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A B S T R A C T   

The French National Forest Inventory provides detailed forest information up to large national and regional 
scales. Forest inventory for small areas of interest within a large population is equally important for decision 
making, such as for local forest planning and management purposes. However, sampling these small areas with 
sufficient ground plots is often not cost efficient. In response, small area estimation has gained increasing 
popularity in forest inventory. It consists of a set of techniques that enables predictions of forest attributes of 
subpopulation with the help of auxiliary information that compensates for the small field samples. 

Common sources of auxiliary information usually come from remote sensing technology, such as airborne laser 
scanning and satellite imagery. The newly launched NASA’s Global Ecosystem Dynamics Investigation (GEDI), a 
full waveform Lidar instrument, provides an unprecedented opportunity of collecting large-scale and dense forest 
sample plots given its sampling frequency and spatial coverage. However, the geolocation uncertainty associated 
with GEDI footprints create important challenges for their use for small area estimations. 

In this study, we designed a process that provides NFI measurements at plot level with GEDI auxiliary in
formation from nearby footprints. We demonstrated that GEDI RH98 is equivalent to NFI dominant height at plot 
level. We stressed the importance of pairing NFI plots with nearby GEDI footprints, based on not only the dis
tance in between but also their similarities, i.e., forest heights and forest types. Subsequently, these NFI-GEDI 
pairs were used for small area estimations following a two-phase sampling scheme. We showcased that, with 
an adequate sample size, small area estimation with GEDI auxiliary data can improve the accuracy of forest 
volume estimates.   

1. Introduction 

National Forest Inventories (NFIs) play an important role in under
standing the state of forests at the national and regional levels. NFIs are 
based on data collected in the field at the level of a set of forest plots that 
are spatially distributed according to a specific sampling design. Forest 
inventory for small territorial areas, such as municipalities, is also 
important for decision-makers; however, the information is often rela
tively limited at this level. As a result, developing small area estimation 

(SAE) approaches has gained increasing popularity in the field of forest 
inventory (Hill et al., 2021). It enables prediction of forest attributes, 
including forest volume, for small areas by using regression models 
based on auxiliary data commonly derived from remote sensing tech
niques over the Area of Interest (AOI). It has been reported that SAE can 
improve forest inventory precision without increasing costs (Mandallaz 
et al., 2013) and may produce reliable predictions of forest attributes 
locally, even when field plots are only available outside the small area 
under assessment (Molina & Marhuenda, 2015). 
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Tomppo (2006) is a pioneer in the use of auxiliary data for multi- 
source forest inventory. Previously, common sources of auxiliary data 
used in SAE often came from satellite-based imagery (McRoberts et al., 
2007), digital aerial photogrammetry (Breidenbach et al., 2018), and 
airborne laser scanning (Magnussen et al., 2014). The newly launched 
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is a full 
waveform LiDAR instrument aboard the International Space Station 
(ISS), which will produce footprint measurements covering over 4 % of 
the global land surface at the end of the mission (Dubayah et al., 2020). 
This provides an unprecedented opportunity of systematically collecting 
samples of forest information that can be used in a SAE approach on a 
large scale. However, large geolocation uncertainties associated with 
GEDI footprints (Dubayah et al., 2020; Roy et al., 2021) may impact 
their usability in estimating forest attributes in fragmented or hetero
geneous forests. 

The objective of this study was therefore to explore the possibility of 
using GEDI auxiliary data in a design-based model-assisted approach to 
improve forest inventory precision and accuracy for a large natural area 
in France (Sologne) as well as for small areas defined by administrative 
boundaries (departments). The results were evaluated against estima
tions obtained using a simple random sampling (SRS) design to assess 
the efficiency brought by using GEDI as auxiliary data informing about 
the forest structure. 

2. Material 

2.1. Study area 

Our study is in Sologne, Central France, which covers an area of 
approximately 6000 km2 (Fig. 1a). The topography is mostly flat, with 
most elevations falling within the range of 70–180 m. The climate is 
temperate Atlantic, with mean annual temperature and precipitation of 
11 ◦C and 725 mm. Forests cover approximately 48 % of the area and are 
dominated by broadleaved stands (75.3 %). Conifer and mixed stands 
account for 15.5 % and 9.2 % of the forest areas respectively. 

2.2. NFI data 

Surveyed between 2015 and 2019, 635 NFI plots were available over 
the study area. Such a 5-year time interval is routinely used for the 
official French NFI statistics, and it allows the shortest time gap of data 
acquisition between NFI surveys and GEDI auxiliary data. Details of 
inventory schemes and methods can be found in Hervé et al. (2014). 

Each NFI plot has detailed inventory information, including density 
(trees/ha), quadratic mean diameter (cm), basal area (m2/ha), domi
nant height (m), and volume (m3/ha). For this study we focused on two 
variables of high importance in forestry, i.e., forest dominant height 

when modelling forest canopy and forest volume when performing SAE. 
Table 1 provides descriptive statistics for both of these variables ob
tained from the NFI data at both overall AOI and individual department 
levels. 

2.3. Auxiliary data 

The auxiliary data consist of 1) GEDI Level 2A products; 2) the forest 
mask from the French National Institute of Geographic and Forest In
formation (IGN) (BDForêt® V2, https://geoservices.ign.fr/bdforet); and 
3) a digital terrain model (DTM, BD ALTI® 25 m, https://geoservices. 
ign.fr/bdalti) over the study area. 

GEDI Level 2A product provides footprint information of multiple 
layers, including beam types, sensitivity, geo-located elevation and 
height metrics. Both full-power and coverage footprints were used in 
this study. Height metrics include standard relative height (RH) per
centiles from 0 to 100 (e.g., percentiles 95 and 100 are RH95 and RH100). 
According to the literature, multiple GEDI RHs can be used as an 
assessment of forest height (Duncanson et al., 2022). We retrieved and 
downloaded the data from the NASA/USGS Land Processes Distributed 
Active Archive Centre (https://lpdaac.usgs.gov). The data acquisition 
dates were between 2019 and 04-22 and 2020–04-14, the latest data 
available at the time. The bounding box used to capture spatial GEDI 
footprints has the following WGS84 coordinates: 1.417434 (xmin), 
2.792492 (xmax), 47.11044 (ymin), 48.1175 (ymax). 

The BDForêt® V2 forest is a vector product derived from the inter
pretation of near-infrared aerial images and it provides information of 
vegetation composition (Vega et al., 2021). For instance, it captures 
forest stands of at least 0.5 ha in size. The forest mask was mainly used to 
filter out irrelevant GEDI footprints, i.e., whether or not GEDI footprints 
are located in vegetation. In this study, the vegetation classification was 
divided into three categories: broadleaved forest, coniferous forest, and 
mixed forest. 

The digital terrain model (BD ALTI®) used in this study results from a 
Lidar campaign conducted in 2014. It was resampled and made avail
able by IGN at a 25 m resolution. The forest mask and DTM can be 
downloaded from the IGN web platform (https://geoservices.ign.fr). 

3. Methods 

The flowchart below (Fig. 2) illustrates the overall framework of this 
study. In brief, we adopted the framework of a two-phase sampling 
scheme described in Hill et al. (2021). We first had to select the suitable 
GEDI RH metric that can represent the NFI dominant height at plot level. 
Based on a semi-variogram examination, we paired GEDI auxiliary in
formation with NFI measurements at plot level up to a critical distance 
obtained from the semi-variogram. Finally, small area estimation of 

Fig. 1. A. Location of the study area (departments have different colours). B. Availability of filtered GEDI footprints over the AOI.  
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forest volume was performed with a simple linear regression using the R 
package “forestinventory”. 

3.1. GEDI footprints processing 

Footprint processing aimed first at selecting valuable footprints and 
second at matching GEDI footprints to NFI plots with similar stand 

characteristics. Firstly, we only kept those footprints whose “quality 
flag” was 1 and “degrade flag” 0, which ensures the removal of error or 
low-quality footprints (Hofton & Blair, 2019). Next, we followed the 
UNFCCC definition, which states that “trees in a forest reach a minimum 
height of 2–5 m at maturity”. Therefore, we used an average height of 3 
m as a threshold and removed those footprints whose RH100 values were 
smaller than 3 m and thus could not be qualified as forest at the time of 

Table 1 
Statistics of the forest volumes and dominant height from the 635 plots in Sologne, and its partitioning within the 3 administrative units (departments).  

Area Plot N Stem Volume (m3/ha) Dominant height (m) 

Min. Mean Max. SD Min. Mean Max. SD 

Overall AOI 635  1.45  176.5  926.4  128.5  4.9  18.8  38.2  5.2 
Cher 115  1.80  172.8  462.6  108.6  7.7  18.9  30.8  5.0 
Loiret 243  1.53  174.8  926.4  134.6  4.9  18.7  38.2  5.7 
Loir-et-Cher 277  1.45  179.6  699.3  130.9  5.8  18.8  30.1  4.7 

Note: dominant height (m) is defined as the average height of the 100 largest trees per hectare. 

Fig. 2. Overall workflow of this study.  
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the survey. In addition, the footprints were intersected with forest masks 
to ascertain their forest types (i.e., in which type of forest they are 
located, broadleaved, mixed or coniferous forests) and footprints located 
outside forest masks were excluded. Lastly, we removed footprints that 
have an elevation discrepancy of more than 50 m compared to Lidar 
DTM. As a result, a total number of 112,569 footprints were included for 
further analysis and the available footprints over AOI after filtering is 
illustrated in Fig. 1b. Height metrics and forest types were then 
extracted from the footprints, which formed the auxiliary data frame. 

3.2. Harmonisation of the projection system and DTM correction 

All the data but GEDI products are available in the French Lambert- 
93 projection system. Geographic coordinates of the GEDI footprints, in 
the WGS84 system, were transformed to map coordinates in the 
Lambert-93 projection system. During this transformation, particular 
attention must be paid to the vertical coordinate as GEDI elevations are 
provided taking an ellipsoid as reference when the values in the refer
ence DTM are altitudes with the geoid as reference. It was then necessary 
to rectify the differences brought by ellipsoids before comparing 
elevation estimations. 

In France, the IGN’s Service of Geodesy and Metrology disseminates 
quasi-geoid grids of 1 km resolution (RAF 18) that are commonly used to 
convert ellipsoidal heights into altitudes. Its latest update was in 2020. 
According to the grids, a mean altitude difference of 48 m was detected 
and thus added to the DTM to ensure the accuracy of GEDI elevation. 

3.3. Variogram examination of the GEDI values 

To explore the spatial correlation of the GEDI footprints, the semi- 
variance of the selected GEDI RH was calculated following Eq. (1) and 
the corresponding empirical semi-variogram was established using the 
variogram function from the ‘gstat’ package (Pebesma, 2004). The 
selected RH was used as a surrogate of the field dominant height, with 
the aim of obtaining an idea of the spatial dependence of the canopy 
cover present in the AOI, which can help to determine the optimal dis
tance threshold used to pair GEDI footprints with corresponding NFI 
plots. 

Semivariance =
1
2n

×
∑n

i∕=j

(
RHx,i − RHx,j

)2 (1) 

where n is the number of GEDI footprints, RHx, i and RHx, j are the 
selected RHx values of GEDI footprints recorded at 2 separate locations i 
and j. 

Next, NFI plots were paired up with the closest GEDI footprints based 
on their Euclidean distances (NFI-GEDI pairs). The semi-variogram was 
used to identify the NFI-GEDI pairs whose distances were smaller than 
the distance at which the semi-variogram reached the horizontal 
asymptote (i.e., 500 m). We purposely considered that GEDI footprints 
and NFI plots are most likely not geographically co-located. Indeed, due 
to the innate geolocation errors of GEDI footprints, it is nearly impos
sible to obtain a perfect co-location, and a pairing step is therefore 
necessary. Thus, we deemed that footprints located within such distance 
can to some extent represent similar, if not identical, forest structures of 
their paired NFI plots. Pairs having a height difference (between the 
selected GEDI RH and NFI dominant height) of more than 10 m and 
located in different forest types were excluded from further analysis. We 
further divided the distance into three distance groups, 100, 300, 500 m, 
to assess their impacts on small area estimation of forest volume. 

3.4. Small area estimation 

Unit-level SAE was performed using the two-phase non-exhaustive 
estimation procedure provided in the R package “forestinventory” and 
described in Hill et al. (2021). The first phase is associated with the 

auxiliary GEDI information used to generate model predictions based on 
a linear regression using the method of ordinary least squares. The 
second phase contains the field NFI plot attributes (i.e., forest volume), 
that was used to generate model coefficients and correct bias. Using field 
data alone (all available plots within the AOI, not restricted to the paired 
plots), the mean and variance of the SRS were calculated as Eqs. (2) and 
(3): 

μ̂SRS =
1
n

∑n

i=1
yi (2)  

V̂ar
(

μ̂SRS,G

)
=

1
n × (n − 1)

∑n

i=1
(yi − μ̂SRS)

2 (3) 

where n is the total number of NFI sample plots in the AOI in this 
case, and yi is the observed value of forest volume of plot i. 

For small domain estimation, the procedure relied on the small area 
estimators provided in Hill et al. (2021, Equations 4b and 5b) for non- 
exhaustive availability of auxiliary information. The prediction model 
used here is internal, where the estimate accounted for fitting the in
ventory data at hand. The mean (Eq. (4)) and g-variance (Eq. (5)) esti
mators are defined as follow: 

Ŷ G,psmall =
̂̄Z

t

G β̂s2 +
1

n2G
R̂(x) (4)  

V̂ar
(

Ŷ G,psmall
)
= ̂̄Z

t

G Σ̂
β̂ s2

̂̄ZG + β̂
t
s2 Σ̂̂̄Z G

β̂s2 +
1

n2G
V̂ars2G(R̂(x)) (5) 

where the predictions over the small area G (Eq. (4), first term) are 
corrected by the mean bias of the model (Eq. (4), second term) and for 
the variance of the predictions (5) the first term is related to the var
iance–covariance matrix Σ̂

β̂s2 
of the regression coefficient (β̂s2, estimated 

on s2), the second term to the variance–covariance matrix Σ̂̂̄ZG 
of the 

auxiliary vector ̂̄ZG, and the last term to the residual correction term 
(R̂(x)). 

We do acknowledge that the co-location of units of s1 and s2 is not 
fulfilled here, since s2 units are not strictly speaking a subsample of s1 
but rather assimilated. We however conjecture that this imperfect match 
of units, unavoidable given GEDI footprint’s location errors, does not 
compromise the approach since it solely translates into larger model 
errors. 

The performance of SAE using the GEDI auxiliary data was evaluated 
by measuring relative efficiency (RE), as shown in Eq. (6). RE estimates 
the gain in precision brought by using auxiliary information that is 
incorporated into the model estimators in comparison to using field 
estimates alone. In the latter case, all field plots were used as references 
(not only the paired data). RE values higher than 1 indicate increased 
precision. 

RE = V̂ar
(

μ̂SRS,G

)/
V̂ar

(
Ŷ G,psmall

)
(6)  

4. Results 

4.1. Select suitable GEDI RH metric 

We had to decide which GEDI RH metric is comparable with NFI 
dominant height and thus can be used in modelling forest volume. We 
first inspected the distributions of the three GEDI RH metrics selected at 
the upper limit (RH100, RH98 and RH95) with that of the NFI dominant 
height over the AOI. At the AOI level, the mean of NFI dominant height 
(18.8 m) was found to be closer to the mean of GEDI RH98 (18.4 m) than 
those of RH100 (20.0 m) and RH95 (17.1 m). In addition, Fig. 3 illustrates 
that the distribution of NFI dominant height in 5 m intervals overall 
resembles all three GEDI height metrics. The distribution of RH98 ap
pears closer to that of NFI dominant height, while those of RH100 and 
RH95 tend to over- and underestimate it respectively. Note that a small 
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peak of GEDI height metrics commonly exists on the left side of the 
distributions. 

In addition, we compared the correlations between NFI dominant 
height with the three selected GEDI RH metrics. Statistics at the whole 
AOI level showed that the NFI dominant height is strongly correlated 
with GEDI height metrics, with RH100, RH98 and RH95 having correla
tions of 0.90, 0.90 and 0.89 respectively. Fig. 4 illustrates the field 
measured NFI dominant heights and their counterparts predicted by 
GEDI RH100, RH98 and RH95 using all available 635 plots. The RMSE 
obtained by RH100, RH98 and RH95 were 2.3 m, 2.3 m and 2.5 m 
respectively. As a result, we used RH98 as a proxy of NFI forest dominant 
height. It was later used as an input in the semi-variance analysis and 
forest volume estimation. 

4.2. Select suitable NFI plots based on the semi-variogram result 

Using the selected GEDI metric RH98, we calculated the semi- 
variance using all filtered GEDI footprints. Fig. 5 illustrates that the 
values of GEDI RH98 between two footprints were to some extent 
spatially correlated depending on the distance between them. The semi- 
variogram reaches a horizontal asymptote at approximately 500 m, and 
the process could then be considered as second-order stationary, which 
suggests that the spatial correlation disappears when two footprints are 
located farther than approximately 500 m away from each other. Based 
on this, every NFI plot was paired with the nearest GEDI footprint within 

Fig. 3. Comparing NFI dominant height with GEDI RH100, RH98 and RH95 in 5 
m intervals. 

Fig. 4. Predicted forest dominant height by GEDI RH100, RH98 and RH95 vs observed forest dominant height from NFI using all 635 available plots.  
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the range of 500 m that have identical forest types (NFI forest type =
GEDI forest type) and similar forest heights (|NFI dominant height – 
GEDI RH98| < 10 m). 

Next, we assessed the statistics of NFI-GEDI pairs in each distance 
group (Table 2). Originally, there were 635 NFI plots available across 
our study area and only 366 plots were retained after the pairing pro
cess. The number of NFI-GEDI pairs was further reduced to 331 and 141 
when the distance threshold was set to 300 m and 100 m respectively. It 
was expected that the number of available pairs would increase with 
increasing distance threshold. The mean height difference varied from 
1.3 to 1.5 m depending on the distance groups. 

4.3. Small area estimation of forest volume 

With the NFI-GEDI pairs and filtered GEDI RH98, small area esti
mation of forest volume was performed at both AOI and sub-area levels 
using a simple linear internal model (i.e., built from the paired plots of 
the small area). Results showed that GEDI auxiliary information slightly 
improved the estimation accuracy for the AOI level at the maximum 
distance threshold used for pairing (i.e., 500 m). A similar increase in 
relative efficiency was also witnessed in every sub-area with an 
increasing number of NFI-GEDI pairs used to build the models (Table 3). 

At department level, when limiting the spatial distance between 
paired NFI plots and GEDI footprints to 100 m, there was no gain in 
relative efficiency observed in all three departments. This meant that 
GEDI auxiliary data were not able to reduce model variance under this 
condition as compared to the standard NFI sample. With increasing 
distance, the sample size of NFI-GEDI pairs used to calibrate SAE models 
in the second phase also enlarges. When the spatial distance was 
restricted at 300 m, relative efficiency fluctuated from 0.9 in Cher to 1.3 
in Loiret. A gain in relative efficiency by a factor of 1.1 to 1.4 was 
observed in every department when using all matched NFI-GEDI pairs 
located within 500 m. In the department of Cher, the mean estimate of 
volume was slightly overestimated compared to the one of SRS 
(although within the confidence interval ± 2 sd), while in other de
partments and at the whole AOI level, the mean volume estimates 

remained relatively stable (Fig. 6). 

5. Discussion 

5.1. Selecting suitable GEDI RH metric 

Our results suggest that GEDI RH98 can be used to represent NFI 
dominant height and consequently be used to model forest volume. 
Although Fig. 3 illustrated that GEDI RH98 and NFI dominant height had 
certain inconsistency in terms of their distributions, RH98 was found 
overall as a good predictor of forest volumes. The ‘bumps’ commonly 
existing at the lower end of the GEDI distributions are most likely bad 
footprints resulting from noises. Given that the GEDI system pulse 
(FWHM: full width at half-minimum) is 15.6 ns (Hancock et al., 2019), 
the ground signal starts at approximately 13 ns above the ground peak 
for a flat terrain, which is equivalent to a precision of approximately 2 
m. This means that a single ground pulse is likely to be found at 2 m 
above the ground and that a 5 m forest threshold could have been used 
to avoid slopes being misclassified as trees. This explains the seemingly 
high values at the lower end of the distributions. 

In addition, estimating NFI dominant height with RH98 yielded a low 
RMSE of 2.3 m at forest plot level. In fact, choosing the suitable GEDI RH 
metric to represent NFI dominant height is difficult since this attribute 
may be affected by fragmented forest structure where canopy height can 
change drastically within a close distance. RH98 records the height at 
which 98 percentiles returned energy relative to the footprint centre. 
Higher percentiles, such as RH100, have been found sensitive to noise 
and thus less precise (Silva et al., 2018). Previous research has also 

Fig. 5. Semi-variance (ϒ) of GEDI height (RH98) for Sologne (AOI) according to 
the distance between footprints (in metres). (A vertical line is placed at 500 m). 

Table 2 
The number of retained NFI plots under each distance class. Distance statistics and absolute height difference between field dominant height and GEDI RH98 also 
presented.  

Distance conditions 
(m) 

NFI-GEDI pairs Statistics of the distances (m) |NFI dominant height – GEDI RH98| (m) 

Min. Median Mean Max. Min. Mean Max. SD 

100 141  6.2  50.0  52.2  100.0 ~0  1.3  8.1  1.5 
300 331  6.2  112.0  125.9  299.0 ~0  1.5  9.8  1.7 
500 366  6.2  124.4  150.0  496.6 ~0  1.5  9.8  1.7  

Table 3 
Volume estimations of SAE and SRS at both AOI and sub-area (departments) 
levels.  

Distance Area NFI- 
GEDI 
pairs 

SAE 
estimates 

SRS 
estimates 

Relative 
efficiency 

100 m AOI 141 176.5 (7.7) 176.5 (5.1)  0.4 
Cher 26 183.5 

(16.6) 
172.8 
(10.1)  

0.4 

Loir-et- 
Cher 

51 169.3 
(12.0) 

179.6 (7.9)  0.4 

Loiret 64 179.5 
(12.6) 

174.8 (8.6)  0.5  

300 m AOI 331 179.2 (5.1) 176.5 (5.1)  1.0 
Cher 59 202.0 

(10.4) 
172.8 
(10.1)  

0.9 

Loir-et- 
Cher 

124 177.1 (7.8) 179.6 (7.9)  1.0 

Loiret 148 171.6 (7.6) 174.8 (8.6)  1.3  

500 m AOI 366 180.1 (4.8) 176.5 (5.1)  1.1 
Cher 66 199.2 (9.8) 172.8 

(10.1)  
1.1 

Loir-et- 
Cher 

137 178.8 (7.5) 179.6 (7.9)  1.1 

Loiret 163 173.4 (7.2) 174.8 (8.6)  1.4 

Note: SAE and SRS estimates have mean volume predictions and standard de
viation in parenthesis. 
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demonstrated that RH98 is a more stable predictor used in modelling 
many forest attributes, including forest fuel load (Leite et al., 2022) and 
above-ground biomass (Duncanson et al., 2022). The fact that we 
included both full-power and coverage footprints with a relatively low 
sensitivity threshold (greater than0.9) made RH98 a much safer choice, 
which was later used as an input in the semi-variance examination and 
modelling forest volume. 

5.2. Pairing issues and estimation uncertainties 

We drew inspiration from the two-phase sampling scheme proposed 
by (Mandallaz et al., 2013), where partially-exhaustive auxiliary data 
were used in a model-assisted estimation process. As we used non- 
exhaustive auxiliary data in this study, the details of the final estima
tors as stated in the method section could be found in Mandallaz et al. 
(2016) and Hill et al. (2021). Since the NFI plots followed a similar 
design-based sampling scheme, it was tempting to use this approach to 
evaluate the benefits that GEDI could bring in terms of estimation effi
ciency. However, due to the geolocation uncertainties associated with 
GEDI (Dubayah et al., 2020), pairing field plots is difficult. This uncer
tainty compromises the co-location, and consequently, the NFI plots are 
not a subsample of the first phase sample. This however only exacerbates 
an issue present whenever using remote-sensed data along with ground 
plot, whereby a perfect location match is probably more hypothetical 
than real. 

To overcome these limits imposed by GEDI itself, we tested a pairing 

method based on a neighbourhood consistency and a threshold distance 
between field plots and GEDI footprints. Our results showed that the 
uncertainty introduced by the pairing, when the pairing consistency is 
controlled, did not compromise the efficiency of SAEs. 

As the whole AOI and sub-areas have relatively large spatial extents, 
an adequate amount of calibration samples within the domain appeared 
to be necessary to achieve relative efficiencies greater than 1 (Table 3). 
This is particularly obvious for the sub-area Loiret, which yields the 
highest RE (i.e., 1.4) at the maximum neighbouring distance tested. 
Globally, a sample size of at least 100 paired plots appeared to be 
required in our study to reduce the model’s variability (RMSE), enabling 
a gain in RE compared to the SRS of the whole NFI plots. This is therefore 
the main limitation of the present approach, where the precision gain 
appears to depend on a sufficient amount of model’s calibration plots. 
Note that we only used GEDI data collected over the time span of 
approximately-one year (2019–04-22 and 2020–04-14) at the time 
when this study was undergoing. We expect that both the number of 
quality GEDI footprints and their spatial distribution over our study area 
will increase at least twofold by the end of the two-year GEDI mission. In 
other words, the number of both NFI-GEDI pairs used for model cali
bration and footprints as auxiliary data will increase, which is likely to 
further improve volume estimation accuracy. 

6. Conclusion 

This study showcased how to match NFI measurements with GEDI 

Fig. 6. Estimated mean forest volume obtained by SRS and SAE methods at AOI and sub-are level, with error bar indicating mean ± 2*sd.  
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footprints at plot level and subsequently perform unit-level small area 
estimation using GEDI Level 2A products as auxiliary data. We 
emphasised the importance of having the same forest types and similar 
forest heights when pairing NFI plots with nearby GEDI footprints. In 
our case, we found that GEDI RH98 was a suitable candidate to represent 
NFI dominant height at plot level. The fact that in Sologne, GEDI RH98 
appeared to become spatially independent after approximately 500 m 
provided valuable insights into the NFI sampling design in order to 
achieve optimal efficiency. With these NFI-GEDI pairs and filtered GEDI 
data, the results showed that GEDI auxiliary information can improve 
forest volume estimation compared to SRS. This is particularly affected 
by the number and similarity of NFI-GEDI pairs used to calibrate models. 
The fact that GEDI data are open-access and cover the entire country of 
France makes it particularly attractive to improve forest inventory 
precision at regional and local levels. 
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