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Abstract

In this paper, we address the challenging problem of learning to rank from highly imbal-
anced data. This scenario requires to resort to specific metrics able to account the scarcity of
the so-called positive examples. We present MetaAP, a tree-based ranking algorithm, which
induces meta-trees by optimizing directly during the learning process the Average Precision
(AP ). This latter has been shown to be more relevant than the area under the ROC curve
(AUC-ROC) when the objective is to push the examples of interest at the very top of the
list. This effect of the AP in tree-based ranking is particularly wished to address fraud de-
tection tasks where (i) the budget is often constrained (in terms of possible controls) and
(ii) the interpretability of the induced models is required to support decision making. After
an extensive comparative study on 28 public datasets showing that MetaAP is significantly
better than other tree-based ranking methods, we tackle a tax fraud detection task coming
from a partnership with the French Ministry of Economy and Finance. The results show that
MetaAP is able to make the tax audit process much more efficient.

1 Introduction

Learning to rank from imbalanced datasets where positive examples are very scarce has received
much attention during the past years from the machine learning community. Indeed, this challeng-
ing topic opened the door to many methodological questions: Which loss function to optimize?
Can we derive generalization guarantees? Are there ways to efficiently balance the datasets? How
to rank imbalanced data under budget constraints? Can we induce interpretable models in this
setting? etc.

Fraud detection [1] falls into this scope of imbalanced learning to rank, where the number of
fraudsters is small compared to the huge amount of normal cases (also called negative examples).
Fraud detection has become a key issue for e-commerce companies and government agencies which
are facing a tremendous growth of the data collected that have to be processed by a relatively lim-
ited number of human controllers. Therefore, fraud detection is subject nowadays to a compelling
need for automatic and interpretable systems for supporting human decision making. Unlike a
standard anomaly detection task [2] where an abnormal data often takes the form of an outlier,
the peculiarity of fraud detection is that fraudsters often aim to mimic a normal behavior that
makes the identification much more challenging.
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One way to address this task is to resort to sampling strategies. While oversampling/data
augmentation techniques can be used to generate dummy data artificially like in SMOTE-based
methods [8] or in adversarial approaches [12], undersampling aims at removing irrelevant sam-
ples from the majority class as done with Tomek’s Link [29] or in ENN [30] (see also [21, 20]).
In [18], the authors investigate the strengths and weaknesses of both approaches and explain why
oversampling is usually reported to outperform undersampling thanks to its capacity to produce a
larger proportion of so-called safe examples. Even though a sampling method has the indisputable
advantage of (re)balancing the datasets and allowing then the use of classical learning algorithms,
in highly imbalanced scenarios, these methods do not succeed in generating enough diversity for
improving significantly the results compared to the required effort, as recently shown in [7]. Other
techniques to deal with the class imbalance problem include cost-sensitive methods [13] which
nevertheless require a difficult tuning of the miss-classification costs, (deep) metric learning meth-
ods [14, 24, 19] which often requires a large amount of data and/or a costly optimization process,
or boosting-based models [9, 17, 15] which are not easily interpretable. It turns out that this latter
property is key in fraud detection. Indeed, the detected suspicious cases are typically sent as alerts
to the control department according to their position in the ranking, i.e. their probability of being
a fraud. These top-ranked cases that are judged as frauds by the automatic system are then metic-
ulously checked by a human controller whose analysis needs to be guided by the criteria that led to
this decision. It is therefore often crucial for the prediction model to be supported by explainable
decisions. As mentioned in [28], it is key to create methods that are readily interpretable rather
than creating black boxes that will have to be explained later, often in imprecise ways.

In this context, decision trees seem to provide a good trade-off between accuracy and inter-
pretability, beyond their natural capacity to deal with both quantitative and qualitative features.
However, in order to address the issues induced by imbalanced datasets, they have to be opti-
mized according to criteria that are able to take into account the scarcity of the positive examples
compared to the large amount of negative samples. Moreover, from a learning to rank perspec-
tive, the decision tree should be learned as a scoring function projecting the data onto the real
line. This is the goal of TreeRank, introduced in the seminal work of Clemençon and Vayatis [11]
and exploited in several variants since then. TreeRank recursively maximizes the area under the
ROC curve (AUC-ROC) allowing the induction of a tree that optimizes the probability to rank
a positive example above a negative one. As illustrated in this paper, TreeRank seems to behave
better when facing imbalanced datasets than standard decision trees induced by using the classic
Gini or Entropy criteria for recursively splitting the nodes. However, as pointed out by [6, 15], in
applications where only the very top rank will be used because of budget constraints, like in fraud
detection where the number of human controllers is limited, the AUC-ROC does not seem to be
the most suitable criterion. Indeed, a AUC-ROC-based algorithm will put a lot of effort into the
enhancement of the scoring of currently poorly ranked samples at the expense of the positive data
that are already favorably positioned in the ranking. To overcome this issue, Frery et al. [15] have
shown that the Average Precision (AP ) is a more adapted metric when we are mainly interested
in the top of the list, even if it is at the price of definitely dropping out positive examples that are
a bit further down in the ranking.

Inspired by TreeRank, we design in this paper a new algorithm, called MetaAP, which opti-
mizes the AP by building a tree of local trees, referred to as meta-tree. A natural but sub-optimal
method (as seen later in the experimental part) to address this task would consist in optimizing the
hyperparameters of the trees (depth, splitting criterion, etc.) according to the AP . The novelty
of MetaAP comes from the direct optimization of this measure, viewed as a loss function, during
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the learning process. However, this task is hard because the AP takes the form of a non convex
(even with well-made surrogates) and non separable function (i.e. the loss for one point depends
on the others). The originality of the proposed approach consists in exploiting the slope coefficient
of the tangents to the (1-Precision)-Recall curve (which plays a key role in the definition of AP ) to
order and merge the leaves of the local tree. In this way, MetaAP aims at recursively optimizing
the AP and presents the valuable property of generating compact and interpretable models. Our
method is supported by an extensive comparative study on 28 public datasets showing that the
smaller the proportion of positives we learn from, the better MetaAP outperforms the competing
algorithms. This comment is confirmed when the Precision@k (corresponding to the number of
positives among the top k ordered samples) is used as the evaluation measure that shows that
MetaAP is particularly adapted to applications where the number of possible controls is limited.
We further analyze a random forest version of our method and compare it with classic random
forests and gradient boosting. Finally, we study the behavior of MetaAP to address a tax fraud
detection task coming from our partnership with the French Ministry of Economy and Finance.
The results show that MetaAP is able to make the tax audit process more efficient.

The rest of this paper is organized as follows: Section 2 is devoted to the presentation of the
notations and evaluation measures. Section 3 is dedicated to the state of the art. We introduce
MetaAP in Section 4 and present the experiments in Section 5.

2 Notations and Evaluation Measures

Let us consider a binary supervised learning task, with a training set S = {zi = (xi, yi)}mi=1

composed of m labeled examples with xi ∈ X = Rd, a feature vector and yi ∈ Y = {−1; +1}, a
label. When yi = 1 (resp. yi = −1), xi is a positive (resp. negative) example belonging to the
minority (resp. majority) class. S is supposed to be independently and identically drawn according
to an unknown joint distribution D over X × Y.

Considering that we address a learning to rank task on imbalanced datasets, the choice of the
metric to be optimized is key. In such a setting, three measures are usually used: the AUC-ROC,
the Average Precision (AP ) and the Precision@k. Let us briefly introduce these three concepts.

The ROC curve is the representation of the True Positive Rate (TPR / Recall) versus the False
Positive Rate (FPR / False alarm rate) at different thresholds. TPR measures the capacity of the
model to retrieve positives while FPR corresponds to the proportion of false alarms (fraction of
negatives predicted as positive). More formally,

TPR = Recall =
TP

TP + FN
and FPR =

FP

FP + TN
(1)

where FP (resp. FN) is the number of false positives (resp. false negatives) and TP (resp. TN)
is the number of true positives (resp. true negatives). The AUC-ROC corresponds to the area
under this ROC-curve and measures the probability of the model to rank a positive example above
a negative one. It can be computed as follows:

AUC-ROC =
1

PN

P∑
i=1

N∑
j=1

I0.5(f(x+i )− f(x−j )),

- P (resp. N) is the number of positives (resp. negatives) in S,
- x+i (resp. x−j ) is the ith (resp. jth) positive (resp. negative) sample,
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- f is the scoring function assigning a probability to be positive,
- I0.5 is an indicator function equal to 1 when f(x+i )− f(x−j ) > 0, 1

2 when f(x+i )− f(x−j ) = 0 and
0 otherwise.

Another important tool when working with imbalanced data is the Precision-Recall curve. It
represents the Precision as a function of Recall for different thresholds, where the former is defined
as follows: Precision = TP

TP+FP . Unlike the AUC-ROC, the Precision-Recall curve considers via
the Precision the confidence in a positive prediction which can play a key role in imbalanced
scenarios. The Average Precision (AP ) is a summary of this confidence as the area under the

curve [4, 25] and can be analytically computed as follows: AP = 1
P

∑P
i=1 p(ki), where p(ki) is the

Precision at the rank ki corresponding to the ith positive in the ranking. Note that AP can also
be defined as

AP =
∑
t

(Rt −Rt−1)Pt, (2)

with Rt and Pt the Recall and Precision, respectively, at the tth threshold of distinct prediction
values. It has been shown in [6] that AP focuses more on the top of the ranking, contrary to
the AUC-ROC which takes equally into account the entire ranking and tries to move up as many
positives as possible. This phenomenon is illustrated in Figure 1 where two rankings composed of
4 positives (in blue) and 6 negatives (in grey) are compared in terms of AUC-ROC and AP . We
can note that for both situations, AUC-ROC = 0.5, while AP is higher on the right than on the
left case. Therefore AUC-ROC is not able to distinguish the two situations while AP prefers a
scenario where two positives are ranked at the very top of the list even if this is at the expense
of missing the two remaining positives. It turns out that this latter behavior can be very useful
in situations where the constraints related to the application at hand require to focus on the first
part of the ranking. This is the case when the budget in terms of number of allowed checks by
human controllers is limited, like in bank or tax fraud detection.

The capacity of a system to optimize the number of positives at the very top of the ranking
can be explicitly measured with a third criterion, called Precision@k. This measure corresponds
to the number of positives in the top k of the ranking. As the choice of k for a given application
can vary over time, so requiring to re-train the model, it is more convenient to directly optimize
the AP as a surrogate of this measure. This is what we suggest to do in our tree-based algorithm.
We will see in the experiments that maximizing AP presents the nice property of optimizing at a
cheaper cost the Precision@k.

3 Related Work

In this section, we present different methods that can be used for learning to rank from imbalanced
datasets by inferring tree-based models, in the form of decision trees, meta-trees, random forests
and tree ensembles. While the first two directly provide explicit decision rules, random forests and
tree ensembles learned by gradient boosting are not readily interpretable, so reducing their benefit
in applications like fraud detection despite the fact that they constitute the state of the art.

Decision Trees Although decision trees (DT), like CART [22], ID3 [26] or C4.5 [27], have been
originally designed to address classification tasks, the discrete predictions can be used to establish
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Figure 1: Evaluation of the AUC-ROC and AP on two rankings. Blue (resp. grey) lines represent
positive (resp. negative) samples. While AUC-ROC behaves similarly on both cases (AUC-
ROC = 1

2 ), the average precision is equal to 0.43 on the left and 0.68 on the right, illustrating that
AP favors the ranking that put (at least some) positives at the very top of the list.

a ranking. The splitting decision of CART is based on the minimization of the Gini impurity IG.
Assuming that the class label takes its value in the discrete set {1, 2, ..., k}, and that fi denotes the

fraction of the elements of the set with label i, IG is defined as IG =
∑k

i=1 fi(1−fi) = 1−
∑k

i=1 f
2
i

which is minimal when the leaf is pure, i.e. only composed of samples of the same class. On the
other hand, ID3 and C4.5 make use of the information gain, based on the Shannon entropy. This
latter allows to measure the disorder in a set and thus to select the split threshold maximizing the
information gain IE defined as IE = −

∑k
i=1 fi log2 fi.

Whatever the splitting criterion, once the decision tree is induced, several strategies can be
applied to get a scoring function providing a ranking. First, the local probability at each leaf of
being positive can be used as a continuous score. The ranking is obtained by sorting the leaves
according to this score. On the other hand, in [3], the authors suggest to assign a score to each
example of a leaf based on its distance to the boundaries of the hypercube representing the leaf
and induced by the DT. The score is defined as the distance to the boundaries for every leaf with
a majority of positive examples, or minus the distance with a majority of negative samples. As
in Support Vector Machines, this signed distance is used to rank the examples. Finally, in [23],
the authors introduce a confusion factor at each internal node and use it to weight the leaves
contribution and get the probability of an example.

Note that all the aforementioned methods share the same property. The optimization of the
ranking is not part of the learning process. It is obtained by a post-process after the induction
of the tree. In order to be efficient when addressing imbalanced settings, note also that the
hyperparameters of the previous DT-based methods can be tuned by maximizing the AUC-ROC,
AP or Precision@k, as introduced in Section 2.

The next paragraph introduces TreeRank [11], a learning to rank algorithm that has been
specifically designed to generate a ranking that directly optimizes the AUC-ROC.

Meta-Trees TreeRank [11] is a decision tree algorithm that comes with theoretical guarantees
for the bipartite ranking problem. A tree of trees (referred to as a meta-tree) is learned by directly
optimizing the AUC-ROC. The principle is as follows. First, TreeRank induces a classical decision
tree using a splitting procedure that takes into account the class imbalance. Then, the leaves are
ordered according to a criterion based on the AUC-ROC curve. More precisely, for each leaf, the
ratio β/α is computed with β (resp. α) the number of positives (resp. negatives) in the leaf divided
by the number of positives (resp. negatives) in the root node. By assigning the label +1 to the
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considered leaf and −1 to all the others, we can notice that β corresponds to TPR and α to FPR
as defined in Eq. 1. Ordering the leaves according to the ratio β/α is equivalent to sorting them
according to the slope coefficient of the tangent at the origin of the ROC curve, which boils down
to maximizing the AUC-ROC. Then the leaves are partitioned into two sets, left and right, so
that the partition maximizes an entropy defined as β′ − α′ where β′ (resp. α′) is the TPR (resp.
FPR) of the left leaves. By doing so, TreeRank aims at finding the point with coordinates (α′, β′)
maximizing the area under the piecewise function going from the origin (0, 0) to the point (α′, β′)
and then to the point (1, 1). The procedure is repeated by learning two new DTs, one for all
leaves that fall on the left part and one for all the leaves that fall on the right. Finally, TreeRank
assigns to each leaf a score based on the order in which the leaves were explored from left to right:
the first leaf receives a score of 1 then the scores gradually decrease until the last leaf that receives
a score of 1 divided by the total number of leaves.

Random Forests Random Forests (RF) [5] aim to overcome the risk of overfitting of DTs by
using a collection of partially independent trees. Each tree in the forest is still learned from n
training examples, but the latter are randomly drawn (with replacement) from the training set
S (bootstrap method). A sampling method is also performed over the features. At each node,
the splits are optimized according to a subset of features randomly selected from the original
feature space. A majority vote is finally applied from the predictions of these DTs. Note that
the reduction of the variance in RFs is obtained at the price of losing the interpretability of the
induced model. In [10], the authors introduced Ranking Forest, a RF variant of TreeRank which
aggregates Meta-trees and combines the corresponding rankings to optimize the AUC-ROC.

Gradient Tree Boosting (GB) GB [16] is an ensemble method that consists in aggregating
DTs, fitted sequentially on the residuals of the linear combination obtained at the previous step.
In [15], the authors use a surrogate of the Average Precision (AP ) that can be directly optimized
in XGBoost [9], considered as one of the currently most effective GB methods. The resulting
algorithm has been shown to be very efficient to address a highly imbalanced bank fraud detection
task. Like Random Forest, the drawback of GB comes from its difficulty to induce a model that is
directly interpretable.

4 MetaAP

In this section, we present our algorithm MetaAP. Inspired by TreeRank, its peculiarity comes
from the optimization of the Average Precision (AP ) instead of the AUC-ROC. The objective is
to benefit from the capacity of AP to focus more on the top of the ranking to induce an interpretable
model useful in applications where the budget in terms of human controllers is limited.

Let n be the number of examples of a given node of the current tree and n+ be the corresponding
number of positive samples. Let us consider a splitting decision that would send nl (resp. nr)
examples to the left (resp. right) child node. We aim at selecting the split that would maximize
nlAPleft +nrAPright where APleft and APright are two proxies of the Average Precision. APleft

is built so that all the examples in the left (resp. right) child are classified as +1 (resp. −1).
Conversely, APright is constructed so that all the examples in the right (resp. left) child are
classified as +1 (resp. −1). We further define n+l and n+r as the number of positive examples in
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the left and right children. In this binary setting, three thresholds are used in the computation of
APleft with the associated Recall and Precision defined as follows:

threshold t0 t1 t2

Recall 0
n+
l

n+ 1

Precision 1
n+
l

nl

n+

n

Plugging these values in Equation (2), we get:

APleft =
n+l
n+

n+l
nl

+

(
1−

n+l
n+

)
n+

n
=

n+2
l

n+nl
+
n+r
n

and similarly APright =
n+2
r

n+nr
+
n+l
n

.

Once a decision tree is learned (called DTAP as shown in Figure 2, bottom left), we need to
order the leaves as done in TreeRank. However, since we aim at maximizing AP , we have to work
with the Precision-Recall (PR) curve instead of the ROC curve (see Section 2), which is more
challenging for two main reasons. First, the PR curve is not increasing on [0; 1] from 0 to 1. It
decreases from 1 to a value corresponding to the positive rate of the dataset. To keep the same
strategy as TreeRank, we rather minimize the area under the (1-P )R curve which boils down to
maximizing the area under the PR curve (Figure 2, top right). Second, unlike the ROC curve,
the (1-P )R is not a monotonically increasing function, having local maxima each time negatives
are highly ranked. To overcome this issue, our ordering strategy will relegate the leaves leading to
such a scenario to the end of the list preventing them from being merged on the left part of the
meta-tree, the part that really matters to get a high AP . More precisely, we rank in ascending
order the directing coefficients of the tangents to the (1-P )R curve at 0 by calculating for each leaf
the (1 − Precision)/Recall ratio (Figure 2, top left). This implies that leaves with a majority of
positives will appear at the beginning of the list, those with the most positives first because leading
to the lowest directing coefficient corresponding to a Precision close to 1. Finally, according to the
obtained ranking, we merge the leaves into two subsets (the left and right parts of the meta-tree)
by accumulating the positives and negatives according to the leaves ranking and then selecting the
merging threshold maximizing the AP on the left (Figure 2, bottom right).

Note that similarly to DTs, it is possible to adapt our tree-based method to build random
forests by training several times MetaAP from a certain number of bootstraps of the training set.
We denote this adaptation MetaAPForest in the next section.

5 Experiments

In this section, we present the experiments conducted on 28 public datasets coming from the UCI1

and KEEL2 repositories. We also performed experiments on private datasets provided by the
French Ministry of Economy and Finance (DGFiP).

1https://archive.ics.uci.edu/ml/datasets.html
2https://sci2s.ugr.es/keel/datasets.php
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X7 <= 0.315
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Figure 2: MetaAP run on yeast6 (one of the most imbalanced public dataset) with maximum
depth of 4: (top left) Some tangents to the (1-P )R curve at 0 whose slopes are used to order
the leaves. (top right) Corresponding approximation of the (1-P )R curve by a piece-wise function
maximizing APleft by accumulating the sorted leaves from left to right. MetaAP aims at maxi-
mizing the hatched area above the curve. Here max(APleft) = 0.415 is achieved by putting the
first leaf on the left and merging all the others on the right. (bottom left) Corresponding root’s
DT with splitting rules that maximize the AP . (bottom right) Corresponding merged DT.

5.1 Datasets and experimental setup

The main characteristics of the 28 public datasets are summarized in Table 1. The private datasets
correspond to the tax and VAT declarations of French companies. They are used for the detection
of (i) over-evaluated charges (called 1st fraud in the following) and (ii) international VAT frauds
(2nd fraud). There are 40 datasets with an average of about 7,000 samples and 250 features. The
imbalance ratio ranges from 0.3% to 24.3%. Note that each year, only 50,000 controls can be
carried out from a panel of more than 3 million companies. Therefore, the output ranking must
contain as many positives as possible in the very top list in order to optimize the recovery of sums
due. Moreover, the model must be interpretable to justify why a company has been selected. The
Python code of the algorithms, experiments, plots are publicly available3.

For each dataset, we split the data into training (70%) and test (30%) sets. We select the
hyperparameters by maximizing the AP through a 5-folds cross validation over the training set.
We repeat the process over 20 runs and average the results in both terms of AP and Precision@k.
For the latter, we select k as the percentage of the number of positives in the test set.

3https://github.com/LeoGautheron/submission-PRL
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Table 1: Public datasets, sorted by positive rate. %+: percentage of positives, n: number of
examples, d: number of features.

datasets % + n d datasets % + n d datasets % + n d
abalone20 00.62% 4177 10 segmentation 14.29% 2310 19 wdbc 37.26% 569 30
abalone17 01.39% 4177 10 hayes 22.73% 132 4 autompg 37.50% 392 7

yeast6 02.36% 1484 8 vehicle 23.52% 846 18 spambase 39.42% 4597 57
wine4 03.31% 1599 11 german 30.00% 1000 24 bupa 42.03% 345 6
libras 06.67% 360 90 newthyroid 30.23% 215 5 heart 44.44% 270 13

satimage 09.73% 6435 36 glass 32.71% 214 9 australian 44.49% 690 14
pageblocks 10.23% 5473 10 wine 33.15% 178 13 balance 46.08% 625 4

yeast3 10.98% 1484 8 pima 34.90% 768 8 sonar 46.63% 208 60
bankmarketing 11.70% 45211 51 iono 35.90% 351 34 splice 48.09% 3175 60

abalone8 13.60% 4177 10

5.2 Comparison with Decision Tree methods

We carried out a first series of experiments consisting in comparing MetaAP to three DT baselines:
the ranking DT algorithm [3] using either (i) the Gini ot (ii) the Entropy criterion, and (iii)
TreeRank [11]. The depths of internal trees and the global tree of TreeRank and MetaAP are
tuned in the set {2, 3, ..., 9, 10} which can lead when building the full tree to a maximum depth of
10 × 10 = 100. To make the experiments fair, the tree depths of Gini and Entropy-based DTs
are tuned in the set {2, 3, ..., 8, 9, 10, 20, ..., 80, 90, 100}.

The mean AP s over the 28 public datasets are reported in Figure 3. It shows five comparisons
from 50% to 10%: the former encompasses the datasets with at most an imbalance ratio of 50%
(thus, considers all the 28 datasets), while the latter takes into account the 6 most imbalanced
datasets with at most 10% of positives. Whatever the percentage between 50% and 10%, we can
note that our method (in green) outperforms the other competitors. The superiority of MetaAP
seems to be even larger as the imbalance ratio increases. In order to evaluate the significance of
these results, we performed a Wilcoxon signed-rank test in each scenario by comparing MetaAP
with the first best competitor. It is worth noting that at 50%, thus comparing with TreeRank
over the 28 datasets, we obtain a p-value smaller than 0.05. For the other imbalance ratios, we get
a p-value between 0.1 (for 10%) and 0.2 (for 20%, 30% and 40%). Because of the limited allowed
space, we do not report the results on the fraud detection task, but note that the same conclusions
can be made.

The usefulness of our method is emphasized by Figure 6 (top) which reports the results in
terms of Precision@k (only for the cases 10%, 30% and 50% for the sake of conciseness). While,
as expected, the gap between the methods in terms Precision@k tends to be smaller and smaller
as the percentage of positives grows, for small values of k (the ones that are considered in the
case of budget limitation), MetaAP is most of the time much better that TreeRank and all the
other competitors (green curve above the others). This behavior is confirmed and even amplified
on the fraud detection task. The results in terms of Precision@k reported in Figure 4 show that
MetaAP significantly outperforms all the other methods for the two cases of studied frauds up
to a value of k equivalent to 25% of the number of positives in the test set. This impressive result
opens the door to the use of MetaAP for making the tax audit process much more efficient.

9



64.0
60.8

48.0

41.0

24.7

65.5
63.0

51.2

44.9

31.7

66.1
62.9

51.7

44.9

28.0

68.2
65.0

54.1

48.2

34.8

50% 40% 30% 20% 10%
Percentage of positives examples

20

30

40

50

60

70
Av

er
ag

e 
Pr

ec
isi

on
Gini
Entropy

TreeRank
MetaAP
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all the 28 datasets. For 10%, only 6 datasets are used.
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Figure 4: Precision@k according to the % of positives on the private datasets.

5.3 Analysis of an early stopping strategy

To analyze the impact of the tree depth on the behavior of the methods, we studied an early
stopping in the construction of the models at fixed depths p from 1 to 10 for MetaAP and
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TreeRank. For the sake of fairness, we used a depth of p2 for Gini and Entropy-based DTs
which leads to the same expressiveness for all the resulting (meta)-trees. The results on the public
datasets are reported in Figure 5. We can note that as soon as MetaAP has a depth greater than
3, it outperforms all the other methods, at equivalent depth, whatever the percentage of positives
considered.
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Figure 5: Mean AP as a function of the depth on the public datasets with a proportion of positives
of at most 10%, 30% and 50%. The 1st line (resp. 2nd) of the x-axis represents the depth of the
Gini and Entropy-based DTs (resp. TreeRank and MetaAP).

5.4 Comparison with forest-based methods

In a last series of experiments, even though we are mainly interested in interpretable models, we
compared our Random Forest version MetaAPForest with 3 baselines: (i) the RF Entropy-
Forest using the Entropy DT [3], (ii) the ranking version of XGBoost [9]: XGBRanker, (iii)
SGBAP [15] that optimizes the AP . The number of DTs in the forests and in the gradient tree
boosting methods was set to 100 and the depth of the trees is tuned between 2 and 10. For the
forests, we considered a bootstrap of the size of the number of training examples for each tree, but
we did not use bootstrap for the features and considered all of them at each node. We did not
make use of the RF version of TreeRank because its implementation in R has been shown to be
too much memory consuming during the experiments. We neither considered GiniForest because
it led to slightly worse performances than its counterpart EntropyForest.

As expected, Gradient Boosting outperforms the other approaches in terms of AP . Over the
28 public datasets, XGBRanker reaches 77.0% while MetaAP leads to an AP equal to 74.8%,
74.9% for EntropyForest and 73.3% for SGBAP. However, recall that both Gradient Boosting
and Random Forest methods do not fulfill our requirement of inferring interpretable models. In-
terestingly, Figure 6 (bottom) shows that in terms of Precision@k, MetaAP is competitive by
outperforming both EntropyForest and SGBAP and being just slightly below XGBRanker.
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5.5 Compact and interpretable meta-trees

We end this section by illustrating in Figure 7 the fact that MetaAP allows to induce much more
compact models with the same fixed depth than standard DT methods. This compression comes
from the fact that by construction MetaAP allows leaves to be reached by several paths. In
terms of AP , we can see that such compact meta-trees can allow to avoid overfitting phenomena
as illustrated in the Figure by a smaller gap between the AP s at training and test time (49.82
versus 43.68) compared to that of the Entropy-based DT (58.62 versus 35.16).

6 Conclusion and Perspectives

In this paper, we address the challenging problem of learning to rank from imbalanced data.
We design an algorithm that builds meta-trees by optimizing during the learning process the
Average Precision (AP ). As far as we know, this paper is the fist attempt to optimize directly this
non-convex and non separable function in a tree-based ranking method. The resulting algorithm
MetaAP shows very promising results on public datasets and on a tax fraud detection task where
the need of generating a short list of alerts maximizing the AP is of great interest. MetaAP also
comes with the valuable property of inducing compact interpretable models. In future work, we
plan to investigate the optimization of the Precision@k. This would allow us to directly take into
account the number of controls k allowed by the application at hand. However, we will need to
figure out solutions, for example using transfer learning methods, to avoid retraining from scratch
a model learned for a given k. Finally, even if our setting in not as favourable as that of TreeRank
(unlike the ROC curve, the (1-P)R is not a monotonically increasing function), we will investigate
the possibility to derive generalization guarantees.
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Figure 6: Precision@k according to the percentage of positives. (Top) DT methods. (Bottom)
RF and Gradient Tree Boosting methods.
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Entropy, Train AP: 58.62%, Test AP: 35.16%
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MetaAP, Train AP: 49.82%, Test AP: 43.68%
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Figure 7: Trees learned on yeast6 using the Entropy (left) and MetaAP (right). A green (resp.
red) arrow means that the feature considered in the node is lower or equal to (resp. larger than)
the threshold. A black arrow is used when both the green and red arrows are going from the same
parent to the same child. Each node (resp. leave) contains the splitting criterion (resp. the ranking
score) and the number of training negatives and positives (n−, n+).

15


