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Abstract

In this paper we discuss an application of Stochastic Approximation to statistical estimation of high-
dimensional sparse parameters. The proposed solution reduces to resolving a penalized stochastic optimization
problem on each stage of a multistage algorithm; each problem being solved to a prescribed accuracy by
the non-Euclidean Composite Stochastic Mirror Descent (CSMD) algorithm. Assuming that the problem
objective is smooth and quadratically minorated and stochastic perturbations are sub-Gaussian, our analysis
prescribes the method parameters which ensure fast convergence of the estimation error (the radius of a
confidence ball of a given norm around the approximate solution). This convergence is linear during the
first “preliminary” phase of the routine and is sublinear during the second “asymptotic” phase. We consider
an application of the proposed approach to sparse Generalized Linear Regression problem. In this setting,
we show that the proposed algorithm attains the optimal convergence of the estimation error under weak
assumptions on the regressor distribution. We also present a numerical study illustrating the performance of
the algorithm on high-dimensional simulation data.

1 Introduction

Our original motivation is the well known problem of (generalized) linear high-dimensional regression with
random design. Formally, consider a dataset of N points (ϕi, ηi), i ∈ {1, . . . , N}, where ϕi ∈ Rn are (random)
features and ηi ∈ R are observations, linked by the following equation

ηi = r(ϕTi x∗) + σξi, i ∈ [N ] := {1, . . . , N} (1)

where ξi ∈ R are i.i.d. observation noises. The standard objective is to recover the unknown parameter x∗ ∈ Rn

of the Generalized Linear Regression (1) – which is assumed to belong to a given convex closed set X and to be
s-sparse, i.e., to have at most s≪ n non-vanishing entries from the data-set.

As mentioned before, we consider random design, where ϕi are i.i.d. random variables, so that the estimation
problem of x∗ can be recast as the following generic Stochastic Optimization problem:

g∗ = min
x∈X

g(x), where g(x) = E
{
G
(
x, (ϕ, η)

)}
, G(x, (ϕ, η)) = s(ϕTx)− ϕTxη, (2)
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with s(·) any primitive of r(·), i.e., r(t) = s′(t). The equivalence between the original and the stochastic
optimization problems comes from the fact that x∗ is a critical point of g(·), i.e., ∇g(x∗) = 0 since, under mild
assumptions, ∇g(x) = E{ϕ[r(ϕTx)− r(ϕTx∗)]}. Hence, as soon as g as a unique minimizer (say, g is strongly
convex over X), solutions of both problems are identical.

As a consequence, we shall focus on the generic problem (2), that has already been widely tackled. For
instance, when given an observation sample (ϕi, ηi), i ∈ [N ], one may build a Sample Average Approximation
(SAA) of the objective g(x)

ĝN (x) =
1

N

N∑
i=1

G(x, (ϕi, ηi)) =
1

N

N∑
i=1

[s(ϕTi x)− ϕTi xηi] (3)

and then solve the resulting problem of minimizing ĝN (x) over sparse x’s. The celebrated ℓ1-norm minimization
approach allows to reduce this problem to convex optimization. We will provide a new algorithm adapted to this
high-dimensional case, and instantiating it to the original problem 1.

Existing approaches and related works. Sparse recovery by Lasso and Dantzig Selector has been extensively
studied [11, 8, 5, 46, 10, 9]. It computes a solution x̂N to the ℓ1-penalized problem minx ĝN (x) + λ∥x∥1 where
λ ≥ 0 is the algorithm parameter [35]. This delivers “good solutions”, with high probability for sparsity level s as
large as O

(
NκΣ

lnn

)
, as soon as the random regressors (the ϕi) are drawn independently from a normal distribution

with a covariance matrix Σ such that κΣI ⪯ Σ ⪯ ρκΣI
1, for some κΣ > 0, ρ ≥ 1. However, computing this

solution may be challenging in a very high-dimensional setting: even popular iterative algorithms, like coordinate
descent, loops over a large number of variables. To mitigate this, randomized algorithms [3, 22], screening rules
and working sets [19, 30, 34] may be used to diminish the size of the optimization problem at hand, while
iterative thresholding [1, 7, 20, 16, 33] is a “direct” approach to enhance sparsity of the solution.

Another approach relies on Stochastic Approximation (SA). As ∇G(x, (ϕi, ηi)) = ϕi(r(ϕ
T
i x) − ηi) is an

unbiased estimate of ∇g(x), iterative Stochastic Gradient Descent (SGD) algorithm may be used to build
approximate solutions. Unfortunately, unless regressors ϕ are sparse or possess a special structure, standard SA
leads to accuracy bounds for sparse recovery proportional to the dimension n which are essentially useless in
the high-dimensional setting. This motivates non-Euclidean SA procedures, such as Stochastic Mirror Descent
(SMD) [37], its application to sparse recovery enjoys almost dimension free convergence and it has been well
studied in the literature. For instance, under bounded regressors and with sub-Gaussian noise, SMD reaches

“slow rate” of sparse recovery of the type g(x̂N )− g∗ = O
(
σ
√
s ln(n)/N

)
where x̂N is the approximate solution

after N iterations [44, 45]. Multistage routines may be used to improve the error estimates of SA under strong or
uniform convexity assumptions [27, 29, 18]. However, they do not always hold, as in sparse Generalized Linear
Regression, where they are replaced by Restricted Strong Convexity conditions. Then multistage procedures

[2, 17] based on standard SMD algorithms [24, 38] control the ℓ2-error ∥x̂N − x∗∥2 at the rate O
(

σ
κΣ

√
s lnn
N

)
with high probability. This is the best “asymptotic” rate attainable when solving (2). However, those algorithms
have two major limitations. They both need a number of iterations to reach a given accuracy proportional to

the initial error R = ∥x∗ − x0∥1 and the sparsity level s must be of order O
(
κΣ

√
N
lnn

)
for the sparse linear

regression. These limits may be seen as a consequence of dealing with non-smooth objective g(x). Although it
slightly restricts the scope of corresponding algorithms, we shall consider smooth objectives and algorithm for
minimizing composite objectives (cf. [25, 32, 39]) to mitigate the aforementioned drawbacks of the multistage
algorithms from [2, 17].

Principal contributions. We provide a refined analysis of Composite Stochastic Mirror Descent (CSMD)
algorithms for computing sparse solutions to Stochastic Optimization problem leveraging smoothness of the
objective. This leads to a new “aggressive” choice of parameters in a multistage algorithm with significantly
improved performances compared to those in [2]. We summarize below some properties of the proposed procedure
for problem (2).

1We use A ⪯ B for two symmetric matrices A and B if B −A ⪰ 0, i.e. B −A is positive semidefinite.
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Each stage of the algorithm is a specific CSMD recursion; They fall into two phases. During the first
(preliminary) phase, the estimation error decreases linearly with the exponent proportional to κΣ

s lnn . When it

reaches the value O
(

σs√
κΣ

)
, the second (asymptotic) phase begins, and its stages contain exponentially increasing

number of iterations per stage, hence the estimation error decreases as O
(

σs
κΣ

√
lnn
N

)
where N is the total

iteration count.

Organization and notation The remaining of the paper is organized as follows. In Section 2, the general
problem is set, and the multistage optimization routine and the study of its basic properties are presented.
Then, in Section 3, we discuss the properties of the method and conditions under which it leads to “small
error” solutions to sparse GLR estimation problems. Finally, a small simulation study illustrating numerical
performance of the proposed routines in high-dimensional GLR estimation problem is presented in Section 3.3.

In the following, E is a Euclidean space and ∥ · ∥ is a norm on E; we denote ∥ · ∥∗ the conjugate norm (i.e.,

∥x∥∗ = sup∥y∥≤1 ⟨y, x⟩). Given a positive semidefinite matrix Σ ∈ Sn, for x ∈ Rn we denote ∥x∥Σ =
√
xTΣx and

for any matrix Q, we denote ∥Q∥∞ = maxij |[Q]ij |. We use a generic notation c and C for absolute constants;
a shortcut notation a ≲ b (a ≳ b) means that the ratio a/b (ratio b/a) is bounded by an absolute constant;
the symbols

∨
,
∧

and the notation (.)+ respectively refer to ”maximum between”, ”minimum between” and
”positive part”.

2 Multistage Stochastic Mirror Descent for Sparse Stochastic Opti-
mization

This section is dedicated to the formulation of the generic stochastic optimization problem, the description and
the analysis of the generic algorithm.

2.1 Problem statement

Let X be a convex closed subset of an Euclidean space E and (Ω, P ) a probability space. We consider a mapping
G : X ×Ω → R such that, for all ω ∈ Ω, G(·, ω) is convex on X and smooth, meaning that ∇G(·, ω) is Lipschitz
continuous on X with a.s. bounded Lipschitz constant,

∀x, x′ ∈ X, ∥∇G(x, ω)−∇G(x′, ω)∥ ≤ L(ω)∥x− x′∥, L(ω) ≤ ν a.s.. (4)

We define g(x) := E{G(x, ω)}, where E{·} stands for the expectation with respect to ω, drawn from P . We
shall assume that the mapping g(·) is finite, convex and differentiable on X and we aim at solving the following
stochastic optimization problem

min
x∈X

[g(x) = E{G(x, ω)}], (5)

assuming it admits an s-sparse optimal solution x∗ for some sparsity structure.
To solve this problem, stochastic oracle can be queried: when given at input a point x ∈ X, generates an

ω ∈ Ω from P and outputs G(x, ω) and ∇G(x, ω) := ∇xG(x, ω) (with a slight abuse of notations). We assume
that the oracle is unbiased, i.e.,

E{∇G(x, ω)} = ∇g(x), ∀x ∈ X.

To streamline presentation, we assume, as it is often the case in applications of stochastic optimization
problem (5), that x∗ is unconditional, i.e., ∇g(x∗) = 0. or stated otherwise E{∇G(x∗, ω)} = 0; we also suppose
the sub-Gaussianity of ∇G(x∗, ω), namely that, for some σ∗ <∞

E
{
exp

(
∥∇G(x∗, ω)∥2∗/σ2

∗

)}
≤ exp(1). (6)
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2.2 Composite Stochastic Mirror Descent algorithm

As mentioned in the introduction, (stochastic) optimization over the set of sparse solutions can be done through
”composite” techniques. We take a similar approach here, by transforming the generic problem 5 into the
following composite Stochastic Optimization problem, adapted to some norm ∥ · ∥, and parameterized by κ ≥ 0,

min
x∈X

[
Fκ(x) :=

1
2
g(x) + κ∥x∥ = 1

2
E{G(x, ω)}+ κ∥x∥

]
. (7)

The purpose of this section is to derive a new (proximal) algorithm. We first provide necessary backgrounds and
notations.

Proximal setup, Bregman divergences and Proximal mapping. Let B be the unit ball of the norm
∥ · ∥ and θ : B → R be a distance-generating function (d.-g.f.) of B, i.e., a continuously differentiable convex
function which is strongly convex with respect to the norm ∥ · ∥,

⟨∇θ(x)−∇θ(x′), x− x′⟩ ≥ ∥x− x′∥2, ∀x, x′ ∈ X.

We assume w.l.o.g. that θ(x) ≥ θ(0) = 0 and denote Θ = max∥z∥≤1 θ(z).
We now introduce a local and renormalized version of the d.-g.f. θ.

Definition 2.1 For any x0 ∈ X, let XR(x0) := {z ∈ X : ∥z − x0∥ ≤ R} be the ball of radius R around x0. It is
equipped with the d.-g.f. ϑRx0

(z) := R2θ ((z − x0)/R).

Note that ϑRx0
(z) is strongly convex on XR(x0) with modulus 1, ϑRx0

(x0) = 0, and ϑRx0
(z) ≤ ΘR2.

Definition 2.2 Given x0 ∈ X and R > 0, the Bregman divergence V associated to ϑ is defined by

Vx0
(x, z) = ϑRx0

(z)− ϑRx0
(x)− ⟨∇ϑRx0

(x), z − x⟩, x, z ∈ X.

We can now define composite proximal mapping on XR(x0) [39, 40] with respect to some convex and continuous
mapping h : X → R.

Definition 2.3 The composite proximal mapping with respect to h and x is defined by

Proxh,x0
(ζ, x) := argmin

z∈XR(x0)

{
⟨ζ, z⟩+ h(z) + Vx0

(x, z)
}

= argmin
z∈XR(x0)

{
⟨ζ −∇ϑRx0

(x), z⟩+ h(z) + ϑRx0
(z)
}

(8)

If (8) can be efficiently solved to high accuracy and Θ is “not too large” (we refer to [27, 36, 40]); those setups
will be called “prox-friendly”. We now introduce the main building block of our algorithm, the Composite
Stochastic Mirror Descent.

Composite Stochastic Mirror Descent algorithm. Given a sequence of positive step sizes γi > 0, the
Composite Stochastic Mirror Descent (CSMD) is defined by the following recursion

xi = Proxγih,x0
(γi−1∇G(xi−1, ωi), xi−1), x0 ∈ X. (9)

After m steps of CSMD, the final output is x̂m (approximate solution) defined by

x̂m =

∑m−1
i=0 γixi∑m−1
i=0 γi

(10)

For any integer L ∈ N, we can also define the L-minibatch CSMD. Let ω
(L)
i = [ω1

i , ..., ω
L
i ] be i.i.d. realizations of

ωi. The associated (average) stochastic gradient is then simply defined as

H
(
xi−1, ω

(L)
i

)
=

1

L

L∑
ℓ=1

∇G(xi−1, ω
ℓ
i ),

4



which yields the following recursion for the L-minibatch CSMD recursion:

x
(L)
i = Proxγih,x0

(
γi−1H

(
xi−1, ω

(L)
i

)
, x

(L)
i−1

)
, x0 ∈ X, (11)

with its approximate solution x̂
(L)
m =

∑m−1
i=0 γix

(L)
i /

∑m−1
i=0 γi after m iterations.

From now on, we set h(x) = κ∥x∥.

Proposition 2.1 If step-sizes are constant, i.e., γi ≡ γ ≤ (4ν)−1, i = 0, 1, ..., and the initial point x0 ∈ X such
that x∗ ∈ XR(x0) then for any t ≳

√
1 + lnm, with probability at least 1− 4e−t

Fκ(x̂m)− Fκ(x∗) ≲ m−1
[
γ−1R2(Θ + t) + κR+ γσ2

∗(m+ t)
]
, (12)

and the approximate solution x̂
(L)
m of the L-minibatch CSMD satisfies

Fκ(x̂
(L)
m )− Fκ(x∗) ≲ m−1

[
γ−1R2(Θ + t) + κR+ γσ2

∗ΘL
−1(m+ t)

]
. (13)

For the sake of clarity and conciseness, we denote CSMD(x0, γ, κ,R,m,L) the approximate solution x̂
(L)
m

computed after m iterations of L-minibatch CSMD algorithm with initial point x0, step-size γ, and radius R
using recursion (11).

2.3 Main contribution: a multistage adaptive algorithm

Our approach to find sparse solution to the original stochastic optimization problem (7) consists in solving a
sequence of auxiliary composite problems (7), with their sequence of parameters (κ, x0, R) defined recursively.
For the latter, we need to infer the quality of approximate solution to (5). To this end, we introduce the following
Reduced Strong Convexity (RSC) assumption, satisfied in the motivating example (it is discussed in the appendix
for the sake of fluency):

Assumption [RSC] There exist some δ > 0 and ρ < ∞ such that for any feasible solution x̂ ∈ X to the
composite problem (7) satisfying, with probability at least 1− ε,

Fκ(x̂)− Fκ(x∗) ≤ υ,

it holds, with probability at least 1− ε, that

∥x̂− x∗∥ ≤ δ
[
ρsκ+ υκ−1

]
. (14)

Given the different problem parameters s, ν, δ, ρ, κ,R and some initial point x0 ∈ X such that x∗ ∈ XR(x0)
Algorithm 1 works in stages. Each stage represents a run of CSMD algorithm with properly set penalty parameter
κ. More precisely, at stage k + 1, given the approximate solution x̂km of stage k, a new instance of CSMD is
initialized on XRk+1

(xk+1
0 ) with xk+1

0 = x̂km and Rk+1 = Rk/2.
Furthermore, those stages are divided into two phases which we refer to as preliminary and asymptotic:

Preliminary phase: During this phase, the step-sizes γ and the number of CSMD iterations per stage are
fixed; the error of approximate solutions converges linearly with the total number of calls to stochastic
oracle. This phase terminates when the error of approximate solution becomes independent of the initial
error of the algorithm; then the asymptotic phase begins.

Asymptotic phase: In this phase, the step-size decreases and the length of the stage increases linearly; the
solution converges sublinearly, with the “standard” rate O

(
N−1/2

)
where N is the total number of oracle

calls. When expensive proximal computation (8) results in high numerical cost of the iterative algorithm,
minibatches are used to keep the number of iterations per stage fixed.
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Algorithm 1 CSMD-SR

Initialization : Initial point x0 ∈ X, step-size γ = (4ν)−1, initial radius R0, confidence level t, total budget N .

Set m0 ≍ sρνδ2(Θ + t), K1 ≍ ln
(

R2
0ν

δ2ρσ2
∗s

)
∧ N

m0
, L = 1

if R0 ≳ σ∗δ
√

ρs
ν continue with preliminary stage,

else proceed directly to asymptotic phase
end
for stage k = 1, . . . ,K1 do ▷ Preliminary Phase

Set κk ≍ Rk(δρs)
−1

Compute approximate solution x̂km0
=CSMD(x0, γ, κk, Rk,m0, L) at stage k

Reset the prox-center x0 = x̂km0

Set Rk = Rk−1/2
end for
Set x̂N = x̂K1

m0
, B = N −m0K1, m1 ≍ m0

if m1 > B output : x̂N and return; endif ▷ Asymptotic Phase
Set r0 = RK1

Set k = 1
while mk ≤ B do

Set κk ≍ 2−kσ∗(ρνs)
−1/2, γk ≍ 4−kν−1

Compute approximate solution x̂kmk
=CSMD(x0, γk, κk, rk,mk, L) at stage k

Reset the prox-center x0 = x̂kmk

Set B = B −mk, k = k + 1, rk = rk−1/2, mk ≍ 4km0

end while

output : x̂N = x̂k

In the algorithm description, K1 and K2 ≍ 1 + log( N
m0

) stand for the respective maximal number of stages

of the two phases of the method, here, m0 ≍ sρνδ2(Θ + t) is the length of stages of the first (preliminary) phase.
The pseudo-code for the variant of the asymptotic phase with minibatches is given in Algorithm 2.

The following theorem states the main result of this paper, an upper bound on the precision of the estimator
computed by our multistage method.

Theorem 2.1 Assume that the total sample budget satisfies N ≥ m0, so that at least one stage of the preliminary
phase of Algorithm 1 is completed, then for t ≳

√
lnN the approximate solution x̂N of Algorithm 1 satisfies,

with probability at least 1− C(K1 +K2)e
−t,

∥x̂N − x∗∥ ≲ R exp

{
− c

δ2ρν

N

s(Θ + t)

}
+ δ2ρσ∗s

√
Θ+ t

N
.

The corresponding solution x̂
(b)
N of the minibatch Algorithm 2 satisfies with probability ≥ 1− C(K1 + K̃2)e

−t

∥x̂(b)N − x∗∥ ≲ R exp

{
− c

δ2ρν

N

s (Θ + t)

}
+ δ2ρσ∗s

√
Θ(Θ + t)

N
.

where K̃2 ≍ 1+ln
(

N
Θm0

)
is the bound for the number of stages of the asymptotic phase of the minibatch algorithm.

Remark 2.1 Along with the oracle computation, proximal computation to be implemented at each iteration of
the algorithm is an important part of the computational cost of the method. It becomes even more important
during the asymptotic phase when number of iterations per stage increases exponentially fast with the stage count,
and may result in poor real-time convergence. The interest of minibatch implementation of the second phase of
the algorithm is in reducing drastically the number of iterations per asymptotic stage. The price to paid is an
extra factor

√
Θ that could also theoretically hinder convergence. However, in the problems of interest (sparse

6



Algorithm 2 Asymptotic phase of CSMD-SR with minibatch

Input : The approximate solution x̂K1
m0

at the end of the preliminary stage, step-size parameter γ, radius at the
end of the preliminary phase RK1

, initial batch size ℓ1 ≍ Θ

1: Set r0 = RK1
, x0 = x̂K1

m0
, B = N −m0K1 ▷ Asymptotic Phase

2: k = 1
3: while m0ℓk ≤ B do
4: κk ≍ 2−kσ∗(ρνs)

−1/2

5: Compute approximate solution x̂km0
=CSMD(x0, γk, κk, rk,m0, L = ℓk) at stage k

6: Reset the prox-center x0 = x̂km0

7: Set B = B −m0ℓk, k = k + 1, rk = rk−1/2, ℓk ≍ 4kℓ1
8: end while

output: x̂
(b)
N = x̂km2

and group-sparse recovery, low rank matrix recovery) Θ is logarithmic in problem dimension. Furthermore, in
our numerical experiments we did not observe any accuracy degradation when using the minibatch variant of the
method.

3 Sparse generalized linear regression by stochastic approximation

3.1 Problem setting

We now consider again the original problem of recovery of a s-sparse signal x∗ ∈ X ⊂ Rn from random
observations defined by

ηi = r(ϕTi x∗) + σξi, i = 1, 2, ..., N, (15)

where r : R → R is some non-decreasing and continuous “activation function”, and ϕi ∈ Rn and ξi ∈ R are
mutually independent. We assume that ξi are sub-Gaussian, i.e., E

{
eξ

2
i

}
≤ exp(1), while regressors ϕi are

bounded, i.e., ∥ϕi∥∞ ≤ ν. We also denote Σ = E{ϕiϕTi }, with Σ ⪰ κΣI with some κΣ > 0, and ∥Σj∥∞ ≤ υ <∞.
We will apply the machinery developed in Section 2, with respect to

g(x) = E
{
s(ϕTx)− xTϕη

}
where r(t) = ∇s(t) for some convex and continuously differentiable s, applied with the norm ∥ · ∥ = ∥ · ∥1 (hence
∥ · ∥∗ = ∥ · ∥∞), from some initial point x0 ∈ X such that ∥x∗ − x0∥1 ≤ R. It remains to prove that the different
assumptions of Section 2 are satisfied.

Proposition 3.1 Assume that r is r-Lipschitz continuous and r-strongly monotone (i.e., |r(t)− r(t′)| ≥ r|t− t′|
which implies that s is r-strongly convex) then

1. [Smoothness] G(·, ω) is L(ω)-smooth with L(ω) ≤ rν2.

2. [Quadratic minoration] g satisfies

g(x)− g(x∗) ≥ 1
2
r∥x− x∗∥2Σ. (16)

3. [Reduced Strong Convexity] Assumption [RSC] holds with δ = 1 and ρ = (κΣr)
−1.

4. [Sub-Gaussianity] ∇G(x∗, ωi) is σ
2ν2-sub Gaussian.

The proof is postponed to the appendix. The last point is a consequence of a generalization of the Restricted
Eigenvalue property [5], that we detail below (as it gives insight on why Proposition 3.1 holds).

This condition, that we state and call Q(λ, ψ) in the following Lemma 3.1, and is reminiscent of [26] with
the corresponding assumptions of [41, 14].
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Lemma 3.1 Let λ > 0 and 0 < ψ ≤ 1, and suppose that for all subsets I ⊂ {1, ..., n} of cardinality smaller than
s the following property is verified:

∀z ∈ Rn ∥zI∥1 ≤
√
s

λ
∥z∥Σ + 1

2
(1− ψ)∥z∥1 Q(λ, ψ)

where zI is obtained by zeroing all its components with indices i /∈ I.
If g(·) satisfies the quadratic minoration condition, i.e., for some µ > 0,

g(x)− g(x∗) ≥ 1
2
µ∥x− x∗∥2Σ, (17)

and that x̂ is an admissible solution to (7) satisfying, with probability at least 1− ε,

Fκ(x̂) ≤ Fκ(x∗) + υ.

Then, with probability at least 1− ε,

∥x̂− x∗∥1 ≤ sκ

λµψ
+

υ

κψ
. (18)

Remark 3.1 Condition Q(λ, ψ) generalizes the classical Restricted Eigenvalue (RE) property [5] and Compati-
bility Condition [46], and is the most relaxed condition under which classical bounds for the error of ℓ1-recovery
routines were established. Validity of Q(λ, ψ) with some λ > 0 is necessary for Σ to possess the celebrated
null-space property [13]

∃ψ > 0 : max
I, |I|≤s

∥zI∥1 ≤ 1
2
(1− ψ)∥z∥1 ∀z ∈ Ker(Σ)

which is necessary and sufficient for the s-goodness of Σ (i.e., x̂ ∈ Argminu {∥u∥ : Σu = Σx∗} reproduces exactly
every s-sparse signal x∗ in the noiseless case).

When Σ possesses the nullspace property, Q(λ, ψ) may hold for Σ with nontrivial kernel; this is typically the
case for random matrices [41, 42] such as rank deficient Wishart matrices, etc. When Σ is a regular matrix,
condition Q(λ, ψ) may also holds with constant λ which is much higher that the minimal eigenvalue of Σ when
the eigenspace corresponding to small eigenvalues of Σ does not contain vectors z with ∥zI∥1 > 1

2
(1− ψ)∥z∥1.

Remarks. In the case of linear regression where r(t) = t, it holds

g(x) = E
{

1
2
(ϕTx)2 − xTϕη

}
= 1

2
E
{
(ϕT (x∗ − x))2 − (ϕTx∗)

2
}

= 1
2
(x− x∗)

TΣ(x− x∗)− 1
2
xT∗ Σx∗ = 1

2
∥x− x∗∥2Σ − 1

2
∥x∗∥2Σ

and ∇G(x, ω) = ϕϕT (x− x∗)− σξϕ. In this case L(ω) ≤ ∥ϕϕT ∥∞ ≤ ν2.
Note that quadratic minoration bound (16) for g(x)− g(x∗) is often overly pessimistic. Indeed, consider for

instance, Gaussian regressor ϕ ∼ N (0,Σ) (such regressors are not a.s. bounded, we consider this example only
for illustration purposes) and activation r, define for some 0 ≤ α ≤ 1 (with the convention, 0/0 = 0)

r(t) =

{
t, |t| ≤ 1,
sign(t)[α−1(|t|α − 1) + 1], |t| > 1.

(19)

When passing from ϕ to φ = Σ−1/2ϕ and from x to z = Σ1/2x and using the fact that

φ =
zzT

∥z∥22
φ+

(
I − zzT

∥z∥22

)
φ︸ ︷︷ ︸

=:χ

with independent zzT

∥z∥2
2
φ and χ, we obtain

H(x) = E{ϕ[r(ϕTx)]} = E

{
zzT

∥z∥22
φ r(φT z)

}
=

z

∥z∥2
E {ςr(ς∥z∥2)} =

Σ1/2x

∥x∥Σ
E {ςr(ς∥x∥Σ)}

8



where ς ∼ N (0, 1). Thus, H(x) is proportional to Σ1/2x
∥x∥Σ

with coefficient

h
(
∥x∥Σ

)
= E {ςr(ς∥x∥Σ)} .

Figure 1 represents the mapping h for different values of α (on the left), along with the corresponding mapping
H on a ∥ · ∥Σ-ball centered at the origin of radius r (on the right).
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Figure 1: Given the activation function r in (19) and α = (0, 0.01, 0.1, 0.25, 1); left plot: mappings h; right plot: moduli
of strong monotonicity of mappings H on {x : ∥x∥Σ ≤ r} as function of r.

3.2 Stochastic Mirror Descent algorithm

In this section, we describe the statistical properties of approximate solutions of Algorithm 1 when applied to
the sparse recovery problem. We shall use the following distance-generating function of the ℓ1-ball of R

n (cf.
[27, Section 5.7.1])

θ(x) =
c

p
∥x∥pp, p =

{
2, n = 2
1 + 1

ln(n) , n ≥ 3,
c =

{
2, n = 2,
e lnn, n ≥ 3.

(20)

It immediately follows that θ is strongly convex with modulus 1 w.r.t. the norm ∥ · ∥1 on its unit ball, and that
Θ ≤ e lnn. In particular, Theorem 2.1 entails the following statement.

Proposition 3.2 For t ≳
√
lnN , assuming the samples budget is large enough, i.e., N ≥ m0 (so that at least

one stage of the preliminary phase of Algorithm 1 is completed), the approximate solution x̂N output satisfies
with probability at least 1− Ce−t lnN ,

∥x̂N − x∗∥1 ≲ R exp

{
−crκΣ

rν2
N

s(lnn+ t)

}
+
σνs

rκΣ

√
lnn+ t

N
(21)

The corresponding solution x̂
(b)
N of the minibatch variant of the algorithm satisfies with probability ≥ 1−Ce−t lnN ,

∥x̂(b)N − x∗∥1 ≲ R exp

{
−crκΣ

rν2
N

s (lnn+ t)

}
+
σνs

rκΣ

√
lnn (lnn+ t)

N

Remark 3.2 Bounds for the ℓ1-norm of the error x̂N − x∗ (or x̂
(b)
N − x∗) established in Proposition 3.2 allows

us to quantify prediction error g(x̂N )− g(x∗) (and g(x̂(b)N )− g(x∗), and also lead to bounds for ∥x̂N − x∗∥Σ
and ∥x̂N − x∗∥2 (respectively, for ∥x̂(b)N − x∗∥Σ and ∥x̂(b)N − x∗∥2). For instance, Proposition 2.1 in the present
setting implies the bound on the prediction error after N steps of the algorithm that reads

g(x̂N )− g(x∗) ≲
R2κΣr

s
exp

{
− cκΣr

δ2rν2
N

s(Θ + t)

}
+
σ2ν2s(Θ + t)

κΣrN

9



with probability ≥ 1− C lnNe−t. We conclude by (16) that

∥x̂N − x∗∥22 ≤ κ−1
Σ ∥x̂N − x∗∥2Σ ≤ 2κ−1

Σ r−1[g(x̂N )− g(x∗)]

≲
R2

s
exp

{
− cκΣr

δ2rν2
N

s(Θ + t)

}
+
σ2ν2s(Θ + t)

κ2Σr
2N

.

In other words, the error ∥x̂N − x∗∥2 converges geometrically to the “asymptotic rate” σν
κΣr

√
s(Θ+t)

N which is

the “standard” rate established in the setting (cf. [1, 5, 35], etc).

Remark 3.3 The proposed approach allows also to address the situation in which regressors are not a.s. bounded.
For instance, consider the case of random regressors with i.i.d sub-Gaussian entries such that

∀j ≤ n, E
[
exp

(
[ϕi]

2
j

κ2

)]
≤ 1.

Using the fact that the maximum of uniform norms ∥ϕi∥∞, 1 ≤ i ≤ m, concentrates around κ
√
lnmn along with

independence of noises ξi of ϕi, the “smoothness” and “sub-Gaussianity” assumptions of Proposition 3.2 can be
stated “conditionally” to the event

{
ω : maxi≤m ∥ϕi∥2∞ ≲ κ2(ln[mn] + t)

}
of probability greater than 1 − e−t.

For instance, when replacing the bound for the uniform norm of regressors with κ2(ln[mn] + t) in the definition
of algorithm parameters and combining with appropriate deviation inequality for martingales (cf., e.g., [4]), one
arrives at the bound for the error ∥x̂N − x∗∥1 of Algorithm 1 which is similar to (21) of Proposition 3.2 in which
ν is replaced with κ

√
ln[mn] + t.

3.3 Numerical experiments

In this section, we present results of a small simulation study illustrating the theoretical part of the previous
section.2 We consider the GLR model (15) with activation function (19) where α = 1/2. In our simulations, x∗
is an s-sparse vector with s nonvanishing components sampled independently from the standard s-dimensional
Gaussian distribution; regressors ϕi are sampled from a multivariate Gaussian distribution ϕ ∼ N (0,Σ), where Σ
is a diagonal covariance matrix with diagonal entries σ1 ≤ ... ≤ σn. In Figure 2 we report on the experiment in
which we compare the performance of the CSMD-SR algorithm from Section 2.3 to that of four other methods.
The contenders are (1) “vanilla” non-Euclidean SMD algorithm constrained to the ℓ1-ball equipped with the
distance generating function (20), (2) composite non-Euclidean dual averaging algorithm (p-Norm RDA) from
[47], (3) multistage SMD-SR of [23], and (4) “vanilla” Euclidean SGD. The regularization parameter of the ℓ1
penalty in (2) is set to the theoretically optimal value λ = 2σ

√
2 log(n)/T . The corresponding dimension of the

parameter space is n = 500000, the sparsity level of the optimal point x∗ is s = 200, and the “total budget” of
oracle calls is N = 250000; we use the identity regressor covariance matrix (Σ = In) and σ ∈ {0.001, 0.1}. To
reduce computation time we use the minibatch versions of the multi-stage algorithms—CSMD-SR and algorithm
(3)), the data to compute stochastic gradient realizations ∇G(xi, ω) = ϕ(r(ϕTxi)− η) at the current search point
xi being generated “on the fly.” We repeat simulations 20 times and plot the median value along with the first
and the last deciles of the error ∥x̂i − x∗∥1 at each iteration of the algorithm against the number of oracle calls.

2The reader is invited to check Section C of the supplementary material for more experimental results.
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σ = 0.1 σ = 0.001

Figure 2: CSMD-SR and “vanilla” SMD in Generalized Linear Regression problem: ℓ1 error as a function of the number
of oracle calls

The proposed method outperforms other algorithms which struggle to reach the regime where the stochastic
noise is dominant.

Figure 3: Preliminary stages of the CSMD-SR and its variant with data recycling: linear regression experiment (left
pane), GLR with activation r1/10(t) (right pane).

In the second experiment we report on here, we study the behavior of the multistage algorithm derived from
Algorithm 2 in which, instead of using independent data samples, we reuse the same data at each stage of the
method. In Figure 3 we present results of comparison of the CSMD-SR algorithm with its variant with data
recycle. This version is of interest as it attains fast the noise regime while using limited amount of samples. In
our first experiment, we consider linear regression problem with parameter dimension n = 100 000 and sparsity

11



level s = 75 of the optimal solution; we consider the GLR model (15) with activation function r1/10(t) in the
second experiment. We choose Σ = In and σ = 0.001; we run 14 (preliminary) stages of the algorithm with
m0 = 3500 in the first simulation and m0 = 4500 in the second. We believe that the results speak for themselves.
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A Proofs

We use notation Ei for conditional expectation given x0 and ω1, ..., ωi.

A.1 Proof of Proposition 2.1

The result of Proposition 2.1 is an immediate consequence of the following statement.

Proposition A.1 Let
f(x) = 1

2
g(x) + h(x), x ∈ X.

In the situation of Section 2.2, let γi ≤ (4ν)−1 for all i = 0, 1, ..., and let x̂m be defined in (10), where xi
are iterations (9). Then for any t ≥ 2

√
2 + lnm there is Ωm ⊂ Ω such that Prob(Ωm) ≥ 1− 4e−t and for all

ωm = [ω1, ..., ωm] ∈ Ωm,(
m−1∑
i=0

γi

)
[f(x̂m)− f(x∗)] ≤

m−1∑
i=0

[
1
2
γi⟨∇g(xi), xi − x∗⟩+ γi+1(h(xi+1)− h(x∗))

]
≤ V (x0, x∗) + γ0[h(x0)− h(x∗)]− γm[h(xm)− h(x∗)]

+ V (x0, x∗) + 15tR2 + σ2
∗

[
7

m−1∑
i=0

γ2i + 24tγ2

]
. (22)

In particular, when using the constant stepsize strategy with γi ≡ γ, 0 < γ ≤ (4ν)−1, one has

1
2
[g(x̂m)− g(x∗)] + [h(x̂m)− h(x∗)]

≤ V (x0, x∗) + 15tR2

γm
+
h(x0)− h(xm)

m
+ γσ2

∗

(
7 +

24t

m

)
. (23)

Proof. Denote Hi = ∇G(xi−1, ωi). In the sequel, we use the shortcut notation ϑ(z) and V (x, z) for ϑRx0
(z)

and Vx0(x, z) when exact values x0 and R are clear from the context.

1o. From the definition of xi and of the composite prox-mapping (8) (cf. Lemma A.1 of [40]), we conclude that
there is ηi ∈ ∂h(xi) such that

⟨γi−1Hi + γiηi +∇ϑ(xi)−∇ϑ(xi−1), z − xi⟩ ≥ 0, ∀ z ∈ X ,

implying, as usual [12], that ∀z ∈ X

⟨γi−1Hi + γiηi, xi − z⟩ ≤ V (xi−1, z)− V (xi, z)− V (xi−1, xi).

In particular,

γi−1⟨Hi, xi−1 − x∗⟩+ γi⟨ηi, xi − x∗⟩
≤ V (xi−1, x∗)− V (xi, x∗)− V (xi−1, xi) + γi−1⟨Hi, xi−1 − xi⟩
≤ V (xi−1, x∗)− V (xi, x∗) +

1
2
γ2i−1∥Hi∥2∗.

Observe that due to the Lipschitz continuity of ∇G(·, ω) one has

ν⟨∇G(x, ω)−∇G(x′, ω), x− x′⟩ ≥ ∥∇G(x, ω)−∇G(x′, ω)∥2∗, ∀x, x′ ∈ X , (24)

so that

∥∇G(x, ω)∥2∗ ≤ 2∥∇G(x, ω)−∇G(x∗, ω)∥2∗ + 2∥∇G(x∗, ω)∥2∗
≤ 2ν⟨∇G(x, ω)−∇G(x∗, ω), x− x∗⟩+ 2∥∇G(x∗, ω)∥2∗
= 2ν⟨∇G(x, ω), x− x∗⟩ − 2ν⟨∇G(x∗, ω), x− x∗⟩+ 2∥∇G(x∗, ω)∥2∗
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so that

γi−1⟨Hi, xi−1 − x∗⟩+ γi⟨ηi, , xi − x∗⟩
≤ V (xi−1, x∗)− V (xi, x∗) + γ2i−1[ν⟨Hi, xi−1 − x∗⟩ − νζi + τi]

where ζi = ⟨∇G(x∗, ωi), xi−1−x∗⟩ and τi = ∥∇G(x∗, ω)∥2∗. As a result, by convexity of h we have for γi ≤ (4ν)−1

3
4
γi−1⟨∇g(xi−1), xi−1 − x∗⟩+ γi[h(xi)− h(x∗)]

≤ (γi−1 − γ2i−1ν)⟨∇g(xi−1), xi−1 − x∗⟩+ γi⟨ηi, xi − x∗⟩
≤ V (xi−1, x∗)− V (xi, x∗) + (γi−1 − γ2i−1ν)⟨ξi, xi−1 − x∗⟩+ γ2i−1[τi − νζi]

where we put ξi = Hi −∇g(xi−1). When summing from i = 1 to m we obtain

m∑
i=1

γi−1

(
3
4
⟨∇g(xi−1), xi−1 − x∗⟩+ [h(xi−1)− h(x∗)]

)
≤ V (x0, x∗) +

m∑
i=1

[γ2i−1(τi − νζi) + γi−1(1− γi−1ν)⟨ξi, xi−1 − x∗⟩]︸ ︷︷ ︸
=:Rm

+ γ0[h(x0)− h(x∗)]− γm[h(xm)− h(x∗)]. (25)

2o. We have

γi−1⟨ξi, xi−1 − x∗⟩ = γi−1

υi︷ ︸︸ ︷
⟨[∇G(xi−1, ωi)−∇G(x∗, ωi)]−∇g(xi−1), xi−1 − x∗⟩

+γi−1⟨∇G(x∗, ωi), xi−1 − x∗⟩
= γi−1[υi + ζi],

so that

Rm =

m∑
i=1

γ2i−1τi +

m∑
i=1

(γi−1 − γ2i−1ν)υi +

m∑
i=1

(γi−1 − 2νγ2i−1)ζi =: r(1)m + r(2)m + r(3)m . (26)

Note that r
(3)
m is a sub-Gaussian martingale. Indeed, one has Ei−1{ζi} = 0 a.s.,3 and

|ζi| ≤ ∥xi−1 − x∗∥ ∥∇G(x∗, ω)∥∗,

so that by the sub-Gaussian hypothesis (6), Ei−1

{
exp

( ζ2i
4R2σ2

∗︸ ︷︷ ︸
ν2
∗

)}
≤ exp(1). As a result (cf. the proof of

Proposition 4.2 in [28]),

∀t Ei−1

{
etζi
}
≤ exp

(
tEi−1{ζi}+ 3

4 t
2ν2∗
)
= exp

(
3t2R2σ2

∗
)
,

and applying (31a) to Sm = r
(3)
m with

rm = 6R2σ2
∗

m−1∑
i=0

(γi − 2νγ2i )
2 ≤ 6R2σ2

∗

m−1∑
i=0

γ2i

3We use notation Ei−1 for the conditional expectation given x0, ω1, ..., ωi−1.
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we conclude that for some Ω
(3)
m such that Prob(Ω

(3)
m ) ≥ 1− e−t and all ωm ∈ Ω

(3)
m

r(3)m ≤ 2

√√√√3tR2σ2
∗

m−1∑
i=0

γ2i ≤ 3tR2 + 3σ2
∗

m−1∑
i=0

γ2i . (27)

Next, again by (6), due to the Jensen inequality, Ei−1{τi} ≤ σ2
∗, and

Ei−1 {exp (t∥∇G(x∗, ωi)∥∗)} ≤ exp
(
tEi−1{∥∇G(x∗, ωi)∥∗}+ 3

4 t
2σ2

∗
)
≤ exp

(
tσ∗ +

3
4 t

2σ2
∗
)
.

Thus, when setting
µi = γi−1σ∗, s2i = 3

2γi−1σ
2
∗, s = max

i
γisi,

Mm = r
(1)
m , vm + hm = 21

4 σ
4
∗
∑m−1

i=0 γ4i , and applying the bound (31b) of Lemma A.1 we obtain

r(1)m ≤ 3σ2
∗

m−1∑
i=0

γ2i +

√√√√21tσ4
∗

m−1∑
i=0

γ4i︸ ︷︷ ︸
=:∆

(1)
m

+3tγ2σ2
∗

for γ = maxi γi and ω
m ∈ Ω

(1)
m where Ω

(1)
m is of probability at least 1− e−x. Because

γ2
m−1∑
i=0

γ2i ≥
m−1∑
i=0

γ4i ,

whenever
√
21tσ4

∗
∑m−1

i=0 γ4i ≥
∑m−1

i=0 γ2i , one has 21tγ2 ≥
∑m−1

i=0 γ2i and

21t

m−1∑
i=0

γ4i ≤ 21tγ2
m−1∑
i=0

γ2i ≤ (21tγ2)2

Thus,

∆(1)
m ≤ min

[
21tσ2

∗γ
2, σ2

∗

m−1∑
i=0

γ2i

]
≤ 21tσ2

∗γ
2 + σ2

∗

m−1∑
i=0

γ2i ,

and

r(1)m ≤ σ2
∗

[
4

m−1∑
i=0

γ2i + 24tγ2

]
(28)

for ωm ∈ Ω
(1)
m .

Finally, by the Lipschitz continuity of ∇G (cf. (24)), when taking expectation w.r.t. the distribution of ωi,
we get

Ei−1{υ2i } ≤ 4R2Ei−1{∥∇G(xi−1, ωi)−∇G(x∗, ωi)∥2∗}
≤ 4R2νEi−1{⟨∇G(xi−1, ωi)−∇G(x∗, ωi), xi−1 − x∗⟩} = 4R2ν⟨∇g(xi−1), xi−1 − x∗⟩.

On the other hand, one also has |υi| ≤ 2ν∥xi−1 − xi∥2 ≤ 8νR2. We can now apply Lemma A.2 with
σ2
i = 4γ2i−1R

2ν⟨∇g(xi−1), xi−1 − x∗⟩ to conclude that for t ≥ 2
√
2 + lnm

r(2)m ≤ 4

√√√√tR2ν

m−1∑
i=0

γ2i ⟨∇g(xi), xi − x∗⟩︸ ︷︷ ︸
=:∆

(2)
m

+16tνR2γ
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for all ωm ∈ Ω
(2)
m such that Prob(Ω

(2)
m ) ≥ 1− 2e−t. Note that

∆(2)
m ≤ 2tR2 + 1

4ν

m−1∑
i=0

γ2i ⟨∇g(xi), xi − x∗⟩,

and γi ≤ (4ν)−1, so that

r(2)m ≤ ν

m−1∑
i=0

γ2i ⟨∇g(xi), xi − x∗⟩+ 12tR2 ≤ 1
4

m−1∑
i=0

γi⟨∇g(xi), xi − x∗⟩+ 12tR2 (29)

for ωm ∈ Ω
(2)
m .

3o. When substituting bounds (27)–(29) into (26) we obtain

Rm ≤ 1
4

m−1∑
i=0

γi⟨∇g(xi), xi − x∗⟩+ 12tR2 + σ2
∗

[
4

m−1∑
i=0

γ2i + 24tγ2

]
+ 2

√√√√3tR2σ2
∗

m−1∑
i=0

γ2i

≤ 1
4

m−1∑
i=0

γi⟨∇g(xi), xi − x∗⟩+ 15tR2 + σ2
∗

[
7

m−1∑
i=0

γ2i + 24tγ2

]

for all ωm ∈ Ωm =
⋂3

i=1 Ω
(i)
m with Prob(Ωm) ≥ 1− 4e−t and t ≥ 2

√
2 + lnm.

When substituting the latter bound into (25) and utilizing the convexity of g and h we arrive at(
m−1∑
i=0

γi

)(
1
2
[g(x̂m)− g(x∗)] + [h(x̂m)− h(x∗)]

)
≤

m−1∑
i=0

γi

(
1
2
[g(xi)− g(x∗)] + [h(xi)− h(x∗)]

)
≤

m∑
i=1

γi−1

(
1
2
⟨∇g(xi−1, xi−1 − x∗⟩+ [h(xi−1)− h(x∗)]

)
≤ V (x0, x∗) + 15tR2 + σ2

∗

[
7

m−1∑
i=0

γ2i + 24tγ2

]
+ γ0[h(x0)− h(x∗)]− γm[h(xm)− h(x∗)].

In particular, for constant stepsizes γi ≡ γ we get

1
2
[g(x̂m)− g(x∗)] + [h(x̂m)− h(x∗)]

≤ V (x0, x∗) + 15tR2

γm
+
h(x0)− h(xm)

m
+ γσ2

∗

(
7 +

24t

m

)
.

This implies the first statement of the proposition.

5o. To prove the bound for the minibatch solution x̂
(L)
m =

(∑m−1
i=0 γi

)−1∑m−1
i=0 γix

(L)
i , it suffices to note that

minibatch gradient observation H(x, ω(L)) is Lipschitz-continuous with Lipschitz constant ν, and that H(x∗, ω
(L))

is sub-Gaussian with parameter σ2
∗ replaced with σ2

∗,L ≲ Θσ2
∗

L , see Lemma A.3. □

A.2 Deviation inequalities

Let us assume that (ξi,Fi)i=1,2,... is a sequence of sub-Gaussian random variables satisfying4

Ei−1

{
etξi
}
≤ etµi+

t2s2i
2 , a.s. (30)

for some nonrandom µi, si, si ≤ s. We denote by Sn =
∑n

i=1 ξi − µi, rn =
∑n

i=1 s
2
i , vn =

∑n
i=1 s

4
i ,Mn =∑n

i=1 ξ
2
i − (s2i + µ2

i ), and hn =
∑n

i=1 2µ
2
i s

2
i . The following well known result is provided for reader’s convenience.

4Here, same as above, we denote Ei−1 the expectation conditional to Fi−1.
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Lemma A.1 For all x > 0 one has

Prob
{
Sn ≥

√
2xrn

}
≤ e−x, (31a)

Prob
{
Mn ≥ 2

√
x(vn + hn) + 2xs2

}
≤ e−x. (31b)

Proof. The inequality (31a) is straightforward. To prove (31b), note that for t < 1
2s

−2 and η ∼ N (0, 1)
independent of ξ0, ..., ξn , we have:

Ei−1

{
etξ

2
i

}
= Ei−1

{
Eη

{
e
√
2tξiη

}}
= Eη

{
Ei−1

{
e
√
2tξiη

}}
≤ Eη

{
exp

{√
2tηµi + tη2s2i

}}
= (1− 2ts2i )

−1/2 exp

{
tµ2

i

1− 2ts2i

}
a.s.,

and because, cf [31, Lemma 1],

− 1
2 ln(1− 2ts2i ) +

tµ2
i

1− 2ts2i
− t(s2i + µ2

i ) ≤
t2s2i (s

2
i + 2µ2

i )

1− 2ts2i
≤ t2s2i (s

2
i + 2µ2

i )

1− 2ts2
,

one has for t < 1
2s

−2

E
{
etMn

}
≤ exp

{
t2(vn + hn)

1− 2ts2

}
.

By Lemma 8 of [6], this implies that

Prob
{
Mn ≥ 2

√
x(vn + hn) + 2xs2

}
≤ e−x

for all x > 0. □
Now, suppose that ζi, i = 1, 2, ... is a sequence of random variables satisfying

Ei−1{ζi} = µi, Ei−1{ζ2i } ≤ σ2
i , |ζi| ≤ 1 a.s. (32)

Denote Mn =
∑n

i=1[ζi − µi] and qn =
∑n

i=1 σ
2
i . Note that qn ≤ n.

Lemma A.2 Let x ≥ 1; one has

Prob
{
Mn ≥

√
2xqn + x

}
≤
[
e

(
2x ln

[
9n

2x

]
+ 1

)
+ 1

]
e−x.

In particular, for x ≥ 4
√
2 + lnn one has

Prob
{
Mn ≥

√
2xqn + x

}
≤ 2e−x/2.

Proof. In the premise of the lemma, applying Bernstein’s inequality for martingales [4, 15] we obtain for all
x > 0 and u > 0,

Prob
{
Mn ≥

√
2xu+

x

3
, qn ≤ u

}
≤ e−x.

We conclude that

Prob

{
Mn ≥ x, qn ≤ 2x

9

}
≤ e−x,

and for any u > 0

Prob
{
Mn ≥

√
2(x+ 1)qn +

x

3
, u ≤ qn ≤ u

(
1 + 1/x

)}
≤ e−x,

so that
δn(x;u) := Prob

{
Mn ≥

√
2xqn +

x

3
, u ≤ qn ≤ u

(
1 + 1/x

)}
≤ e−x+1.
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Let now u0 = 2x/9, uj = min{n, (1 + 1/x)ju0}, j = 0, ..., J , with

J =
⌋
ln
[
n/u0

]
ln−1[1 + 1/x]

⌊
.

Note that ln[1 + 1/x] ≥ 1/(2x) for x ≥ 1, so that

J ≤ ln
[
n/u0

]
ln−1[1 + 1/x] + 1 ≤ 2x ln

[
n/u0

]
+ 1.

On the other hand,

Prob
{
Mn ≥

√
2xqn + x

}
≤ e−x +

J∑
j=1

δn(x;uj) ≤ e−x + Je−x+1

≤
[
e
(
2x ln

[9n
2x

]
+ 1
)
+ 1
]
e−x

Finally, we verify explicitly that for x ≥ 4
√
2 + lnn one has[

e
(
2x ln

[9n
2x

]
+ 1
)
+ 1
]
e−x/2 ≤ 2,

implying that for such x

Prob
{
Mn ≥

√
2xqn + x

}
≤ 2e−x/2. □

Let (ξi)i=1,... be a sequence of independent random vectors in Rn such that

Ei−1

{
exp

(
∥ξi∥2∗
s2

)}
≤ exp(1),

and let η =
∑m

i=1 ξi, m ∈ Z+. We are interested in “sub-Gaussian characteristics” of r.v. ζ = ⟨u, η⟩ for some
u ∈ Rn, ∥u∥ ≤ R, and of τ = ∥η∥∗.

Because E{⟨u, ξi⟩} = 0 and |⟨u, ξi⟩| ≤ ∥u∥ ∥ξi∥∗, for all t one has (cf.,e.g., Proposition 4.2 of [28])

E
{
et⟨u,η⟩

}
=

m∏
i=1

E
{
et⟨u,ξi⟩

}
≤

m∏
i=1

exp
(
3
4 t

2s2
)
= exp

(
3
4mt

2s2
)
.

Let ξℓ, ℓ = 1, 2, ... be a sequence of independent random vectors ξℓ ∈ E, such that E{ξℓ} = 0 and E
{
e∥ξℓ∥

2
∗/s

2
}
≤

exp(1). Denote ηj =
∑j

ℓ=1 ξℓ. We have the following result.

Lemma A.3

∀L ∈ Z+ E

{
exp

(
∥ηL∥2∗
10Θs2L

)}
≤ exp(1) (33)

where Θ = max∥z∥≤1 θ(z) for the d.-g.f. θ of the unit ball of norm ∥ · ∥ in E, as defined in Section 2.2.

Proof. Let for η ∈ E, π(η) = sup∥z∥≤1[⟨η, z⟩ − θ(z)]. Observe that for all β > 0,

∥ηL∥∗ = sup
∥z∥≤1

⟨ηL, z⟩ ≤ max
∥z∥≤1

βθ(z) + βπ(ηL/β) ≤ βΘ+ βπ
(ηL
β

)
. (34)

On the other hand, we know (cf. [38, Lemma 1]) that π is smooth with ∥∇π∥ ≤ 1, and ∇π is Lipschitz-continuous
w.r.t. to ∥ · ∥∗, i.e.,

∥∇π(z)−∇π(z′)∥ ≤ ∥z − z′∥∗ ∀z, z′ ∈ E.

As a consequence of Lipschitz continuity of π, when denoting πβ(η) = βπ
(
η
β

)
, we have

πβ(ηj−1 + ξj)− πβ(ηj−1) ≤ ∥ξj∥∗,
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so that E
{
exp

(
[πβ(ηj)− πβ(ηj−1)]

2/s2
)}

≤ exp(1). Furthermore,

πβ(ηj−1 + ξj) ≤ πβ(ηj−1) + ⟨∇πβ(ηj−1), ξj/β⟩+ ∥ξj∥2∗/β,

and, because ηj−1 does not depend on ξj and E{∥ξj∥2∗} ≤ s2, we get

Ej−1{πβ(ηj)− πβ(ηj−1)} ≤ s2/β.

By [28, Proposition 4.2] we conclude that random variables δj = πβ(ηj)− πβ(ηj−1) satisfy for all t ≥ 0,

Ej−1

{
etδj
}
≤ exp

(
ts2β−1 + 3

4 t
2s2
)
.

Consequently,

E
{
etπβ(ηL)

}
≤ E

{
etπβ(ηL−1)

}
exp

(
ts2β−1 + 3

4 t
2s2
)
≤ exp

(
ts2Lβ−1 + 3

4 t
2s2L

)
.

When substituting the latter bound into (34), we obtain for β2 = s2L/Θ

E
{
et∥ηL∥∗

}
≤ exp

(
ts
√
ΘL+ 3

4 t
2s2L

)
∀t ≥ 0. (35)

To complete the proof of the lemma, it remains to show that (35) implies (33). This is straightforward. Indeed,
for χ ∼ N (0, 1), α > 0 and ζ = ∥ηL∥∗ one has

E
{
eαζ

2
}
= E

{
Eη

(
e
√
2αζχ

)}
= Eχ

{
E
{
e
√
2αζχ

}}
≤ Eχ

{
exp

(√
2αΘLsχ+ 3

2αNs
2χ2
)}

= (1− 3αNs2)−1/2 exp

{
αΘLs2

1− 3αNs2

}
When setting α = (10Θs2L)−1, we conclude that

E
{
eαζ

2
}
≤ exp(1)

due to Θ ≥ 1/2. □

A.3 Proof of Theorem 2.1

We start with analysing the behaviour of the approximate solution x̂km0
at the stages of the preliminary phase of

the procedure.

Lemma A.4 Let m0 = ⌈64δ2ρνs(4Θ + 60t)⌉ ((here ⌈a⌉ stands for the smallest integer greater or equal to a),
γ = (4ν)−1, and let t satisfy t ≥ 4

√
2 + log(m0).

Suppose that R ≥ 2δσ∗
√
6ρs/ν, that initial condition x0 of Algorithms 1 and 2 satisfies ∥x0 − x∗∥ ≤ R, and

that at the stage k of the preliminary phase we choose

κk = Rk−1

√
ν(4Θ + 60t)

ρsm0
(36)

where (Rk)k≥0 is defined recursively:

Rk+1 = 1
2
Rk +

16σ2
∗δ

2ρs

νRk
, R0 = R.

Then the approximate solution x̂km0
at the end of the kth stage of the CSMD-SR algorithm satisfies, with probability

≥ 1− 4ke−t

∥x̂km0
− x∗∥ ≤ Rk ≤ 2−kR+ 4σ∗δ

√
2ρs/ν. (37)

In particular, the estimate x̂K1
m0

after K1 =
⌈

1
2
log2

(
R2ν

32σ2
∗δ

2ρs

)⌉
stages satisfies with probaility at least 1− 4K1e

−t

∥xK1
m0

− x∗∥ ≤ 8σ∗δ
√

2ρs/ν. (38)
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Proof of the lemma.
1o. Note that initial point x0 satisfies x0 ∈ XR(x∗). Suppose that the initial point xk0 = x̂k−1

m0
of the kth stage of

the method satisfy xk0 ∈ XRk−1
(x∗) with probability 1− 4(k − 1)e−t. In other words, there is a set Bk−1 ⊂ Ω,

Prob(Bk−1) ≥ 1− 4(k − 1)e−t, such that for all ωk−1 = [ω1; ...;ωm0(k−1)] ⊂ Bk−1 one has xk0 ∈ XRk−1
(x∗). Let

us show that upon termination of the kthe stage x̂km0
satisfy ∥xkm0

− x∗∥ ≤ Rk with probability 1− 4ke−t. By

Proposition A.1 (with h(x) = κk∥x∥) we conclude that for some Ωk ⊂ Ω, Prob(Ωk) ≥ 1− 4e−t, solution x̂km0

after m0 iterations of the stage satisfies, for all for all ωk = [ω(k−1)m0+1, ..., ωkm0
] ∈ Ωk,

F (x̂km0
)− F (x∗) ≤ 1

m0

(
νR2

k−1(4Θ + 60t) + κkRk−1

)
+
σ2
∗
ν

(
7
4 + 6t

m0

)
.

When using the relationship (14) of Assumption [RSC] we now get

∥x̂km0
− x∗∥ ≤ δ

[
ρsκk +

Rk−1

m0
+
νR2

k−1

κkm0
(4Θ + 60t) +

σ2
∗

νκk

(
7
4 + 6t

m0

)]
. (39)

Note that κk as defined in (36) satisfies κk ≤ Rk−1(8δρs)
−1, while κkm0 ≥ 8δ(4Θ + 60t)Rk−1ν. Because

m0 ≥ 3840t due to ρν ≥ 1 and δ ≥ 1, one also has
(

7
4 + 6t

m0

)
κ−1
k < 16δρs/Rk−1. When substituting the above

bounds into (39) we obtain

∥x̂km0
− x∗∥ ≤ δRk−1

(
1
4δ + 1

m0

)
+

16δ2ρsσ2
∗

Rk−1ν
≤ 1

2
Rk−1 +

16δ2ρsσ2
∗

Rk−1ν
= Rk. (40)

We conclude that x̂km0
∈ XRk

(x∗) for all ω
k ∈ Bk = Bk−1 ∩ Ωk, and

Prob(Bk) ≥ Prob(Bk−1)− Prob(Ω
c

k) ≥ 1− 4ke−t.

2o. Let now a = 16δ2ρsσ2
∗/ν, and let us study the behaviour of the sequence

Rk =
Rk−1

2
+

a

Rk−1
=: f(Rk−1), R0 = R ≥

√
2a.

Function f admits a fixed point at R =
√
2a which is also the minimum of f , so one has Rk ≥

√
2a ∀k. Thus,

dk := Rk −
√
2a =

Rk−1 −
√
2a

2
+

2a−
√
2aRk−1

2Rk−1
≤ 1

2
dk−1 ≤ 2−kd0 ≤ 2−k(R−

√
2a).

We deduce that Rk ≤ 2−kR0 +
√
2a which is (37). Finally, after running K1 stages of the preliminary phase, the

estimate x̂K1
m0

satisfies

∥x̂K1
m0

− x∗∥ ≤ 8δσ∗
√
2ρs/ν. □

We turn next to the analysis of the asymptotic phase of Algorithm 2. We assume that the preliminary phase of
the algorithm has been completed.

Lemma A.5 Let t be such that t ≥ 4
√
2 + log(m1), with m1 = ⌈81δ2ρsν(4Θ + 60t)⌉, γ = (4ν)−1, and let

ℓk = ⌈10× 4k−1Θ⌉. We set

κk = rk−1

√
ν(4Θ + 60t)

ρsm1
, rk = 2−kr0, r0 = 8δσ∗

√
2ρs/ν.

Then the approximate solution by Algorithm 2 x̂km1
at the end of the kth stage of the asymptotic phase satisfies,

with probability ≥ 1− 4(K1 + k)e−t, ∥x̂km1
− x∗∥ ≤ rk, implying that

∥x̂km1
− x∗∥ ≲ δ2σ∗ρs

√
Θ(Θ + t)

Nk
, (41)

where Nk = m1

∑k
i=1 ℓi is the total count of oracle calls for k asymptotic stages.
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Proof of the lemma. Upon terminating the preliminary phase, the initial condition x0 = x̂K1
m0

of the asymptotic

phase satisfies (38) with probability greater or equal to 1−4K1e
−t. We are to show that ∀k ≥ 1, with probability

at least 1− 4(K1 + k)e−t,

∥x̂km1
− x∗∥ ≤ rk = 2−kr0, r0 = 8δσ∗

√
2ρs/ν.

The claim is obviously true for k = 0. Let let us suppose that it holds at stage k− 1 ≥ 0, and let us prove that it
also holds at stage k. To this end, we reproduce the argument used in the proof of Lemma A.4, while taking
into account that now ℓk observations are averaged at each iteration of the CSMD algorithm. Recall (cf. Lemma
A.3) that this amounts to replacing sub-Gaussian parameter σ2

∗ with σ2
∗ = 10Θσ2

∗/ℓk. When applying the result
of Proposition A.1 and the bound of (14) we conclude (cf. (39)) that, with probability 1− (K1 + k)e−t,

∥x̂km1
− x∗∥ ≤ δ

[
ρsκk +

rk−1

m1
+
νr2k−1

κkm1
(4Θ + 60t) +

10Θσ2
∗

νκkℓk

(
7
4 + 6t

m1

)]
By simple algebra, we obtain the following analogue of (40):

∥x̂km1
− x∗∥ < δrk−1

(
2
9δ + 1

m1

)
+ 10

4−k+1δ2ρsσ2
∗

rk−1ν
< rk−1

4 + rk−1

4 = rk.

Observe that upon the end of the kth stage we used Nk = m1

∑k
i=1 ℓk < 3m1Θ

∑k
j=1 4

j−1 ≤ 4kΘm1 observations

of the asymptotic stage. As a consequence, 4−k < Θm1/Nk and

rk = 2−kr0 ≲ δ2σ∗

√
Θ(Θ + t)sνρ

Nk
. □

Assuming that the preliminary phase of Algorithm 1 was completed, we now consider the asymptotic phase of
the algorithm.

Lemma A.6 Let t ≥ 4
√
2 + logmk, mk =

⌈
4k+4(4Θ + 60t)δ2ρsν

⌉
,

γk =
rk−1

2σ∗

√
(4Θ + 60t)

2mk
, κ2k =

5σ∗rk−1

ρs

√
(4Θ + 60t)

mk
(42)

where
rk := 2−kr0, r0 = 8δσ∗

√
2ρs/ν.

Then the approximate solution x̂kmk
upon termination of the kth asymptotic stage satisfies with probability

≥ 1− 4(K1 + k)e−t

∥x̂kmk
− x∗∥ ≤ 2−kr0 ≲ 2−kσ∗δ

√
ρsν−1 ≲ δ2σ∗ρs

√
Θ+t
Nk

(43)

where Nk =
∑k

j=1mj is the total iteration count of k stages of the asymptotic phase.

Proof of the lemma.
We are to show that ∀k ≥ 0, ∥x̂kmk

− x∗∥ ≤ rk with probability ≥ 1− 4(K1 + k)e−t is true. By Lemma A.4,

the claim is true for k = 0 (at the start of the asymptotic phase, the initial condition x0 = x̂K1
m0

satisfies the
bound (38)). We now assume it to hold for k− 1 ≥ 0, our objective is to implement the recursive step k− 1 → k
of the proof. First, observe that the choice of γk in (42) satisfies γk ≤ (4ν)−1, k = 1, ..., so that Proposition A.1
can be applied. From the result of the proposition and bound (14) we conclude (cf. (39)) that it holds, with
probability 1− (K1 + k)e−t,

∥x̂kmk
− x∗∥ ≤ δ

[
ρsκk +

rk−1

mk
+
r2k−1 (4Θ + 60t)

γkκkmk
+ 8

γkσ2
∗

κk

]
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When substituting the value of γk from (42) we obtain

∥x̂kmk
− x∗∥ ≤ δ

ρsκk +
rk−1

mk
+

4σ∗rk−1

κk

√
2(4Θ + 60t)

mk

 ,
which, by the choice of κk in (42), results in results in

∥x̂kmk
− x∗∥2 ≤ 2δ2

[
10ρsσ∗rk−1

√
4Θ + 60t

mk
+
r2k−1

m2
k

]
≤
r2k−1

4
= r2k.

It remains to note that the total number Nk =
∑k

j=1mj of iterations during k stages of the asymptotic phase

satisfies Nk ≲ 4k(Θ + t)δ2ρsν, and 2−k ≲ δ
√

(Θ+t)ρsν
Nk

, which along with definition of r0 implies (43). □

Proof of Theorem 2.1. We can now terminate the proof of the theorem. Let us prove the accuracy bound of
the theorem for the minibatch variant of the procedure.

Assume that the “total observation budget” N is such that only the preliminary phase of the procedure is
implemented. This is the case when either m0K1 ≥ N , or m0K1 < N and m0K1+m1ℓ1 > N . The output x̂N of
the algorithm is then the last update of the preliminary phase, and by Lemma A.4 it satisfies ∥x̂N − x∗∥ ≤ R2−k

where k is the count of completed stages. In the case of m0K1 ≥ N this clearly implies that (recall that N ≥ m0)
that k ≥ cN/m0 and, with probability ≥ 1− 4ke−t

∥x̂N − x∗∥ ≲ R exp

{
− c′N

δ2ρsν(Θ + t)

}
. (44)

On the other hand, when m0K1 < N < m0K1 +m1ℓ1, by definition of m1 and ℓ1, one has N ≤ Cm0K1, so
that bound (44) still holds in this case.

Now, consider the case where at least one asymptotic stage has been completed. When m0K1 >
N
2 we still

have N ≤ Cm0K1, so that the bound (44) holds for the approximate solution x̂
(b)
N at the end of the asymptotic

stage. Otherwise, the number of oracle calls Nk of asymptotic stages satisfies Nk ≥ N/2, and by (41) this implies
that with probability ≥ 1− 4(K1 +K2)e

−t,

∥x̂(b)N − x∗∥ ≲ δ2σ∗ρs

√
Θ(Θ + t)

N
.

To summarize, in both cases, the bound of Theorem 2.1 holds with probability at least 1− 4(K1 +K2)e
−t.

The proof of the accuracy bound for the “standard” solution x̂N is completely analogous, making use of the
bound (43) of Lemma A.6 instead of (41). □

Remark A.1 Theorem 2.1 as stated in Section 2.3 does not say anything about convergence of g(x̂N ) to g(x∗).
Such information can be easily extracted from the proof of the theorem. Indeed, observe that at the end of a stage
of the method, one has, with probability 1− Cke−t,

Fκk
(x̂k)− Fκk

≤ υk,

or
g(x̂k)− g(x∗) ≤ υk + κk(∥x̂k∥ − ∥x∗∥) ≤ υk + κk∥x̂k − x∗∥

where x̂k is the approximate solution at the end of the stage k. One the other hand, at the end of the kth stage of

the preliminary phase one has ∥x̂k − x∗∥ ≤ Rk ≤ 2−kR, with κk ≲ Rk(δρs)
−1 ≤ 2−kR(δρs)−1 and υk ≲ 4−kR2

δ2ρs
implying that

g(x̂k)− g(x∗) ≲ υk +
R2

k

δ2ρs
≲ (δ−2 + δ−1)

R2

ρs
exp

{
− c

δρν

N

s(Θ + t)

}
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where N is the current iteration count. Furthermore, at the end of the kth asymptotic stage, one has, with

probability 1 − (K1 + k)e−t, ∥x̂k − x∗∥ ≤ Rk ≲ δ2σ∗ρs
√

Θ+t
mk

, while κk ≍ 2−kδσ∗(ρνs)
−1/2 ≲ δσ∗

√
Θ+t
mk

, and

υk ≲ δ2σ2
∗ρs(Θ + t)/mk. As a result, the corresponding x̂k satisfies

g(x̂k)− g(x∗) ≤ υk + κk∥x̂k − x∗∥ ≲ (δ2 + δ3)ρσ2
∗s

Θ+ t

mk
.

When putting the above bounds together, assuming that at least 1 stage of the algorithm was completed, we arrive
at the bound after N steps:

g(x̂N )− g(x∗) ≲ (δ−2 + δ−1)
R2

ρs
exp

{
− c

δ2ρν

N

s(Θ + t)

}
+ (δ2 + δ3)ρσ2

∗s
Θ+ t

N
(45)

with probability 1− (K1 +K2)e
−t.

A.4 Proof of Proposition 3.1

1o. Recall that r is r-Lipschitz continuous, i.e., for all t, t′ ∈ Rm

|r(t)− r(t′)| ≤ r|t− t′|.

As a result, for all x, x′ ∈ X,

∥ϕ[r(ϕTi x)− r(ϕTi x
′)]∥∞ ≤ r∥ϕi∥∞|ϕTi (x− x′)| ≤ r∥ϕi∥2∞∥x− x′∥1 ≤ rν2∥x− x′∥1,

so that ∇G(x, ω) = ϕ[r(ϕTx)− η] is Lipschitz continuous w.r.t. ℓ1-norm with Lipschitz constant L(ω) ≤ rν2.

2o. Due to strong monotonicity of r,

g(x)− g(x∗) =

∫ 1

0

∇g(x∗ + t(x− x∗))
T (x− x∗)dt

=

∫ 1

0

E
{
ϕ[r(ϕT (x∗ + t(x− x∗))− r(ϕTx∗)]

}T

(x− x∗)dt

≥
∫ 1

0

rE
{
(ϕT (x− x∗))

2
}
tdt = 1

2
r∥x− x∗∥2Σ,

what is (16).

3o. The sub-Gaussianity in the “batchless” case is readily given by ∇G(x∗, ωi) = σϕiξi with ∥ϕiξi∥∞ ≤
∥ϕi∥∞|ξi| ≤ ν∥ξi∥2 and

E

{
exp

(
∥∇G(x∗, ωi)∥2∞

σ2ν2

)}
≤ e

due to E
{
eξ

2
i

}
≤ exp(1). Because Θ variation of the d.-g.f. θ, as defined in (20), is bounded with C lnn, by

Lemma A.3 we conclude that batch observation

H
(
x∗, ω

(L)
i

)
=

1

L

L∑
ℓ=1

∇G(x∗, ωℓ
i ) =

1

L

L∑
ℓ=1

σϕℓi , ξ
ℓ
i

is sub-Gaussian with parameter ≲ σ2ν2 lnn.
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4o. In the situation of Section 3.1, Σ is positive definite, Σ ⪰ κΣI, κΣ > 0, and condition Q(λ, ψ) is satisfied
with λ = κΣ and ψ = 1. Because quadratic minoration condition (17) for g is verified with µ ≥ r due to (16),
when applying the result of Lemma 3.1, we conclude that Assumption [RSC] holds with δ = 1 and ρ = (κΣr)

−1.5

□

B Properties of sparsity structures

B.1 Sparsity structures

The scope of results of Section 2 is much broader than “vanilla” sparsity optimization. We discuss here general
notion of sparsity structure which provides a proper application framework for these results.

In what follows we assume to be given a sparsity structure [21] on E—a family P of projector mappings
P = P 2 on E such that

A1.1 every P ∈ P is assigned a linear map P on E such that PP = 0 and a nonnegative weight π(P );

A1.2 whenever P ∈ P and f, g ∈ E such that ∥f∥∗ ≤ 1, ∥g∥∗ ≤ 1,

∥P ∗f + P
∗
g∥∗ ≤ 1

where for a linear map Q : E → F , Q∗ : F → E is the conjugate mapping.

Following [21], we refer to a collection of the just introduced entities and sparsity structure on E. For a
nonnegative real s we set

Ps = {P ∈ P : π(P ) ≤ s}.

Given s ≥ 0 we call x ∈ E s-sparse if there exists P ∈ Ps such that Px = x.
Typically, one is interested in the following “standard examples”:

1. “Vanilla (usual)” sparsity: in this case E = Rn with the standard inner product, P is comprised of
projectors on all coordinate subspaces of Rn, π(P ) = rank(P ), and ∥ · ∥ = ∥ · ∥1.

2. Group sparsity: E = Rn, and we partition the set {1, ..., n} of indices into K nonoverlapping subsets
I1, ..., IK , so that to every x ∈ Rn we associate blocks xk with corresponding indices in Ik, k = 1, ...,K. Now
P is comprised of projectors P = PI onto subspaces EI = {[x1, ..., xK ] ∈ Rn : xk = 0∀k /∈ I} associated

with subsets I of the index set {1, ...,K}. We set π(PI) = cardI, and define ∥x∥ =
∑K

k=1 ∥xk∥2—block
ℓ1/ℓ2-norm.

3. Low rank structure: in this example E = Rp×q with, for the sake of definiteness, p ≥ q, and the Frobenius
inner product. Here P is the set of mappings P (x) = PℓxPr where Pℓ and Pr are, respectively, q × q and
p× p orthoprojectors, P (x) = (I − Pℓ)x(I − Pr), and ∥ · ∥ is the nuclear norm ∥x∥ =

∑q
i=1 σi(x) where

σ1(x) ≥ σ2(x) ≥ ... ≥ σq(x) are singular values of x, ∥ · ∥∗ is the spectral norm, so that ∥x∥∗ = σ1(x), and
π(P ) = max[rank(Pℓ), rank(Pr)].

In this case, for ∥f∥∗ ≤ 1 and ∥g∥∗ ≤ 1 one has

∥P ∗(f)∥∗ = ∥PℓfPr∥∗ ≤ 1, ∥P ∗
(g)∥∗ = ∥(I − Pℓ)g(I − Pr)∥∗ ≤ 1,

and because the images and orthogonal complements to the kernels of P and P are orthogonal to each
other, ∥P ∗(f) + P

∗
(g)∥∗ ≤ 1.

5We refer to Section B.2 and Lemma B.1 for the proof of Lemma 3.1.
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B.2 Condition Q(λ, ψ)

We say that a positive semidefinite mapping Σ : E → E satisfies condition Q(λ, ψ) for given s ∈ Z+ if for some
ψ, λ > 0 and all P ∈ Ps and z ∈ E

∥Pz∥ ≤
√
s/λ∥z∥Σ + ∥Pz∥ − ψ∥z∥. (46)

Lemma B.1 Suppose that x∗ is an optimal solution to (5) such that for some P ∈ Ps, ∥(I − P )x∗∥ ≤ δ, and
that condition Q(λ, ψ) is satisfied. Furthermore, assume that objective g of (5) satisfies the following minoration
condition

g(x)− g(x∗) ≥ µ
(
∥x− x∗∥Σ

)
where µ(·) is monotone increasing and convex. Then a feasible solution x̂ ∈ X to (7) such that

Prob {Fκ(x̂)− Fk(x∗) ≤ υ} ≥ 1− ϵ.

satisfies, with probability at least 1− ϵ,

∥x̂− x∗∥ ≤
µ∗
(
κ
√
s/λ
)
+ υ

κψ
+

2δ

ψ
(47)

where µ∗ : R+ → R+ is conjugate to µ(·), µ∗(t) = supu≥0[tu− µ(u)].

Proof. When setting z = x̂− x∗ one has

x̂ = ∥x∗ + z∥ = ∥Px∗ + (I − P )x∗ + z∥ ≥ ∥Px∗ + z∥ − ∥(I − P )x∗∥
≥ ∥Px∗∥+ ∥Pz∥ − ∥Pz∥ − δ

where we used the relation
∥Px∗ + z∥ ≥ ∥Px∗∥ − ∥Pz∥+ ∥Pz∥

(cf. Lemma 3.1 of [21] applied to w = Px∗). When using condition Q(λ, ψ) we obtain

∥x̂∥ ≥ ∥Px∗∥ −
√
s/λ∥z∥Σ + ψ∥z∥ − δ,

so that Fk(x̂) ≤ Fk(x∗) + υ implies

κ (∥Px∗∥+ ψ∥z∥ − δ) ≤ 1
2
[g(x∗)− g(x̂)] + κ

√
s/λ∥z∥Σ + κ∥x∗∥+ υ

≤ − 1
2
µ(∥z∥Σ) + κ

√
s/λ∥z∥Σ + κ∥x∗∥+ υ

≤ 1
2
µ∗(2κ

√
s/λ) + κ∥x∗∥+ υ,

and we conclude that
κψ∥z∥ ≤ 1

2
µ∗(2κ

√
s/λ) + 2κδ + υ

due to ∥x∗∥ − ∥Px∗∥ ≤ ∥(I − P )x∗∥ ≤ δ. □
Note that when µ(u) = µ

2u
2, one has µ∗(t) = 1

2µ t
2, and in the case of ∥ · ∥ = ∥ · ∥1, with probability 1− ϵ,

∥x̂− x∗∥1 ≤ sκ

µλψ
+

υ

κψ
+

2δ

ψ
.

This, in particular, implies bound (18) of Lemma 3.1.

27



Remark B.1 We discuss implications of condition Q(λ, ψ) and result of Lemma B.1 for “usual” sparsity in
Section 3 of the paper. Now, let us consider the case of the low rank sparsity. Let z ∈ Rp×q with p ≥ q for
the sake of definiteness. In this case, ∥ · ∥ is the nuclear norm, and we put P (z) = PℓzPr where Pℓ and Pr are
orthoprojectors of rank s ≤ q such that ∥(I − P )(x)∥ = ∥x∗ − Pℓx∗Pr∥ ≤ δ.6

Furthermore, for a p× q matrix z let us put

σ(k)(z) =

k∑
i=1

σi(z), 1 ≤ k ≤ q.

With the sparsity parameter s being a nonnegative integer,

∀(z ∈ Rp×q, P ∈ Ps) : ∥P (z)∥ ≤ σ(s)(z), ∥P (z)∥ ≥ ∥z∥ − σ(2s)(z).7

and we conclude that in the present situation condition

σ(s)(z) + σ(2s)(z) ≤
√
s/λ∥z∥Σ + (1− ψ)∥z∥ (48)

is sufficient for the validity of Q(λ, ψ). As a result, condition (48) with ψ > 0 is sufficient for applicability of the
bound of Lemma B.1. It may also be compared to the necessary and sufficient condition of “s-goodness of Σ” in
[43]:

∃ψ > 0 : 2σ(s)(z) ≤ (1− ψ)∥z∥ ∀z ∈ Ker(Σ).

C Supplementary numerical experiments

This section complements the numerical results appearing on the main body of the paper. We consider the setting
in Section 3.3 of sparse recovery problem from GLR model observations (15). In the experiments below, we
consider the choice (19) of activation function rα(t) with values α = 1 and α = 1/10; value α = 1 corresponds to
linear regression with r(t) = t, whereas when α = 0.1 activation have a flatter curve with rapidly decreasing with
r modulus of strong convexity for |t| ≤ r. Same as before, in our experiments, the dimension of the parameter
space is n = 500 000, the sparsity level of the optimal point x∗ is s = 100; we use the minibatch Algorithm 2 with
the maximal number of oracle calls is N = 250 000. In Figures 4 and 5 we report results for κΣ ∈ {0.1, 1} and
σ ∈ {0.001, 0.1}; the simulations are repeated 10 times, we trace the median of the estimation error ∥x̂i − x∗∥1
along with its first and the last deciles against the number of oracle calls.

In our experiments, multistage algorithms exhibit linear convergence on initial iterations. Surprisingly,
“standard” (non-Euclidean) SMD also converges fast in the “preliminary” regime. This may be explained by the
fact that iteration xi of the SMD obtained by the “usual” proximal mapping Prox(γi−1∇G(xi−1, ωi), xi−1) is
computed as a solution to the optimization problem with “penalty” θ(x) = c∥x∥pp, p = 1 + 1/ lnn which results
in a “natural” sparsification of xi. As iterations progress, such “sparsification” becomes insufficient, and the
multistage routine eventually outperforms the SMD. Implementing the method for “flatter” nonlinear activation
r(t) or increased condition number of the regressor covariance matrix Σ requires increasing the length m0 of the
stage of the algorithm.

6E.g., choose Pℓ and Pr as left and right projectors on the space generated by s principal left and right singular vectors of x∗, so
that ∥x∗ − Pℓx∗Pr∥ = ∥(I − Pℓ)x∗(I − Pr)∥ =

∑q
i=s+1 σi ≤ δ.

7Indeed, let P ∈ Ps, so that rank(Pℓ) ≤ s and rank(Pr) ≤ s, and ∥P (z)∥ = ∥PℓzPr∥ ≤ σ(s)(z). Since the matrix P (z)
differs from z by a matrix of rank at most 2s, by the Singular Value Interlacing theorem we have σi(P (z)) ≥ σi+2s(z), whence
∥P (z)∥ ≥ ∥z∥ − σ(2s)(z).
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(a) κΣ = 1, σ = 0.1,m0 = 5000 (b) κΣ = 1, σ = 0.001,m0 = 5000

(c) κΣ = 0.1, σ = 0.1,m0 = 7500 (d) κΣ = 0.1, σ = 0.001,m0 = 7500

Figure 4: CSMD-SR and “vanilla” SMD in Linear Regression problem (activation function r(t) = t); ℓ1 error as a
function of the number of oracle calls
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(a) κΣ = 1, σ = 0.1,m0 = 8000 (b) κΣ = 1, σ = 0.001,m0 = 8000

(c) κΣ = 0.1, σ = 0.1,m0 = 10 000 (d) κΣ = 0.1, σ = 0.001, ,m0 = 10 000

Figure 5: CSMD-SR and “vanilla” SMD in Generalized Linear Regression problem: activation function r1/10(t) ; ℓ1 error
as a function of the number of oracle calls
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