

 (12) 282 

where, for any X in [0,1]: 283 

    0

1
e x pG r X X d







 






    
 


  (13) 284 

The Gr function, named the mapping function: 1/ establishes a direct relationship 285 

between the values of the germ model and the exact LBL values, 2/ maps the unit 286 

interval into itself and is strictly increasing (and thus invertible). This function can be 287 

tabulated easily (it suffices to discretize the unit interval into N subintervals and apply 288 

the definition of the Gr function Eq. (13) to generate a look-up table of Gr values). This 289 

direct tabulation method was applied in refs. [5,16,22]. 290 

3.2. SIMPLIFIED L-DISTRIBUTION MODEL 291 

The main drawback of the l-distribution method is its memory cost if high resolution Gr 292 

look-up tables are used (typically, 1000 values of X inside [0,1] are used, ensuring an 293 

accuracy on the calculation of transmissivities much lower than 10-3 in uniform 294 

calculations [16]). The size of the databases used in the “standard” high temperature 295 

version, already applied in ref. [22], is given in table 1. These databases contain model 296 

parameters for 28 gas temperatures (from 300 K up to 3000 K by 100 K step) for CO2, 297 

CO and H2O. For H2O, 9 values of molar fractions (0., 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0) 298 

are used. Only atmospheric pressure is considered here. 299 
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 300 

Molecule CO2 CO H20 

Number of molar 

fractions 

1 1 9 

Number of 

temperatures 

28 28 28 

Number of spectral 

bands 

449 194 998 

Size of the look-up 

table (Mb) 

393.4 170.0 7869.1 

Table 1. “Standard” parameters used in the building of l-distribution databases (each Gr 301 

function uses 1000 values inside [0,1]) and the same number is used for the inverse of 302 

Gr which is also tabulated – the number of molar fractions and temperatures is fixed by 303 

the LBL database provided in ref. [23]. Only atmospheric pressure is considered here. 304 

 305 

In order to reduce the memory cost of the technique, we propose in the following a 306 

simple though accurate method to approximate the mapping functions (and their 307 

inverse) required in the model. 308 

Based on the visualization of mapping functions (see for instance the figures provided in 309 

refs. [5,16]), we propose to approximate the mapping functions by simple one parameter 310 

power functions, i.e.: 311 

  G r X X


  (14) 312 

In this case, their inverses remain simple: 313 

  
1 1

G r X X


  (15) 314 

Consequently, using this simple model, one can condense 2000 values for the Gr function 315 

and its inverse, each based on look-up tables containing 1000 single values for each of 316 

these functions, into a single coefficient . Parameters  are obtained in this work as 317 

solutions of the non-linear least square problem (that only involves one single variable, 318 
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so that any numerical method can be used to perform this minimization – in the present 319 

work, the bisection method was used to solve Eq. (16)): 320 

  0

1
2

0

0 0

 s u c h  th a t 0X G r X d X


 


 
     

  
  (16) 321 

This minimization problem is solved for all states in the initial model database. The size 322 

of the simplified model database after this treatment for the same molecules, set of 323 

temperatures and species concentrations used in Table 1 are given in Table 2. In the 324 

same table, the size of the CKD model for 16 gray gases is also provided for comparison. 325 

 326 

Molecule CO2 CO H20 

Simplified l-

distribution 

0.6 Mb 0.3 Mb 12.3 Mb 

CKD (16 gray gases) 5.3 Mb 1.81 Mb 81.1 Mb 

Table 2. Size of the look-up tables for CKD and simplified l-distribution models - the 327 

same sets of thermophysical states and spectral bands as used in table 1 are considered.  328 

 329 

Once the coefficients  are estimated, uniform gas path transmissivities can be evaluated 330 

as: 331 

  
2
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 (17) 332 

that follows directly from Eqs. (9-a, and 14). Their inverse is then: 333 

  
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l  (18) 334 

For two states (subscripts 1 and 2), the two previous relationships provide function 335 

 1 2
L





ol  as required in the propagative scheme of Eq. (5) as: 336 
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where: 338 

 2 2

1 1

s
 

 
  (20) 339 

This relationship generalizes Eq. (50) of ref. [5], that corresponds to the particular case 340 

s=1. It provides the solution to Eq. (7) as  
 1 2

L
u L

L







ol

. 341 

The set of equations (18-20) defines what will be called from now on the simplified l-342 

distribution method.  Examples of application of the transmissivity model set by Eq. (17) 343 

in the case of uniform situations are provided in Figures 1 to 4. They are equivalent to 344 

Figures 1-3 and 10 of ref. [18]. In each figure, the model is assessed against LBL 345 

calculations averaged over 25 cm-1, which is the width of the narrow bands used to 346 

generate the simplified l-distribution model parameters used in Eq. (17). The 347 

comparisons between LBL and simplified l-distribution results show an excellent 348 

agreement, with errors lower than 1% over most parts of the spectrum. The highest 349 

errors (they attain 2 percent) are observed in the band head of CO2 near 2400 cm-1 in 350 

the case of figure 4. These errors are due to the rather complicated behavior of the 351 

mapping function Gr at this spectral location than does not allow a proper adjustment 352 

using a single exponent  to provide more accurate results. On the same cases, the use of 353 

the full l-distribution database provides absolute differences between LBL and the model 354 

of the order of 10-6. This is the same order of magnitude as already observed in Figure 3 355 

of ref. [16], and the results for this model are not provided again here.  This high quality 356 

of the uniform l-distribution model is fully related to its construction, which was shown 357 

to be a tabulation of LBL data in transmission form. The main source of errors is related 358 

to the interpolation of the look-up tables of the Gr functions, which is small when 1000 359 

values are used over [0,1] as done in the present work. The simplified version developed 360 

here is noticeably less accurate, but the gain in terms of memory space is significant (see 361 

tables 1 and 2) and the order of magnitude of accuracy (of the order of 1%) appears 362 

sufficient for most radiative transfer calculations in high temperature gases. This level of 363 

accuracy in uniform cases is comparable with the SNB model described in ref. [18]. 364 

Notice that most of the equations provided here to treat non-uniform paths, which is the 365 

main focus of the paper, can be readily extended to the SNB model of [18], due to their 366 

strong formal similarities. 367 



16 
 

 368 

Figure 1. Transmissivities of H2O-N2 mixtures at 1500 K (top) and 2900 K (bottom)– 369 

2
H O

x =0.1 - length L=10 cm – total pressure P=1 atm 370 

 371 

 372 

 373 

Figure 2. Transmissivities of CO2-N2 mixtures at 1500 K (top) and 2900 K (bottom) – 374 

2
C O

x = 0.1 - length L=10 cm – total pressure P=1 atm 375 
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 376 

Figure 3. Transmissivity of CO-N2 mixtures at 1500 K (top) and 2900 K (bottom) –  377 

2
C O

x = 0.01 - length L=1000 cm – total pressure P=1 atm  378 

 379 

 380 

Figure 4.  Transmissivity of a H2O-CO2-N2 mixture with xH2O=0.2 and xCO2=0.1 at 2000 K 381 

– length L=100 cm – total pressure P=1 atm (top) – Absolute difference / LBL  (bottom)  382 
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4. FROM L-DISTRIBUTION TO RECURRENT NEURAL NETWORKS 383 

Methods based on neural networks have received recently an increasing interest from 384 

various fields of applied physics and engineering, including the modeling of fluid flows, 385 

signal processing, etc. As noticed in ref. [4], their applications to radiative transfer 386 

problems remain in comparison very limited. Some of them were reminded in the 387 

introduction.  388 

The aim of artificial neural networks is to mimic the processes involved in the human 389 

brain to learn information and to perform various tasks using computers (prediction, 390 

classification, recognition, etc). Most usual neural networks appertain to one of the two 391 

following main categories [24]: 392 

- Static neural networks: the most usual type of static networks used is called 393 

feedforward. This kind of model mostly evaluates non-linear functions of its 394 

inputs. 395 

- Dynamic neural networks: recurrent neural networks are classical examples of 396 

this kind of methods. In this case, the model is driven by non-linear time (in our 397 

case space, as will be shown later) dependent recurrent equations. Recurrent 398 

neural networks are founded on unit cells (of the same form as feedforward 399 

networks) for which some of the outputs (called state outputs) are fed back to its 400 

inputs after applying some time delay.  401 

A cell (or neuron) is a non-linear bounded function of its inputs. It performs two main 402 

elementary operations: 1/ it first takes its inputs and evaluate a weighted sum of these 403 

variables, including a possible bias (constant) and 2/ the result of this linear model is 404 

then modified by an activation function to introduce non-linearities. There exist various 405 

types of activation functions: sigmoidal as used in ref. [4], hyperbolic tangent, rectified 406 

linear units (ReLUs, ReLU(x)=Max[0,x]) as applied in ref. [3], etc. Very often, at the exit of 407 

the activation function, a second stage of the same couple of processes (linear model fed 408 

into another activation function) is used, leading to the concept of hidden layer. Hidden 409 

layers perform intermediate computations that have an important role on the quality of 410 

the whole model, but do not produce values that have a direct interest for the modeler 411 

for which only the final outputs are of importance. Once the structure (number of 412 

weights and of hidden layers) is selected and all activation functions are specified, the 413 

training of the network mostly consists of estimating the set of weights that provides the 414 
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best approximation of a given training set by the neural network. Identification of the 415 

weights is made by application of optimization methods (more or less sophisticated least 416 

square fitting process).  Once the weights are known, the neural network is usually 417 

assessed against a test set, that differs from the training dataset. 418 

Based on this general framework, our aim is to show that the propagative scheme 419 

introduced in the previous sections can be rather naturally reformulated using an 420 

algorithm that is formally equivalent to a recurrent neural network. This type of 421 

structure has not been apparently considered up to now for generating fast transmission 422 

methods of gas radiation. However, RNN structures are usually good candidates to treat 423 

dynamical systems [25] and time series [26]. It is then not surprising to find the same 424 

form to be well adapted to sequences of path lengths, as encountered in the propagative 425 

scheme of Eq. (5). Here, we only focus on the simplified transmission model described in 426 

Section 3.  This choice allows some simplifications and an analytical treatment which is 427 

sufficient for the purpose of the present work. Our objective is to explain why the 428 

selection of an RNN model for non-uniform gas radiation modeling is relevant, but not to 429 

propose a general formulation of non-uniform gas path models as RNNs. Extensions of 430 

the present developments to real LBL data are however discussed later in this section. 431 

In section 4.1., we first present the concept of Exponential Linear Unit (ELU) introduced 432 

in ref. [27]. Among other, we explain why this choice of activation function inside an 433 

RNN structure is pertinent for non-uniform gas radiation modeling. In section 4.2., we 434 

show how the propagative scheme of Eq. (5) can be rewritten in terms of ELUs and 435 

discuss the corresponding algorithm. Its relationship to RNN is emphasized. Several test 436 

cases in non-uniform high temperature configurations are used to compare the “direct” 437 

l-distribution method based on the uniform model of Section 3 together with the non-438 

uniform treatment based on the RNN version of Eq. (19), derived in Section 4.2, against 439 

reference LBL calculations and a CKD model with 16 gray gases absorption coefficients. 440 

Multi-layer configurations involving mixtures of CO2-H2O-CO-N2 at high temperature are 441 

considered for this purpose and results are detailed in Section 4.3. Finally, Section 4.4 442 

provides a discussion of the present modeling strategy and explains how, based on 443 

previous works, it can be extended to real LBL datasets instead of the simplified model 444 

used here.  445 

 446 



20 
 

 447 

4.1. THE EXPONENTIAL LINEAR UNIT (ELU) 448 

Activation functions are key components of artificial neural networks. For non-uniform 449 

gas radiation modeling, Exponential Linear Units (ELUs) have interesting properties. 450 

They are detailed here. 451 

Exponential Linear Units were introduced recently [27] to be used as activation function 452 

in Neural Networks. Their application was found to speed up learning in deep neural 453 

networks and improve their classification accuracies. This activation function was 454 

shown in ref. [27] to outperform other activation functions on different vision datasets. 455 

These units are similar to rectified linear units (ReLUs), initially introduced within the 456 

frame of Boltzmann machines [28]. Compared to ReLUs that are non-negative and thus 457 

have a mean activation larger than zero, ELU have a negative component, which 458 

decreases the so-called bias shift effect that consists of introducing some possibly 459 

artificial bias shift in the next units along the network. A bias shift is a constant that is 460 

added to the linear model (weighted average of the inputs) before to enter the activation 461 

function. 462 

The Exponential Linear Unit with coefficient 0   is defined as: 463 

  
  

 i f  0

e x p 1  if  0

x x

x
x x







 

 

 (21) 464 

In order to abridge the notations, we will use from now on the notation    1
x x  . 465 

Properties of ELU (derivative, etc) useful for the design of neural networks are provided 466 

in ref. [27]. The function    1
x x   is depicted in Figure 5. As can be seen, for 467 

negative values of the variable x, the ELU activation function converges slowly toward a 468 

negative value.  469 
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 470 

Figure 5. The Exponential Linear Unit (ELU) 471 

 472 

The use of ELUs to model gas radiative properties is rather natural, if one notices that 473 

the emissivity of a gas path of length L in the gas is (here in Full Spectrum form): 474 

          
4 4

0 0

1 e x p
b b

L L I T d L I T d
T T
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     

 

 

          (22) 475 

Many existing methods founded on gas path emissivities, including k-distribution and 476 

WSGG models for instance, can thus be considered technically as particular types of 477 

Neural Networks (of the projection pursuit form [29]) involving ELUs. As will be shown 478 

in the next section, the same ELUs can be used to treat path non-uniformities. For this 479 

purpose, we will show how formula Eq. (19) can be rewritten in terms of a two layer 480 

neural network based on ELUs. The resulting propagative scheme of Sections 2-3 will 481 

then be proved to be mathematically equivalent to an RNN constructed with the help of 482 

ELU activation functions. 483 

4.2. REFORMULATION OF THE L-DISTRIBUTION PROPAGATIVE SCHEME AS 484 

A RECURRENT NEURAL NETWORK. 485 

Conceptually, the propagative scheme used in the l-distribution approach converts a 486 

sequence of geometrical gas path lengths  1 2
, , ...,

n
L L L   into another sequence of 487 
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equivalent absorption lengths  1 .. 2 ..
, , ...,

n n n n
L L L . These equivalent absorption lengths 488 

are defined by the recurrence relationships [5], as a generalization of Eq. (5) that is 489 

limited to two layers: 490 

 
 . . 1 1 ..

n n n

i n i i i i n

L L

L L L





 



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ol

 (23) 491 

As soon as the equivalent absorption path length 
1 ..n

L  is calculated, the transmissivity of 492 

the path 
1 2

. . .
n

L L L    is then: 493 

    1 .. 1 1 1 ..
, ..,

n n n
L L L

 
 

 
  (24) 494 

Any model can be used to calculate 
1




 . In the present work the uniform model of Eq. 495 

(17) is applied. 496 

The propagative scheme can be written in the same form as an RNN, as depicted in 497 

Figure 6 for 3 layers (the general case is a direct generalization of this scheme). This 498 

requires each cell (circle) in the graph to evaluate a function of the form of 499 

 1 1 ..i i i i n
L L






 
o+ l . Obviously, this necessitates that 

1 ..
0

n n
L


 , i.e., the left input on the cell 500 

of the left (this input is not depicted in the figure) is 0. 501 

 502 

 503 

Figure 6. Architecture of a RNN equivalent to the propagative scheme – each cell (circle) 504 

calculates a function of the form  .. 1 1 ..i n i i i i n
L L L






 
 o+ l . 505 

 506 

In order to provide a direct reformulation of the propagative scheme of Figure 6 as an 507 

RNN written in terms of ELUs, we first notice that, using the same notations as in Eq. 508 

(19): 509 
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If one then uses a Gauss-Legendre quadrature at order N over [0,1], and write 511 

, 1, .. ,
j

x j N  and , 1, .. ,
j

j N  its nodes and weights respectively, it is easy to check 512 

that: 513 
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where coefficients , 1, .. ,
j

u j N are solutions of: 515 

  1 2 ; , 1, . . ,
j j

P u x j N   (27) 516 

in which: 517 
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is the incomplete Gamma function [30]. In the present work, this function was evaluated 519 

with routines provided in ref. [31] and solutions of Eq. (27) were obtained using the 520 

bisection method.  521 

Eq. (26) can then be integrated with respect to the gas path length between 0 and L to 522 

yield: 523 
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This quantity corresponds to the last term at the RHS of Eq. (19). Based on this last 525 

relationship together with Eq. (19), we can eventually formalize the process in each of 526 

the cells of figure 6 in terms of ELUs. This is depicted in figure 7. 527 

The specification of the weights that appear in the RNN model of Eq. (29) and figure 7 528 

mostly consists of the evaluation of the quantities , 1, .. ,
j

u j N . This means that solving 529 

Eq. (27) is equivalent to a learning stage as it provides all the weights required in the 530 

model. Additional details on this learning stage and on its extension to the case of real 531 

LBL data instead of the simplified model used here are provided later in section 4.4. 532 
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 533 

 534 

Figure 7. Details on the cells (circles) involved in Figure 6 for N=3 535 

 536 

As shown in figure 7 (where the quadrature order N is 3, which explains the number of 537 

squares at the top of figure 7. In the case of a general quadrature order N, the total 538 

number of squares in figure 7 would be N+2), 4 types of weights are used (they follow 539 

directly from Eqs. (19,20,26)): 540 

- type I weights are of the form: , 12 1
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- type IV weights are of the form , 1 1 1

, , 1

1
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. These weights can 546 

be positive or negative, depending on the sign of the quantities inside the brackets. In 547 

case of strong gradients of temperatures and species concentrations, it was shown in ref. 548 
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[17] that negative weights should be preferred, requiring possibly a reorganization of 549 

the treatment of the layers along the path as explained in ref. [5]. In the test cases 550 

considered here and detailed in the next section, only small gradients of temperature 551 

and species concentrations are considered between successive layers and this possible 552 

problem of asymmetries is not further discussed.  553 

- type II weight is 1. 554 

Based on these relationships, one can readily check that at the output of each cell, each 555 

of which being equivalent to a feedforward neural network whose state output [24] is 556 

. .i n
Z L , we receive exactly the same quantity as calculated through Eq. (19). This proves 557 

the equivalence between the iterative scheme of Eq. (5) and the graphical algorithm set 558 

by figures 6 and 7. Obviously, the use of this algorithm in the case of the simplified 559 

transmission model of section 3 is questionable, as an analytical solution, provided by 560 

Eq. (19), exists. But its application to more general gas path transmissivities based on 561 

LBL calculations instead of the simplified model of Section 3.2 is possible, as studied in 562 

ref. [17]. This extension is discussed later, in section 4.4. Examples of application in non-563 

uniform configurations for various choices of the order of the quadrature N are provided 564 

in the next section. They illustrate the relevance of the proposed methodology and 565 

validate the applicability of the formulation in terms of recurrent neural network in 566 

radiative transfer applications. 567 

4.3. APPLICATION IN NON-UNIFORM CONFIGURATIONS 568 

Test cases of the simplified l-distribution model in uniform configurations were already 569 

provided in section 3, and shown to yield excellent accuracy when assessed against LBL 570 

calculations. In the present section, we evaluate the same model both against reference 571 

LBL calculations and a CKD model with 16 gray gases based on a Gauss-Legendre 572 

quadrature. For the CKD model, the double (in cases of mixtures of CO2, H2O and N2) and 573 

triple (in cases of mixtures of CO2, CO, H2O and N2) integration methods were used to 574 

treat mixtures of absorbing species. Here, we only focus on the accuracy of the non-575 

uniform model so that the use of these schemes to handle mixtures in the CKD method is 576 

acceptable. However, in order to provide details on the calculation costs and make a fair 577 

comparison of the methods in terms of CPU time, a specific version of the CKD model 578 

was also written to allow application of the uncorrelated assumption of transmissivities 579 
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[9] to treat mixtures of absorbing species. This CKD model is only used for this CPU time 580 

analysis as it provides exactly the same results as the method described earlier, but was 581 

restricted to binary mixtures of absorbing species (instead of three for the CKD model 582 

described earlier). Results are provided in Table 3 in the case C1 (non-isothermal 583 

mixture of CO2 and H2O) detailed below, with 200 uniform sub-layers along a non-584 

uniform path. The CPU times corresponds to 105 single narrow band (including both CO2 585 

and H2O absorption) calculations. The simplified l-distribution model is thus about 2.5 586 

time more efficient than the CKD model with 16 gray gases. 587 

Model CPU time 

CKD with 16 gray gases 25 s 

l-distribution 15 s 

Simplified l-distribution 11 s 

Table 3. CPU time comparisons for 105 single narrow band calculations (200 uniform 588 

sub-paths per non-uniform ray). 589 

 590 

As profiles of temperatures and species concentrations are considered in the following 591 

cases, a few words about the interpolation technique used in the simplified l-distribution 592 

method are needed. This model depends on 3 coefficients, as shown in Eq. (17). The first 593 

two coefficients are mean (Planck and Rosseland) absorption coefficients of the gas. 594 

These coefficients are interpolated to any state not included in the database linearly 595 

with respect to the temperature in the CO and CO2 cases, bi-linearly with respect to 596 

temperature and H2O molar fraction in the case of water vapor. The same linear and bi-597 

linear schemes were used for . This very simple method will be shown to provide 598 

accurate results in the test cases considered in this study.  599 

The first two non-uniform cases (C1 and C2) were taken from ref. [22] (C1) and ref. [32] 600 

(C2) respectively.  Case C3 was proposed recently by Wang in ref. [33]. Based on this 601 

configuration, two total path lengths (C3: 10 cm and C4: 100 cm) are considered. In all 602 

cases, non-uniform paths are divided into 200 uniform sub-paths and the same 603 

discretization is used for all gas radiation methods. Radiative intensities are evaluated at 604 

the location l=L. Concerning the simplified l-distribution model, its two formulations are 605 

evaluated: the first one will be referred to as its direct formulation, based on Eq. (19) to 606 



27 
 

treat non-uniformities; the second one will be called RNN and is based on the 607 

formulation described in section 4.2. Various orders of quadrature N (see Eqs. (26-29)), 608 

from 4 (results for a quadrature order of 1 are of poor quality, reason why they are not 609 

provided here) up to 256 are used for the comparisons between the direct model and its 610 

RNN reformulation. Line of sight (0D) calculations are performed. 611 

4.3.1. Case C1 612 

In case C1, the profiles of temperature and species concentrations are given as: 613 
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 (30) 614 

where the total distance of the path is L=300 cm. 615 

Results are depicted in Figure 8. All subsequent figures (from 8 to 11) use the same 616 

structure. On the top, radiative intensities in W/m2/sr calculated LBL and averaged over 617 

narrow bands (25 cm-1) are provided. In the middle, the difference between the LBL 618 

intensity and its approximate model value (either based on CKD or simplified l-619 

distribution) divided by the maximum value of narrow band averaged LBL intensity is 620 

given. This choice was made to avoid possible divisions by small values in almost 621 

transparent zones. At the bottom, differences (absolute value of the difference between 622 

band averaged intensities, in log-scale) between the direct non-uniform model and its 623 

RNN approximation for various orders of the quadrature N are given.  624 
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 625 

Figure 8. Intercomparison of radiative intensities in Case C1.  626 

From Figure 8, one can notice that the overall quality of the simplified l-distribution 627 

method is comparable with the CKD model. Only at 2400 cm-1, in the band head of CO2, 628 

errors are above 2%, for the same reasons as in the cases of section 3.2. In terms of total 629 

intensity, the LBL model provides 6925 W.m-2.sr-1, 6870 W.m-2.sr-1 (0.8 % / LBL)  for 630 

CKD and 6910 W.m-2.sr-1 (0.2 % / LBL) for the direct simplified l-distribution model. For 631 

N=16, the difference between the direct model and its RNN version is lower than 0.02 632 

W.m-2.sr-1 for the calculation of the total intensity. 633 

4.3.2. Case C2 634 

The profiles of temperature and species concentrations used in case C2 are given as: 635 
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where the total distance of the path is L=100 cm. 637 

Results are depicted in figure 9. The same conclusions as in case C1 can be made. A 638 

quadrature order of N=4 provides large errors and the choice N=16 yields small though 639 

noticeable differences when compared with the direct model. There errors remain 640 

minor, especially when averaged over the full spectrum. Indeed, in terms of total 641 

radiative intensities, LBL calculation provides 18919 W.m-2.sr-1, CKD 19667 W.m-2.sr-1 (4 642 

% / LBL) the direct simplified l-distribution model 19184 W.m-2.sr-1 (1.4 % / LBL). The 643 

difference with its RNN version with N=16 is lower than 0.4 W.m-2.sr-1 when summed 644 

over the full spectrum. It is below 0.001 W.m-2.sr-1 when the quadrature order N=256 is 645 

used. 646 

 647 

Figure 9. Intercomparison of radiative intensities in Case C2. 648 

4.3.3. Cases C3 and C4 649 

Case C3 uses the following profiles of temperature and species concentrations: 650 
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where the total gas path length is first (case C3) L = 10 cm, which complies with the 655 

value used in ref. [33]. Compared to the previous cases that were restricted to mixtures 656 

of two absorbing molecules, 3 absorbing species are considered here (CO2, H2O and CO). 657 

Predictions for this case are shown in Fig. 10. 658 

In terms of total radiative intensities, LBL calculation provides 1202 W.m-2.sr-1, CKD 659 

1167 W.m-2.sr-1 (2.9 % / LBL), the direct simplified l-distribution model 1179 W.m-2.sr-1 660 

(1.9 % / LBL). The difference with its RNN version with N=16 is lower than 0.01 W.m-661 

2.sr-1 for the calculation of the total intensity. It is below 0.00001 W.m-2.sr-1 when N=256 662 

is used. 663 
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 664 

Figure 10. Intercomparison of radiative intensities in Case C3. 665 

Case C4 is exactly the same as case C3 but the total length of the path is 100 cm. Results 666 

are plotted in Figure 11. 667 

In terms of total radiative intensities, LBL calculation provides 10261 W.m-2.sr-1, the CKD 668 

model 10002 W.m-2.sr-1 (2.5 % / LBL), the direct simplified l-distribution model 10337 669 

W.m-2.sr-1 (0.7 % / LBL). The difference between the direct model and its RNN version 670 

with N=16 is lower than 0.08 W.m-2.sr-1. It is below 0.0002 W.m-2.sr-1 for the calculation 671 

of the total intensity when N=256 is used. 672 

 673 
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674 
  675 

Figure 11. Intercomparison of radiative intensities in Case C4. 676 

 677 

4.3.4. General comments on the non-uniform test cases 678 

The set of test cases considered to evaluate both the direct and RNN versions of the 679 

propagative scheme set by Eq. (5) are limited but cover in fact a wide range of possible 680 

configurations. Indeed, these cases both involve optically thin and thick limits, wide 681 

ranges of values of mean absorption coefficients 
P

k  and overlapping parameters  . 682 

These cases are thus sufficient to validate the RNN version of the propagative scheme 683 

proposed in this paper, which is the main focus of the present work. 684 

With a quadrature order equal to N=4, large errors are observed (empty squares in 685 

figures 8 to 11). For values of N equal or higher than 16 (plain circles in figures 8 to 11), 686 

the RNN models almost coincide exactly with the one based on a direct application of the 687 

analytical formula Eq. (19). The same value of quadrature order N=16 was used in ref. 688 

[17] to treat real LBL data instead of the uniform model of Eq. (17). High temperature 689 

spectra were also considered in this work. This means that other quadrature orders may 690 
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be needed for atmospheric applications. The treatment of cases C1-4 however provides a 691 

proof of the actual possibility to treat non-uniform paths using the RNN structure 692 

depicted in Figures 6 and 7. 693 

Moreover, the simplified l-distribution model described in this paper has an accuracy 694 

which is similar to (and in all the considered cases higher than) the widely used CKD 695 

model for the calculation of full spectrum intensities. Considering its small memory cost 696 

and its high computational efficiency (the direct model is fully based on Eqs. (17,19), 697 

that only involve simple and analytical formulas), this method can be considered as a 698 

good candidate for radiative transfer applications in high temperature gaseous media. 699 

Its RNN version can be confidently used too, as it provides with a quadrature order of 16 700 

almost the same accuracy as the direct method. Notice however that the RNN version is 701 

more computationally demanding than Eq. (19). A ratio of about 4 in terms of 702 

computational time was observed when the RNN version with N=16 is used instead of 703 

the direct model.  704 

4.4. DISCUSSION 705 

As noticed earlier in this paper, using the “neural” version depicted in Figures 6-7 to 706 

evaluate equivalent absorption lengths has probably little interest in the case of the 707 

uniform transmissivity model proposed in Section 3, since for this model these 708 

equivalent absorption lengths are analytical. They are indeed provided by Eq. (19). 709 

However, the present developments pave the way for further fast transmissivity model 710 

developments based on Recurrent Neural Networks, a structure that has not be 711 

considered yet to the best of the authors’ knowledge. This point is discussed in this 712 

section. 713 

The training of NN models is subject to known issues [29]. The choice of the starting 714 

values (how to initialize the weights?), overfitting (how to select the optimal number of 715 

weights?), and the choice of the structure of the network (how to select the number of 716 

hidden units and of layers?) are critical in the definition of the model. Choosing these 717 

parameters is difficult in a general frame. Indeed, as NN are most often black box 718 

models, it is almost impossible to specify all these quantities in advance. There are 719 

several tricks to circumvent these problems but, most of the time, trial and errors 720 
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techniques are used to select the best combination of parameters (structure, number of 721 

weights and initialization) [3].  722 

Based on the present work, all these three issues can be solved if one uses the recurrent 723 

structure described in this paper. 724 

Concerning the structure of the network, it is fixed by the scheme depicted in figure 6. 725 

There is no reason to add any additional layer in the method. The choice of the activation 726 

function (ELU) is also rather natural. The same kind of formulation in terms of ELUs was 727 

used in ref. [17] in the case of real gas spectra. This property extends to any problem for 728 

which the Archimedean copula 
1 1

C  that appears in Eq. (4) is of the Levy Subordinated 729 

type [34,35]. Direct models of Archimedean copula (not necessarily Levy Subordinated) 730 

based on neural networks can be found in ref. [36] but the method is more focused on 731 

copula models than the method described here.  732 

Concerning the optimal number of weights, it is mostly related to the choice of the 733 

number N related to the Gauss-Legendre quadrature used in Eq. (27). In ref. [17], a 734 

Gauss-Legendre quadrature at order 16 was selected (the corresponding formulation of 735 

ref. [17] is reminded later in this section). As shown in section 4.3, this order of 736 

quadrature was found to provide accurate results here too. Notice however, that both 737 

the present work and ref. [17] are dedicated to high temperature configurations. This 738 

means that adaptation of this quadrature order N may be needed for applications in the 739 

atmosphere. A detailed analysis of this specific point in cases of atmospheric paths is 740 

kept as future work. 741 

Concerning the learning stage and the initialization of the weights, additional details are 742 

described in this paragraph.  It was shown in ref. [17], that if: 1/ the absorption 743 

spectrum in state 1 is gray i.e., 
,1 ,1P

k


  , and 2/ the non-constant scaling coefficient 744 

between spectra in states 1 and 2 is bounded and takes values inside a small interval, i.e., 745 
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where 
m in

v u u  and  vF is the distribution function of variable v over the spectral 748 

interval  . Eq. (33) can be rewritten as: 749 
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F d F  . Noticing that 751 

as v is positive by definition,  
*

vF  is a probability distribution function (its inverse will 752 

be from now on written v*), one can rewrite Eq. (34) as: 753 
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Using the same Gauss-Legendre quadrature as in section 4.2 to estimate the integral 755 

over [0,1], Eq. (35) can be approximated by: 756 
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that takes exactly the same functional form as used in 4.2. 758 

Moreover, in the same reference [17], it was verified in real LBL cases that this 759 

formulation can be extended to non-gray cases by simply replacing the mean absorption 760 

coefficient 
,1P

k  of Eqs. (33-36) by some moment of the absorption coefficient written 
s

 . 761 

The general solution of Eq. (7) thus takes the form, similar to Eq. (35): 762 
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 that one can approximate, using again a Gauss-Legendre quadrature at order N, as: 764 
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Eqs. (37,38) provide the solution of Eq. (7) in the case of real LBL data. Eq. (38) takes 766 

exactly the same form as the one considered in 4.2. A table of correspondence between 767 

the quantities that appear in Eqs. (19,29) and Eq. (38) is provided in table 4. 768 

 769 

 770 

 771 
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Table 4. Relationship between the quantities that appears in Eqs. (19,29) and Eq. (38) 772 

 773 

This means that in the general case, the same algorithm as used in section 4.2 can be 774 

used. In practice, as detailed in ref. [17], several of the quantities that appear in Eq. (38) 775 

need to be adjusted on the LBL transmission curves because if the quasi-scaling 776 

approximation is close to the real behavior of gas spectra, it is not exact. This 777 

minimization process is equivalent to a training or learning stage in the machine 778 

learning terminology. The quantities that are adjusted on the LBL transmission curves, 779 

or equivalently learned from the LBL transmission curves, are essentially the 780 

parameters  
*

v , 1, .. ,
j

x j N  as soon as the coefficient 
s

  is chosen (notice that the 781 
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exact specification of this coefficient 
s

  is not compulsory as it always appears in 782 

formula (38) as the product  
*

v
s j

x   and coefficients   
*

v , 1, .. ,
j

x j N  are adjusted – 783 

this property arises from the change of distribution from F to F* between Eq. (33) and 784 

Eq. (34)). From table 4, one can see that the training of coefficients  
*

v , 1, .. ,
j

x j N in 785 

the LBL case is equivalent to the choice of coefficients , 1, .. ,
j

u j N  in the simplified l-786 

distribution model. The specification of these coefficients as solutions of Eq. (27) is thus 787 

the same as some training stage. No explicit learning step appears in the simplified l-788 

distribution approach because an explicit solution can be found but this learning stage is 789 

required when the methodology is applied to real LBL datasets. Combining the results 790 

described in the present paper with those of ref. [17] (or equivalently Eqs. (37,38)) thus 791 

provides all the elements required to generate an RNN model of non-uniform path 792 

transmissivities. This RNN model then has the interesting property that all its weights 793 

have a clear physical meaning, as detailed in table 4, avoiding the black box disadvantage 794 

of this category of methods. The parameters of the simplified l-distribution model, or the 795 

same steps as described in ref. [17], can be used to initialize the optimization of the 796 

parameters of Eq. (38) on real LBL datasets. 797 

Furthermore, both feedforward and recurrent neural networks are so-called universal 798 

approximators [25]. Accordingly, in theory, both of them are likely to estimate any non-799 

uniform path transmissivity. However, the RNN architecture has some advantages 800 

compared to feedforward models. They are briefly discussed here. The iterative process 801 

proposed in this work can be readily adapted to any dimension (number of sub-paths 802 

encountered along a non-uniform path) which makes it appropriate for the treatment of 803 

general radiative transfer problems for which many such uniform sub-paths may be 804 

encountered along a ray. This iterative structure thus appears to be well suited to 805 

radiative transfer calculations, in comparison with any other feedforward networks as 806 

considered in ref. [4]. Indeed, in actual radiative transfer problems, the dimension of the 807 

input space (number of sub-paths along a ray) can quickly become difficult to handle if a 808 

large number of such inputs is treated. This would require the specification of many 809 

weights in feedforward NN models. In practice, large numbers of weights complicate the 810 

training of the model and reduce its computational efficiency compared to a LBL 811 

calculation. The propagative scheme introduced here does not suffer from this limitation 812 
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since only transitions between successive layers are modeled, i.e., even in the case of a 813 

high number of sub-paths, what is modeled remains in dimension 2, as shown in figures 814 

6 and 7. 815 

Eventually, if the model presented in this work has some advantages compared to other 816 

methods for non-uniform path radiative transfer calculations, it also has some 817 

limitations. In fact, it can be noticed that the present method provides a gas radiation 818 

model formulated in terms of transmissivities. This type of formulation, whose main 819 

interest is to produce a fast model as no spectral or pseudo-spectral loop is required, has 820 

an impact on the possible choices of RTE solvers. Indeed, the present developments are 821 

limited to ray-tracing RTE solvers, which includes Monte Carlo methods but also quasi-822 

Monte Carlo (qMC, [37]) techniques, i.e., numerical methods based on the integral form 823 

of the RTE. The present model cannot be used with the Discrete Ordinate Method, for 824 

instance, as it uses the differential form of the RTE. However, the present modeling 825 

strategy can be applied for coupled calculations to treat engineering problems, in the 826 

same way the CKD model is used in refs. [38,39]. Compared to a combination of qMC and 827 

CKD, the use of the present model has one dimension less than CKD (no sampling or loop 828 

over gray gases) which can be beneficial to reduce the cost of a qMC calculation. 829 

Application of the simplified l-distribution method together with a net exchange 830 

formulation is also as straightforward as it is for the SNB models [40]. Notice that one 831 

part of the justification of the copula formalism is founded on this idea of net exchange, 832 

as detailed in ref. [5], illustrating the strong theoretical connection between the present 833 

method and net exchange RTE solvers. In these contexts (ray tracing RTE solver and/or 834 

net exchange formulation), as shown in the paper, the “direct” simplified l-distribution 835 

model can be used confidently. Furthermore, as pointed out several times in the paper, 836 

the “neural” version has little interest in the case of the simplified l-distribution model 837 

but the present paper provides a proof of concept. The “neural” version may find 838 

application in problems for which only a finite set of transitions between layers (i.e. 839 

distinct states of the gas) needs to be considered in which case, the LBL formulation 840 

described two paragraphs above can be used instead of the simplified model of section 841 

3.2. Indeed, the quantities that are trained in the RNN version are related to transitions 842 

between successive layers so that the number of parameters to identify is directly 843 

proportional to the amount of distinct states encountered in the problem. This kind of 844 
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configuration is relatively rare in high temperature configurations, for which the “direct” 845 

simplified l-distribution model can be used, but rather usual in atmospheric sciences 846 

(multi-layer atmospheres). Application of the present developments in their recurrent 847 

neural network version for radiative transfer studies in the atmosphere, mostly as a 848 

continuation of ref. [5] and in which LBL datasets will be used instead of the simplified l-849 

distribution model considered in the present paper, is scheduled as future work. 850 

  851 
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5. CONCLUSION 852 

The main objective of the work was to show that recurrent neural network models are 853 

relevant candidates for modeling non-uniform gas path transmissivities. Relationships 854 

between a method proposed by Godson in the 50s and RNNs, two a priori strongly 855 

distinct ideas, follow from a mathematical analysis and a reformulation of Godson’s 856 

implicit equation. This reformulation involves the inverse of the transmission function. It 857 

provides an analytical method for the treatment of non-uniform paths. Most results 858 

provided here follow directly from recent results obtained within the frame of the 859 

development of the l-distribution approach. 860 

A simplified version of the l-distribution method was introduced. The main advantage of 861 

this simplified model is that it allows a fully analytical derivation of all model 862 

parameters. Compared with the full database (that requires a few gigabytes), the size of 863 

the simplified l-distribution model is lower than 14 megabytes. This method was found 864 

to be accurate both in uniform and non-uniform scenarios. Its accuracy of a few percent 865 

is sufficient for most radiative heat transfer calculations in high temperature gases.  866 

Based on simple analytical developments, it was then shown that the propagative 867 

scheme associated with the l-distribution method can be written in an RNN form. 868 

Indeed, this propagative scheme consists of a transformation of a series of optical paths 869 

into equivalent absorption lengths. The structure of the problem is well suited to RNN 870 

models, more usually encountered in the modeling of dynamical systems or the 871 

treatment of time series. The RNN formulation, that uses Exponential Linear Units 872 

(ELUs) as activation functions, was compared with the analytical solution and found to 873 

provide highly accurate estimates of non-uniform path transmissivities. All the weights 874 

involved in the RNN formulation have a clear physical meaning. This allows a high level 875 

of control and interpretability of the RNN model, a property which is usually hard to 876 

ensure with methods purely based on machine learning. The only quantities involved in 877 

the RNN model that are not directly related to the uniform model (the set of 
j

u ) are 878 

obtained here as solutions of an implicit equation instead of a minimization process. 879 

This possibility is related to the choice of the simplified model for the calculation of 880 

transmissivities that allows a simplified treatment of the training of the model, but the 881 

process is equivalent to a learning stage. Extension of the method to real LBL 882 
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transmissivities instead of the simplified model was discussed. Future works will be 883 

devoted to its application for atmospheric calculations.     884 
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