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Abstract 8 

Massive CD4+ T-cell depletion as well as sustained immune activation and inflammation are hallmarks 9 

of HIV-1 infection. In recent years, an emerging concept draws an intriguing parallel between HIV-1 10 

infection and ageing. Indeed, many of the alterations that affect innate and adaptive immune subsets in 11 

HIV-infected individuals are reminiscent of the process of immune ageing, characteristic of old age. 12 

These changes, of which the presumed cause is the systemic immune activation established in patients, 13 

likely participate in the immuno-incompetence described with HIV progression. With the success of 14 

antiretroviral therapy, HIV-seropositive patients can now live for many years despite chronic viral 15 

infection. However, AIDS-related opportunistic infections have given way to chronic diseases as the 16 

leading cause of death since HIV infection. Therefore, the comparison between HIV-1 infected patients 17 

and uninfected elderly individuals goes beyond the sole onset of immunosenescence and extends to the 18 

deterioration of several physiological functions related to inflammation and systemic ageing. In light of 19 

this observation, it is interesting to understand the precise link between immune activation and ageing 20 

in HIV-1 infection to figure out how to best care for people living with HIV. 21 
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Introduction 28 

The prevalence of Human Immunodeficiency Virus (HIV) infections among people over 50 years old 29 

is rapidly increasing. According to data from the Dutch AIDS Therapy Evaluation in the Netherland 30 

(ATHENA) cohort, the proportion of HIV-infected people aged 50 and older is expected to increase 31 

from 28% in 2010 to 73% in 2030 (1). Indeed, HIV-infected patients can now live for years despite the 32 

chronical presence of the virus, thanks to the development of antiretroviral therapy (ART) (2). 33 

Individuals on ART are more likely to experience serious non-acquired immunodeficiency syndrome 34 

(AIDS) events, which occur with higher prevalence at earlier ages than in the general population. This 35 

observation results in the emergence of an intriguing parallel between HIV-1 infection and ageing: 36 

many of the alterations that affect innate and adaptive immune cell subsets in HIV-infected individuals 37 

are reminiscent of the process of immune ageing, characteristic of old age. These changes likely 38 

participate in the decline of immune competence and the deterioration of several physiological functions 39 

related to inflammation and systemic ageing (3). As a result of HIV-1 infection, the leading cause of 40 

death has changed from AIDS-related opportunistic infections to chronic diseases. Indeed, even among 41 

patients who respond well to antiretroviral medication, there is an increasing occurrence of 42 

comorbidities that are not related to HIV but are characteristic of the situation observed in old age with 43 

an inflammatory pathogenesis, such as cardiovascular disease, cancer, renal failure, liver disease, 44 

osteopenia and osteoporosis, as well as neurocognitive impairment (4), (5). In addition, antiretroviral 45 

medication toxicity accumulates over time, causing clinically meaningful metabolic abnormalities and 46 

organ damage. Of note, older HIV-infected individuals are at greater risk of polypharmacy, frailty, and 47 

other age-related conditions (6). The increased prevalence of these comorbidities could be explained by 48 

chronic low-grade inflammatory phenotype (inflammaging) due to HIV-1 infection in addition to viral 49 

coinfections, ART toxicity, residual HIV replication, and lifestyle factors. In this review, we focus only 50 

on the mechanisms of immune ageing in HIV-1 infection, which is the most common type of HIV 51 

infection (almost 95% of all infections).  52 
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1. Summary of HIV pathogenesis 53 

A fundamental event in the HIV-1 pathogenesis is the infection of the CD4+ T-cell pool (Figure 1). 54 

During primary infection, HIV-1 is able to infect CD4+ T-cells extensively, in particular activated 55 

memory CCR5-positive cells (7). At this stage, the anti-HIV immunity is not mounted yet, so that viral 56 

replication and spreading remain uncontrolled. Viremia increases to reach peak levels, while the 57 

immune response ascends, in particular HIV-specific CD8+ T-cells, which terminate the acute phase. 58 

However, the damage has been done, leading to the establishment of HIV-1 latent reservoir, rooting 59 

itself in its host, with an extensive viral replication and the massive depletion of CD4+ T-cells, in 60 

particular from mucosal lymphoid tissues (8). This has immediate consequences on the unity of the 61 

mucosal surfaces, and microbial translocation occurs. 62 

Then, considerable immune activation takes place, which is multicausal and lasts throughout the course 63 

of the infection. First, the immune response against HIV-1 itself ensues, and aims at controlling the 64 

virus, despite persisting replication and emergence of variants that can escape both humoral and cellular 65 

responses. The immune system has also to cope with other persisting pathogens (like Cytomegalovirus, 66 

CMV), whose reactivation may be enhanced by the substantial loss of CD4+ T-cells (9). HIV proteins 67 

can also directly induce cellular activation through the binding of the envelope protein gp120 to CD4 68 

or co-receptors, or with the protein Nef which is able to induce lymphocyte activation directly or 69 

through the infection of macrophage. Last but not least, translocation of microbial products leads to 70 

systemic activation of monocytes and lymphocytes. As a consequence, levels of proinflammatory 71 

cytokines increase notably. In addition, immune activation promotes HIV replication, thus establishing 72 

a vicious cycle (10). 73 

Systemic immune activation leads to considerable cellular turnover, senescence and apoptosis, which 74 

represent a massive challenge for the immune system in terms of cellular renewal in order to maintain 75 

homeostasis. Overtime, the consequence is the development of immunosenescence and a progressive 76 

decline of regenerative capacities (down to the level of hematopoietic progenitors). In parallel, the 77 

constant production of proinflammatory cytokines leads to inflammation-related disorders such as 78 
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osteoporosis, atherosclerosis, neurocognitive deterioration, frailty or cardiovascular disease. With the 79 

exhaustion of primary resources, naïve T-, B- and Natural Killer (NK)-cells disappear and highly 80 

differentiated oligoclonal populations accumulate. Optimal anti-HIV immunity cannot be maintained 81 

and the CD4+ T- cell pool cannot be replenished, resulting in the collapse of the immune system’s ability 82 

to control pathogens, hallmark of AIDS. 83 

The development of immunosenescence is determined by the very physiological defense function of 84 

the immune system. The normal ageing process is characterized by low grade, recurrent immune 85 

activation and inflammatory activity, which eventually leads to immunosenescence. Through the 86 

induction of persistent, sustained immune activation, HIV-1 infection could be considered as a model 87 

of accelerated immunosenescence and systemic ageing (Figure 1). During this process, the immune 88 

system burns itself quickly, as the source of its exhaustion (i.e. the virus) cannot be eliminated. 89 

 90 

2. Immune system alterations with ageing and HIV 91 

Alterations of the immune system are characteristic of immune ageing caused by advanced age and 92 

probably contribute to the decline of immune function in people living with HIV (PLWH). Although 93 

ageing and HIV-1 infection both affect immune function, there are differences in both myeloid and 94 

lymphoid cell alterations in the peripheral blood. Indeed, advanced HIV-1 disease results in a profound 95 

decline of peripheral blood myeloid cells, which is not seen with normal ageing. As with ageing, HIV-96 

1 disease affects lymphocyte subsets in a significant way, even though the most affected lymphocyte 97 

subsets differ. For instance, CD4+ T -cell loss is most profound in HIV-1 infection, but other lymphocyte 98 

subsets are functionally altered as well (11). Finally, it was observed in PLWH that their T cell 99 

proliferative capacity and their delayed hypersensitivity decreased, while their apoptosis increased, 100 

however, these changes were not related to age (12). Below, we discuss the multiple ageing-like 101 

alterations that occur in the different cellular compartments of the immune system. 102 

 103 

 104 
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2.1 Immune resources 105 

Bone marrow 106 

The bone marrow is a critical developmental niche for CD34+ hematopoietic stem cells (HSCs) that 107 

gives rise to the myeloid and lymphoid cells required for innate and adaptive immunity. Under normal 108 

circumstances, the percentage of marrow space occupied by the hematopoietic tissue declines from 90% 109 

at birth to a level of approximately 50% at 30 years of age and 30% at 70 years of age. This decreased 110 

cellularity observed with ageing is reflected anatomically by a reduction in lymphoid mass with an 111 

increase in fat or fibrosis and results in skewing of all peripheral blood subsets. Due to similar 112 

histoarchitectural deterioration of lymphoid tissue during HIV infection, several studies reported a 113 

variety of hematological abnormalities in the bone marrow of PLWH, such as anemia, dysplasia and 114 

leukopenia (13), even in treated patients (14). It has also been reported defective cytokine and 115 

chemokine productions by bone marrow cells (15). Similarly, decreased Interleukin (IL)-2 levels and 116 

elevated Tumor Necrosis Factor (TNF)-α, Macrophage Inflammatory Protein (MIP)-1α, MIP-1β and 117 

RANTES levels, as well as defective bone marrow clonogenic activity were observed before treatment 118 

compared with non-HIV-infected control subjects (16). 119 

 120 

Hematopoietic cells 121 

In addition to the microenvironmental changes occurring in lymphoid tissue during HIV infection, 122 

defects in the formation of blood components (hematopoiesis) have been pinpointed since HSCs from 123 

PLWH present functional alterations (17).  Both elderly people and patients progressing towards AIDS 124 

have decreased numbers of circulating CD34+ hematopoietic progenitor cells (HPCs), and their 125 

remaining CD34+ cells present functional alterations such as reduced clonogenic potential (18). Among 126 

CD34+ HPCs from these individuals, cells with lymphoid precursor capacity are drastically reduced, 127 

and the ability to produce T lymphocytes is impaired in in vitro culture assays (19). Age-related declines 128 

in the hematopoietic system are thought to be one of the main factors underlying immune degeneration 129 

in the elderly and are likely to contribute to accelerated immune ageing in PLWH. ART partially 130 

restores the HPCs compartment and hematopoiesis, together with the recovery of all immunocompetent 131 



 

5 

cell pools (18). A study reveals that the recovery of CD4+ T-cells following ART initiation was 132 

correlated with HPCs proliferation, which indicates that bone marrow-derived HPCs are crucial for 133 

reconstituting the immune system during HIV infection (20). Studies have shown that CD34+ cells can 134 

sustain both active and latent HIV infection in vitro and in vivo (21). As a result of infection of these 135 

cells, HIV leads to anemia and hematopoiesis dysfunction, which also creates a long-lasting, stable viral 136 

reservoir that can lead to residual plasma viral infection in ART-treated individuals (22). 137 

 138 

Thymus 139 

The thymus is a primary lymphoid organ where T-cells differentiate into self-tolerant CD4+ and CD8+ 140 

lymphocytes which migrate to populate the peripheral lymphoid tissues. The thymus produces new  141 

T-cells throughout life but has no self-renewing ability and requires replenishment and recruitment of 142 

progenitors derived from the bone marrow. Thymic involution, characterized by the loss of thymic 143 

function and size with age (23), can also be caused by HIV-1 infection, which induces structural and 144 

functional changes leading to immune senescence (13).  145 

The reduced generation of naïve T-cells associated with normal thymus ageing or with diseases linked 146 

to chronic inflammation such as HIV, result in reduced T-cell specificity, peripheral T-cell imbalances, 147 

and a higher risk of infection (24). Both ageing and HIV infection cause T-cells to switch from naïve 148 

to more differentiated cells with transitional or effector memory phenotypes (25). Moreover, infection 149 

with HIV causes irreversible damage to the thymus, which is partly responsible for the inability to 150 

produce naïve T-cells. PLWH can recover functional thymic mass after its degradation induced by the 151 

virus with the use of ART. In addition, it has been shown that patients with larger thymic sizes are able 152 

to maintain higher CD4 counts and thymocyte production after five years of ART (26). 153 

 154 

2.2. Innate immunity 155 

Natural Killer cells 156 

NK cells are subdivided into three subsets: the cytokine producing CD56++ CD16- subset, the cytotoxic 157 

CD56+ CD16+ subset, and a minor CD56- CD16+ NK cell subset with poor antiviral activity. NK cell 158 
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subset distribution and function are altered with ageing or HIV infection (27). In both contexts, a gradual 159 

loss of CD56++ NK cells is observed, likely caused by limited production of its precursors, along with 160 

an expansion of CD56- CD16+ NK cells (28), (29). This expansion has been suggested to be a 161 

mechanism to maintain overall NK cell homeostasis in PLWH by compensating the loss of CD56+ NK 162 

cells (27). The presence of an expanded CD56- NK cell population among HIV viremic individuals has 163 

been associated with significantly reduced spontaneous NK cytolytic activity as compared with that of 164 

aviremic individuals or healthy donors (30). 165 

With age or throughout the course of HIV infection, the characteristics of predominant CD56+ NK cells 166 

are also altered. There is indeed evidence of an accumulation of mature CD57+ CD56+ CD16+ NK cells 167 

with ageing (in particular in CMV seropositive donors) (31), (32).  In addition, CD56-NK cell expansion 168 

has also been attributed to high viral loads, as both parameters are strongly correlated, except when the 169 

virus is suppressed (33). In HIV patients, their functionality is impaired with a decreased ability to 170 

eliminate virus-infected target cells and to interact with other cellular components of the adaptive 171 

immune system (34), (35). Additionally, chronic HIV infection results in impaired NK cell cytotoxicity 172 

and cytokine secretion as well as the inability to respond to Interferon (IFN)-γ and to produce high 173 

amounts of IFN-γ and TNF-α (36). These alterations are found even in treated patients (37). The 174 

diversity of NK cells, which may affect immune surveillance, also changes after HIV-1 infection and 175 

ageing (38,39). Even after successful therapy, the recovery of NK cell function, as IFN-γ production 176 

(40) and repertoire expression may remain impaired (39,41). However, a direct comparison between 177 

PLWH and elderly individuals is difficult to establish since their respective CD56+ cell subsets have 178 

been characterized according to either phenotype, function or repertoire. A deeper understanding of the 179 

relationship between HIV-1 infection and ageing will require further studies of CD56+ NK cells.  180 

Monocytes 181 

Monocytes can be classified into three main subpopulations: classical CD14++ CD16- that expresses 182 

CD62L, CCR2 and low levels of CX3CR1, intermediate CD14++ CD16+ that lacks CD62L or CCR2 183 

but expresses CX3CR1 and secretes high level of TNF-α in response to Toll-like receptors, and  184 

non-classical CD14+ CD16++ which are CCR2low CX3CR1high. PLWH display several phenotypic 185 
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and functional changes that are similar to those observed within the elderly. Although there are 186 

relatively few changes in the absolute numbers of monocytes, the distribution of these cells is altered, 187 

characterized by a marked decrease in classical monocytes and an increase in intermediate and non-188 

classical monocytes in older or HIV-infected patients (42,43). Infection increases CD16+ monocytes, 189 

which correlate with viremia, T cell activation, and IL-6 plasma levels. Patients who do not take therapy 190 

or discontinue treatment have an expanded number of these cells. On the other hand, patients who are 191 

on effective ART exhibit the same level of expression of CD16 as uninfected controls (44). 192 

Monocytes from elderly or PLWH produce proinflammatory cytokines, are CD38, CD69, CD11b, 193 

HLA-DR and CD86 positive, and have decreased CD62L expression, which are all characteristics of 194 

activated cells (45). The expression of CD69 and HLA-DR in HIV-infected patients correlates well with 195 

plasma lipopolysaccharide (LPS) levels, an indicator of microbial translocation (46). Moreover, plasma 196 

levels of soluble CD163 and CXCL10 which are markers associated with monocyte activation, also 197 

increase with both age and HIV-1 infection (42,47). These biomarkers of monocyte activation are only 198 

partially normalized upon ART mediated viral suppression (42), indicating that such changes may 199 

contribute to the increased risk of inflammatory age-related diseases in treated HIV-positive patients 200 

(47).  201 

 202 

2.3. Adaptive immunity 203 

Adaptive immunity alteration with age is a major source of morbidity and mortality in the elderly, and 204 

these changes can be also found in HIV. Indeed, ageing and HIV-1 infection are associated with the 205 

accumulation of CD8+ T-lymphocytes lacking CD28 (48,49) and end-stage senescent cells (CD57+ 206 

cells) (50,51). Similarly, a decrease in CD4+ and CD8+ naïve T-cell counts is described both in ageing 207 

and HIV-1 infection. Interestingly, the frequency of naïve T-cells is a good indicator of the 208 

immunological age of individuals, and its gradual decline is associated with the progression of HIV-1 209 

infection (52). Considering that adaptive immunity requires specific naïve T-cells to be activated, 210 

changes of this compartment may impact the ability of PLWH to initiate new robust immune responses. 211 
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For instance, as with uninfected elderly, PLWH respond less well to influenza vaccination (53) or to 212 

neo-antigen priming capacity (54). 213 

Chronic cellular activation which results in the accumulation of highly differentiated T-cells, is often 214 

related to chronic replication of HIV, as well as other persistent viruses, in particular CMV in  215 

co-infected patients. The immune system does activate T lymphocytes that are specific for viruses, 216 

which eventually lose CD28 expression, and instead display CD57 (50), (55). In PLWH, the 217 

accumulation of CD28-/CD57+ T-cells is usually considered as a marker of immunosenescence. In 218 

combination with HLA-DR expression, an indicator of T cell activation, this marker of 219 

immunosenescence can be used as a score of immune activation and senescence. This score correlates 220 

with the clinical state of PLWH and was significantly associated with the raise of non-AIDS related 221 

comorbidities (kidney disease, diabetes, cardiovascular events, degenerative central nervous system 222 

disorders, and cancer) in treated patients younger than 60 years old (56). Patients who are initiating 223 

ART do not see their CD28-/CD57+ T-cell count decrease, even with good CD4+ T-cell recovery (52). 224 

Furthermore, it has been found that adaptive immune activation and immune senescence markers 225 

increase in ageing HIV-infected patients, however they are not reliably associated with non-AIDS-226 

defining morbidity and mortality, contrary to markers of innate immune activation and inflammation 227 

(57,58).  Indeed, CD4/CD8 ratio has been shown to be a prognostic marker for non-AIDS defining 228 

events among long-term virologically suppressed PLWH (59) and correlates with non-AIDS morbidity 229 

(60,61) as well as risk of cancer (62,63). Thus, measurement of the CD4/CD8 ratio may serve as an 230 

adequate surrogate for the HIV reservoir since this ratio was associated with integrated levels of HIV–231 

DNA in peripheral blood cells (64). Similarly, an inverse correlation is demonstrated between CD4/CD8 232 

ratio and the frequency of CD4 T-cells carrying HIV–proviral DNA (64). More knowledge is needed 233 

regarding the impact of specific ART regimens (65) and the simultaneous treatment of coinfections, 234 

such as cytomegalovirus which is known to lower CD4/CD8 ratio through the accumulation of CMV-235 

specific CD8 T-cells (66). 236 

Altogether, immune exhaustion observed during HIV-1 infection occurs at different levels: functional, 237 

clonal and global and likely plays an important role in the onset of disease progression. 238 
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 239 

3. HIV-related mechanisms 240 

3.1. Immune activation and other co-infections 241 

A major contributor of immune activation in PLWH is the recurrent stimulation of immune cells that 242 

directly recognize HIV components. Continued exposure of cells to viral replication can lead to their 243 

functional and clonal exhaustion. Moreover, systemic inflammation due to activation of the innate 244 

immunity is another major issue in HIV-1 pathogenesis (67). This is reinforced by the fact that HIV-245 

mediated depletion of CD4+ T-cells can disrupt the normal phenomenon of immune surveillance in 246 

mucosal lymphoid tissues, resulting in the abundant release of microbial products and pro-inflammatory 247 

mediators. In addition, HIV-mediated depletion of CD4+ T-cells and inflammatory environment result 248 

in the reactivation of latently integrated forms of persistent viruses (Epstein-Barr Virus (EBV), Herpes 249 

Simplex Virus, CMV, Hepatitis B and C Viruses, human papillomavirus), which HIV seropositive 250 

patients are commonly infected with. Among these chronic viral infections, the most notable is CMV 251 

infection. As a result of CMV co-infection, CMV-specific CD8+ T-cells are associated with immune 252 

senescence (68), clonal expansion and homeostatic changes (69). These attributes are  hallmarks of the 253 

immune risk phenotype (70), leading to chronic low-grade inflammation that negatively impacts health 254 

(71). Despite the suppression of HIV-1 replication by ART, PLWH exhibit premature 255 

immunosenescence (67,72,73). 256 

3.2. Inflammation, mitochondrial dysfunction and oxidative stress 257 

A direct consequence of immune activation is the increase of NF-kB levels, which enhances the 258 

transcription of integrated virus, and thus the production of new virions that will infect new targets. A 259 

vicious circle is therefore established during which HIV-1 replication promotes immune activation, and 260 

immune activation promotes HIV-1 replication. The release of pro-inflammatory mediators participates 261 

also to this gear: the synergic action of IL-6 and IL-1ꞵ and TNF-ɑ, can lead to T cell activation (10) and 262 

can promote microbial translocation (74). 263 

 264 
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Under normal physiological conditions, reactive oxygen species (ROS) like H2O2 have vital roles in 265 

signal transduction cascades to reversibly oxidize/reduce protein cysteine thiol groups as molecular 266 

on/off switches. As a result of immune activation, both found in HIV infection and ageing, ROS are 267 

released into the cells (75),  which lead to over-oxidation and irreversible changes in protein structure 268 

and function (76). This can cause mitochondrial DNA damage due to its proximity to free radical 269 

sources and the relative lack of a protein scaffolding. Thus, mitochondrial DNA mutations lead to 270 

impaired mitochondrial protein synthesis, which has an adverse effect on oxidative phosphorylation, a 271 

process that eventually leads to premature cell ageing (77,78). The biological process to remove these 272 

accumulated damaged proteins stimulates inflammatory responses leading to a chronic inflammatory 273 

state and tissue injury (79,80). Compared to age-matched controls, HIV-infected men have reduced 274 

activity levels of skeletal oxidative enzymes, including dehydrogenase and citrate synthase by 38% and 275 

77%, respectively (81). The rate of acyl-coA synthase and carnitine palmitoyltransferase I oxidation is 276 

not significantly different between HIV-infected men and controls. However, skeletal muscle oxidative 277 

stress is significantly higher (H2O2 by 1.4 fold and oxidized cardiolipin by 1.8 fold).  Therefore, the 278 

progressive mitochondrial dysfunction contributes to accelerate ageing in highly energy-demanding 279 

organs like heart, skeletal muscle, kidney, liver, and brain (82).  Even in clinically stable HIV-infected 280 

treated patients, mitochondrial functions are disrupted (83). Of note, ART regimen differentially 281 

impacts on mitochondrial dysfunction, as reviewed by Schank et al. (84), highlighting the toxicity of 282 

treatment on cellular senescence. 283 

 284 

3.3. Intestinal dysbiosis 285 

As HIV-1 causes a substantial loss of CD4+ T-cells, especially in mucosal lymphoid organs where the 286 

majority of CD4+ T-cell pools are located, the diverse immunological components constituting the gut’s 287 

mucosal barrier can be disrupted leading to microbial translocation from the gastrointestinal tract to the 288 

systemic immune system (85). Measures of immune activation are directly linked with plasma LPS 289 

levels which are significantly increased in HIV-1 infection (86). LPS is known to induce production of 290 

a range of pro-inflammatory cytokines such as TNF-ɑ, IL-6 and IL-1ꞵ by stimulating peripheral 291 
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macrophages and dendritic cells. Therefore, a proinflammatory state can be established due to systemic 292 

activation and the differentiation of lymphocytes and monocytes.  293 

Studies evaluating microbiome composition, diversity, and function in HIV-1 infection suggest changes 294 

in the gut microbiome as it can be observed with ageing, exemplified by an increase in facultative 295 

anaerobes with inflammatory properties and a decrease in obligate anaerobes that play critical roles in 296 

maintaining intestinal homeostasis and in regulating host immunity. Indeed, recent studies have 297 

documented that enteric bacterial communities in people living with HIV (PLWH) are different when 298 

compared to individuals without HIV infection (reviewed by Vujkovic-Cvijin et al. (87)). In both  299 

ART-treated and in treatment-naïve infected patients, a dysbiotic fecal microbiome in PLWH was 300 

characterized by greater abundance of Prevotella with concurrent depletion of some Bacteroides 301 

species, higher abundance of Proteobacteria, and lower abundance of obligate anaerobes including 302 

butyrate-producing bacteria (88).  Nevertheless, a recent report highlights that age and HIV interact to 303 

shape the fecal microbiome in ART-treated, older adults (89). In this study, the authors showed that 304 

HIV and age were independently associated with distinct changes in the fecal microbial communities. 305 

Immune dysfunction is associated with these changes, and treatment with ART only partly restores 306 

microbiota diversity (90). Additional studies that identify both HIV and age effects on gut bacterial 307 

communities and their metabolic products in the setting of comorbidities will help to identify functional 308 

pathways which could be targeted to improve clinical outcomes. 309 

 310 

3.4. Metabolic disorders 311 

Key metabolic pathways include glycolysis, the tricarboxylic acid cycle, the fatty acid oxidation, the 312 

pentose phosphate pathway, the fatty acid synthesis and amino acid metabolism (particularly 313 

glutaminolysis), with various fuel sources utilized to produce the intermediates required for each 314 

pathway. Variation of immune cell metabolic programming that affects these pathways may thus result 315 

in change of immune function.  316 

In the last decade, an increasing number of studies, reviewed by Butterfield et al. (91), have examined 317 

the immunometabolic dysfunction characteristic of HIV-1 infection. As summarized by Asier Sáez-318 
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Cirión (92), the metabolic pathways of CD4+ T-cells and macrophages determine their susceptibility to 319 

infection, the persistence of infected cells and the establishment of latency. Immunometabolism also 320 

shapes immune responses against HIV-1. Briefly, HIV-1 infection alters immunometabolism by 321 

increasing reliance on aerobic glycolysis for energy and productive infection and repurposing oxidative 322 

phosphorylation machinery for immune cell proliferation and survival. 323 

The relationship between immunometabolism and HIV-1 pathogenesis is complex and represents a new 324 

area of research with many issues still to be addressed, in particular if we consider that 325 

immunometabolism is likely an important mediator in associated age-related disease (93). According 326 

to Moore et al., the prevalence of metabolic syndromes among the United States adults has increased 327 

by more than 35% from 1988-1994 to 2007-2012, rising from 25.3% to 34.2% (94). The pathogenesis 328 

of metabolic disorders among PLWH includes various components: genetic and environmental host 329 

factors as well as immunologic and inflammatory responses intrinsic to HIV-1 infection (95). It is 330 

becoming increasingly clear that the immune and metabolic systems are closely inter-connected and 331 

play a critical role in the maintenance of immune homeostasis, linking to several aspects of the aging 332 

process and associated chronic inflammatory conditions (96,97). Immune cells sense and respond to 333 

exogenous metabolic signals (98), including fatty acids, free cholesterol, sphingosine-linked fatty acids, 334 

products of lipid metabolism, amino acids and microbial derived-metabolites. Metabolic alterations, 335 

such as increased visceral adiposity, altered circulating lipid composition and accumulation of lipids in 336 

primary lymphoid organs have been observed in both older adults and PLWH. Of note, cholesterol is 337 

critical for HIV replication, as both HIV entry into and exit from the target cells occur through 338 

cholesterol enriched regions of the plasma membrane, called lipid rafts (99). Therefore, impairment of 339 

cellular cholesterol metabolism and overabundance of lipid rafts may be a common factor driving 340 

pathogenesis of HIV-associated comorbidities. 341 

Recent studies in PLWH with diabetes mellitus or cardiovascular disease have identified an association 342 

with elevated T-cell and monocyte glucose metabolism, respectively. Immunometabolic dysfunction 343 

has also been observed in PLWH in frailty and additional studies suggest a role for immunometabolism 344 

in non-AIDS defining cancers and neurocognitive disease (91). 345 
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A combination of HIV infection itself and its effects on gut permeability, which can lead to bacterial 346 

translocation, may cause accelerated atherosclerosis and a decrease in high-density lipoprotein (HDL) 347 

levels (100). Additionally, activated monocytes and proinflammatory T-cells may play a role in changes 348 

in vascular structure and function that can result in coronary plaque development (6). Moreover, the 349 

prevalence of obesity increases with age, and HIV-positive older adults also have an increase in visceral 350 

adiposity, partly as a result of antiretroviral medication (101), (102). However, studies have shown that 351 

traditional lipid measurements (low-density lipoprotein, high-density lipoprotein, and total cholesterol) 352 

cannot precisely evaluate dyslipidemia to accurately predict cardiovascular risk in PLWH without 353 

taking into account CD4 lymphocyte count and exposure to ART (103) (104). Noteworthy, both HIV 354 

and ART may have a role in the development of metabolic disorders; these adverse effects are more 355 

common in women, people in high BMI, and older people. Also that protease inhibitors are the most 356 

deleterious class of drugs causing metabolic disorders (105). 357 

 358 

3.5. DNA damage and Epigenetics 359 

Telomere length shortening 360 

Age-related DNA damage tends to alter the genome randomly, however telomeres (which are tandem 361 

repeats of DNA sequence TTAGGG located at each end of chromosome) appear to be more vulnerable 362 

to age-related degradation (106). The failure of DNA polymerase to duplicate the extreme 5’ end of the 363 

lagging strand of DNA causes telomere length to decrease with each cell division. Telomere length 364 

shortening is a typical marker of cellular senescence and is widely used to determine an individual’s 365 

biological age. It is estimated that peripheral blood mononuclear cells (PBMCs) lose about 50 base pairs 366 

of telomeric DNA per year, and this loss doubles in HIV-1 patients even with ART (107). In a 367 

longitudinal follow-up over 3 to 9 years, telomere length of total PBMCs from PLWH was shown to 368 

shorten at an increased rate compared to age-matched seronegative individuals (108). This telomere 369 

shortening occurred primarily in CD8+ T-cells, with minimal or no variation observed in CD4+ T-cells 370 

(109). This faster telomere erosion in PBMCs and T-cells indicated an accelerated immunological 371 

ageing process associated with HIV-1 infection. However, it should be noted that in these studies, 372 
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telomere length was measured mainly by assessing PBMCs or subsets of T-cells like CD8 or CD4. 373 

Shortening of B cell telomeres in PLWH has also been documented, supporting findings of 374 

hyperactivation during HIV-1 infection (110).  375 

 376 

Epigenetics 377 

Epigenetic changes are changes to phenotypes or gene expression resulting from modifications other 378 

than modifications in the underlying DNA sequence. These alterations may be retained by the cell 379 

throughout its lifespan or may be passed to future generations for germline cells (111). DNA 380 

methylation is one of the most well characterized epigenetic changes (112), and can serve as an indicator 381 

of the cumulative effects of epigenetic maintenance (113). During ageing, epigenetic alterations in 382 

response to both exogenous and endogenous factors (114), result in an abnormal chromatin condition, 383 

genomic instability, and accumulation of DNA mutations (115). The age-related DNA methylation 384 

pattern changes, leading to a global decrease in methylation with hypermethylation of some promoter 385 

regions. Histone modifications and changes in DNA methylation near telomeric regions correlate with 386 

telomere attrition and cellular senescence (116). In addition, these epigenetic changes are associated not 387 

only with activation of inflammatory genes (117), but also with the occurrence of age-related 388 

pathologies such as cancer, dementia, and atherosclerosis (118), (119). Thus, the epigenetic clock could 389 

be a useful biomarker for detecting premature ageing due to HIV-1 infection (120). 390 

Methylome-wide analysis of chronic HIV-1 infection in patients receiving ART revealed an average 391 

ageing advance of 4.9 years, leading to a 19% increase in mortality (121). This sub study of a clinical 392 

trial (comparing ritonavir-boosted darunavir with either raltegravir or tenofovir disoproxil fumarate and 393 

emtricitabine) was conducted in ART-naive PLWH. They analyzed whole blood samples from 168 394 

study participants both before they started treatment, and after two years on ART. The study compared 395 

the treated participants to 44 age- and sex-matched control participants without HIV. The authors found 396 

that, compared to those without HIV, ART-naive PLWH showed higher mean epigenetic age 397 

acceleration. The study observed no significant differences in the impact of ART on epigenetic ageing 398 

between treatment regimens. Among participants with HIV-1 at baseline, the study observed 399 
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dysregulation of DNA methylation-based estimated leucocytes, or white blood cells, toward more 400 

differentiated T-cell phenotypes and proinflammatory subsets. This dysregulation was corrected to 401 

some degree by long term ART (121). 402 

Importantly, the cellular epigenetic machinery plays an important role in chronic infection with HIV-1  403 

(122). First, epigenetic mechanisms are heavily involved in regulating transcriptional silencing of the 404 

proviral-derived DNA burden. Secondly, this tight regulation is crucial since transcriptional activity of 405 

intact proviral genomes in reservoir cells results in viremic rebound with serious clinical consequences. 406 

Last, infection with HIV-1 also appears to modify the epigenetic landscape of infected and bystander 407 

immune cells. This signature of infection, whether directly or indirectly associated to the proviral load, 408 

could thus be an important cofactor in developing HIV-1-associated comorbidities (123). For example, 409 

two main loci have been identified as contributing to the genetic contribution to human lifespan : APOE 410 

encoding apolipoprotein E which is involved in lipoprotein metabolism, cognitive function and immune 411 

regulation (124) and forkhead box O3A (FOXO3A) involved in apoptosis and oxidative stress (125). 412 

The apolipoprotein E4 (APOE4) allele is associated with decreased cognitive performance, premature 413 

brain ageing, and atrophy in HIV-infected individuals over 60 years of age. HIV-associated 414 

neurocognitive disorders, including dementia, are more prevalent in APOE4 carriers, suggesting that 415 

this gene may contribute to age-related cognitive decline (126). 416 

For a curative therapy of HIV-seropositive patients, a combination of antiretroviral drugs with 417 

epigenetic modifying compounds have been suggested for the transcriptional reactivation of HIV-1 418 

latency. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone 419 

methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase 420 

inhibitors (DNMTI).  421 

 422 

3.6. Extracellular vesicles (exosomes) 423 

Exosomes are the main actors of intercellular communications: these nanoparticles are secreted by 424 

almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-425 

coding RNA, especially micro-RNAs (mi-RNAs). Exosomes' cargo is released in the neighboring 426 
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microenvironment but is also expected to act on distant tissues or organs. Evidence has increasingly 427 

shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement 428 

in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21/ 29/ 34 429 

modulate regeneration and tissue functionality by targeting various tissues and involving different 430 

pathways which might interfere with long life expectancy (127). Despite, substantial changes to 431 

extracellular vesicles with age, it is not clear whether these changes represent a cause or effect of aging 432 

or associated comorbidities (128). On the contrary, the role of exosome in HIV infection is critical since 433 

this pathway releases intracellular material and exchanges material and information between cells. As 434 

such, exosomes play an important role in AIDS progression and affect the occurrence, development, 435 

and outcome of HIV through multiple mechanisms (such as cell-to-cell transmission and interaction 436 

with HIV molecules and receptor cells), recently reviewed by Chen et al. (129). 437 

 438 

4. Long-term consequences comorbidities 439 

If we consider that increased immune activation and long- term chronic inflammation are major players 440 

in the aging process in the general population, it is obvious that these processes are more prevalent in 441 

PLWH, even when the infection is well controlled. Therefore, PLWH will be more prone to prematurely 442 

develop age-related diseases. 443 

It is established that a high level of immune activation has been related to a poor CD4 cell recovery 444 

during treatment. Of importance, the occurrence of several non-AIDS-related comorbidities has been 445 

clearly linked to the presence of immune depletion, as indicated by a low CD4 cell count (130). As 446 

expected, age and male gender were found as independent predictors of polypathology by comparing 447 

PLWH to the general population, but Guaraldi et al. found also that a nadir CD4 cell count < 200 448 

cells/mm3, was related to the occurrence of several comorbidities. This could be explained by persistent 449 

low-grade viral replication in the reservoirs which could thereby participate in local inflammation and 450 

tissue-related complications (131). Finally, the authors found ART to be an independent risk factor for 451 

polypathology. Thymidine–nucleoside reverse-transcriptase inhibitors are associated with 452 

mitochondrial dysfunction, cell senescence, and lipodystrophic phenotype (132,133) whereas some 453 
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ritonavir-boosted PIs induce prelaminA accumulation, oxidative stress, inflammation, and cell 454 

senescence in vitro (134), all alterations associated with aging. 455 

In addition to all the factors related to the virus and the treatment, a number of environmental factors 456 

could also prematurely induce aging in PLWH, such as sedentary lifestyle, low-nutrition diet, smoking 457 

or drug use.  458 

A cross sectional comparison of over 500 HIV-infected patients (median viral load of 50 copies/ml, 459 

CD4 count >500 cells/µl and 95% on ART for greater than 10.5 years) with 500-age matched controls 460 

showed that PLWH had a higher number of age associated non communicable comorbidities 461 

(AANCCs). In addition, the number of AANCCs in each 5 years stratum in the HIV-infected patients 462 

resembled those of the controls who were 5 years older (135). In a retrospective study comparing PLWH 463 

with matched counterparts, HIV-infected subjects had significantly more comorbidities, such as bones 464 

fractures due to osteoporosis (6.4% vs 2.1%, p<0.001), acute renal failure (0,5% vs 0.2%, p = 0.045), 465 

chronic renal disease (4.3% vs 2.4%, p<0.001) and cardiovascular disease (12.8% vs 10.4%, p=0.006) 466 

(136). Since HIV-positive individuals are at high risk of developing non-HIV-1 related diseases, a 467 

specific follow-up of PLWH will be necessary in particular to assess the risk linked to polymedication 468 

(137). 469 

 470 

4.1. Frailty 471 

The well-known frailty phenotype in geriatrics is characterized by the loss of functional homeostasis, 472 

which causes individuals to be unable to effectively recover from various stressors and is associated 473 

with poor health outcomes, including excessive mortality (138). PLWH may become frail due to the 474 

cumulative effect of comorbidities and ART. According to Piggott et al., 5–19% of cohorts were frail 475 

or exhibited frailty-like symptoms despite effective antiretroviral therapy (139). Moreover, frail 476 

individuals are more likely to suffer from comorbid conditions such as cardiovascular disease or 477 

cognitive impairment (140). In a Multicenter AIDS Cohort Study, individuals ageing with HIV-1 478 

infection showed greater declines in gait speed and grip strength (141). In addition, the risk of frailty 479 

was higher after prolonged HIV-1 infection and was strongly predicted by the peripheral CD4+ T-cell 480 
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count (142).  481 

 482 

4.2. Sarcopenia 483 

Despite adequate treatment with ART, PLWH may exhibit a physiopathological process associated with 484 

ageing called sarcopenia, which involves a reduction in muscle strength, muscle quality and physical 485 

performance as well as an increased risk of falls, physical disability and premature death (143). 486 

Increased muscle protein catabolism, muscle fat accumulation (144) or low protein intake and  487 

vitamin D deficiency (145), among others can also lead to sarcopenia. Physical activity, however, can 488 

improve muscle mass and function and reduce chronic inflammation, which may protect against or 489 

partially reduce sarcopenia (146). Few data exist regarding the prevalence of sarcopenia in PLWH, 490 

although, similar to other chronic diseases, this syndrome occurs more frequently and at a younger age 491 

than in the general population. It has been proposed that metabolic changes and immune activation by 492 

HIV-1 are major factors involved in the development of sarcopenia in patients on ART (147). PLWH 493 

and controls experienced similar rates of muscle loss over a 5-year study period (148), although 494 

sarcopenia increased over a 7- to 10-year follow-up period for HIV-infected individuals older than 50, 495 

with sarcopenia progressing more rapidly in women than men (149). 496 

 497 

4.3. Osteoporosis 498 

PLWH are more likely to suffer from osteopenia and osteoporosis (47.5% and 23% respectively), 499 

although the mechanism and consequences of these changes are not fully understood (150). Activation 500 

of the immune system and inflammation in PLWH can affect the expression and regulation of 501 

immunological factors involved in bone remodeling (151), even with effective ART. During an 502 

inflammatory process, cytokines such as TNF-ɑ are produced, increasing the expression of Receptor 503 

Activator of Nuclear Factor κꞵ Ligand (RANKL), which causes bone resorption by osteoblasts (152). 504 

Activating inducible nitric oxide synthesis by cytokines such as TNF-ɑ and IL-1 inhibits the function 505 

of osteoblasts in vitro and leads to osteoblast apoptosis (153). Furthermore, ART drugs such as tenofovir 506 

or protease inhibitors may adversely affect bone mineral density (154).  507 



 

19 

 508 

4.4. Cardiovascular disease 509 

The prevalence of cardiovascular disease has been found to double in PLWH. Patients with HIV-1 have 510 

nearly two-fold greater risk of heart disease than their uninfected counterparts. Moreover, the risk of 511 

developing the disease will likely continue to rise as PLWH are ageing (155). Aside from traditional 512 

cardiovascular risk factors (such as smoking), other factors including chronic HIV-1 viremia, ART, co-513 

infection with CMV, chronic inflammation, innate immune activation, the microbiome and microbial 514 

translocation may be involved in the pathogenesis of cardiovascular disease in PLWH (156). HIV-1 515 

induces endothelial dysfunction and early atherosclerosis by altering signaling pathways through gp120 516 

or Tat proteins, or by activating monocytes that release cytokines (157). Oxidized lipids may also 517 

contribute to atherosclerosis by disrupting nitric oxide signal transmission, promoting endothelial 518 

activation, and influencing adhesion molecules, which play a role in leukocyte homing. Following the 519 

inflammation, biomarkers are released, such as VCAM-1, fibrinogen, D-dimer,  520 

C-Reactive Protein (CRP), selectins, IL-6, and TNF, which make the patient more likely to suffer from 521 

coronary artery disease and heart failure, including myocardial infarction, stroke and sudden cardiac 522 

death (158), (159). Subclinical atherosclerosis in PLWH while on ART appears to be associated with 523 

monocyte markers CD11b and CX3CR1 (160), suggesting a critical role for monocytes in promoting 524 

cardiovascular disease. Of note, the physiopathology of cardiovascular disease in  525 

HIV-infected individuals is complex, combining both traditional risk factors as well as ART-related 526 

factors (161).  527 

 528 

4.5. Chronic kidney diseases 529 

Acute renal failure and chronic kidney disease are more common in PLWH than in the general 530 

population (162). Immune activation has been proposed as one of the main reasons whereby HIV-531 

infected individuals with suppressed immune systems have more kidney disease (163). It has been 532 

shown that HIV-1 can infect renal epithelial cells through the transfer of virions occurring via a CD4-533 

independent mechanism and induce changes, especially in renal tubular cells (164). The interaction with 534 
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renal epithelial cells leads to the release of cytokines (IL-6 and IL-8) and chemokines (CXCL-1,  535 

CXCL-2 and CXCL-8) from renal tubular cells, which contributes to exacerbating inflammation. Even 536 

though ART is associated with a lower incidence of severe renal events, specific classes of antiretroviral 537 

drugs may negatively impact kidney function (165). 538 

 539 

4.6. Cognitive impairment 540 

The combination of HIV, inflammation, and stress is believed to be important factors leading to 541 

impaired cognitive function (166). Neurocognitive impairment affects approximately half of all HIV-1 542 

patients, and is potentially due to chronic inflammation or damage sustained before starting ART (167). 543 

During an inflammatory state, cellular damage is triggered both in PLWH and in the elderly, including 544 

the expression of IL-6 and CRP, which are associated with cognitive decline and in addition to an 545 

elevated risk of dementia (168). Furthermore, blood-brain barrier dysfunction is common among PLWH 546 

despite ART (169).  In older PLWH, there are a number of mechanisms through which chronic HIV 547 

disease alone or in combination with ART and other co-morbidities (e.g.: drug use, HCV) might be 548 

contributing to HIV-associated neurocognitive disorder. This includes 1) overlapping mechanisms 549 

between HIV and ageing (e.g.: decreased proteostasis, DNA damage, chronic inflammation, 550 

epigenetics, vascular), which could lead to accelerated cellular ageing and neurodegeneration and/or 2) 551 

enhancing pathways involved in Alzheimer’s disease (AD) or AD-related dementias (e.g: triggering 552 

amyloid β, tau, or α-synuclein accumulation) as suggested by Mackiewicz et al. (170).  553 

 554 

Conclusion & Perspectives 555 

PLWH are increasingly reaching old age, where they have to face the dual burden of managing their 556 

disease and the ensuing process of accelerated ageing. As a consequence, their quality of life is affected, 557 

and they are facing decreased energy availability and increased chronic inflammation. HIV infection 558 

causes immunological alterations that parallel those that occur in physiological ageing, exhibiting a 559 

striking similarity between ageing and HIV infection. Through elevated chronic immune activation, 560 



 

21 

PLWH exhibit innate and adaptive immunosenescence. Although many ageing-like alterations can be 561 

identified in HIV-infected patients, it is necessary to keep in mind that some factors are specific to each 562 

condition. Thus, no sign of viral reactivation with persistent viruses such as CMV or EBV was found 563 

in elderly. In addition, different lifestyles and/or environments impact on the evolution and the 564 

physiopathology of HIV-1 infection and ageing. Noteworthy, as a result of successful ART, HIV-565 

infected geriatric patients are now living longer, leading to an emerging vulnerable population. 566 

Therefore, the question is how to best care for them. Surprisingly, in a recent study based on a highly 567 

selected geriatric HIV population, HIV-1 infection does not seem to have an additional impact on age-568 

related inflammation and immune disorder, suggesting that HIV-patients are well taken care of and 569 

monitored (171). It is therefore encouraging to observe that prevention and treatment of comorbidities 570 

could have limited both immune activation and inflammation in the ageing HIV population. Briefly, 571 

these strategies (summarized in Figure 2), aim at: 572 

-  preventing immune activation with the use of ART and anti-inflammatory molecules; 573 

prevention of bacterial translocation by impacting on gut mucosa integrity or on microbiota 574 

composition; treatment of inter-current infections such as herpesviruses and reduction of 575 

metabolic abnormalities. 576 

- enhancing regenerative capacity where the use of hormones, cytokines or anti-ageing 577 

therapies is explored. 578 

So far, trials have been empiric. To validate these potential therapeutic options, other clinical trials need 579 

to be performed on large cohorts of PLWH. 580 

  581 
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Figure Legend 1278 
 1279 
 1280 
Figure 1. HIV pathogenesis: a model of accelerated immunosenescence.  1281 

 1282 
 1283 
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 1285 
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Figure 2. Similarities between physiological ageing and HIV-related premature ageing. On various 1286 

levels, HIV infection can cause premature ageing that mimics or emphasizes physiological ageing. As 1287 

indicated, several strategies are actually explored to limit immune activation and/or restore immune 1288 

resources such as: 1289 

- Antiretroviral Therapy (ART (172), (173)) 1290 

- Anti-inflammatory molecules (Nonsteroidal anti-inflammatory drugs (NSAIDs) (174); 1291 

Glucocorticoids (175); Prednisolone (176); Hydroxychloroquine (177); Curcumin (178))  1292 

- Modulators of gut flora (prebiotics/colostrum (179); Rifaximin (180); Probiotics (181), (182))  1293 

- Treatment of intercurrent infection (Valganciclovir (183) ; Valacyclovir (184); Acyclovir 1294 

(185)) 1295 

- Reduction of metabolic abnormalities (Rosuvastatin (186); Atorvastatin (187); Iovastatin (188); 1296 

Sitagliptin (189)) 1297 

- Immune rejuvenation (IL-2 (190); Bone marrow transplantation (191); Thymus transplantation 1298 

(192); Growth hormone (193); IL-7 (194)) 1299 

- Anti-aging drugs/senolytics (195); Quercetin (196); Rapamycin (197); Everolimus (198); 1300 

Metformin (199), (200), (201);  HDAC inhibitors (202,203); Telomerase activator (TAT2) 1301 

(204)). 1302 

 1303 


