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MetaAP: a meta-tree-based ranking algorithm optimizing the average precision from imbalanced data

In this paper, we address the challenging problem of learning to rank from highly imbalanced data. This scenario requires to resort to specific metrics able to account the scarcity of the so-called positive examples. We present MetaAP, a tree-based ranking algorithm, which induces meta-trees by optimizing directly during the learning process the Average P recision (AP ). This latter has been shown to be more relevant than the area under the ROC curve (AU C-ROC) when the objective is to push the examples of interest at the very top of the list. This effect of the AP in tree-based ranking is particularly wished to address fraud detection tasks where (i) the budget is often constrained (in terms of possible controls) and (ii) the interpretability of the induced models is required to support decision making. After an extensive comparative study on 28 public datasets showing that MetaAP is significantly better than other tree-based ranking methods, we tackle a tax fraud detection task coming from a partnership with the French Ministry of Economy and Finance. The results show that MetaAP is able to make the tax audit process much more efficient.

Introduction

Learning to rank from imbalanced datasets where positive examples are very scarce has received much attention during the past years from the machine learning community. Indeed, this challenging topic opened the door to many methodological questions: Which loss function to optimize? Can we derive generalization guarantees? Are there ways to efficiently balance the datasets? How to rank imbalanced data under budget constraints? Can we induce interpretable models in this setting? etc.

Fraud detection [START_REF] Abdallah | Fraud detection system: A survey[END_REF] falls into this scope of imbalanced learning to rank, where the number of fraudsters is small compared to the huge amount of normal cases (also called negative examples). Fraud detection has become a key issue for e-commerce companies and government agencies which are facing a tremendous growth of the data collected that have to be processed by a relatively limited number of human controllers. Therefore, fraud detection is subject nowadays to a compelling need for automatic and interpretable systems for supporting human decision making. Unlike a standard anomaly detection task [START_REF] Agrawal | Survey on anomaly detection using data mining techniques[END_REF] where an abnormal data often takes the form of an outlier, the peculiarity of fraud detection is that fraudsters often aim to mimic a normal behavior that makes the identification much more challenging.

One way to address this task is to resort to sampling strategies. While oversampling/data augmentation techniques can be used to generate dummy data artificially like in SMOTE-based methods [START_REF] Nitesh V Chawla | Smote: synthetic minority over-sampling technique[END_REF] or in adversarial approaches [START_REF] Douzas | Effective data generation for imbalanced learning using conditional generative adversarial networks[END_REF], undersampling aims at removing irrelevant samples from the majority class as done with Tomek's Link [START_REF] Tomek | Two modifications of cnn[END_REF] or in ENN [START_REF] Wilson | Asymptotic properties of nearest neighbor rules using edited data[END_REF] (see also [START_REF] Ibrahim | Sampling non-relevant documents of training sets for learning-to-rank algorithms[END_REF][START_REF] Ibrahim | Reducing correlation of random forest-based learning-to-rank algorithms using subsample size[END_REF]). In [START_REF] García | Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data[END_REF], the authors investigate the strengths and weaknesses of both approaches and explain why oversampling is usually reported to outperform undersampling thanks to its capacity to produce a larger proportion of so-called safe examples. Even though a sampling method has the indisputable advantage of (re)balancing the datasets and allowing then the use of classical learning algorithms, in highly imbalanced scenarios, these methods do not succeed in generating enough diversity for improving significantly the results compared to the required effort, as recently shown in [START_REF] Camino | Oversampling tabular data with deep generative models: Is it worth the effort?[END_REF]. Other techniques to deal with the class imbalance problem include cost-sensitive methods [START_REF] Elkan | The foundations of cost-sensitive learning[END_REF] which nevertheless require a difficult tuning of the miss-classification costs, (deep) metric learning methods [START_REF] Feng | Learning a distance metric by balancing kl-divergence for imbalanced datasets[END_REF][START_REF] Liu | Defect detection on el images based on deep feature optimized by metric learning for imbalanced data[END_REF][START_REF] Gautheron | Metric learning from imbalanced data with generalization guarantees[END_REF] which often requires a large amount of data and/or a costly optimization process, or boosting-based models [START_REF] Chen | Xgboost: extreme gradient boosting. R package version 0[END_REF][START_REF] Galar | A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches[END_REF][START_REF] Frery | Efficient top rank optimization with gradient boosting for supervised anomaly detection[END_REF] which are not easily interpretable. It turns out that this latter property is key in fraud detection. Indeed, the detected suspicious cases are typically sent as alerts to the control department according to their position in the ranking, i.e. their probability of being a fraud. These top-ranked cases that are judged as frauds by the automatic system are then meticulously checked by a human controller whose analysis needs to be guided by the criteria that led to this decision. It is therefore often crucial for the prediction model to be supported by explainable decisions. As mentioned in [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF], it is key to create methods that are readily interpretable rather than creating black boxes that will have to be explained later, often in imprecise ways.

In this context, decision trees seem to provide a good trade-off between accuracy and interpretability, beyond their natural capacity to deal with both quantitative and qualitative features. However, in order to address the issues induced by imbalanced datasets, they have to be optimized according to criteria that are able to take into account the scarcity of the positive examples compared to the large amount of negative samples. Moreover, from a learning to rank perspective, the decision tree should be learned as a scoring function projecting the data onto the real line. This is the goal of TreeRank, introduced in the seminal work of Clemençon and Vayatis [START_REF] Clémençon | Tree-based ranking methods[END_REF] and exploited in several variants since then. TreeRank recursively maximizes the area under the ROC curve (AU C-ROC) allowing the induction of a tree that optimizes the probability to rank a positive example above a negative one. As illustrated in this paper, TreeRank seems to behave better when facing imbalanced datasets than standard decision trees induced by using the classic Gini or Entropy criteria for recursively splitting the nodes. However, as pointed out by [START_REF] Christopher | From ranknet to lambdarank to lambdamart: An overview[END_REF][START_REF] Frery | Efficient top rank optimization with gradient boosting for supervised anomaly detection[END_REF], in applications where only the very top rank will be used because of budget constraints, like in fraud detection where the number of human controllers is limited, the AU C-ROC does not seem to be the most suitable criterion. Indeed, a AU C-ROC-based algorithm will put a lot of effort into the enhancement of the scoring of currently poorly ranked samples at the expense of the positive data that are already favorably positioned in the ranking. To overcome this issue, Frery et al. [START_REF] Frery | Efficient top rank optimization with gradient boosting for supervised anomaly detection[END_REF] have shown that the Average P recision (AP ) is a more adapted metric when we are mainly interested in the top of the list, even if it is at the price of definitely dropping out positive examples that are a bit further down in the ranking.

Inspired by TreeRank, we design in this paper a new algorithm, called MetaAP, which optimizes the AP by building a tree of local trees, referred to as meta-tree. A natural but sub-optimal method (as seen later in the experimental part) to address this task would consist in optimizing the hyperparameters of the trees (depth, splitting criterion, etc.) according to the AP . The novelty of MetaAP comes from the direct optimization of this measure, viewed as a loss function, during the learning process. However, this task is hard because the AP takes the form of a non convex (even with well-made surrogates) and non separable function (i.e. the loss for one point depends on the others). The originality of the proposed approach consists in exploiting the slope coefficient of the tangents to the (1-Precision)-Recall curve (which plays a key role in the definition of AP ) to order and merge the leaves of the local tree. In this way, MetaAP aims at recursively optimizing the AP and presents the valuable property of generating compact and interpretable models. Our method is supported by an extensive comparative study on 28 public datasets showing that the smaller the proportion of positives we learn from, the better MetaAP outperforms the competing algorithms. This comment is confirmed when the P recision@k (corresponding to the number of positives among the top k ordered samples) is used as the evaluation measure that shows that MetaAP is particularly adapted to applications where the number of possible controls is limited.

We further analyze a random forest version of our method and compare it with classic random forests and gradient boosting. Finally, we study the behavior of MetaAP to address a tax fraud detection task coming from our partnership with the French Ministry of Economy and Finance. The results show that MetaAP is able to make the tax audit process more efficient.

The rest of this paper is organized as follows: Section 2 is devoted to the presentation of the notations and evaluation measures. Section 3 is dedicated to the state of the art. We introduce MetaAP in Section 4 and present the experiments in Section 5.

Notations and Evaluation Measures

Let us consider a binary supervised learning task, with a training set S = {z i = (x i , y i )} m i=1 composed of m labeled examples with x i ∈ X = R d , a feature vector and y i ∈ Y = {-1; +1}, a label. When y i = 1 (resp. y i = -1), x i is a positive (resp. negative) example belonging to the minority (resp. majority) class. S is supposed to be independently and identically drawn according to an unknown joint distribution D over X × Y.

Considering that we address a learning to rank task on imbalanced datasets, the choice of the metric to be optimized is key. In such a setting, three measures are usually used: the AU C-ROC, the Average P recision (AP ) and the P recision@k. Let us briefly introduce these three concepts.

The ROC curve is the representation of the True Positive Rate (T P R / Recall) versus the False Positive Rate (F P R / False alarm rate) at different thresholds. T P R measures the capacity of the model to retrieve positives while F P R corresponds to the proportion of false alarms (fraction of negatives predicted as positive). More formally,

T P R = Recall = T P T P + F N and F P R = F P F P + T N (1) 
where F P (resp. F N ) is the number of false positives (resp. false negatives) and T P (resp. T N ) is the number of true positives (resp. true negatives). The AU C-ROC corresponds to the area under this ROC-curve and measures the probability of the model to rank a positive example above a negative one. It can be computed as follows:

AU C-ROC = 1 P N P i=1 N j=1 I 0.5 (f (x + i ) -f (x - j )),
-P (resp. N ) is the number of positives (resp. negatives) in S, -x + i (resp. x - j ) is the i th (resp. j th ) positive (resp. negative) sample, -f is the scoring function assigning a probability to be positive, -I 0.5 is an indicator function equal to 1 when

f (x + i ) -f (x - j ) > 0, 1 2 when f (x + i ) -f (x - j ) = 0 and 0 otherwise.
Another important tool when working with imbalanced data is the P recision-Recall curve. It represents the P recision as a function of Recall for different thresholds, where the former is defined as follows: P recision = T P T P +F P . Unlike the AU C-ROC, the P recision-Recall curve considers via the P recision the confidence in a positive prediction which can play a key role in imbalanced scenarios. The Average P recision (AP ) is a summary of this confidence as the area under the curve [START_REF] Boyd | Area under the precision-recall curve: point estimates and confidence intervals[END_REF][START_REF] Menon | Bipartite ranking: a risk-theoretic perspective[END_REF] and can be analytically computed as follows: AP = 1 P P i=1 p(k i ), where p(k i ) is the P recision at the rank k i corresponding to the i th positive in the ranking. Note that AP can also be defined as

AP = t (R t -R t-1 )P t , (2) 
with R t and P t the Recall and P recision, respectively, at the t th threshold of distinct prediction values. It has been shown in [START_REF] Christopher | From ranknet to lambdarank to lambdamart: An overview[END_REF] that AP focuses more on the top of the ranking, contrary to the AU C-ROC which takes equally into account the entire ranking and tries to move up as many positives as possible. This phenomenon is illustrated in Figure 1 where two rankings composed of 4 positives (in blue) and 6 negatives (in grey) are compared in terms of AU C-ROC and AP . We can note that for both situations, AU C-ROC = 0.5, while AP is higher on the right than on the left case. Therefore AU C-ROC is not able to distinguish the two situations while AP prefers a scenario where two positives are ranked at the very top of the list even if this is at the expense of missing the two remaining positives. It turns out that this latter behavior can be very useful in situations where the constraints related to the application at hand require to focus on the first part of the ranking. This is the case when the budget in terms of number of allowed checks by human controllers is limited, like in bank or tax fraud detection.

The capacity of a system to optimize the number of positives at the very top of the ranking can be explicitly measured with a third criterion, called P recision@k. This measure corresponds to the number of positives in the top k of the ranking. As the choice of k for a given application can vary over time, so requiring to re-train the model, it is more convenient to directly optimize the AP as a surrogate of this measure. This is what we suggest to do in our tree-based algorithm. We will see in the experiments that maximizing AP presents the nice property of optimizing at a cheaper cost the P recision@k.

Related Work

In this section, we present different methods that can be used for learning to rank from imbalanced datasets by inferring tree-based models, in the form of decision trees, meta-trees, random forests and tree ensembles. While the first two directly provide explicit decision rules, random forests and tree ensembles learned by gradient boosting are not readily interpretable, so reducing their benefit in applications like fraud detection despite the fact that they constitute the state of the art.

Decision Trees Although decision trees (DT), like CART [START_REF] Breiman | Classification and Regression Trees[END_REF], ID3 [START_REF] Quinlan | Induction of decision trees[END_REF] or C4.5 [START_REF] Ross | C4. 5: programs for machine learning[END_REF], have been originally designed to address classification tasks, the discrete predictions can be used to establish 2 ), the average precision is equal to 0.43 on the left and 0.68 on the right, illustrating that AP favors the ranking that put (at least some) positives at the very top of the list. a ranking. The splitting decision of CART is based on the minimization of the Gini impurity I G . Assuming that the class label takes its value in the discrete set {1, 2, ..., k}, and that f i denotes the fraction of the elements of the set with label i, I G is defined as

I G = k i=1 f i (1 -f i ) = 1 - k i=1 f 2 i
which is minimal when the leaf is pure, i.e. only composed of samples of the same class. On the other hand, ID3 and C4.5 make use of the information gain, based on the Shannon entropy. This latter allows to measure the disorder in a set and thus to select the split threshold maximizing the information gain I E defined as

I E = - k i=1 f i log 2 f i .
Whatever the splitting criterion, once the decision tree is induced, several strategies can be applied to get a scoring function providing a ranking. First, the local probability at each leaf of being positive can be used as a continuous score. The ranking is obtained by sorting the leaves according to this score. On the other hand, in [START_REF] Alvarez | Ranking cases with decision trees: a geometric method that preserves intelligibility[END_REF], the authors suggest to assign a score to each example of a leaf based on its distance to the boundaries of the hypercube representing the leaf and induced by the DT. The score is defined as the distance to the boundaries for every leaf with a majority of positive examples, or minus the distance with a majority of negative samples. As in Support Vector Machines, this signed distance is used to rank the examples. Finally, in [START_REF] Charles | Decision tree with better ranking[END_REF], the authors introduce a confusion factor at each internal node and use it to weight the leaves contribution and get the probability of an example.

Note that all the aforementioned methods share the same property. The optimization of the ranking is not part of the learning process. It is obtained by a post-process after the induction of the tree. In order to be efficient when addressing imbalanced settings, note also that the hyperparameters of the previous DT-based methods can be tuned by maximizing the AU C-ROC, AP or P recision@k, as introduced in Section 2.

The next paragraph introduces TreeRank [START_REF] Clémençon | Tree-based ranking methods[END_REF], a learning to rank algorithm that has been specifically designed to generate a ranking that directly optimizes the AU C-ROC. [START_REF] Clémençon | Tree-based ranking methods[END_REF] is a decision tree algorithm that comes with theoretical guarantees for the bipartite ranking problem. A tree of trees (referred to as a meta-tree) is learned by directly optimizing the AU C-ROC. The principle is as follows. First, TreeRank induces a classical decision tree using a splitting procedure that takes into account the class imbalance. Then, the leaves are ordered according to a criterion based on the AU C-ROC curve. More precisely, for each leaf, the ratio β/α is computed with β (resp. α) the number of positives (resp. negatives) in the leaf divided by the number of positives (resp. negatives) in the root node. By assigning the label +1 to the considered leaf and -1 to all the others, we can notice that β corresponds to T P R and α to F P R as defined in Eq. 1. Ordering the leaves according to the ratio β/α is equivalent to sorting them according to the slope coefficient of the tangent at the origin of the ROC curve, which boils down to maximizing the AU C-ROC. Then the leaves are partitioned into two sets, left and right, so that the partition maximizes an entropy defined as β -α where β (resp. α ) is the T P R (resp. F P R) of the left leaves. By doing so, TreeRank aims at finding the point with coordinates (α , β ) maximizing the area under the piecewise function going from the origin (0, 0) to the point (α , β ) and then to the point (1, 1). The procedure is repeated by learning two new DTs, one for all leaves that fall on the left part and one for all the leaves that fall on the right. Finally, TreeRank assigns to each leaf a score based on the order in which the leaves were explored from left to right: the first leaf receives a score of 1 then the scores gradually decrease until the last leaf that receives a score of 1 divided by the total number of leaves.

Meta-Trees TreeRank

Random Forests Random Forests (RF) [START_REF] Breiman | Random forests[END_REF] aim to overcome the risk of overfitting of DTs by using a collection of partially independent trees. Each tree in the forest is still learned from n training examples, but the latter are randomly drawn (with replacement) from the training set S (bootstrap method). A sampling method is also performed over the features. At each node, the splits are optimized according to a subset of features randomly selected from the original feature space. A majority vote is finally applied from the predictions of these DTs. Note that the reduction of the variance in RFs is obtained at the price of losing the interpretability of the induced model. In [START_REF] Clémençon | Marine Depecker, and Nicolas Vayatis[END_REF], the authors introduced Ranking Forest, a RF variant of TreeRank which aggregates Meta-trees and combines the corresponding rankings to optimize the AUC-ROC.

Gradient Tree Boosting (GB) GB [START_REF] Jerome H Friedman | Stochastic gradient boosting[END_REF] is an ensemble method that consists in aggregating DTs, fitted sequentially on the residuals of the linear combination obtained at the previous step. In [START_REF] Frery | Efficient top rank optimization with gradient boosting for supervised anomaly detection[END_REF], the authors use a surrogate of the Average P recision (AP ) that can be directly optimized in XGBoost [START_REF] Chen | Xgboost: extreme gradient boosting. R package version 0[END_REF], considered as one of the currently most effective GB methods. The resulting algorithm has been shown to be very efficient to address a highly imbalanced bank fraud detection task. Like Random Forest, the drawback of GB comes from its difficulty to induce a model that is directly interpretable.

MetaAP

In this section, we present our algorithm MetaAP. Inspired by TreeRank, its peculiarity comes from the optimization of the Average P recision (AP ) instead of the AU C-ROC. The objective is to benefit from the capacity of AP to focus more on the top of the ranking to induce an interpretable model useful in applications where the budget in terms of human controllers is limited.

Let n be the number of examples of a given node of the current tree and n + be the corresponding number of positive samples. Let us consider a splitting decision that would send n l (resp. n r ) examples to the left (resp. right) child node. We aim at selecting the split that would maximize n l AP lef t + n r AP right where AP lef t and AP right are two proxies of the Average P recision. AP lef t is built so that all the examples in the left (resp. right) child are classified as +1 (resp. -1). Conversely, AP right is constructed so that all the examples in the right (resp. left) child are classified as +1 (resp. -1). We further define n + l and n + r as the number of positive examples in the left and right children. In this binary setting, three thresholds are used in the computation of AP lef t with the associated Recall and P recision defined as follows:

threshold t 0 t 1 t 2 Recall 0 n + l n + 1 P recision 1 n + l n l n + n
Plugging these values in Equation ( 2), we get:

AP lef t = n + l n + n + l n l + 1 - n + l n + n + n = n +2 l n + n l + n + r n and similarly AP right = n +2 r n + n r + n + l n .
Once a decision tree is learned (called DTAP as shown in Figure 2, bottom left), we need to order the leaves as done in TreeRank. However, since we aim at maximizing AP , we have to work with the P recision-Recall (P R) curve instead of the ROC curve (see Section 2), which is more challenging for two main reasons. First, the P R curve is not increasing on [0; 1] from 0 to 1. It decreases from 1 to a value corresponding to the positive rate of the dataset. To keep the same strategy as TreeRank, we rather minimize the area under the (1-P )R curve which boils down to maximizing the area under the P R curve (Figure 2, top right). Second, unlike the ROC curve, the (1-P )R is not a monotonically increasing function, having local maxima each time negatives are highly ranked. To overcome this issue, our ordering strategy will relegate the leaves leading to such a scenario to the end of the list preventing them from being merged on the left part of the meta-tree, the part that really matters to get a high AP . More precisely, we rank in ascending order the directing coefficients of the tangents to the (1-P )R curve at 0 by calculating for each leaf the (1 -P recision)/Recall ratio (Figure 2, top left). This implies that leaves with a majority of positives will appear at the beginning of the list, those with the most positives first because leading to the lowest directing coefficient corresponding to a P recision close to 1. Finally, according to the obtained ranking, we merge the leaves into two subsets (the left and right parts of the meta-tree) by accumulating the positives and negatives according to the leaves ranking and then selecting the merging threshold maximizing the AP on the left (Figure 2, bottom right).

Note that similarly to DTs, it is possible to adapt our tree-based method to build random forests by training several times MetaAP from a certain number of bootstraps of the training set. We denote this adaptation MetaAPForest in the next section.

Experiments

In this section, we present the experiments conducted on 28 public datasets coming from the UCI1 and KEEL2 repositories. We also performed experiments on private datasets provided by the French Ministry of Economy and Finance (DGFiP). 

Datasets and experimental setup

The main characteristics of the 28 public datasets are summarized in Table 1. The private datasets correspond to the tax and VAT declarations of French companies. They are used for the detection of (i) over-evaluated charges (called 1st fraud in the following) and (ii) international VAT frauds (2nd fraud). There are 40 datasets with an average of about 7,000 samples and 250 features. The imbalance ratio ranges from 0.3% to 24.3%. Note that each year, only 50,000 controls can be carried out from a panel of more than 3 million companies. Therefore, the output ranking must contain as many positives as possible in the very top list in order to optimize the recovery of sums due. Moreover, the model must be interpretable to justify why a company has been selected. The Python code of the algorithms, experiments, plots are publicly available 3 .

For each dataset, we split the data into training (70%) and test (30%) sets. We select the hyperparameters by maximizing the AP through a 5-folds cross validation over the training set. We repeat the process over 20 runs and average the results in both terms of AP and P recision@k. For the latter, we select k as the percentage of the number of positives in the test set. 

Comparison with Decision Tree methods

We carried out a first series of experiments consisting in comparing MetaAP to three DT baselines: the ranking DT algorithm [START_REF] Alvarez | Ranking cases with decision trees: a geometric method that preserves intelligibility[END_REF] using either (i) the Gini ot (ii) the Entropy criterion, and (iii)

TreeRank [START_REF] Clémençon | Tree-based ranking methods[END_REF]. The depths of internal trees and the global tree of TreeRank and MetaAP are tuned in the set {2, 3, ..., 9, 10} which can lead when building the full tree to a maximum depth of 10 × 10 = 100. To make the experiments fair, the tree depths of Gini and Entropy-based DTs are tuned in the set {2, 3, ..., 8, 9, 10, 20, ..., 80, 90, 100}. The mean AP s over the 28 public datasets are reported in Figure 3. It shows five comparisons from 50% to 10%: the former encompasses the datasets with at most an imbalance ratio of 50% (thus, considers all the 28 datasets), while the latter takes into account the 6 most imbalanced datasets with at most 10% of positives. Whatever the percentage between 50% and 10%, we can note that our method (in green) outperforms the other competitors. The superiority of MetaAP seems to be even larger as the imbalance ratio increases. In order to evaluate the significance of these results, we performed a Wilcoxon signed-rank test in each scenario by comparing MetaAP with the first best competitor. It is worth noting that at 50%, thus comparing with TreeRank over the 28 datasets, we obtain a p-value smaller than 0.05. For the other imbalance ratios, we get a p-value between 0.1 (for 10%) and 0.2 (for 20%, 30% and 40%). Because of the limited allowed space, we do not report the results on the fraud detection task, but note that the same conclusions can be made.

The usefulness of our method is emphasized by Figure 6 (top) which reports the results in terms of P recision@k (only for the cases 10%, 30% and 50% for the sake of conciseness). While, as expected, the gap between the methods in terms P recision@k tends to be smaller and smaller as the percentage of positives grows, for small values of k (the ones that are considered in the case of budget limitation), MetaAP is most of the time much better that TreeRank and all the other competitors (green curve above the others). This behavior is confirmed and even amplified on the fraud detection task. The results in terms of P recision@k reported in Figure 4 show that MetaAP significantly outperforms all the other methods for the two cases of studied frauds up to a value of k equivalent to 25% of the number of positives in the test set. This impressive result opens the door to the use of MetaAP for making the tax audit process much more efficient. 

Analysis of an early stopping strategy

To analyze the impact of the tree depth on the behavior of the methods, we studied an early stopping in the construction of the models at fixed depths p from 1 to 10 for MetaAP and TreeRank. For the sake of fairness, we used a depth of p 2 for Gini and Entropy-based DTs which leads to the same expressiveness for all the resulting (meta)-trees. The results on the public datasets are reported in Figure 5. We can note that as soon as MetaAP has a depth greater than 3, it outperforms all the other methods, at equivalent depth, whatever the percentage of positives considered. 

Comparison with forest-based methods

In a last series of experiments, even though we are mainly interested in interpretable models, we compared our Random Forest version MetaAPForest with 3 baselines: (i) the RF Entropy-Forest using the Entropy DT [START_REF] Alvarez | Ranking cases with decision trees: a geometric method that preserves intelligibility[END_REF], (ii) the ranking version of XGBoost [START_REF] Chen | Xgboost: extreme gradient boosting. R package version 0[END_REF]: XGBRanker, (iii) SGBAP [START_REF] Frery | Efficient top rank optimization with gradient boosting for supervised anomaly detection[END_REF] that optimizes the AP . The number of DTs in the forests and in the gradient tree boosting methods was set to 100 and the depth of the trees is tuned between 2 and 10. For the forests, we considered a bootstrap of the size of the number of training examples for each tree, but we did not use bootstrap for the features and considered all of them at each node. We did not make use of the RF version of TreeRank because its implementation in R has been shown to be too much memory consuming during the experiments. We neither considered GiniForest because it led to slightly worse performances than its counterpart EntropyForest.

As expected, Gradient Boosting outperforms the other approaches in terms of AP . Over the 28 public datasets, XGBRanker reaches 77.0% while MetaAP leads to an AP equal to 74.8%, 74.9% for EntropyForest and 73.3% for SGBAP. However, recall that both Gradient Boosting and Random Forest methods do not fulfill our requirement of inferring interpretable models. Interestingly, Figure 6 (bottom) shows that in terms of P recision@k, MetaAP is competitive by outperforming both EntropyForest and SGBAP and being just slightly below XGBRanker.

Compact and interpretable meta-trees

We end this section by illustrating in Figure 7 the fact that MetaAP allows to induce much more compact models with the same fixed depth than standard DT methods. This compression comes from the fact that by construction MetaAP allows leaves to be reached by several paths. In terms of AP , we can see that such compact meta-trees can allow to avoid overfitting phenomena as illustrated in the 

Conclusion and Perspectives

In this paper, we address the challenging problem of learning to rank from imbalanced data. We design an algorithm that builds meta-trees by optimizing during the learning process the Average Precision (AP ). As far as we know, this paper is the fist attempt to optimize directly this non-convex and non separable function in a tree-based ranking method. The resulting algorithm MetaAP shows very promising results on public datasets and on a tax fraud detection task where the need of generating a short list of alerts maximizing the AP is of great interest. MetaAP also comes with the valuable property of inducing compact interpretable models. In future work, we plan to investigate the optimization of the P recision@k. This would allow us to directly take into account the number of controls k allowed by the application at hand. However, we will need to figure out solutions, for example using transfer learning methods, to avoid retraining from scratch a model learned for a given k. Finally, even if our setting in not as favourable as that of TreeRank (unlike the ROC curve, the (1-P)R is not a monotonically increasing function), we will investigate the possibility to derive generalization guarantees.
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 1 Figure 1: Evaluation of the AU C-ROC and AP on two rankings. Blue (resp. grey) lines represent positive (resp. negative) samples. While AU C-ROC behaves similarly on both cases (AU C-ROC = 12 ), the average precision is equal to 0.43 on the left and 0.68 on the right, illustrating that AP favors the ranking that put (at least some) positives at the very top of the list.

Figure 2 :

 2 Figure 2: MetaAP run on yeast6 (one of the most imbalanced public dataset) with maximum depth of 4: (top left) Some tangents to the (1-P )R curve at 0 whose slopes are used to order the leaves. (top right) Corresponding approximation of the (1-P )R curve by a piece-wise function maximizing AP lef t by accumulating the sorted leaves from left to right. MetaAP aims at maximizing the hatched area above the curve. Here max(AP lef t ) = 0.415 is achieved by putting the first leaf on the left and merging all the others on the right. (bottom left) Corresponding root's DT with splitting rules that maximize the AP . (bottom right) Corresponding merged DT.

Figure 3 :

 3 Figure3: Mean AP as a function of the percentage of positives. For 50%, AP is computed from all the 28 datasets. For 10%, only 6 datasets are used.

Figure 4 :

 4 Figure 4: P recision@k according to the % of positives on the private datasets.

Figure 5 :

 5 Figure 5: Mean AP as a function of the depth on the public datasets with a proportion of positives of at most 10%, 30% and 50%. The 1st line (resp. 2nd) of the x-axis represents the depth of the Gini and Entropy-based DTs (resp. TreeRank and MetaAP).

  Figure by a smaller gap between the AP s at training and test time (49.82 versus 43.68) compared to that of the Entropy-based DT (58.62 versus 35.16).

Table 1 :

 1 Public datasets, sorted by positive rate. %+: percentage of positives, n: number of examples, d: number of features.

	datasets	% +	n	d	datasets	% +	n	d	datasets	% +	n
	abalone20	00.62%	4177 10 segmentation 14.29% 2310 19	wdbc	37.26%	569
	abalone17	01.39%	4177 10	hayes	22.73%	132	4 autompg 37.50%	392
	yeast6	02.36%	1484	8	vehicle	23.52%	846 18 spambase 39.42% 4597
	wine4	03.31%	1599 11	german	30.00% 1000 24	bupa	42.03%	345
	libras	06.67%	360 90	newthyroid	30.23%	215	5	heart	44.44%	270
	satimage	09.73%	6435 36	glass	32.71%	214	9 australian 44.49%	690
	pageblocks	10.23%	5473 10	wine	33.15%	178 13	balance	46.08%	625
	yeast3	10.98%	1484	8	pima	34.90%	768	8	sonar	46.63%	208
	bankmarketing 11.70% 45211 51	iono	35.90%	351 34	splice	48.09% 3175
	abalone8	13.60%	4177 10							

https://archive.ics.uci.edu/ml/datasets.html

https://sci2s.ugr.es/keel/datasets.php

https://github.com/LeoGautheron/submission-PRL

Figure 7: Trees learned on yeast6 using the Entropy (left) and MetaAP (right). A green (resp. red) arrow means that the feature considered in the node is lower or equal to (resp. larger than) the threshold. A black arrow is used when both the green and red arrows are going from the same parent to the same child. Each node (resp. leave) contains the splitting criterion (resp. the ranking score) and the number of training negatives and positives (n -, n + ).