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LIMITING ABSORPTION PRINCIPLE FOR DIRAC
OPERATORS WITH A PERTURBED WIGNER-VON

NEUMANN POTENTIAL

MBAREK AIMAN, BEN HAFSIA SANA

October 23, 2022

Abstract.

Making use of the localised Putnam theory developed in [GJ1], applied in [JM],..., we show the
limiting absorption principle for Dirac operators with a perturbed Wigner-Von Neumann potential
on appropriate energy intervals. Furthermore we can allow longrange and short-range components.

1 Introduction
We will start this paper by discussing some commutator methods. The first stone was set by C.R.
Putnam, see [P] and for instance [RSim][Theorem XIII.28]. Let H be a self-adjoint operator acting
in a Hilbert space H. One supposes there is a bounded operator A so that

C := [H, iA]◦ > 0 (1.0.1)

where ">" means non-negative and injective. The commutator has to be understood in the form
sense. When it extends into a bounded operator between some spaces, we denote this extension
with the symbol ◦ in subscript. The operator A is said to be conjugate to H. One deduces some
estimation on the imaginary part of the resolvent, i.e., one finds some weight B, a closed injective
operator with dense domain, so that

sup
Rz∈R,Iz>0

⟨f, (H − z)−1f⟩ ≤ ∥Bf∥2. (1.0.2)

This estimation is equivalent to the global propagation estimate, c.f. [K] and [RSim][Theorem
XIII.25]: ∫

R
∥B−1eitHf∥2 dt ≤ 2∥f∥2. (1.0.3)

One infers that the spectrum of H is purely and absolutely continuous with respect to the Lebesgue
measure. E. Mourre has the idea to localise the estimates in energy and to allow a compact
perturbation, see [M]. With further hypotheses, one shows an estimate of the resolvent (and not
only on the imaginary part). The applications of this theory are numerous. The theory was finally
improved in many directions and optimized in many ways, see [ABG] for a more thorough discussion
of these matters,many papers have shown the power of Mourre’s commutator theory to study the
point and continuous spectra of a quite wide class of self-adjoint operators. Among others, we
refer to [BG], [BFS], [BCHM],[CGH], [DJ], [FH], [GGéM], [GGo], [HuSi], [JMP], [Sa] and to the
book [ABG]. One can also find parameter dependent versions of the theory (a semi-classical one
for instance) in [RoT], [W], [WZ]. Recently it has been extended to (non self-adjoint) dissipative
operators (cf., [BG], [Roy]).
We mention also [GGéM, Gé] for recent developments. In [MM] one generalizes the result of
Putnam’s approach. Under some conditions, one allows A to be unbounded. They obtain a global
estimate of the resolvent. Note this implies the absence of eigenvalue. In [FS], in the non-relativistic
context, by asking some positivity on the Virial of the potential, see below, one is able to conciliate
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the estimation of the resolvent above the threshold energy and the accumulation of eigenvalues
under it. In [R], one presents an abstract version of the method of [FS]. In [GJ], they introduced a
new approach of Mourre’s commutator theory, which is strongly inspired by results in semi-classical
analysis (cf., [Bu], [CJ], [J1], [J2]). In [Gé], Gérard had a very close approach to that of [GJ]. These
approaches furnished an alternative way to develop the original Mourre Theory and do not use
differential inequalities. Our example is a perturbation of a Dirac operator with a Wigner-Von
Neumann potential. Furthermore we can allow a long range perturbation and short-range. I want
to quote that the T.A.L. of the Dirac operator was the objective of Golénia-Boussaid paper [BG]
in another context.

Let I, J be two open intervals of R. Given k ∈ N, we say that H ∈ Ck
J(A) if for all χ ∈ C∞

c (R)
with support in J , for all f ∈ H , the map R ∋ t −→ eitAχ(H)e−itAf ∈ H has the usual Ck

regularity. Denote by EI(H) the spectral measure of H above I. We say that the Mourre estimate
holds true for H on I if there exist c > 0 and a compact operator K such that

EI(H)[H, iA]EI(H) ≥ EI(H)(c+K)EI(H), (1.0.4)

in the form sense on (D(A) ∩ D(H)) × (D(A) ∩ D(H)). In general, the l.h.s. of (1.0.4) does not
extend, as a form, on H×H but it is the case if H ∈ C1

J(A) and I ⊂ J (cf., [Sa, GJ]). We say that
the strict Mourre estimate holds true if the Mourre estimate (1.1) holds true with K = 0. In the
first case (resp. the second case), it turns out that the point spectrum of H is finite (resp. empty)
in compact sub-intervals I ′ of I if H ∈ Ck

J(A) and I ⊂ J . The main aim of Mourre’s commutator
theory is to show, when the strict Mourre estimate holds true for H on I, the following limiting
absorption principle (LAP) on compact sub-intervals I ′ of I. Given such a I ′ and s > 1

2 , we say
that the LAP, respectively to the triplet (I ′, s, A), holds true for H if

sup
Rz∈I′,Iz ̸=0

∥⟨A⟩−s(H − z)−1⟨A⟩−s∥ < +∞, (1.0.5)

where ⟨t⟩ = (1 + |t|2) 1
2 , Iz and Rz are respectively the imaginary and the real of z. In that case,

it turns out that the spectrum of H is purely absolutely continuous in I ′(cf., Theorem XIII.20 in
[RS4]). Notice that (1.2) holds true for s = 0 if and only if I ′ ∩ σ(H) = ∅.
In [[ABG], [Sa]], such LAPs are derived under a slightly stronger regularity assumption than
H ∈ C1

J (A) with I ⊂ J . Actually, stronger results are proved. In particular, in the norm topology
of bounded operators, one can defined the boundary values of the resolvent:

I ′ ∋ λ 7−→ lim
ϵ→0±

⟨A⟩−s(H − λ− iϵ)−1⟨A⟩−s (1.0.6)

and show some Hölder continuity for them.
Implicitly in [GJ] and explicitly in [Gé], one can derive, using H ∈ C2

J(A) with I ⊂ J , the LAP
(1.0.5) on compact sub-intervals I ′ of I from the Mourre estimate (1.0.4) with K = 0 via a strict,
weighted Mourre estimate:

EI(H)[H, iφ(A)]EI(H) ≥ c1EI(H)⟨A⟩−1−ϵEI(H), (1.0.7)

where ϵ = 2s − 1 > 0, c1 is a strictly non-negative real, and φ is some appropriate non-negative,
bounded, smooth function on R. Note that the l.h.s. of (1.0.7) is a well defined form on H ×H.
It seems that the use of such inequality to derive resolvent estimates appears in [J1] for the first
time.
The new idea is to take the strict weighted Mourre estimate (1.0.7) as starting point, instead of
the strict Mourre estimate. This costs actually less regularity of H w.r.t. A. Precisely, they show

Theorem 1.1 Let I be a bounded, open interval of R and assume that H ∈ C1
I (A). Assume that,

for some ϵ0 > 0, for any ϵ ∈ (0; ϵ0], there exist some real borelian bounded function φ such that the
strict, weighted Mourre estimate, i.e. (1.0.7), holds true. Then, for any s > 1

2 and for any closed
sub-interval I ′ of I, the LAP (1.0.5) for H respectively to (I ′, s, A) holds true.

Remark 1.2 Notice that the LAP (1.0.5) for H respectively to (I ′, s, A) implies the LAP (1.0.5)
for H respectively to (I ′, s′, A), for any s′ ≥ s . Therefore, it is enough to prove 1.1 for s close to
1
2 .
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Remark 1.3 By using Gérard’s energy method in [Gé], they can upper bound the size of the l.h.s.
of (1.0.5) in terms of the constant c1 appeared in (1.0.7).

The weighted Mourre’s theory is essentially a part of the variant Mourre’s theory in [Gé, GJ]. It
is simpler than the usual Mourre’s theory (it does not use differential inequalities).

Acknowledgement: The authors thank S. Golénia, who drew our attention to the fact that a
formula of the type (2.1.10) should exist and would be very interesting and useful. We also thank
T. Jecko for guiding, abetting and counseling me throughout the preparation of this article.

2 SOME RESULTS ON THE HELFFER-SJÖSTRAND FOR-
MULA .

The first objective of this section is to give a formula for unitary operators that corresponds to the
Helffer-Sjöstrand formula for self-adjoint operators. Secondly, we generalize the standard Helffer-
Sjöstrand formula for a vector of self-adjoint operators that commute two by two and we give some
applications of this new formula in the expansion of commutator.

2.1 Regularity and Usual HELFFER-SJÖSTRAND formula.
We introduce some notation and recall known results. For details, we refer to [ABG], [DG], [GJ],
[Sa] on regularity. For an interval I of R, we denote by Ī (resp. ◦I) its closure (resp. its interior).
The scalar product ⟨·, ·⟩ in H is right linear and ∥ · ∥ denotes the corresponding norm and also the
norm in B(H), the space of bounded operators on H . Let A be a self-adjoint operator. Let T be
a closed operator. The form [T,A] is defined on (D(A) ∩ D(T ))× (D(A) ∩ D(T )) by

⟨f, [T,A]g⟩ = ⟨T ∗f,Ag⟩ − ⟨Af, Tg⟩. (2.1.1)

If T is a bounded operator on H and k ∈ N, we say that T ∈ Ck(A) if, for all f ∈ H , the
map R ∋ t → eitATe−itAf ∈ H has the usual Ck regularity. The following characterizations are
available.

Proposition 2.1 ([[ABG], p. 250]). Let T ∈ B(H). These three assertions are equivalent:
(1). T ∈ C1(A).
(2). The form [T,A] defined on D(A)× D(A) extends to a bounded form on H×H associated to
a bounded operator denoted by ad1A(T ) := [T,A]◦.
(3). T preserves D(A) and the operator TA−AT , defined on D(A), extends to a bounded operator
on H.

It follows that T ∈ Ck(A) if and only if the iterated commutators adpA(T ) := [adp−1
A (T ), A]◦ are

bounded for p ≤ k. In particular, for T ∈ C1(A), T ∈ C2(A) if and only if [T,A]◦ ∈ C1(A).
Let H be a self-adjoint operator and I be an open interval. As it is mentioned in our introduction,
we say that H is locally of class Ck(A) on I, we write H ∈ Ck

I (A), if, for all φ ∈ C∞
c (I), φ(H) ∈

Ck(A).
It turns out that T ∈ Ck(A) if and only if, for a z outside σ(T ), the spectrum of T, (T−z)−1 ∈ Ck(A).
It is natural to say that H ∈ Ck(A) if (H − z)−1 ∈ Ck(A) for some z /∈ σ(H). In that case,
(H − z)−1 ∈ Ck(A), for all z /∈ R. This regularity is stronger than the local one that it will be
asserted in the following proposition:

Proposition 2.2 ([ABG], p. 244]) If H ∈ Ck(A) then H ∈ Ck
I (A) for all open interval I of R.

For ρ ∈ R, let Sρ be the class of functions φ ∈ C∞(R) such that

∀k ∈ N, Ck(φ) := sup
{t∈R}

⟨t⟩−ρ+k|φ(k)(t)| <∞. (2.1.2)

Here φk denotes the k-th derivative of φ. Equipped with the semi-norms defined by (2.1.2), Sρ is
a Fréchet space. We recall the following result from [DG] in almost analytic extension.
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Proposition 2.3 ([DG]) Let φ be a smooth function with compact support in R. Then there exist
a function φC ∈ C∞

0 (C), called an almost analytic extension of f , such that there exist 0 < C < 1,

φC∣∣R = φ, supp φC ⊂ {x+ iy ∈ C ; x ∈ supp φ ; |y| ≤ C} (2.1.3)

φC(x+ iy) = 0, if x ∈ supp φ. (2.1.4)

We have the following Helffer-Sjöstrand’s functional calculus (cf., [HeS, DG]) : If A a self-adjoint
operator on a Hilbert space H, we have

φ(A) =
1

2iπ

∫
C
∂z̄φ

C(z)(z −A)−1 dz ∧ dz̄, (2.1.5)

and for all k ∈ N,

φ(k)(A) =
k!

2iπ

∫
C
∂z̄φ

C(z)(z −A)−1−k dz ∧ dz̄, (2.1.6)

where dz ∧ dz̄ is the Lebesgue measure on the complex plane and the integral exists in the norm
topology, by (2.1.3). This formula also holds true for a larger class of functions f having some
prescribed behaviour at infinity (See. {[DG],[GJ],...}). For instance (See [DG]), one can require,
for φ ∈ Sρ with ρ ≥ 0. We rely on the following approximation:

Proposition 2.4 ([DG]) Let ρ ≥ 0 and φ ∈ Sρ. Let χ ∈ C∞
c (R) with χ = 1 near 0, 0 ≤ χ ≤ 1,

and for R > 0, χR(t) = χ(t/R). For f ∈ D(⟨A⟩ρ), there exist

φ(k)(A)f = lim
R→+∞

k!

2iπ

∫
C
∂z̄(φχR)

C(z)(z −A)−1−kf dz ∧ dz̄, (2.1.7)

The r.h.s. converges for the norm in H . It is independent of the choice of χ.
Notice that, for some c > 0 and s ∈ [0; 1], there exist some C > 0 such that, for all z = x + iy ∈
{a+ ib|0 < |b| ≤ c⟨a⟩}

∥⟨A⟩s(A− z)−1∥ ≤ C⟨x⟩s · |y|−1 (2.1.8)

Observing that the self-adjointness assumption on B is useless, we pick from [GJ] the following
result in two parts

Proposition 2.5 ([GJ]) Let k ∈ N∗, ρ < k, φ ∈ Sρ, and B be a bounded operator in Ck(A). As
forms on D(⟨A⟩k−1)×D(⟨A⟩k−1),

[φ(A), B] =
∑k−1

j=1
1
j!φ

(j)(A)adjA(B)

+ 1
2iπ

∫
C
∂z̄φ

C(z)(z −A)−kadkA(B)(z −A)−1 dz ∧ dz̄,
(2.1.9)

In particular, if ρ ≤ 1, then B ∈ C1(φ(A)). The rest of the previous expansion is estimated in

Proposition 2.6 ([GJ]) Let B ∈ Ck(A) bounded. Let φ ∈ Sρ, with ρ < k. Let Ik(φ) be the rest
of the development of order k (2.1.9) of [φ(A), B]. Let s, s′ ≥ 0 such that s′ < 1, s < k, and
ρ+ s+ s′ < k. Then, for φ staying in a bounded subset of Sρ, ⟨A⟩sIk(φ)⟨A⟩s′ is bounded and there
exist a A and φ independent constant C > 0 such that ∥⟨A⟩sIk(φ)⟨A⟩s′∥ ≤ C∥adkA(B)∥.

We refer to [BG] for some generalizations of Propositions 2.5 and 2.6 to the case where B is
unbounded and [A,B]◦ is bounded.
A second application is provided in [GN]. Given a self-adjoint operator A on H and a smooth
function φ with compact support in R, one gets a control on the norm ∥φ(A)∥B(H) in terms of the
norm of the resolvent of A, ∥(A− z0)

−1∥B(H), for some z0 ∈ C \ R. There are also results of this
kind where B(H) is replaced by a Schatten class norm.
Let us mention one last application in the context of linear PDE. For ζ > 0, let V (Q) be the
multiplication operator by a function, with V : Rd → R, x 7→ V (x), such that x 7→ |⟨x⟩ζ .V | is
bounded, where ⟨x⟩ = (1 + x2)

1
2 . Let φ be a smooth function with compact support in R and let
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H0 := −∆ be the positive Laplacian on Rd. Let H1 = H0 + V = −∆ + V be the self-adjoint
realization on L2(Rd). By the Helffer-Sjöstrand formula one can show that(

(φ(H1)− φ(H0))⟨Q⟩ϵ⟨H0⟩α)0≤ϵ<ζ,0≤α<1

is a family of compact operators.
Our objective is to find a kind of Helffer-Sjöstrand formula for unitary operators U and for smooth
functions defined in the 1-dimensional sphere S1. Since U is a unitary operator, its spectrum is
contained in S1 and the functional calculus is well defined. Here we shall take a smooth function
f : S1 → C with compact support in the interior of S1 \{1}. The latter condition corresponds to the
condition of compact support for the Helffer-Sjöstrand formula. For a unitary operator on some
Hilbert space H, we shall derive the formula

f(U) = (2iπ)−1

∫
C
∂z̄f

C
S1(z)(z − U)−1 dz ∧ dz̄, (2.1.10)

where fCS1 is some almost analytic extension of f , dz ∧ dz̄ is the Lebesgue measure on the complex
plane and f(U) is given by the functional calculus for the unitary operator U . We will show the
formula (2.1.10) in Theorem 2.19. We expect that our formula (2.1.10) holds true under a weaker
assumption on the behaviour of f near 1.
The proof is organized as follows. First, we formulate the theorem of Helffer-Sjöstrand and we give
a slightly different proof from that of [HeS], afterwards, we recall some properties on the Cayley
transform and we prove some complex analysis results, and finally we prove our theorem.
Proof : "Proposition 2.3" we follow the argument of [DG], checking that we can ensure the formula
(2.1.3) with C < 1.
Let Mn := sup0≤k≤n supx∈R |φ(k)(x)|, for all n ∈ N. Let χ ∈ C∞(R) be such that χ = 1 on
[−1/2, 1/2] and χ = 0 on R \ [−1, 1]. We choose

φC(z) = φC(x+ iy) =

+∞∑
n=0

(iy)n

n!
φ(n)(x)χ

( y
Tn

)
, (2.1.11)

for a decreasing and positive sequence (Tn)n satisfying, T0 < 1 and

∀n ∈ N, TnM2n ≤ 2−n. (2.1.12)

For example we can take (Tn)n defined by 0 < T0 < 1 and Tn = min(Tn−1,
1

2nM2n
), for n ≥ 1.

With this choice we will see that our sum (2.1.11) is uniformly convergent. Then, for x real,

φC(x) =

+∞∑
n=0

(i0)n

n!
φ(n)(x)χ

( 0

Tn

)
=

(i0)0

0!
φ(x)χ

( 0

T0

)
= φ(x).

We deduce that φC is an extension of φ to C. Let C := T0. Let Hφ,C := {x+iy;x ∈ suppφ, |y| ≤ C}.
If x0 + iy0 ∈ C such that the distance d(x0 + iy0, Hf,C) > 0, then x0 /∈ suppφ or |y0| > C. If
x0 /∈ suppφ, therefore φ(n)(x0) = 0, n ≥ 0 for all n ∈ N, and φC(x0+ iy0) = 0. If |y0| > C, then for
all n ∈ N, |y0| > C ≥ Tn, since (Tn)n decreases. Thus, for all n, χ( y0

Tn
) = 0 and φC(x0 + iy0) = 0,

we get (2.1.4).
To show that our sum (2.1.11) exists and belongs to C∞(C), we simply have to show that, for
(p, q) ∈ N2, ∑

n∈N
∂px∂

q
y

(
(iy)n

n!
φ(n)(x)χ

( y
Tn

))
(2.1.13)

is uniformly convergent.
Let (p, q) ∈ N2 and we take n ≥ max(p, q). Using the Leibnitz formula we have∣∣∣∣∂px∂qy( (iy)n

n! φ
(n)(x)χ

(
y
Tn

))∣∣∣∣
=

∣∣∣∣in(∂p+n
x )φ(x)

q∑
r=0

Cr
q

(n− q + r)!T r
n

yn−q+rχ(r)
( y
Tn

)∣∣∣∣,
5



where Cr
q = q!

r!(q−r)! , 0 ≤ r ≤ q. For all 0 ≤ r ≤ q ≤ n, χ(r)
( ·
Tn

)
is supported in {0 ≤ | · | ≤ Tn}.

Let x, y ∈ R, we have∣∣∣∣∂px∂qy( (iy)n

n! φ
(n)(x)χ

(
y
Tn

))∣∣∣∣ ≤Mp+n

∑q
r=0

Cr
q

(n−q+r)!T r
n
|y|n−q+r∣∣χ(r)

(
y
Tn

)∣∣
≤Mp+nT

n−q
n

q∑
r=0

Cr
q

(n− q + r)!
∥χ(r)∥∞

≤ DqMp+nT
n−q
n .

As Tn < 1, we have Tn−q
n Mp+n ≤ TnM2n ≤ 2−n, by (2.1.12). Thus

sup
x,y

∣∣∣∣∂px∂qy( (iy)n

n!
φ(n)(x)χ

( y
Tn

))∣∣∣∣ ≤ Dq2
−n.

This yields the normal convergence of the series (2.1.13). In particular, φC ∈ C∞(C).

It remains to show (2.1.3). For x, y ∈ R

2∂z̄φ
C(z) = (∂x + i∂y)φ

C(x+ iy)

=
+∞∑
n=0

(
(iy)n

n!
φ(n+1)(x)χ

( y
Tn

)
+ i

in

(n− 1)!
φ(n)(x)yn−1χ

( y
Tn

)
+i (iy)

n

n! φ
(n)(x) 1

Tn
χ′( y

Tn

))
=

+∞∑
n=0

(iy)n

n!
φ(n+1)(x)χ

( y
Tn

)
+ i

+∞∑
n=0

φ(n)(x)

(n− 1)!

(
innyn−1χ

( y
Tn

)
+(iy)n 1

Tn
χ′( y

Tn

))
=

+∞∑
n=0

(iy)n

n!
φ(n+1)(x)

(
χ
( y
Tn

)
− χ

( y

Tn+1

))
+

+∞∑
n=0

φ(n)(x)

n!Tn
in+1ynχ′( y

Tn

)
.

Let l ∈ N. Denoting by 1I the characteristic function of I, we have, for y ̸= 0,

2
∣∣|y|−l∂z̄φ

C(z)
∣∣ ≤

+∞∑
n=0

Mn+1|y|n−l2∥χ∥∞1{Tn+1/2≤|.|≤Tn}(y)

+

+∞∑
n=0

Mn

Tn
|y|n−l∥χ′∥∞1{Tn/2≤|.|≤Tn}(y)

≤ C

l∑
n=1

Mn+1

(
Tn+1

2

)n−l

+ C ′
+∞∑

n=l+1

Mn+1(Tn)
n−l

+C ′′
l∑

n=0

Mn

Tn

(
Tn
2

)n−l

+ C ′′′
+∞∑

n=l+1

Mn

Tn
(Tn)

n−l

≤ C ′
l +D

+∞∑
n=l+2

(
Mn +Mn+1

)
Tn.

By (2.1.12) and the definition of (Mn)n, we have
(
Mn+Mn+1

)
Tn ≤ 2TnM2n ≤ 2.2−n. This yields

(2.1.3).

Proposition 2.7 [H] Let ω be an open set in the complex plane C and f ∈ C1(ω). For all ξ ∈ ω,
the second integral in (2.1.14) is convergent. Moreover, for all ξ ∈ ω,

f(ξ) = (2iπ)−1

{∫
∂ω

f(z)

z − ξ
dz +

∫
ω

∂z̄f(z)

z − ξ
dz ∧ dz̄

}
. (2.1.14)
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Corollary 2.8 If f ∈ C∞(C) with compact support in ω then, for all ξ ∈ ω,

f(ξ) = (2iπ)−1

∫
ω

∂z̄f(z)

z − ξ
dz ∧ dz̄. (2.1.15)

Proof : Just apply the proposition 2.7 and use the fact that f is zero on ∂ω.

We will recall some results of the theory of normal operators. Let φ ∈ C∞(R) be a compact supported
function in K and let N be a normal operator on a Hilbert space H.

Proposition 2.9 [Co] For z outside σ(N), the spectrum of the operator N , we have

∥(z −N)−1∥B(H) =
1

d
(
z, σ(N)

) .
Proposition 2.10 [Co] Let K be a compact of C. Let, for n ∈ N, fn ∈ C∞(C) with supp fn ⊂ K
and f ∈ C∞(C) with supp f ⊂ K such that (fn)n converges to f , uniformly on K. Then (fn(N))n
converges to f(N) for the operator norm.

Proof : By combining the lemma 1.9 page 257 and Theorem 4.7 page 321 in the book [Co], we
found the following inequality

∥fn(N)− f(N)∥B(H) ≤ ∥fn − f∥∞,K := sup
x∈K

|fn(x)− f(x)|.

Therefore by passing to the limit we conclude

lim
n→+∞

∥fn(N)− f(N)∥B(H) = 0.

If we replace u by an almost analytic extension satisfying ω = C and the corollary 2.8 and (2.1.14),
the generalized integral in (2.1.15) converges uniformly, w.r.t. ξ, as proved in the following propo-
sition 2.10.

For a map k : C −→ C and D ⊂ C, we define

∥k∥∞,D := sup
x∈D

|k(x)|. (2.1.16)

Proposition 2.11 Let φ ∈ C∞(R) be a compact supported function in K and φC be an almost
analytic extension of φ given by the proposition 2.3. We have the following uniform convergence
on K

lim
n→+∞

∥∥∥∥∫
|Im(z)|>1/n

∂z̄φ
C(z)(z − ·)−1 dz ∧ dz̄ − φ(·)

∥∥∥∥
∞,K

= 0. (2.1.17)

Proof : Let φ ∈ C∞(R) be a compact supported function in K. By the proposition 2.3, φC is an
almost analytic extension of φ such that supp φC ⊂ KC, where KC := {(x, y) ∈ R2;x ∈ K, |y| ≤
C < 1}. Let ω be an open in the complex plane C that contains KC. From the corollary 2.8 with
u = φC, we have, for all ξ ∈ K,

φ(ξ) = (2iπ)−1

∫
C

∂z̄φ
C(z)

z − ξ
dz ∧ dz̄. (2.1.18)

Using the (2.1.15) with l = 1, we have, for ξ ∈ K,∫
KC

|∂z̄φC(z)(z − ξ)−1| dz ∧ dz̄ ≤ C1

∫
KC

|Iz||Iz|−1 dz ∧ dz̄ < +∞. (∗)
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Thus this integral (2.1.18) is absolutely convergent. Now we will show the uniform convergence on
K, let ξ ∈ K ∣∣∣∣ ∫

|Iz|>1/n

∂z̄φ
C(z)(z − ξ)−1 dz ∧ dz̄ − φ(ξ)

∣∣∣∣
=

∣∣∣∣ ∫
|Iz|<1/n

∂z̄φ
C(z)(z − ξ)−1 dz ∧ dz̄

∣∣∣∣
≤ C1

∫
|Iz|<1/n

|Iz||Iz|−1 dz ∧ dz̄

≤ C
n .

where C is independent of ξ. Therefore

sup
ξ∈K

∣∣∣∣ ∫
|Iz|>1/n

∂z̄φ
C(z)(z − ξ)−1 dz ∧ dz̄ − φ(ξ)

∣∣∣∣ < C

n
,

proves (2.1.17).
We are able to reprove Helffer-Sjöstrand theorem.

Theorem 2.12 [HeS] Let φ ∈ C∞(R) be a function with compact support K and φC be an almost
analytic extension of f given by the proposition 2.3. Let A be a self-adjoint operator on a Hilbert
space H. The integral ∫

C
∥∂z̄φC(z)(z −A)−1∥B(H) dz ∧ dz̄ (∗∗)

converges, the integral in the following formula converges in operator norm in B(H), and we have

φ(A) = (2iπ)−1

∫
C
∂z̄φ

C(z)(z −A)−1 dz ∧ dz̄. (2.1.19)

Proof : By the proposition 2.9,(∗) holds true with ξ replaced by A. This proves the convergence of
(∗∗). In particular, the integral in (2.1.19) converges in the operator norm of B(H). By (2.1.17)
and the proposition 2.10 we get (2.1.19) .

2.2 Some complex analysis results
We give now some properties on the Cayley transform and we prove a known result in complex
analysis that will be used in the proof of our main theorem.
We will need some estimates on the Cayley transform on specific regions.

Definition 2.13 The Cayley transform is the map

ψ : C \ {i} −→ C \ {1}
z 7−→ ψ(z) = z+i

z−i .

We denote by S1 the unit sphere in C, D(0, 1) the open disk with center the origin and of radius 1,
D(0, 1) the closure of D(0, 1), C+ = {z ∈ C; Iz > 0} and C− = {z ∈ C; Iz < 0}.

Proposition 2.14 [H] ψ is an analytic, bijective function and ψ−1 is given by ψ−1(ξ) = i ξ+1
ξ−1 , for

all ξ ∈ C \ {1}. Furthermore,
ψ(R) = S1 \ {1}, ψ(C+ \ {i}) = C \ {D(0, 1)}, ψ(C−) = D(0, 1),
ψ(0) = −1, ψ(−1) = i, limz→∞ ψ(z) = 1, limz→i |ψ(z)| = ∞.

Let a, b, c ∈ R be such that a < b and 0 ≤ c < 1. We define

Ω := ψ
(
[a, b]× [−c, c]

)
.
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Lemma 2.15 There exist C > 0, such that

∥∂x(ψ−1)∥∞,Ω ≤ C, ∥∂y(ψ−1)∥∞,Ω ≤ C, (2.2.1)

and, for all ξ ∈ Ω,
|Iψ−1(ξ)| ≤ Cd(ξ,S1).

where ∥.∥∞,Ω defined in (2.1.16) and d(ξ,S1) is the distance between ξ and S1.

Proof : Let ξ ∈ Ω . Then
∣∣Iψ−1(ξ)

∣∣ = ∣∣∣∣ |ξ|2−1
|ξ−1|2

∣∣∣∣,
|Iψ−1(ξ)|
d(ξ,S1)

=
|ξ|+ 1

|ξ − 1|2
.

Call CΩ = d(1,Ω), dΩ = supξ∈Ω |ξ|. We have, for all ξ ∈ Ω,

C1 :=
1

(2dΩ)2
≤

|I
(
ψ−1(ξ)

)
|

d(ξ,S1)
=

|ξ|+ 1

|ξ − 1|2
≤ dΩ + 1

C2
Ω

=: C2.

∂x(ψ
−1) = −2i

(ξ−1)2 and ∂y(ψ−1) = 2
(ξ−1)2 . As there exist r > 0, such that, for all ξ ∈ Ω, |ξ − 1| ≥ r,

we get (2.2.1).

Lemma 2.16 Let h be an analytic function on C and g be a smooth function on C ≃ R2. We
have

∀z ∈ C, ∂z̄(g ◦ h)(z) = (∂z̄g)(h(z))∂z̄h(z).

Proof : Writing z = x+ iy and h(z) = h1(x, y) + ih2(x, y), we have

2∂z̄(g ◦ h)(z) = ∂x(g ◦ h)(z) + i∂y(g ◦ h)(z)
= (∂xg)(h(z))∂xh1(x, y) + (∂yg)(h(z))∂xh2(x, y)
+i

(
(∂xg)(h(z))∂yh1(x, y) + (∂yg)(h(z))∂yh2(x, y)

)
= ((∂z + ∂z̄)g)(h(z))∂xh1(x, y) + (∂z̄−∂z

i )g)(h(z))∂xh2(x, y)

+i
(
((∂z + ∂z̄)g)(h(z))∂yh1(x, y) + ((∂z̄−∂z

i )g)(h(z))∂yh2(x, y))
)

= (∂zg)(h(z))
(
∂xh1(x, y) + i∂xh2(x, y) + i∂yh1(x, y)− ∂yh2(x, y)

)
+(∂z̄g)(h(z))

(
∂xh1(x, y)− i∂xh2(x, y) + i∂yh1(x, y) + ∂yh2(x, y)

)
.

As h is analytic, h satisfies the Cauchy Riemann relations ∂xh1(x, y) = ∂yh2(x, y) and ∂yh1(x, y) =
−∂xh2(x, y), therefore

2∂z̄(g ◦ h)(z) = 2(∂z̄g)(h(z))
(
∂xh1(x, y) + i∂yh1(x, y)

)
= 2(∂z̄g)(h(z))

(∂x+i∂y

2 h1(x, y) +
∂x+i∂y

2 h1(x, y)
)

= 2(∂z̄g)(h(z))
(∂x+i∂y

2 h1(x, y) +
∂y−i∂x

2 h2(x, y)
)

= 2(∂z̄g)(h(z))
(∂x+i∂y

2 h1(x, y)− i
∂x+i∂y

2 h2(x, y)
)

= 2(∂z̄g)(h(z))∂z̄h(z).

2.3 Helffer-Sjöstrand formula for Unitary Operators
We want a formula similar to (2.1.19), replacing the self-adjoint operator A by a unitary operator
U . We start with some reminders on unitary operators.

Definition 2.17 U is called a unitary operator on a Hilbert space H, if

UU∗ = U∗U = I.

Proposition 2.18 The spectrum of a unitary operator U on a Hilbert space H is included in S1 .
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Proof : Let z ∈ C such that |z| > 1. We have ∥z−1U∥ < 1, then (I − z−1U) is invertible, its

inverse is bounded and it is given by the following series
+∞∑
n=0

(z−1U)n. Therefore

z−1(I − z−1U)−1 = (z − U)−1.

Let now z ∈ C be such that |z| < 1, we have |zU∗| < 1, then

U∗(zU∗ − I)−1 = (zU∗U − U)−1 = (z − U)−1.

This shows that the spectrum of U is included in S1.

Theorem 2.19 Let f ∈ C∞(S1) be supported away from 1 and U a unitary operator on a Hilbert
space H. Let (f ◦ψ)C be an almost analytic extension of f ◦ψ given by the prposition 2.3 such that
(f ◦ ψ)C is supported in {x + iy;x ∈ supp(f ◦ ψ), |y| ≤ C}, 0 < C < 1. Let fCS1 = (f ◦ ψ)C ◦ ψ−1.
The integral ∫

C
∥∂z̄fCS1(z)(z − U)−1∥B(H) dz ∧ dz̄ (2.3.1)

converges, the integral in the following formula converges in operator norm in B(H), and we have

f(U) = (2iπ)−1

∫
C
∂z̄f

C
S1(z)(z − U)−1 dz ∧ dz̄. (2.3.2)

Proof : Let f ∈ C∞(S1) be supported away from 1 and U a unitary operator on a Hilbert space H.
f ◦ψ is a smooth function with compact support in R. By the proposition 2.3, there exist an almost
analytic extension (f ◦ψ)C of f ◦ψ, such that (f ◦ψ)C is supported in {x+ iy;x ∈ suppf ◦ψ, |y| ≤
C < 1}.
Let fCS1 := (f ◦ ψ)C ◦ ψ−1. fCS1 is defined on C. It is a smooth function, supported in
Ω0 := ψ(supp(f ◦ ψ)× [−C,C]).
For ξ ∈ S1, fC(ξ) = (f ◦ ψ)C ◦ ψ−1(ξ) = f ◦ ψ ◦ ψ−1(ξ) = f(ξ), since ψ−1(ξ) ∈ R.
As in the proof of theorem 2.12 we show that (2.3.3) converges.
Making a call to lemma 2.16 with h = ψ−1 and g = (f ◦ψ)C and to proposition 2.3 with l = 1, and
to lemma 2.15, we get the following uniform convergence on S1,

lim
n→+∞

∥∥∥∥∫
d(z,S1)>1/n

∂z̄f
C
S1(z)(z − ·)−1 dz ∧ dz̄ − f(·)

∥∥∥∥
∞,S1

= 0.

Therefore, by Proposition2.10, ∫
C
∂z̄f

C
S1(z)(z − U)−1 dz ∧ dz̄

converges in operator norm in B(H) and we have (2.3.4).

Theorem 2.20 Let f ∈ C∞(S1) and U be a unitary operator on a Hilbert space H. there exist two
almost analytic functions gC and hC such that, the integral∫

C
∥(|∂z̄gC(z)|+ |∂z̄hC(z)|)(z − U)−1∥B(H) dz ∧ dz̄ (2.3.3)

converges, the integral in the following formula converges in operator norm in B(H), and we have

f(U) = (2iπ)−1

∫
C
(∂z̄g

C(z) + ∂z̄h
C(z))(z − U)−1 dz ∧ dz̄. (2.3.4)

Proof : Let χ1, χ2 ∈ C∞(S1); supp χ1 ⊂ S1 \ {1} and supp χ2 ⊂ S1 \ {−1} , such that χ1+χ2 = 1.
We have f(x) = (χ1f)(x) + (χ2f)(x). As χ1f ∈ C∞(S1); χ1f = 0 near to 1, by the theorem 2.19
we obtained

(χ1f)(U) = (2iπ)−1

∫
C
∂z̄g

C(z)(z − U)−1 dz ∧ dz̄.
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We will study (χ2f)(U). By the same computation of the paragraph of Cayley transform with the
following map ψ̃ : C \ {i} → C \ {−1}; z 7→ ψ̃(z) = z+i

i−z , we can show that ψ̃ is an analytic bijective
function and ψ̃−1 is given by ψ̃−1(ξ) = i ξ−1

ξ+1 , for all ξ ∈ C \ {−1}. Furthermore,

ψ̃(R) = S1 \ {−1}, ψ̃(C+ \ {i}) = C \ {D(0, 1)}, ψ̃(C−) = D(0, 1), ψ̃(0) = 1,

limz→∞ ψ̃(z) = −1, limz→i |ψ̃(z)| = ∞.

For a, b, c ∈ R with a < b and 0 ≤ c < 1, and Ω̃ := ψ̃([a, b]× [−c, c]). there exist C > 0, such that
∥∂x(ψ̃−1)∥∞,Ω̃ ≤ C, ∥∂y(ψ̃−1)∥∞,Ω̃ ≤ C, and, for all ξ ∈ Ω̃, |Iψ̃−1(ξ)| ≤ Cd(ξ,S1). As supp χ2f
is away from −1, using the same reasoning of the theorem 2.19, we can obtain the results of this
theorem for χ2f .

2.4 The Helffer-Sjöstrand formula for a vector of self-adjoint operators
that commute two by two.

The objective in this part is to give a Helffer-Sjöstrand formula for a vector of self-adjoint operators
that commute two by two. First, we will start with constructing a spectral measure associated with
f(H1, ...,Hn) and by the construction of almost analytic extensions of f which is a smooth function
on Rn with compact support.

Definition 2.21 Let f : Rn −→ C be a smooth function with compact support and H1, H2, ...,Hn

be a self-adjoint operators that commute two by two. We define

f(H1, ..,Hn) :=

∫
σ(H1)×..×σ(Hn)

f(λ1, .., λn) d(Eλ1
(H1)⊗ ..⊗ Eλn

(Hn))

:=

∫
σ(H1)×..×σ(Hn)

f(λ1, .., λn) dEλ1
(H1)..dEλn

(Hn).
(2.4.1)

Proposition 2.22 Let f be a smooth function on Rn with compact support. Then, there exist a
smooth function fC : Cn −→ C, called an almost analytic extension of f , 0 < C < 1 such that for
all l = (l1, .., ln) ∈ Nn there exist Cl > 0 that the following assertions hold true:
*fC|R = f ,
*suppfC ⊂ {(x1 + iy1, .., xn + iyn); (x1, .., xn) ∈ suppf ;∀1 ≤ j ≤ n; |yj | ≤ C},
*|∂z̄fC(z1, .., zn)| ≤ Cl|Iz1|l1 ..|Izn|ln .

Proof : Let f be a smooth function on Rn with compact support. We can take fC, given by the
following expression on Cn :

fC(z1, .., zn) =

+∞∑
α∈Nn,|α|=0

(iy)α

α!
fα(x)Πn

j=1χ
( yj
Tαj

)
where zj = xj + iyj, for all 1 ≤ j ≤ n, (iy)α = Πn

j=1(iyj)
αj , α! = Πn

j=1αj !, and fα(x) =
∂α1
x1
..∂αn

xn
f(x).

With this choice of extension, and by the same reasoning of the proof of the proposition 2.3, one
can show our result.

Theorem 2.23 Let f : Rn −→ C be a smooth function with compact support and fC be an almost
analytic extension of f given by the proposition 2.22 Let H1, H2, ..,Hn be a self-adjoint operators
that commute two by two. The integral∫

Cn

∥∂z̄1 ..∂z̄nfC(z1, .., zn)(z1 −H1)
−1..(zn −Hn)

−1∥ dz1 ∧ dz̄1..dzn ∧ dz̄n

converges, the integral in the following formula converges in operator norm, and we have

f(H1, ..,Hn) = (2iπ)−n

∫
Cn

∂z̄1 ..∂z̄nf
C(z1, .., zn)(z1 −H1)

−1..(zn −Hn)
−1 dz1 ∧ dz̄1..dzn ∧ dz̄n
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Lemma 2.24 If u ∈ C∞(Cn) with compact support in ω then, for all (ξ1, .., ξn) ∈ ω;

u(ξ1, .., ξn) = (2iπ)−n

∫
Cn

∂z̄1 ..∂z̄nu
C(z1, .., zn)(z1 − ξ1)

−1..(zn − ξn)
−1 dz1 ∧ dz̄1..dzn ∧ dz̄n (2.4.2)

Proof : Let un;C −→ C; ξn 7−→ un(ξn) be defined by un(ξn) := u(ξ1, .., ξn). By the corollary 2.8,
we have

u(ξ1, .., ξn) = un(ξn) = (2iπ)−1

∫
C
∂z̄nu

C(ξ1, .., ξn)(zn − ξn)
−1 dzn ∧ dz̄n

By repeated use of the corollary 2.8, we obtain (2.4.2).

Proposition 2.25 Let K be a compact of Rn. Let, for k ∈ N, fk ∈ C∞(Rn) with suppfk ⊂ K and
f ∈ C∞(Rn) such that (fk)k converges uniformly to f on K. Then

(
fk(H1, ...,Hn)

)
k

converges to
f(H1, ...,Hn) for the operator norm.

Proof : By the same reason of the proof of the proposition 2.10, we find the following inequality,

∥fk(H1, ...,Hn)− f(H1, ...,Hn)∥B(H) ≤ ∥fk − f∥∞,K := sup
(x1,..,xn)∈K

|fk(x)− f(x)|

If we replace u by an almost analytic extension fC given by the proposition 2.22 and we take
ω = Cn, the generalized integral in (2.4.1) converges uniformly, w.r.t. (ξ1, ..., ξn), as proved in the
following proposition.

Proposition 2.26 Let f ∈ C∞(Rn) be a function with compact support K and fC be an almost
analytic extension of f given by the proposition 2.22 We have the following uniform convergence
on K

limk→+∞(2π)−n∥
∫
∏n

j=1{zj ;|Izj |>
1
k }
∂z̄1 ..∂z̄nf

C(z1, .., zn)(z1 − .)−1..

(zn − .)−1 dz1 ∧ dz̄1..dzn ∧ dz̄n − f(.)∥∞,ω = 0

(2.4.3)

Proof : Let f ∈ C∞(Rn) be a function with compact support K. By the proposition2.22, fC is an
almost analytic extension of f such that supp fC ⊂ KC, where
KC := {(x1 + iy1, ..., xn + iyn) ∈ Cn; (x1, ..., xn) ∈ ω;∀1 ≤ j ≤ n; 0 ≤ |yj | ≤ C < 1}. Let ω
be an open in Cn that contains KC. From the lemma 2.24 with taking u = fC, we have, for all
(l1, ..., ln) ∈ K,

f(ξ1, .., ξn) = (2iπ)−n

∫
ω

∂z̄1 ..∂z̄nf
C(z1, .., zn)(z1 − ξ1)

−1..(zn − ξn)
−1 dz1 ∧ dz̄1..dzn ∧ dz̄n (2.4.4)

Using the proposition 2.22 with l1 = ... = ln = 1, we have, for (l1, ..., ln) ∈ K,

(2π)−n

∫
KC

|∂z̄1 ..∂z̄nfC(z1, .., zn)(z1 − ξ1)
−1..(zn − ξn)

−1| dz1 ∧ dz̄1..dzn ∧ dz̄n

≤ C1

∫
KC

n∏
j=1

|Izj |.
n∏

j=1

|Izj |−1 dz1 ∧ dz̄1..dzn ∧ dz̄n

< +∞.

(2.4.5)

Thus this integral (5.0.4) is absolutely convergent. Now we will show the uniform convergence on
K, let (l1, ..., ln) ∈ K,∣∣(2iπ)−n

∫
∏n

j=1{zj ;|Izj |>
1
k }
∂z̄1 ..∂z̄nf

C(z1, .., zn)(z1 − ξ1)
−1..

.(zn − ξn)
−1 dz1 ∧ dz̄1..dzn ∧ dz̄n − f(ξ1, .., ξn)

∣∣
=

∣∣(2iπ)−n

∫
∏n

j=1{zj ;|Izj |<
1
k }
∂z̄1 ..∂z̄nf

C(z1, .., zn)(z1 − ξ1)
−1..

.(zn − ξn)
−1 dz1 ∧ dz̄1..dzn ∧ dz̄n

∣∣
≤ C1

∫
∏n

j=1{zj ;|Izj |<
1
k }

n∏
j=1

|Izj |.Πn
j=1|Izj |−1 dz1 ∧ dz̄1..dzn ∧ dz̄n

< C
kn , where C is independent of (ξ1, ..., ξn).

(2.4.6)
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Therefore (2.4.3) yields.
We are able to reprove Helffer-Sjöstrand theorem.

Theorem 2.27 Let f ∈ C∞(Rn) be a smooth function with compact support K and fC be an almost
analytic extension of f given by the proposition2.22 Let H1, ...,Hn be a self-adjoint operators that
commute two by two. The integral∫

Cn

∥∂z̄1 ..∂z̄nfC(z1, .., zn)(z1 −H1)
−1...(zn −Hn)

−1∥ dz1 ∧ dz̄1..dzn ∧ dz̄n (2.4.7)

converges, the integral in the following formula converges in the operator norm, and we have

f(H1, ...,Hn) = (2iπ)−n

∫
Cn

∂z̄1 ..∂z̄nf
C(z1, .., zn)(z1 −H1)

−1...(zn −Hn)
−1 dz1 ∧ dz̄1..dzn ∧ dz̄n

(2.4.8)

Proof : By the proposition 2.26, (2.4.5) holds true with (ξ1, ..., ξn) replaced by (H1, ...,Hn). This
proves the convergence of (2.4.7). In particular, the integral in (2.4.8) converges in the operator
norm. By the proposition 2.26 and proposition2.25 we get (2.4.8) .

2.5 Application
Proposition 2.28 Let f ∈ C∞(Rn) be a smooth function with compact support K. Let H1, ...,Hn

be a self-adjoint operators that commute two by two, and let B be a self-adjoint operator such that
for all j ∈ {1, 2, ..., n}, Hj ∈ Cm(B). Then

[f(H1, ...,Hn), B] = (2iπ)−n

∫
Cn

∂z̄1 ..∂z̄nf
C(z1, .., zn)

∑
1≤k1≤.≤km≤.≤n

km∏
j=1

(zj −Hj)
−1−#{p;kp=j}

adkm

Hk1
,..,Hkm

∏n
j=km

(zj −Hj)
−1 dz1 ∧ dz̄1..dzn ∧ dz̄n

where adkm

Hk1
,..,Hkm

= [Hkm , .., [Hk1 , B], ..].

3 LIMITING ABSORPTION PRINCIPLE FOR DIRAC OP-
ERATORS WITH A PERTURBED WIGNER-VON NEU-
MANN POTENTIAL

In this section, we are interested in the behaviour on the real axis of the resolvent of a class of con-
tinuous Dirac operators. We shall prove a so called “limiting absorption principle”, a very useful
result to develop the scattering theory associated with those Dirac operators. It also gives informa-
tion on the nature of their essential spectrum. The main interest of our study relies on the fact
that we include some oscillating contribution in the potential of our Dirac operator.

To set up our framework and precisely formulate our results, we need to introduce some no-
tations. We denote by ⟨·, ·⟩ and ∥ · ∥ the right linear scalar product and the norm in L2(R3), the
space of squared integrable, complex functions on R3. We also denote by ∥ · ∥ the norm of bounded
operators on L2(R3). By writing x = (x1;x2;x3) the variable in R3, we set x2 :=

∑3
j=1 x

2
j and

where ⟨x⟩ = (1 + x2)
1
2 . Let Qj be the multiplication operator in L2(R3) by xj and Pj the self-

adjoint realization of −i∂xj in L2(R3). We set Q = (Q1;Q2;Q3)
T and P = (P1;P2;P3)

T , where
T denotes the transposition. Let −∆ = |P |2 :=

∑3
j=1 P

2
j = PT .P be the self-adjoint realization of

the nonnegative Laplace operator −∆ in L2(R3).

Let us introduce now the Dirac operators we shall consider. Let

α1 =

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
, α2 =

(
0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

)
, α3 =

(
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

)
, β =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)

13



be the Dirac 4× 4 matrices.
The free Dirac operator D0 in R3 with mass m ∈ R+ is the self-adjoint realization in L2(R3,C4)
of the differential operator

D0 = −iℏcα.∇+mc2β

= ℏc
∑3

j=1 αjPj +mc2β,
(3.0.1)

where m > 0 is the mass of a particle, c > 0 is the speed of light, ℏ is the reduced Planck constant,
α is the transposed vector (α1, α2, α3)

T of three 4 × 4 matrices, and ∇ is the Gradient on R3. In
particular, D0 is a matrix of operators of order 4×4. This operator appeared in the Dirac equation
(3.0.2) describes the behavior of elementary particles of halfentier spins represented by ψ in (3.0.2)
: We study properties of relativistic massive charged particles with spin 1/2 (e.g., electron, positron,
(anti-)muon, (anti-)tauon,. . .). We follow the Dirac formalism, see [D]. Because of the spin, the
configuration space of the particle is vector valued. The free Dirac equation is given by :

iℏ
d

dt
ψ(t, x) = D0ψ(t, x). (3.0.2)

We shall consider external fields that are functions V (Q) defined on R3 with values in the space
of self-adjoint 4 × 4 matrices and tend to 0 at infinity. In particular, the full Dirac operator
D = D0 + V (Q) will always be self-adjoint with domain H1(R3;C4) and the essential spectrum of
D will be the one of D0, that is ]−∞;−mc2]∪ [mc2; +∞[, by Weyl’s theorem. We also renormalize
and consider ℏ = c = 1. We will be interested in the dirac operator with Von-Neumann potential
D = D0+V (Q), where V (Q) is the matrix of operators of order 4×4 on R3 satisfying the following

Assumption 3.1 . Let r0, r1, r2 ∈]0; 1], q ∈ R and let k be a strictly positive real. Let κ ∈
C∞
c (R;R) with κ = 1 on [−1; 1] and 0 ≤ κ ≤ 1. We consider Vsr, Vlr are two matrices of order

4× 4 such that, they exist C > 0, r0, r1, r2 > 0, such that for all x ∈ R3,

|⟨x⟩r0Vl,r(x)| < C, |⟨x⟩1+r1∇Vl,r(x)| < C, |⟨x⟩1+r2Vs,r(x)| < C,

and
W (x) = q(1− κ(|x|)) sin(k|x|)

|x|
114, (3.0.3)

with real q. Let V = Vsr + Vlr +W .

We can not begin to study the L.A.P without starting by defining the conjugate operator which we
will note AD later of the Dirac operator "D" that we will work with throughout this paper.

Definition 3.2 Let ÃD be the self-adjoint realization of the operator (F (P ) ·Q+Q · F (P ))/2 in
L2(R3) where F = (Fj)j=1,2,3 is a vector of functions, with Fj(ξ) = µ2(ξ) θ◦µ(ξ)|ξ2| ξj,

and µ(ξ) =
√
ξ2 +m2. We define AD by

AD := Π+(P )ÃDΠ+(P ) + Π−(P )ÃDΠ−(P )

where Π±(ξ) is given by, for ξ ∈ R3:

Π±(ξ) =
1

2
± 1

2
√
ξ2 +m2

(α.ξ +mβ) =
1

2
± 1

2
√
ξ2 +m2

(

3∑
j=1

ξjαj +mβ). (3.0.4)

Remark 3.3 The choice of the conjugate operator AD is taken in [BMP].

Remark 3.4 By the Mourre commutator method with AD as conjugate operator, one has the
following Theorem , which is a consequence of the much more general Theorem 7.6.8 in [ABG]:
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Theorem 3.5 [BMP] Consider the above operator D with q = 0 (i.e. without the oscillating
part of the potential). Then the point spectrum of D is locally finite in ] − ∞;mc2[∪]mc2; +∞[.
Furthermore, for any s > 1

2 and any compact interval I ⊂] − ∞;mc2[∪]mc2; +∞[, that does not
intersect the point spectrum of D,

sup
Rz∈I,Iz ̸=0

∥⟨AD⟩−s(D − z)−1⟨AD⟩−s∥ < +∞. (3.0.5)

Remark 3.6 In that case, it turns out that the spectrum of D, is noted by σ(D), is purely absolutely
continuous in I (cf., Theorem XIII.20 in [RS4]). Notice that (3.0.5) holds true for s = 0 if and
only if I ∩ σ(D) = ∅, where σ(D) the spectrum of D.

Proposition 3.7 We have D0 ∈ C2(AD). Moreover, under Assumption 3.1, the form [V, iAD],
defined on D(AD), extends to a bounded operator from H1(R3)4 in H−1(R3)4. In particular,
D ∈ C1(AD).

Proof : In [BMP], it is shown that D0, Vs,r(Q), Vl,r(Q) ∈ C1(AD). Since W (Q) is bounded, and the
quadratic form, [W (Q), iAD] is bounded on D(AD)2 we obtain W (Q) ∈ C1(AD), and we concludes
D ∈ C1(AD).

Theorem 3.8 Let θ ∈ C∞
c (R) be a function supported in a small interval in ]m,

√
m2 + k2/4[ or

in ]−
√
m2 + k2/4,−m[. there exist a constant c > 0 and a compact operator K on L2(R3)4 such

that
θ(D)[D, iAD]θ(D) ≥ c θ(D)2 +K.

Proof : Let θ ∈ C∞
c (R) be a function supported in a small interval around λ in ]m,

√
m2 + k2/4[

or in ]−
√
m2 + k2/4,−m[, we have

θ(D)[D, iAD]θ(D) = (θ(D)− θ(D0))[D, iAD](θ(D)− θ(D0))
+(θ(D)− θ(D0))[D, iAD]θ(D0) + θ(D0)[D, iAD](θ(D)− θ(D0))
+θ(D0)[D, iAD]θ(D0)
=M1 +M2 +M3 +M4.

Let us first treat the term M4,

M4 = θ(D0)[D0, iAD]θ(D0) + θ(D0)[Vl,r(Q), iAD]θ(D0)
+θ(D0)[Vs,r(Q), iAD]θ(D0) + θ(D0)[W (Q), iAD]θ(D0)
=M4,1 +M4,2 +M4,3 +M4,,4.

Let’s start by M4,1, the idea of the study this term is in [BMP]. By the proposition 4.1 and 4.2
in the section of appendix, we have

M4,1 = θ(D0)[µ(P )(Π+ −Π−)(P ), iΠ+(P )ÃDΠ+(P ) + Π−(P )ÃDΠ−(P )]θ(D0)

= θ(D0)
(
Π+(P )[µ(P ), iÃD]Π+(P )−Π−(P )[µ(P ), iÃD]Π−(P )

)
θ(D0)

= θ(D0)D0θ ◦ µ(P )θ(D0)
≥ c θ(D0)

2,

where c is a positive constant. Second, let’s treat M4,2. According to the article [BMP] one can
write AD in the following form

AD = F (P ).Q+ i
2f(P ) + iαβG(P )

=
∑3

j=1 Fj(P )Qj +
i
2f(P ) + i

∑3
j=1 αjβGj(P )

where
f(ξ) = 2(θ ◦ µ)(ξ) + µ(ξ)θ′ ◦ µ(ξ) + µ2(ξ)(θ ◦ µ)(ξ) 1

|ξ|2
, (3.0.6)

and
Gj(ξ) =

mξj
µ2(ξ)

θ ◦ µ(ξ), j = 1, 2, 3. (3.0.7)
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To study M4,2, this amounts studying the following three terms θ(D0)[Vl,r(Q), f(P )]θ(D0),
θ(D0)[Vl,r(Q), Fj(P )Qj ]θ(D0), and θ(D0)[Vl,r(Q), αjβGj(P )]θ(D0). We refer to proposition 4.3 of
Appendix for this proof. To treat the term M4,3, it suffice to study θ(D0)Q.Vs,r(Q)F (P )θ(D0). In-
deed, we know that θ(D0)⟨Q⟩−r2 is a compact operator, and ⟨Q⟩r2Q.Vs,r(Q)F (P )θ(D0) is a bounded
operator on L2(R3)4 then M4,3 is a compact operator, the same for M4,4, it suffice to show that
θ(D0)WQ.F (P )θ(D0) is a compact operator. In fact,

θ(D0)WQ.F (P )θ(D0) = θ(D0) sin(k|Q|)⟨Q⟩−1Q.F (P )θ(D0)

= θ(D0) sin(k|Q|)⟨x⟩−1
∑3

j=1QjFj(P )θ(D0)

= θ(D0) sin(k|Q|)θ(D0)⟨Q⟩−1
∑3

j=1QjFj(P )

+θ(D0) sin(k|Q|)
∑3

j=1[⟨Q⟩−1QjFj(P ), θ(D0)].

θ(D0)⟨Q⟩−1 and by the lemma 3.9, θ(D0) sin(k|Q|)θ(D0) are a compacts operators on L2(R3)4,
and for j ∈ {1, 2, 3}, ⟨Q⟩−1QjFj(P ), sin(k|Q|)

∑3
j=1⟨Q⟩[⟨Q⟩−1QjFj(P ), θ(D0)] are a bounded op-

erators on L2(R3)4, we conclude that M4,4 is a compact operator on L2(R3)4.

M2 and M3 are treated the same way. Let’s study M2 = (θ(D) − θ(D0))[D, iAD]θ(D0). By
the Helffer-Sjöstrand formula, (θ(D) − θ(D0))⟨Q⟩ϵ⟨D0⟩δ is a compact operator on L2(R3)4 for
0 ≤ ϵ < r0, 0 ≤ δ < 1, and ⟨Q⟩−ϵ⟨D0⟩−δ[D, iAD]θ(D0) is a bounded operator on L2(R3)4, we
obtain M2 is a compact operator on L2(R3)4. For the same reason M4 is a compact operator on
L2(R3)4, we conclude there exists a constante c > 0, and a compact operator K ′ on L2(R3)4 such
that,

θ(D)[D, iAD]θ(D) ≥ c θ(D0)
2 +K ′

≥ c (θ(D0)− θ(D) + θ(D))2 +K ′

≥ c (θ(D))2 + (θ(D0)− θ(D))θ(D) + θ(D)(θ(D0)− θ(D))
+(θ(D0)− θ(D))2 +K ′.

Again by the Helffer-Sjöstrand formula, θ(D0) − θ(D) is a compact operator on L2(R3)4, then
(θ(D0)− θ(D))θ(D), θ(D)(θ(D0)− θ(D)) and (θ(D0)− θ(D))2 are a compacts operators L2(R3)4,
we conclude the Mourre estimate, i.e., there exist a positive constant c > 0 and a compact operator
K on L2(R3)4 such that,

θ(D)[D, iAD]θ(D) ≥ c θ(D)2 +K.

Lemma 3.9 Let θ ∈ C∞
c (R) be a function supported in a small interval around λ in ]m,

√
m2 + k2/4[

or in ] −
√
m2 + k2/4,−m[. We have for all 0 ≤ δ < 1, θ(D0) sin (k|Q|)θ(D0)⟨Q⟩δ is a compact

operator on L2(R3)4,

Proof : Let χ1 ∈ C∞(R) be a function such that

χ1 =

{
0 on [−1; 1],
1 on R \ [−2; 2].

θ(α.P +mβ) sin(k|Q|)θ(α.P +mβ)
= θ(α.P +mβ)χ1(Q) sin(k|Q|)θ(α.P +mβ) +K ′

1

= θ(α.P +mβ)χ1(Q) sin(k|Q|){θ(α.ξ +mβ)}w +K ′
2

= {θ(α.ξ +mβ)}w( e+−e−
2i ){θ(α.ξ +mβ)}w +K ′

3.

Since θ supported on the right of m, we find

= {θ(
√
m2 + ξ2)Π1

+(ξ)}w
( e+−e−

2i

)
{θ(

√
m2 + ξ2)Π1

+(ξ)}w +K ′
3,

= {θ(
√
m2 + ξ2)}w{Π1

+(ξ)}w
( e+−e−

2i

)
{θ(

√
m2 + ξ2)}w{Π1

+(ξ)}w +K ′
4.
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Appliying the lemma 4.3 in [GJ] with a(x, ξ) = θ(
√
m2 + ξ2), we find

= 1
2i{Π

1
+(ξ)}w{θ(

√
m2 + ξ2)}w(aw±e± + e±b

w
± + cw±e±){Π1

+(ξ)}w +K ′
4

= 1
2i{Π

1
+(ξ)}w{θ(

√
m2 + ξ2)}waw±e±{Π1

+(ξ)}w +K ′
5

= 1
2i{Π

1
+(ξ)}w{θ(

√
m2 + ξ2)a±}we±{Π1

+(ξ)}w +K ′
6

= 1
2i{Π

1
+(ξ)}w{θ(

√
m2 + ξ2)χ1a±}we±{Π1

+(ξ)}w +K ′
7

= 1
2i{Π

1
+(ξ)}w{θ(

√
m2 + ξ2)θ(

√
m2 + (ξ ∓ kx/|x|)2)χ1}we±{Π1

+(ξ)}w +K ′
8

where (K ′
j)j=1,..,8 are of the following form B′

1b
′w
1 or b′w2 B′

2 with b′1, b
′
2 ∈ S(⟨x⟩−1⟨ξ⟩−1, g) and

B′
1, B

′
2 are a bounded operators on L2(R3)4, therefore for all 1 ≤ j ≤ 6, 0 ≤ δ < 1 we have Kj⟨x⟩δ

is a compact operator on L2(R3)4.
As in the proof of the lemma 4.3 in [GJ], we show under the new conditions we took on θ that

θ(
√
m2 + ξ2)θ(

√
m2 + (ξ ∓ kx/|x|)2) = 0.

Let’s study the support of the function θ(
√
m2 + ξ2)θ(

√
m2 + (ξ ∓ kx/|x|)2).

Let ξ ∈ supp(θ(
√
m2 + ξ2)) ∩ supp(θ(

√
m2 + (ξ ∓ kx/|x|)2)), i.e.

λ− ϵ <
√
m2 + ξ2 < λ+ ϵ and λ− ϵ <

√
m2 + (ξ ∓ kx/|x|)2 < λ+ ϵ,

then
(λ− ϵ)2 < m2 + ξ2 < (λ+ ϵ)2 et (λ− ϵ)2 < m2 + (ξ ∓ kx/|x|)2 < (λ+ ϵ)2

By subtracting these two inequalities, we find a situation similar to the one it appeared in the case
of Schrödinger in [GJ],

−4λϵ < ∓2kξ
x

|x|
+ k2 < 4λϵ,

is equivalent to
−4λϵ

k
< ∓|ξ| ξ

|ξ|
x

|x|
+
k

2
<

4λϵ

k
.

Suppose that |ξ| < k/2, we obtain

0 < −|ξ|+ k

2
<

4λϵ

k
,

then
0 <

k

4λ
(
k

2
− |ξ|) < ϵ.

Now to not have ξ in the intersection supports it suffice to take θ supported in ]λ− ϵ1, λ+ ϵ1[ where
0 < ϵ1 <

k
4λ (

k
2 − |ξ|).

3.1 Limiting Absorption Principle
We inspired from the method given by [GJ1], of corse by adapting in our case.

Theorem 3.10 Let I be an open interval in ]m,
√
m2 + k2/4[ or in

]−
√
m2 + k2/4,−m[ such that I ∩ σdisc(D) = ∅ and I ′ a closed sub-interval of I. We have,

sup
Rz∈I′,Iz ̸=0

∥⟨AD⟩−s(D − z)−1⟨AD⟩−s∥ <∞.

Proof : Let θ, χ, τ ∈ C∞
c (]m,

√
m2 + k2/4[) such that τχ = χ, χθ = θ and θ = 1 near to I. Let

1/2 < s < 1. We have χ(D) ∈ C1(AD). We define as in [GJ1] the map ψ : R → R, t 7→ ψ(t) :=∫ t

−∞
⟨u⟩−2s du, ψ ∈ S0 in particular is bounded. Let R ≥ 1. Dτ(D) is a bounded operator in

C1(AD). Suppose F the following expression, we have

F := θ(D)[D, iψ(AD/R)]θ(D)
= θ(D)[Dτ(D), iψ(AD/R)]θ(D).
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This equality of operators by the property τθ = θ. By the Helffer-Sj̈strand formula we have

F = i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1[Dτ(D), iAD/R]

(z −AD/R)
−1θ(D) dz ∧ dz̄

= i
2π

∫
C
∂z̄ψ

C(z)θ(D)χ(D)(z −AD/R)
−1[Dτ(D), iAD/R]

(z −AD/R)
−1χ(D)θ(D) dz ∧ dz̄

= i
2π

∫
C
∂z̄ψ

C(z)θ(D)
(
(z −AD/R)

−1χ(D) + [χ(D), (z −AD/R)
−1]

)
[Dτ(D), iAD/R]

(
χ(D)(z −AD/R)

−1 + [(z −AD/R)
−1, χ(D)]

)
θ(D) dz ∧ dz̄

= i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1χ(D)[Dτ(D), iAD/R]χ(D)

(z −AD/R)
−1θ(D) dz ∧ dz̄

+ i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1χ(D)[Dτ(D), iAD/R]

[(z −AD/R)
−1, χ(D)]θ(D) dz ∧ dz̄

+ i
2π

∫
C
∂z̄ψ

C(z)θ(D)[χ(D), (z −AD/R)
−1][Dτ(D), iAD/R]χ(D)

(z −AD/R)
−1θ(D) dz ∧ dz̄

+ i
2π

∫
C
∂z̄ψ

C(z)θ(D)[χ(D), (z −AD/R)
−1][Dτ(D), iAD/R]

[(z −AD/R)
−1, χ(D)]θ(D) dz ∧ dz̄,

therefore

F = i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1χ(D)[Dτ(D), iAD/R]χ(D)

(z −AD/R)
−1θ(D) dz ∧ dz̄

+AD
1 +AD

2 +AD
3 ,

with

AD
1 = i

2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1χ(D)[Dτ(D), iAD/R]

[(z −AD/R)
−1, χ(D)]θ(D) dz ∧ dz̄

= θ(D)⟨AD/R⟩−s i
2π

∫
C
∂z̄ψ

C(z)⟨AD/R⟩s(z −AD/R)
−1χ(D)[Dτ(D), iAD/R]

[(z −AD/R)
−1, χ(D)]⟨AD/R⟩s dz ∧ dz̄⟨AD/R⟩−sθ(D)

= θ(D)⟨AD/R⟩−s i
2π

∫
C
∂z̄ψ

C(z)⟨AD/R⟩s(z −AD/R)
−1χ(D)[Dτ(D), iAD/R]

(z −AD/R)
−1[AD/R, χ(D)](z −AD/R)

−1⟨AD/R⟩s dz ∧ dz̄⟨AD/R⟩−sθ(D)

= θ(D)⟨AD/R⟩−sR−2 i
2π

∫
C
∂z̄ψ

C(z)⟨AD/R⟩s(z −AD/R)
−1χ(D)[Dτ(D), iAD]

(z −AD/R)
−1[AD, χ(D)](z −AD/R)

−1⟨AD/R⟩s dz ∧ dz̄⟨AD/R⟩−sθ(D)
= θ(D)⟨AD/R⟩−sR−2B⟨AD/R⟩−sθ(D),

where B is a bounded operator independently of R on L2(R3)4, indeed, Dτ(D), χ(D) in C1(AD),
and for all 0 ≤ s ≤ 1 we have ⟨AD/R⟩s(z−AD/R)

−1 is a bounded operator independently of R on
L2(R3)4. The same argument for AD

2 and AD
3 allows us to write F in the following form

F = i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1χ(D)[Dτ(D), iAD/R]χ(D)

(z −AD/R)
−1θ(D) dz ∧ dz̄

+θ(D)⟨AD/R⟩−sR−2B1⟨AD/R⟩−sθ(D)

where B1 is a bounded operator independently of R on L2(R3)4.
Let ϵ = r0

2 . By the lemma 3.11, (θ(D)− θ(D0))⟨AD⟩ϵ is a compact. Let

G := χ(D)[Dτ(D), iAD/R]χ(D),
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we have

G = χ(D)[D, iAD/R]χ(D)
= χ(D)[D, iAD/R](χ(D0) + χ(D)− χ(D0))
= χ(D)[D, iAD/R]χ(D0) + χ(D)[D, iAD/R](χ(D)− χ(D0))
= χ(D)[D, iAD/R]χ(D0) + χ(D)τ(D)[D, iAD](χ(D)− χ(D0))⟨AD⟩ϵR−1

⟨AD/R⟩ϵ⟨AD⟩−ϵ⟨AD/R⟩−ϵ

= χ(D)[D, iAD/R]χ(D0) + χ(D)K1R
−1B2⟨AD/R⟩−ϵ

where B2 is a uniformly bounded operator at R, and K1 is a compact operator on L2(R3)4.

G = (χ(D0) + χ(D)− χ(D0))[D, iAD/R]χ(D0) + χ(D)K1R
−1B2⟨AD/R⟩−ϵ

= χ(D0)[D, iAD/R]χ(D0) + (χ(D)− χ(D0))[D, iAD/R]χ(D0)
+χ(D)K1R

−1B2⟨AD/R⟩−ϵ

= χ(D0)[D, iAD/R]χ(D0) + χ(D)K1R
−1B2⟨AD/R⟩−ϵ

+⟨AD/R⟩−ϵ⟨AD/R⟩ϵ⟨AD⟩−ϵ⟨AD⟩ϵ(χ(D)− χ(D0))[D, iAD]R−1χ(D0)
= χ(D0)[D, iAD/R]χ(D0) + χ(D)K1R

−1B2⟨AD/R⟩−ϵ

+⟨AD/R⟩−ϵB3K2R
−1χ(D0).

Using the lemma 3.9, there exists a compact operator K3 and a uniformly bounded operator B4 at
R such that

χ(D0)[W + V, iAD]χ(D0) = R−1χ(D0)K3B4⟨AD/R⟩−ϵχ(D0),

therefore

F = i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1R−1χ(D0)D0θ ◦ µ(P )χ(D0)

(z −AD/R)
−1θ(D) dz ∧ dz̄

+θ(D)⟨AD/R⟩−s(R−2B1 +R−1K4)⟨AD/R⟩−sθ(D).

where K4 is a compact such that, for some constant c1 > 0, we have

∥K4∥ ≤ c1(∥χ(D)K1∥+ ∥K2χ(D0)∥+ ∥χ(D0)K3∥),

Let χ̃ be such that χ̃χ = χ̃ and χ̃θ = θ. We have

F = i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−1R−1χ(D0)D0θ ◦ µ(P )χ(D0)

(z −AD/R)
−1θ(D) dz ∧ dz̄

+θ(D)⟨AD/R⟩−s(R−2B1 +R−1K4χ̃(D))⟨AD/R⟩−sθ(D).

By commuting R−1χ(D0)D0θ ◦ µ(P )χ(D0) with (z −AD/R)
−1, we obtain

F = i
2π

∫
C
∂z̄ψ

C(z)θ(D)(z −AD/R)
−2R−1

χ(D0)D0θ ◦ µ(P )χ(D0) dz ∧ dz̄θ(D)

+ i
2π

∫
C
∂z̄ψ

C(z)θ(D)[(z −AD/R)
−1, R−1χ(D0)D0θ ◦ µ(P )χ(D0)]

(z −AD/R)
−1 dz ∧ dz̄θ(D)

+θ(D)⟨AD/R⟩−s(R−2B1 +R−1K4χ̃(D))⟨AD/R⟩−sθ(D)
= θ(D)ψ′(AD/R)R

−1χ(D0)D0θ ◦ µ(P )χ(D0)θ(D)
+θ(D)⟨AD/R⟩−s(R−2B4 +R−1K4)⟨AD/R⟩−sθ(D)
= θ(D)⟨AD/R⟩−2sR−1χ(D0)D0θ ◦ µ(P )χ(D0)θ(D)
+θ(D)⟨AD/R⟩−s(R−2B4 +R−1K4χ̃(D))⟨AD/R⟩−sθ(D)
= θ(D)⟨AD/R⟩−sR−1χ(D0)D0θ ◦ µ(P )χ(D0)⟨AD/R⟩−sθ(D)
+θ(D)⟨AD/R⟩−s[⟨AD/R⟩−s, R−1χ(D0)D0θ ◦ µ(P )χ(D0)]θ(D)
+θ(D)⟨AD/R⟩−s(R−2B4 +R−1K4χ̃(D))⟨AD/R⟩−sθ(D).
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Suppose φ(t) = ⟨t/R⟩−s. By the d’Helffer-Sjöstrand formula , we find

[⟨AD/R⟩−s, R−1χ(D0)D0θ ◦ µ(P )χ(D0)]

= i
2π

∫
C
∂z̄φ

C(z)[(z −AD/R)
−1, R−1χ(D0)D0θ ◦ µ(P )χ(D0)] dz ∧ dz̄

= R−2 i
2π

∫
C
∂z̄φ

C(z)(z −AD/R)
−1[AD, χ(D0)D0θ ◦ µ(P )χ(D0)]

(z −AD/R)
−1 dz ∧ dz̄

= R−2B′

where B′ is a bounded operator, then

F = θ(D)⟨AD/R⟩−sR−1χ(D0)D0θ ◦ µ(P )χ(D0)⟨AD/R⟩−sθ(D)
+θ(D)⟨AD/R⟩−s(R−2B5 +R−1K4χ̃(D))⟨AD/R⟩−sθ(D)
≥ aR−1θ(D)⟨AD/R⟩−sχ2(D0)⟨AD/R⟩−sθ(D)
+θ(D)⟨AD/R⟩−s(R−2B5 +R−1K4χ̃(D))⟨AD/R⟩−sθ(D),

where a > 0 is the lower support bound of θ. We define K5 by K5 := χ2(D) − χ2(D0). K5 is a
compact.

F ≥ aR−1θ(D)⟨AD/R⟩−sχ2(D)⟨AD/R⟩−sθ(D)
+θ(D)⟨AD/R⟩−s(R−2B6 +R−1K4χ̃(D) +R−1K5χ̃(D))⟨AD/R⟩−sθ(D)
≥ aR−1θ(D)⟨AD/R⟩−2sθ(D)
+θ(D)⟨AD/R⟩−s(R−2B6 +R−1K4χ̃(D) +R−1K5χ̃(D))⟨AD/R⟩−sθ(D)

Decresing the support of χ̃ ensures that ∥K4χ̃(D)∥+ ∥K5χ̃(D))∥ ≤ a/2. By choosing R >> 1 such
that

F ≥ a/2R−1θ(D)⟨AD/R⟩−s⟨AD/R⟩−sθ(D).

Lemma 3.11 Let θ ∈ C∞
c (R). Let ϵ be such that 0 < ϵ < r0,

(
θ(D) − θ(D0)

)
⟨AD⟩ϵ is a compact

operator.

Proof : Inspired of [GJ1], we have

(θ(D)− θ(D0))⟨AD⟩ϵ = (θ(D)− θ(D0))⟨Q⟩ϵ⟨Dx⟩ϵ⟨Dx⟩−ϵ⟨Q⟩−ϵ(AD + i)ϵ

(AD + i)−ϵ⟨AD⟩ϵ.

By the Helffer-Sjöstrand formula, (θ(D)−θ(D0))⟨Q⟩ϵ⟨Dx⟩ϵ is a compact operator, (AD+i)−ϵ⟨AD⟩ϵ
is a bounded. It suffice to show that ⟨Dx⟩−ϵ⟨Q⟩−ϵ(AD + i)ϵ is a bounded L2(R3)4. By the same
argument in [GJ1] we show for ϵ ∈ N, ⟨Dx⟩−ϵ⟨Q⟩−ϵ(AD + i)ϵ is a compact and by interpolation we
obtain for all ϵ > 0.

4 Appendix
Proposition 4.1 Let Π+(P ) and Π−(P ) be given as in (3.0.4). Π+(P ) and Π−(P ) are orthogonal
projectors, and we have

µ(P )(Π+ −Π−)(P ) = D0.

Proof : We can first check that Π+(P ) and Π−(P ) are orthogonal projectors. Indeed,

(Π±(P ))
2 = ( 12 ± 1

2
√
P 2+m2

(α.P +mβ))2

= 1
4 ± 1

2
√
P 2+m2

(α.P +mβ) + ( 1
2
√
P 2+m2

(α.P +mβ))2

= 1
4 ± 1

2
√
P 2+m2

(α.P +mβ) + 1
4

= 1
2 ± 1

2
√
P 2+m2

= Π±(P )
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and

Π+(P )Π−(P ) = ( 12 + 1
2
√
P 2+m2

(α.P +mβ))( 12 − 1
2
√
P 2+m2

(α.P +mβ))

= 1
4 − ( 1

2
√
P 2+m2

(α.P +mβ))2

= 0.

We can also verify that D0 is given by µ(P )(Π+ −Π−)(P ), indeed,

µ(P )(Π+ −Π−)(P ) =
√
P 2 +m2( 12 + 1

2
√
P 2+m2

(α.P +mβ)− 1
2 + 1

2
√
P 2+m2

(α.P +mβ))

= α.P +mβ = D0.

Proposition 4.2 Let µ and F be given by the definition 3.2, we have

[µ(P ), iQ.F (P )] = µ(P )θ ◦ µ(P ).

Proof :
[µ(P ), iQ.F (P )] =

∑3
j=1[µ(P ), iQjFj(P )]

=
∑3

j=1[µ(P ), iQj ]Fj(P ) +Qj [µ(P ), iFj(P )]

= [µ(P ), iQ].F (P ) +Q.[µ(P ), iF (P )]
= [µ(P ), iQ].F (P )
= µ′(P )[P, iQ].F (P )
= µ(P )θ ◦ µ(P ).

Proposition 4.3 Let θ ∈ C∞
c (R) be a function supported in a small interval in ]m,

√
m2 + k2/4[

or in ] −
√
m2 + k2/4,−m[. Let f and Gj be given respectively by (3.0.6) and (3.0.7) and Fj is

given by the definition 3.2, we have θ(D0)[Vl,r(Q), f(P )]θ(D0), θ(D0)[Vl,r(Q), Fj(P )Qj ]θ(D0), and
θ(D0)[Vl,r(Q), αjβGj(P )]θ(D0) are a compacts operators on L2(R3)4.

Proof : θ(D0)⟨Q⟩−r0 and θ(D0)⟨Q⟩−r0 are a compacts operators on L2(R3)4, and for j ∈ {1, 2, 3},
⟨Q⟩r0 [Vl,r(Q), αjβGj(P )]θ(D0), and ⟨Q⟩r0 [Vl,r(Q), f(P )]θ(D0) are a bounded operators on L2(R3)4,
and by the proposition 2.6. of [GJ1] with A = P, φ = Fj , k = 1 and B = Vl,r, we have
⟨Q⟩r1I1(Fj)θ(D0) is a bounded operator on L2(R3)4, where I1(Fj) is given as in the proposition
2.6. of [GJ1], we obtain the result.
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