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Abstract

Performing (variance-based) global sensitivity analysis (GSA) with dependent inputs has recently
benefited from cooperative game theory concepts, leading to meaningful sensitivity indices suitable with
dependent inputs. The “Shapley effects”, i.e., the Shapley values transposed to variance-based GSA
problems, are an example of such indices. However, these indices exhibit a particular behavior that can
be undesirable: an exogenous input (i.e., which is not explicitly included in the structural equations
of the model) can be associated with a strictly positive index when it is correlated to endogenous
inputs. This paper investigates using a different allocation, called the “proportional values” for GSA
purposes. First, an extension of this allocation is proposed to make it suitable for variance-based
GSA. A novel GSA index is then defined: the “proportional marginal effect” (PME). The notion of
exogeneity is formally defined in the context of variance-based GSA. It is shown that the PMEs are
more discriminant than the Shapley values and allow the distinction of exogenous variables, even when
they are correlated to endogenous inputs. Moreover, their behavior is compared to the Shapley effects
on analytical toy cases and more realistic use cases.

Keywords: Cooperative game theory, Dependence, Proportional values, Sobol’ indices, Shapley
effects.

1. Introduction

When using phenomenological numerical models in science and engineering, the uncertainty quan-
tification (UQ) process allows one to consider and better quantify the various sources of uncertainties,
most often using probabilistic modeling [18]. Global sensitivity analysis (GSA) is a crucial step of
this process, aiming to understand the effects of each uncertain model input (or set of inputs) on
the quantity of interest related to the output variable of interest obtained from the numerical model
[41, 27]. From a practical viewpoint, GSA aims at investigating four primary settings [10]: (i.) model
exploration, i.e., investigating the input-output relationship; (ii.) factor fixing, i.e., identifying non-
influential inputs; (iii.) factor prioritization, i.e., quantifying the most important inputs using quanti-
tative importance measures; (iv.) robustness analysis, i.e., quantifying the sensitivity of the quantity of
interest with respect to probabilistic model uncertainty of the input distributions. The present paper
focuses on the first three settings.

Among a large panel of GSA indices, the variance-based sensitivity measures, also called “Sobol’
indices” [43], are derived from the functional analysis of variance (FANOVA) decomposition [11] be-
tween all the independent inputs. Thus, these indices provide interpretable answers to the previously
mentioned GSA settings. Let Y = G(X) denotes the input-output relationship under study, with G(·) :
Rd −→ R a deterministic (often black-box) numerical model, Y a scalar output and X = (X1, . . . , Xd)
a vector of d scalar inputs. Moreover, let P(D) the set of all subsets of D = {1, . . . , d}. For every



subset of input XA = (Xi)i∈A, A ∈ P(D), the Sobol’ indices are defined as follows:

SA =

∑
B⊆A(−1)|A|−|B|V (E [G(X)|XB ])

V (G(X))
(1)

where | · | denotes the number of elements in a subset. For mutually independent inputs, the FANOVA
decomposition leads to a nonnegative allocation of shares of the output’s variance (i.e., SA) to every
subset of inputs A ∈ P(D). Since they also sum to one, they can be interpreted as percentages of the
output variance. Hence, Sobol’ indices can determine which inputs of a numerical model contribute
the most to the output’s variability or, on the contrary, identify the ones that are not influential and
possibly which inputs interact. Therefore, Sobol’ indices are particularly relevant for factor fixing and
prioritization (settings ii. and iii.).

However, in many applications, some inputs may have a statistical dependence structure, either
initially imposed in their probabilistic modeling [31] or induced by physical constraints upon the input
or the output space [30, 33]. In these cases, estimating and interpreting Sobol’ indices is not trivial,
as shown by many different analyses and interpretations proposed in the past (see [26] or [10] for an
overview of this topic). In order to circumvent this issue, [36] proposed a new approach based on
the “Shapley value” [42], an allocation developed in cooperative game theory and powerfully used
in economic modeling. It distributes gains and costs to several players working in a coalition in an
egalitarian way. Therefore, based on Shapley values and Sobol’ indices, [36] proposed the so-called
“Shapley effects” as new GSA indices in the context of dependent inputs. The underlying idea is to
compute, similarly to a game involving coalitions of players, the value assigned to a coalition of inputs
XA as their explanatory power towards the output’s variance. This value corresponds to the so-called
“closed Sobol’ indices” defined as:

Sclos
A =

V (E [G(X)|XA])

V (G(X))
. (2)

In the GSA context, the two main properties and advantages of the Shapley effects are the following:
firstly, they are nonnegative; secondly, their sum is equal to one, even for dependent inputs [37, 26].
These two properties correspond to the two main desirability criteria for importance measures of linear
regression models as reviewed in [19].

In [26], it is claimed that the Shapley effects are relevant for the factor fixing setting since an
effect close to zero means that the input has no significant contribution to the variance of the output.
However, another phenomenon, observed by [26] and known as “Shapley’s joke” [23], shows that the
Shapley effects may not be suitable for factor fixing in certain situations: an exogenous variable (i.e.,
which is not explicitly included in the structural equations of the model) can receive a non-zero share
of the output variance whenever it is sufficiently correlated with endogenous inputs. Note that other
GSA techniques dedicated to screening [10, 3], such as one-at-a-time (OAT) design or derivative-based
global sensitivity measures [29], can detect exogenous inputs. However, such methods either require
specific designs of experiments that do not respect the underlying statistical dependence, or do not
have theoretical guarantees for exogeneity detection.

In statistical learning, if G is a linear regression model, an analogy can be made between Sobol’
indices and the squared value of the standardized regression coefficients (SRC2). Moreover, the Shapley
effect, corresponding to the so-called “LMG measure” (named after the authors’ names, Lindeman-
Merenda-Gold, see [32, 6]), is none other than the Shapley values of a cooperative game aimed at
allocating the determination coefficient R2. Hence, the Shapley effects developed in GSA generalize
the LMG indices for non-linear deterministic models. In a different way, an analog of LMG called
proportional marginal variance decomposition (PMVD) has been proposed by [15] in order to respect
the exclusion property: an exogenous variable should receive no share of R2. It is based on the
proportional values, which are a different allocation. These importance measures have been extensively
studied in [19, 20] and illustrated more recently in [25, 8].

This paper takes inspiration from the PMVD for linear regression and the Shapley effects for GSA.
A generalization of the PMVD indices to non-linear deterministic models is proposed. It leads to the
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proportional marginal effect (PME), based on the proportional values [34, 15]. These indices encompass
the ability to detect exogenous variables. For clarity, Table 1 provides a preliminary analogy between
linear regression and GSA to emphasize the problem addressed in the present paper.

R2 decomposition (linear regression) V (Y ) decomposition (GSA)

SRC2 Sobol’ indices
LMG Shapley effects
PMVD PME (proposed indices)

Table 1: Analogy between linear regression importance measures (R2 decomposition) and variance-based GSA.

The main drawback related to the Shapley effects’ estimation is their computational cost, which
has been studied in several papers. Estimates can be obtained via several techniques such as Monte
Carlo-based algorithms (requiring the ability to simulate according to marginal and conditional laws)
[44], k-nearest neighbors [5] or Möbius inverses [38], or by using surrogate models [26, 2, 1]. However,
it requires the estimation of 2d− 1 closed Sobol’ indices, which exponentially grow with the number of
inputs. The proposed indices suffer from the same problems. However, if the practitioner is committed
to estimating the Shapley effects, the PMEs can be computed with no additional cost (in terms of
model evaluations).

The remainder of this paper is organized as follows. Section 2 focuses on the interaction between
GSA and cooperative game theory and the existing literature. The Shapley effects are recalled, as well
as their main shortcoming: the inability to detect exogenous inputs. To that end, the notion of L2-
exogeneity is formally defined. Then, Section 3 defines the proportional values and presents the main
result of this paper, an extension allowing for well-defined novel GSA indices: the PMEs. Additionally,
these novel indices allow the detection of exogenous inputs while remaining inherently interpretable.
Section 4 illustrates the behavior of the novel PMEs by using analytical formulas obtained for particular
forms of G with Gaussian inputs. Section 5 briefly recalls several strategies for estimating the PMEs
and presents results obtained on a more challenging numerical use case. Section 6 discusses several
possible improvements and some perspectives about the proposed work. A few appendices provide extra
materials, such as information about the reproducibility of numerical results (Appendix Appendix A)
and proofs (Appendix Appendix B). Finally, some supplementary materials contain details on random
order model allocations and additional use-cases.

Throughout this paper, let E [·] and V (·) denote the expectation and variance, respectively. A
coalition of players is a subset of the grand coalition denoted D = {1, . . . , d}. Moreover, ∀A ⊆ D,
the restricted set of indices A \ {i}, for any i ∈ A, is denoted by A−i. Additionally, for any A ⊆ D,
XD\A is denoted by XA. The distribution of the random inputs X is denoted by PX and the marginal
distribution of any subset of inputs XA for any A ⊆ D is denoted by PXA . The spaces L2(PXA),
for any A ⊆ D, denote the spaces of measurable functions with finite second-order moments. The
nonnegative part of the real line [0,∞) is denoted R+, and the positive part (0,∞) is denoted R+

∗ .
When a function is referred to as being nonnegative (resp. positive), it entails that it takes values
in R+ (resp. R+

∗ ). Whenever reference is made to a model G, it is always implicitly assumed that
G ∈ L2(PX). In this paper, almost sure statements are followed by the acronym “a.s.”.

2. Cooperative game theory for variance-based global sensitivity analysis

This section presents the use of cooperative game theory to define variance-based GSA indices. A
particular class of allocations is presented: the random order model allocations, which generalizes the
Shapley values. Sobol’ cooperative games are introduced to formalize the analogy between players and
inputs of deterministic models. The Shapley effects are presented as the Shapley values of a Sobol’
cooperative game. Duals of a cooperative game are also briefly discussed. Finally, a specific Shapley
effects’ drawback (for factor fixing setting) is illustrated as a motivation for the proposed work: their

3



inability to detect exogenous inputs. The interested reader is referred to the supplementary materials
for a more in-depth discussion of these concepts.

2.1. Analogy between allocation and variance-based GSA indices

A cooperative game is a tuple (D, v) where D = {1, . . . , d} is a set of d players and the set function
v : P(D) → R is known as a value function. Usually, v is assumed to be monotonically increasing,
meaning that, for any two sets T and A such that T ⊆ A ∈ P(D), one has v(T ) ≤ v(A). In
the following, cooperative games with monotonically increasing value functions are called “monotonic
games”. Moreover, if the value function v takes values in R+

∗ (resp. in R+) for non-empty coalitions, the
corresponding cooperative game is referred to as “positive (resp. nonnegative) games“. By convention,
it is always assumed that v(∅) = 0.

The analogy between the players D of a cooperative game (D, v) and the inputs (Xi)i∈D involved
in a numerical model has been first developed in [36]. The author proposed to use the closed Sobol’
indices (see, Eq. (2)) as the value function. This choice of value function defines the Sobol’ cooperative
games.

Definition 1 (Sobol’ cooperative game). Let X = (X1, . . . , Xd)
> be random inputs, let G ∈ L2(PX)

be a model and denote Y = G(X) the random output. The Sobol’ cooperative game related to X and
Y is the cooperative game with value function Sclos defined as follows:

Sclos : P(D)→ R+

A 7→ Sclos
A =

V (E [Y | XA])

V (Y )
.

Sobol’ cooperative games are always nonnegative and monotonic. The choice of Sclos as a value
function can be interpreted as measuring the value of every subset of players A ⊆ D as the variance
of the best approximation of Y in L2(PXA), i.e., V (E [Y | XA]).

One of the main goals of cooperative game theory is to build allocation (or solution concepts)
[35]. In general, allocations can be understood as a decomposition of the quantity v(D) in d elements,
each allocated to a specific player. Formally, an allocation can be understood as a mapping φ that
associates, to a cooperative game (D, v), a real-valued vector (φ1, . . . , φd)

> ∈ Rd.
Regarding Sobol’ cooperative games, it entails assigning a share of the output’s variance V (Y )

to each input of the model. Allocations of Sobol’ cooperative games require limited assumptions on
the probabilistic structure between the inputs (i.e., mutual independence is not required) to provide a
decomposition of the output variance, which made them particularly attractive for importance quan-
tification with dependent inputs [37, 10]. Hence, variance-based GSA indices with dependent inputs
can be defined by choosing an allocation related to a Sobol’ cooperative game (D,Sclos).

For instance, Shapley values are a particular instance of allocations. For a cooperative game (D, v),
they are defined ∀i ∈ D, as:

Shapi
(
(D, v)

)
=

1

d

∑
A⊆D−i

(
d− 1

|A|

)−1
[v(A ∪ {i})− v(A)] , (3)

This original formulation attributed to [42] can be interpreted as a weighted average, over every possible
coalition A, of the “marginal contribution” of a player i to that coalition A, quantified by the quantity
v(A ∪ {i})− v(A). Two main properties make this allocation particularly attractive in practice:

• They are efficient :
∑d
i=1 Shapi

(
(D, v)

)
= v(D).

• If the game is monotonic, they are nonnegative: ∀i ∈ D,Shapi
(
(D, v)

)
≥ 0.
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Shapley values of Sobol’ cooperative games lead to the definition of the Shapley effects [36]. They
are defined for every i ∈ D, as:

Shi := Shapi
(
(D,Sclos)

)
(4a)

=
1

d

∑
A⊆D−i

(
d− 1

|A|

)−1 (
Sclos
A∪{i}) − S

clos
A

)
(4b)

These indices have been extensively studied in [44, 37, 26] and are a valuable tool to quantify variable
importance in the context of dependent inputs [9]. They allow for a decomposition of V (Y ) into
nonnegative shares attributed to each input, even when the inputs are not mutually independent.

The efficiency and nonnegativity properties are in fact guaranteed for an entire class of allocations,
known as random order models (or Weber’s set) [48, 16]. These allocations are based on players’
different orderings (i.e., permutations). Formally, let SD be the symmetric group on D (the set of all
permutations of D). Let π = (π1, . . . , πd) ∈ SD be a particular permutation, and for any i ∈ D, denote
π(i) = π−1i its inverse (i.e., the position of i in π, such that ππ(i) = i). Let Ci(π) be the set of the i-th
first players in the ordering π, with the convention that, for any permutation, C0(π) = ∅, i.e., :

Ci(π) = {πj : j ≤ i}. (5)

As their names suggest, random order models endow SD with a probabilistic structure. For any game
(D, v), the set of random order models allocations contains every allocation φ

(
(D, v)

)
that can be

written, for any i ∈ D, as:

φi =
∑
π∈SD

p(π)
[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
= Eπ∼p

[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
where p is a probability mass function over the orderings of D. For a player i, its random order
allocation can be interpreted as the expectation over the permutations π of D w.r.t. p, of the marginal
contributions of i to the coalitions formed by Cπ(i)−1(π). The random order model allocations are
always efficient and when dealing with monotonic games, nonnegative [48].

In particular, the Shapley values can be expressed as a random order model allocation. They are
characterized by the choice of p as the discrete uniform distribution over SD:

Shapi
(
(D, v)

)
=

1

d!

∑
π∈SD

[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
. (6)

In this setting, Shapley values are a maximum entropy a priori (i.e., uniform over SD). In variance-
based GSA, the equivalent formulation of the Shapley effects as a random order model allocation of
a Sobol’ cooperative game has been introduced by [44] for estimation purposes. For every i ∈ D, it
writes:

Shi =
1

d!

∑
π∈SD

[
Sclos
Cπ(i)(π)

− Sclos
Cπ(i)−1(π)

]
. (7)

The notion of the dual of a cooperative game is also of interest in the present paper. In a nutshell,
the dual of a cooperative game focuses on the “worth” of a coalition instead of its value, i.e., the
shortfall due to a coalition [15, 16]. The dual of a cooperative game (D, v) is usually denoted by
(D,w) where w is defined, for any A ∈ P(D) as:

w(A) = v(D)− v(D \A). (8)

In the following, one refers to w(A) as the marginal contribution of the coalition A. The dual (D,w) of
(D, v) is also a cooperative game, and thus one can seek to construct appropriate allocations for this
game.
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The Shapley values of a game and its dual are equal (see, [17] Lemma 2.7). However, it is essential
to note that this is a particular property of the Shapley values and is not inherent to every random
order model allocation.

The dual of a Sobol’ cooperative game (D,Sclos) is the nonnegative, monotonic cooperative game
(D,ST ), where ST denotes the total Sobol’ indices, given for any A ∈ P(D), by

STA =
E [V (Y | XA)]

V (Y )
. (9)

In the variance-based GSA literature, the equivalence between the Shapley values of a Sobol’ cooper-
ative game and its dual has been highlighted and used for estimation purposes in [44].

2.2. Detecting exogenous inputs

As noted in [23], the main drawback (for factor fixing setting) of the Shapley effects is their behavior
when dealing with exogenous (or spurious) inputs. Formally, exogenous inputs, in the context of
variance-based GSA, can be defined as follows.

Definition 2 (L2-exogeneity). Let X = (X1, . . . , Xd) be random inputs of a model G : Rd 7→ R such
that Y = G(X), with Y the random output. Let i ∈ D. The random input Xi is said to be L2-exogenous
to G if, ∃f ∈ L2(PXD−i ) such that Y = f(XD−i) a.s..

Moreover, if for E ∈ P(D), ∃f ∈ L2(PXD
E

) such that Y = f(XE) a.s. then XE is said to form an

L2-exogenous vector.

For the sake of conciseness, in the following, L2-exogenous inputs or vectors are referred to as
being simply exogenous. It is important to note that, according to the proposed definition, a set of
exogenous inputs does not necessarily form an exogenous vector. However, the following assumption
allows avoiding such situations.

Assumption 1. Let E ∈ P(D). If for every i ∈ E, Xi is exogenous, then XE forms an exogenous
vector.

In situations where the random inputs are correlated, the Shapley effects can allocate shares of
variance to exogenous inputs. This phenomenon, called Shapley’s joke, has been illustrated in [26, 23]
through the following example.

Example 1 (Shapley’s joke). Let X = (X1, X2)> ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
, −1 < ρ < 1, and let the

model be:
Y = G(X) = X1.

The Shapley effects of the random inputs are given by

Sh1 = 1− ρ2

2
, Sh2 =

ρ2

2
.

Even if X2 is exogenous, its Shapley effect is not zero as long as ρ 6= 0. While this behavior can
be considered valuable for factor prioritization (effects due to correlation can be relevant), it can also
be a drawback for spurious variable detection [10]. Another allocation called the proportional values
provides us a direct solution to this drawback.

3. From proportional values to proportional marginal effects

The proportional values (PVs) are a random order model allocation initially designed for positive
games. In this section, they are introduced and extended to nonnegative games to be suitable for
GSA purposes. The extended allocation of the dual of Sobol’ cooperative games is introduced as the
proportional marginal effects (PMEs). It is shown that the PMEs enable the detection of exogenous
inputs while offering an interpretable variance decomposition.
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3.1. Proportional values as an alternative allocation strategy to Shapley values

The PVs are a random order model allocation associated to a particular probability mass function
over SD [15] (see also the section 1 of the supplementary materials). They can also be characterized
recursively [13, 34].

Definition 3 (Proportional values). Let (D, v) be a positive game, where v : P(D) → R+
∗ . The

proportional values of (D, v), are defined for every i ∈ D, as a random order model allocation:

PVi

(
(D, v)

)
=
∑
π∈SD

p(π)
[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
(10)

where the probability mass function p is defined as:

p(π) =
L(π)∑

σ∈SD L(σ)
, where L(π) =

∏
j∈D

v (Cj(π))

−1 . (11)

Equivalently, PV can be characterized recursively, for every i ∈ D, as:

PVi

(
(D, v)

)
=

R(D, v)

R(D−i, v)
(12)

where, for all A ∈ P(D), R(A, v) = v(A)

∑
j∈A

R(A−j , v)−1

−1, and R(∅, v) = 1. This recursive

definition leads to the following identification [16]:

PVi

(
(D, v)

)
=

∑
π∈SD−i

∏d−1
j=1 v (Cj(π))

−1∑
σ∈SD

∏d
j=1 v (Cj(σ))

−1 . (13)

The PVs can also be characterized axiomatically (see [16]), as the unique allocation φ(D, v) re-
specting the following two axioms:

• Efficiency:
∑d
i=1 φi = v(D);

• Equal proportional gains: for all A ∈ P(D), and for all i, j ∈ A, i 6= j:

φi
(
(A, v)

)
φj
(
(A, v)

) =
φi
(
(A−j , v)

)
φj
(
(A−i, v)

) .
These axioms characterize the choice of L(π) in Eq. (11). We refer the interested reader to [15]
for more details. If the game is monotonic, the PVs are efficient and nonnegative, allowing for a
meaningful interpretation, as for the Shapley values. The equal proportional gains axiom sheds light
on the redistribution dynamic of this particular allocation scheme. For any two different players i
and j, the ratio of their allocations in any subgame (A, v) (for every A ∈ P(D) such that i, j ∈ A)
must be invariant to removing each player’s contribution to the other’s allocation. In other words,
the magnitude of the ratios must be preserved, independently of the possible interaction between
i and j, within any coalition they can be a part of. It implies that the allocation favors the players
proportionally to their (marginal) contributions to every possible coalition in the redistribution process.

As a frame of comparison, the Shapley values can also be characterized as the unique, efficient
allocation respecting the following axiom (see [16]):

• Balanced contributions: for all A ∈ P(D), and for all i, j ∈ A, i 6= j:

φi(A, v)− φi(A−j , v) = φj(A, v)− φj(A−i, v).
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This axiom entails that for any two different players i and j, the difference in each allocation by
removing the other player to any sub-game (A, v) such that i, j ∈ A must remain equal, for any
A ∈ P(D). In other words, the difference in allocation of the two players induced by the removal of
the other player must be equal, implicitly entailing a balanced redistribution process where individual
and coalitional contributions are favored equally.

Remark 1. In a nutshell, one can remark that the redistribution processes in both allocations (Shapley
values vs. PVs) are fundamentally different: the PVs redistribution process is proportional while the
Shapley values are egalitarian.

The different behaviors between PVs and Shapley values can be illustrated in a two-player game,
i.e., (D = {1, 2}). The allocations are given, for any i ∈ D, by

PVi

(
(D, v)

)
= v({i}) +

v({i})
v({1}) + v({2})

(
v(D)− v({1})− v({2})

)
(14a)

Shapi

(
(D, v)

)
= v
(
{i}
)

+
1

2

(
v(D)− v({1})− v({2})

)
. (14b)

For both PVs and Shapley values, each player receives its individual value plus a weighted share of the
value surplus generated due to their cooperation. In the literature, this surplus is referred to as the
Harsanyi dividend of the coalition {1, 2} [21]. The Shapley values redistribute precisely half of this
dividend to each player (i.e., egalitarian way). In contrast, the PVs redistribute them proportionally
(i.e., proportional way) to each player’s individual contribution.

Remark 2. Eq. (14a) is equivalent to another allocation, namely the proportional Shapley values [7].
However, they differ from the PVs as soon as more than two players are involved in a game. Intuitively,
the proportional Shapley values are a “proportional redistribution with respect to the individual values
of the players”, whereas the proportional values are “proportional with respect to the value added by
the players to every possible coalition”.

It is important to notice that this allocation is only well-defined for positively defined value functions
v. However, as stated in Definition 1, Sobol’ cooperative games’ value function is nonnegative. The
following section presents a continuous extension of the PVs to nonnegative games, enabling their use
for variance-based GSA purposes.

3.2. Extension of proportional values to nonnegative games

This section proposes an extension of the PVs to nonnegative and monotonic games. Initially, the
PVs are only defined for positive games. However, Sobol’ cooperative games are inherently nonnegative.
By leveraging the method of [14], it is possible to define a continuous extension of the PVs for games
with coalitions of zero value. The following result builds upon this extension.

Theorem 1 (PV extension to monotonic nonnegative games). Let (D, v) be a nonnegative and mono-
tonic game with value function v : P(D) → R+. Denote K the set of largest (w.r.t. their cardinality)
zero coalitions, i.e., , K = argmax

A∈P(D) s.t. v(A)=0

|A|. Additionally, the sets of largest zero coalitions that

do not contain i ∈ D is denoted by K−i, i.e., , K−i =
{
A ∈ K : i 6∈ A

}
. Define, for any A ∈ K, the

positive set function:

vA : P (D \A)→ R+
∗

B 7→ v(B ∪A).

Let PV 0 ((D, v)) =
(
PV 0

1 , . . . ,PV 0
d

)
be the allocation defined as:

PV 0
i =

∑
A∈K−i R (D−i \A, vA)

−1∑
A∈KR (D \A, vA)

−1 if i 6∈ ∩A
A∈K

and PV 0
i = 0 otherwise. (15)
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Then, PV 0 is a continuous extension of PV to the set of nonnegative monotonic games, i.e., for a
positive monotonic game (D, v),

PV 0 ((D, v)) = PV ((D, v)) .

A proof of this result is available in Appendix Appendix B. Interestingly, the definition of this
extension precisely identifies the players whose allocation is zero. For a player i ∈ D, PV 0

i = 0 if and
only if it is part of every largest zero coalition.

Remark 3. From this point forward, for conciseness, any mention of the PVs refers to their extension
to nonnegative games ( i.e., PV 0).

3.3. Proportional marginal effects and exogeneity detection

Thanks to Eq. (15), one can see that the PVs of a cooperative game and its dual are different,
contrarily to the case of the Shapley values. The duals of Sobol’ cooperative games are more relevant
for exogenous variable detection. This fact becomes clear thanks to the following result, in a similar
manner to [22].

Lemma 1. Let X = (X1, . . . , Xd)
> be random inputs and G ∈ L2(PX) denote a model such that

V (G(X)) > 0. One has, ∀A ⊆ D,

STA =
E [V (G(X) | XA)]

V (G(X))
= 0 ⇐⇒ G(X) = E [G(X) | XA] a.s.

A proof of this result can be found in Appendix Appendix B. For A ⊆ D, STA being equal to zero
indicates that G(X) is almost surely equal to some f(XA) where f ∈ L2

(
PXA

)
. However, Sclos

A being
equal to zero is only equivalent to the fact that E [G(X) | XA] is constant almost surely. It leads to the
proposed cooperative game theory-inspired GSA indices called proportional marginal effects (PMEs),
which are none other than the (extended) PVs of the dual of Sobol’ cooperative games. They are
defined as follows:

Definition 4 (Proportional marginal effects). Let X = (X1, . . . , Xd)
> be random inputs, and let

Y = G(X) be the random output of a model. The proportional marginal effects are the proportional
values of the dual of the monotonic Sobol’ cooperative game related to the model G. They are defined
as:

PME = PV
(
(D,ST )

)
∈ Rd.

Naturally, these indices are efficient, and since Sobol’ cooperative games are monotonic, they result
in nonnegative allocations. Thus they offer interpretable shares of the output variance in the context
of dependent inputs. As Section 3.1 presents, they differ from the Shapley effects on the underlying
redistribution principle. More importantly, thanks to the following result, they allow exogenous input
detection.

Proposition 1. Let X = (X1, . . . , Xd)
> be random inputs and G ∈ L2(PX) be a model such that

Assumption 1 holds. For any input i ∈ D, the following equivalence holds:

Xi is L2-exogenous to G⇐⇒ PMEi = 0

A proof of this result can be found in Appendix Appendix B. In addition to offering an interpretable
tool for factor prioritization, the PMEs allow the detection of exogenous inputs by granting them a
zero share. Hence, these novel indices circumvent Shapley’s joke, presented in Section 2.2.
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4. Illustration on analytical cases

Two toy cases are studied, where it is possible to compute analytical values for the PMEs. The first
one aims at illustrating the exogeneity detection property of the PMEs ensured by Proposition 1. The
second toy case introduces a trade-off between individual and interaction effects between two inputs
and highlights the difference in repartition between the Shapley effects and the proposed PMEs. An
additional toy case is presented in the supplementary materials.

4.1. A linear model with an exogenous input

This first toy case illustrates the exogeneity detection property of the PMEs (i.e., Proposition 1).
This first model reads:

Y = G(X) = X1 +X2, X =

X1

X2

X3

 ∼ N
0

0
0

 ,

1 0 ρ
0 1 0
ρ 0 1

 (16)

where −1 < ρ < 1. One can notice that X3 is exogenous but linearly correlated to X1. Since the inputs
are not mutually independent, traditional GSA tools such as first- and second-order Sobol’ indices fail
to be interpreted as shares of variance [10]. Hence, one can resort to cooperative game theory-inspired
tools, such as the Shapley effects and PMEs. Analytical values can be computed (since the inputs are
multivariate Gaussian) and are given in Table 4.1.

Sh1 = 1/2− ρ2/4 PME1 = 1/2

Sh2 = 1/2 PME2 = 1/2

Sh3 = ρ2/4 PME3 = 0

Table 2: Reference analytical values for Shapley effects and PMEs (toy-case 4.1).

One can first notice that X3 can receive a non-zero Shapley effect, dependent on the value of ρ. In
highly correlated settings, X3 is interpreted as being almost as important asX1. This interpretation can
be meaningful because the correlation between X3 and X1 may be relevant to the underlying studied
phenomenon. However, in GSA, the practitioner usually supposes that the model G is black-box and
only has access to the input’s distribution. Hence, relying only on the Shapley effects, the practitioner
would not be able to determine the exogenous nature of X3. If the aim of the sensitivity study is
focused on better understanding the relationship between the model and its inputs, independently
from their probabilistic structure, the Shapley effects are hence not suitable alone.

Contrarily, the PMEs do indeed detect X3 as being an exogenous input by granting it a zero
allocation. Moreover, the PMEs are not influenced by the linear correlation ρ between X1 and X3.
In combination with the Shapley effects, additional insights on G can be extracted from the initial
study: while X3 can affect G through its correlation with other inputs (supposedly known by the
practitioner), it is exogenous to G. Additionally, by allocating half the output’s variance to both X1

and X2, the PMEs also indicate an equal influence.
Hence, by combining the interpretation of both indices, one can interpret these results as follows: X3

is an exogenous variable (PMEs), but it bears an effect on G through its correlation with X1 (Shapley
effects) and X1 and X2 seem to bear an equal influence on the output’s variance, whenever X3 is
detected as exogenous (PMEs). In this setting, both indices complement each other and provide a more
precise interpretation of the studied model and its interaction with the inputs and their probabilistic
structure.
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4.2. Unbalanced linear model with interactions

This toy case aims at studying and comparing the behavior in a trade-off between individual and
interaction effects. This particular unbalanced linear model is given as follows:

Y = G(X) = X1 + (1− α)X2 + αX1X2, X =

(
X1

X2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, (17a)

V (Y ) = 2 + (1− α)2 + 2(1− α)ρ+ ρ2. (17b)

The parameter α aims at controlling the “trade-off” between the individual effect of X2 and its
interaction term with X1. When α = 0, there is no interaction term between X1 and X2, and when
α = 1, X2 does not have any individual effect. Analytical formulas for the Shapley effects and the PMEs
are given in Table 4.2. In addition, both inputs are correlated through their covariance ρ ∈ (−1, 1).

2V (Y )× Sh1 = 3 + ρ2(1− α)2 + 2ρ(1− α) PME1 = 2
3+(1−α)2

2V (Y )× Sh2 = 1 + 2ρ2 + (2− ρ2)(1− α)2 + 2ρ(1− α) PME2 = (1−α)2+1
3+(1−α)2

Table 3: Reference analytical values for Shapley effects and PMEs (toy-case 4.2).

To illustrate the redistribution differences between the Shapley effects and the PMEs w.r.t. both
correlation and interaction, (α, ρ)-plane plots are provided in Figure 1. First, one can notice that,
when α = 0, the Shapley effects and the PMEs are equal, granting each input half of the output’s
variance. However, when α deviates from zero, both indices display different behaviors. Secondly, and
interestingly, the analytical formulas of the PMEs do not depend on the correlation coefficient ρ.

Focusing on the behavior of both effects w.r.t. the interaction, one can first focus on the α-axis
of the plots in Figure 1. Whenever α is close to 0, one can notice that both indices tend to allocate
an equal share of the output variance to both inputs. As α increases, the PME grants an increasing
share of the output variance to X1, independently of ρ. However, on the other hand, the Shapley
effects display a sharing mechanism dependent on ρ. When ρ is between −0.5 and 0.5, and α is close
to 1, Sh1 increases, with a maximum allocation of 0.75 taken at (ρ = 0, α = 1), while Sh2 decreases,
with a minimum allocation of 0.25 at the same point on the plane. Additionally, one can notice that
when both inputs are highly correlated, the Shapley effects redistribute the output’s variance equally,
whatever the value of α is.

This toy case illustrates the difference in behavior between the Shapley effects and the PMEs. The
PMEs are not impacted by the correlation and may be preferred if the study’s goal is to gather insights
on the intricacies of the model G. On the other hand, the Shapley effects even the importance of the
correlated inputs whenever their correlation levels are relatively high.

4.3. First conclusions

From these two toy cases, the following conclusions can be drawn:

• whenever the inputs are correlated, the Shapley effects do not detect exogenous inputs, while
the PMEs do;

• in the highly correlated cases, the Shapley effects can lead to an equalized importance ranking,
while the PMEs allow for a more pronounced discriminatory power;

• overall, the PMEs seem less sensitive to high levels of correlation, while the Shapley effects can
vary greatly.

However, these conclusions are subject to the presented toy cases and are not universal.
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Figure 1: PMEs and Shapley effects in the (α, ρ)-plane for test-case 4.2.

5. Estimation and numerical results

This section presents estimation schemes of the PME: they rely on the same ingredients as the
Shapley effects. Then, a practical use case is studied: a model of optical system interference.

5.1. Estimation strategies

The plug-in estimation of the PME relies on the same elements as the estimation of the Shapley
effects. For the sake of completeness, the classical estimation framework is briefly stated. Following
the two-steps methodology presented in [4], initially developed for Shapley effects’ estimation, one can
estimate the PMEs in two distinct steps:

• Step 1: Estimate the conditional elements, i.e., STA , ∀A ∈ P(D);

• Step 2: Perform an aggregation procedure via a direct plug-in of the estimated conditional ele-
ments in Eq. (15).

Only the aggregation procedure differs between the estimation of the PMEs and the Shapley effects.
It entails that the estimation cost in terms of model evaluations is the same for the PMEs as for the
Shapley effects. Furthermore, both indices can be evaluated “at once” using the same conditional
elements estimates. Two situations the practitioner may encounter are defined.

First, if the practitioner can randomly sample from (i) every possible conditional distribution
of the conditional random variables XA|XA and (ii) every marginal distribution, i.e., to simulate
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i.i.d. observations of XA, for all A ∈ P(D), then the conditional elements can be estimated via a Monte
Carlo scheme. This estimation scheme has been studied and proven to yield consistent estimates in
[44, 5, 10, 24]. This estimation method is applied in Section 2.2 of the supplementary materials on a
toy case, illustrating the correct capabilities of exogeneity detection by PMEs. However, it is essential
to note that the ability (i) to sample from the conditional distributions can be difficult in practice
(especially if the inputs are dependent).

Second, if the practitioner can only access an i.i.d. input-output sample (coming from the joint
distribution of the inputs), they can perform a given-data estimation scheme. Such a scheme has been
proposed in the literature and relies on approximating the conditional samples using a nearest-neighbor
[5]. One can refer to [5, 10, 24] for additional theoretical and computational details on this estimation
method. This estimation method is applied in Section 2.3 of the supplementary materials on a simple
application case containing an exogenous input, illustrating the problem of the bias induced by this
estimation method. Indeed, the PME of the exogenous input is low but not zero.

In both situations, the practitioner must estimate 2d−1 conditional elements, which is exponential
w.r.t. the number of inputs. As stated in [44, 4, 24], some Monte Carlo-inspired methods can require a
number of evaluations proportional to d!(d−1), which may be prohibitive for costly numerical models.
The given-data procedure avoids the need to simulate and evaluate data, but the sheer number of
elements to estimate can render the estimation very long. It is important to note that the Shapley
effects suffer from the same computational burden. However, both indices can be estimated with the
same set of conditional elements, with the only differentiating factor being the aggregation procedures,
which are less computationally expensive in comparison.

Given estimates of every conditional element, i.e., ŜTA for every A ⊆ D, the aggregation procedure
for the PME can be computed using its recursive definition (see, Eq. (15)). It relies on the computation
of the ratio potential, i.e., the function R in Eq. (12).

Ratio potential computation. First, recall that for any value function v, R (∅, v) = 1 and for any i ∈ D,
R (i, v) = v({i}). The computation of R (A, v) can be broken down as follows:

1. Let A ∈ P(D), A 6= ∅, |A| ≥ 2.

2. Compute v(B), for every B ∈ P(A).

3. For m = 1, . . . , |A| − 1:

↪→ For B ⊆ A such that |B| = m:

↪→ Compute R (B, v) = v(B)
(∑

j∈B R(B−j , v)−1
)−1

.

4. Compute R (A, v) = v(A)
(∑

j∈AR(A−j , v)−1
)−1

.

Following this algorithm and given conditional element estimates, one can then compute R
(
A, ŜT

)
for any A ∈ P(D).

Aggregation procedure for PME computation. With the ability to compute the ratio potential R(A, ŜT )
for any A ∈ P(D) and any set function v, one can proceed to compute the PME. First, define the
function, ∀A ∈ P(D):

ζ̂A : P(D \A)→ R+

B 7→ ζ̂A(B) := ŜTA∪B

The aggregation procedure of the PME can then be broken down as follows:

1. Compute ŜTA , for every A ∈ P(D).
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2. Compute K = argmax
A∈P(D) s.t. ŜTA=0

|A|.

3. For every A ∈ K, compute R
(
D \A, ζ̂A

)
.

4. Let RK =
∑
A∈KR

(
D \A, ζ̂A

)−1
.

5. For i = 1, . . . , d:

(a) If i ∈ ∩A
A∈K

, set PMEi = 0.

(b) If i 6∈ ∩A
A∈K

:

i. Compute K−i =
{
A ∈ K : i 6∈ A

}
.

ii. For every A ∈ K−i, compute R
(
D−i \A, ζ̂A

)
.

iii. Let PMEi =
∑
A∈K−i R

(
D−i \A, ζ̂A

)−1 /
RK.

This algorithmic procedure is used in order to estimate PMEs in the following use case.

5.2. Transmittance performance of optical filters

In this use case, inspired by [46], the transmittance of an optical filter is studied. The studied system
comprises 13 layers stacked on each other, each having the same thickness but varying refractive indices.

This filter aims at splitting a light wave into two or more parts, each taking different paths through
the system before coming together. Due to the refraction of the wave on each successive layer of the
system, the paths’ length and amplitude can vary, resulting in varying system transmittance values.
The ability to determine which layer is influential is crucial for optical filters and remains a complicated
problem due to high levels of interaction between the layers. In the literature, previous GSA studies
(see, e.g., [46, 45]) allowed providing some answers but with independence hypothesis between refractive
indices.

In this study, each of the 13 inputs I1, . . . , I13 represents the refractive index error of a layer in the
optical filter, which is assumed to vary uniformly between [−0.05, 0.05]. These errors are correlated,
which may be due to the same deviation in the manufacturing process of the layers. The dependence
structure is modeled using a Gaussian copula, where each pair of inputs exhibit a 0.9 correlation
coefficient.

As depicted in [46], several light waves of varying frequencies are passed through the filter. The
transmittance is then computed for each frequency, and their squared error w.r.t. the “perfect filter”
(i.e., with no error) is computed. The model’s output is the square root over the sum of these squared
errors.

A unique i.i.d. sample of size 1000 of these 13 inputs has been simulated, on which the model’s
output has been computed. A given-data estimation method is used since this model is fairly expensive
to evaluate (then applying the Monte Carlo scheme is not feasible). Hence, the Shapley effects and
PMEs are computed using the nearest-neighbor procedure (see Section 5.1), with an arbitrarily chosen
number of neighbors equal to 6.

5.2.1. Importance quantification

Figure 2 displays the Shapley effects and PMEs estimates. The intervals are the 5% and 95%
empirical quantiles computed on 100 estimation repetitions. For each repetition, both indices have
been estimated on a random selection of 80% of the initial dataset.

The Shapley effects of the different inputs vary between 5% and 11%, while the PMEs vary between
2% and 24%. Even if the Shapley effects of I5 and I9 are slightly larger than the others, no particular
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Figure 2: Shapley effects and PMEs estimates using the nearest-neighbor procedure for the interference filter model.
The vertical error bars represent the 90% intervals of the estimates.

input emerges as predominantly influential, and none emerges as fairly non-influential. However, the
PME is more discriminant in the influence repartition. I5 and I9 stand out as very influential, I4, I6,
I8 and I10 seem to bear some importance, while I1, I2, I3, I7, I11, I12 and I13 can be considered as
non-influential.

This more pronounced discriminating power can be explained by the difference in the redistribution
process of the PMEs and the Shapley effects, especially in this case where the inputs are highly
correlated. It highlights the more discriminatory ability of the PMEs for influence ranking in situations
of highly correlated inputs, where the Shapley effects tend to equalize the influence between the inputs
in this situation.

5.2.2. Input selection and surrogate model performance

The PME values of non influential inputs are not worth zero but are relatively close to zero (the
PMEs of I1 and I13 are smaller than 2%, and the PMEs of I2, I3, I7, I11, and I12 are smaller than 3%).
However, as the nearest-neighbor procedure used to estimate the PME is known to have a bias, we
cannot infer the non-exogeneity of these inputs. To verify if these inputs can be considered spurious,
the impacts of including them in reduced models have to be measured.

The predictive capabilities of three different Gaussian process (GP) surrogate models [40] are
compared. For each model, dimension reduction is performed by selecting subsets of inputs according
to the previously discussed importance rankings:

• GP1 - The inputs are selected with a 5% importance threshold applied on the Shapley effects:
the 13 inputs are kept in the GP. Then, this GP corresponds to the one without dimension
reduction;

• GP2 - The inputs are selected with a 5%-threshold applied on the PMEs: only 6 inputs (I4, I5,
I6, I8, I9 and I10) are kept to train the GP;

• GP3 - The inputs are selected with a 2.2%-threshold applied on the PMEs: 2 inputs (I1 and
I13) are removed from the initial 11 to train the GP.

The three surrogate models are trained on the initial 1000 observations and are parameterized by
a constant trend and a 5/2-Matérn covariance kernel. The parameters have been estimated using a
maximum likelihood scheme, by means of the DiceKriging R package [39].

To measure the predictive power of the models, their “predictivity coefficients” (i.e., the Q2-metric,
see, e.g., [12]) are computed and displayed in Table 4. Removing the two inputs with the lowest PMEs
has a negligible impact on the model predictivity (shortfall in Q2 of less than 0.4%), and removing the
seven inputs with the lowest PMEs has a minor impact on the model predictivity (shortfall in Q2 of
less than 1%).
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Model Number of inputs Selection Threshold Q2

GP1 13 Shapley Effects - 5% 99.48%
GP2 6 PMEs - 5 % 98.79%
GP3 11 PMEs - 2.2% 99.14%

Table 4: Predictivity coefficient of the three GP surrogate models.

This use case clearly illustrates the PMEs’ usefulness in variable selection with highly correlated
inputs for dimension reduction and surrogate modeling purposes. Overall, the PMEs favor the already
influential inputs at the expense of the inputs they are correlated with, while the Shapley effects
equalize importance amongst them. Combined with the ability to detect exogenous inputs, it makes
the PME particularly suitable for screening purposes.

6. Discussion and perspectives

The main contribution of this paper is the adaptation to GSA of the proportional values. An
extension of the original allocation is proposed for Sobol’ cooperative games, leading to novel GSA
indices: the proportional marginal effects. They fundamentally differ from the Shapley effects in two
ways. First, it is proved that they detect exogenous inputs by granting them zero allocation, even
when the inputs are dependent. Second, they are more discriminant than the Shapley values for highly
correlated inputs. They remain intrinsically interpretable as shares of variance of the model’s output.
It is illustrated through analytical toy cases and use cases that the proposed PMEs, used in conjunction
with the Shapley effects, can draw a more precise picture of the intricacies of black-box models.

These indices can be estimated in two ways: based either on a Monte Carlo sampling scheme or given
data using nearest-neighbor procedures. Moreover, their computation relies on the same conditional
elements’ estimations as the Shapley effects: both indices can be computed simultaneously without
additional model evaluations. However, the computational burden associated with their estimation
remains a drawback. They require calculating an exponential number (2d − 1) of Sobol indices. The
same problem has been highlighted for the Shapley effects estimation. An avenue to alleviate some
of the computations would be to use surrogate models to estimate the conditional elements. For
instance, random forests [1] or Gaussian process-based meta-models [26, 2] can be leveraged for that
task, potentially reducing the need for costly numerical model evaluations. Additionally, the bias
induced by using the nearest neighbor estimation method (which is the only one usable in costly
application cases) does not guarantee the detection of exogenous inputs by PMEs. New given-data
algorithms are required.

As seen in this paper, the Shapley effects and the PMEs are designed to extract different insights,
the interest of which depends on the UQ task one is dealing with. While the PMEs are a reasonable
option for factor fixing and factor prioritization, the Shapley effects provide a tool for model exploration
that allows for a good overview of all the inputs that might impact the output, even though it is only
due to correlation with other inputs. Other allocations, such as weighted Shapley values [28] or
proportional Shapley values [7], may be defined with different specific UQ tasks in mind, allowing for
domain-specific tools for more accurate and relevant indices. In the machine learning interpretability
literature, recent works, such as the one of [47] which calls correlation distorsion the Shapley’s joke,
have also proposed modified versions of Shapley values but only in an heuristic way.

Finally, while cooperative game theory is a relevant source for producing novel GSA indices, its
intricacies remain poorly understood by both the UQ and ML interpretability communities. Coopera-
tive games, in general, and the construction of allocations in particular, are inherently player-centric,
while UQ and interpretability studies have historically been model-centric. Even if cooperative game
theory is beneficial to define relevant and interpretable tools for GSA with dependent inputs, further
work must be put into theoretically justifying their use in critical industrial studies.
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Appendix A. Software and reproducibility of results

All the numerical tests have been performed using the R programming language. Every results and
figures presented in this paper can be reproduced by means the openly accessible codes in a GitLab
repository1, as well as details on the packages used.

Appendix B. Proofs

Proof of Theorem 1. Let (D, v) be a nonnegative, monotonic cooperative game, let A ⊆ D be a coali-
tion, and denote |A| the cardinality of A. Denote SA the set of permutations of players in A. Let
π ∈ SA, and for the sake of clarity, denote |π| = |A|, i.e., the number of elements in the permutation.
Moreover, by convention,v (C0(π)) = v(∅) = 0 for any π ∈ SD. By monotonicity, ∀j ∈ {0, . . . , |π| − 1},
one has,

0 ≤ v (Cj(π)) ≤ v (Cj+1(π)) .

For any permutation π ∈ SA, let:

kπ(v) = max {j ∈ {0, . . . , |π|} : v(Cj(π)) = 0}.

For the sake of conciseness and readability, the argument v is omitted and the notation kπ := kπ(v) is
adopted. Let (εp)p∈N be a sequence such that:

∀p ∈ N, εp > 0, and lim
p→∞

εp = 0.

Let
(
(D, vp)

)
p∈N be a sequence of positive, monotonic cooperative games defined, for any p ∈ N and

for any A ⊆ D, as:

vp(A) =

{
εp if v(A) = 0,

v(A) otherwise.

Alternatively, one can notice that, for any A ⊆ D, ∀π ∈ SA, ∀j ∈ {0, . . . , |π|},

vp
(
Cj(π)

)
=

{
εp if j ≤ kπ,
v(Cj(π)) otherwise.

(B.1)

Let p ∈ N, and from the recursive definition of the PV (see, Definition 3) of the positive games (D, vp),
one has, for any i ∈ D:

PVi =

∑
π∈SD−i

∏d−1
m=1 vp (Cm(π))

−1∑
σ∈SD

∏d
m=1 vp (Cm(σ))

−1 .

For the sake of conciseness and clarity, for any π ∈ SA, A ⊆ D, let us introduce the following notation:

Υl
k(π, v) =

{∏l
j=k v (Cj(π))

−1
if k ≤ l,

1 otherwise.

One then has that, for any i ∈ D:

PVi =

∑
π∈SD−i

Υd−1
1 (π, vp)∑

σ∈SD Υd
1(σ, vp)

=

∑
π∈SD−i

Υkπ
1 (π, vp)Υ

d−1
kπ+1

(π, vp)∑
σ∈SD Υkσ

1 (σ, vp)Υd
kσ+1

(σ, vp)

=

∑
π∈SD−i

ε−kπp Υd−1
kπ+1

(π, vp)∑
σ∈SD ε

−kσ
p Υd

kσ+1
(σ, vp)

,

1https://gitlab.com/milidris/PME
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since, from Eq. (B.1), for any π ∈ SA, A ⊆ D:

Υkπ
1 (π, vp) =

kπ∏
j=1

vp
(
Cj(π)

)−1
= ε−kπp .

Denote, for any i ∈ D, k−imax the size of the largest null coalition in D−i, i.e.,

k−imax = max
A∈P(D−i) s.t. v(A)=0

|A|,

and let kmax be the size of the largest null coalition in D, and notice that necessarily,

∀i ∈ D,∀π ∈ SD−i , k−imax ≤ kmax. (B.2)

Moreover, denote, Rmax and R, the two following sets of permutations:

Rmax = {π ∈ SD : kπ = kmax}, and R = {π ∈ SD : kπ < kmax}

Since Rmax ∪R = SD, one has that:∑
π∈SD

ε−kπp Υd
kπ+1(π, v) =

∑
π∈Rmax

ε−kmax
p Υd

kπ+1(π, v) +
∑
π∈R

ε−kπp Υd
kπ+1(π, v)

= ε−kmax
p

( ∑
π∈Rmax

Υd
kπ+1(π, v) +

∑
π∈R

εkmax−kπ
p Υd

kπ+1(π, v)

)
.

Similarly, for any i ∈ D, denote R−imax = {π ∈ SD−i : kπ = k−imax}, and R−i = {π ∈ SD−i : kπ <
k−imax}. Since R−imax ∪R−i = SD−i , one has that:∑

π∈SD−i

ε−kπp Υd−1
kπ+1(π, v) =

∑
π∈R−imax

ε−kπp Υd−1
kπ+1(π, v) +

∑
π∈R−i

ε−kπp Υd−1
kπ+1(π, v)

=
∑

π∈R−imax

ε
−k−imax
p Υd−1

kπ+1(π, v) +
∑

π∈R−i
ε−kπp Υd−1

kπ+1(π, v)

It entails that:

PVi =

∑
π∈R−imax

ε
kmax−k−imax
p Υd−1

kπ+1(π, v) +
∑
π∈R−i ε

kmax−kπ
p Υd−1

kπ+1(π, v)∑
σ∈Rmax

Υd
kσ+1(σ, v) +

∑
σ∈R ε

kmax−kσ
p Υd

kσ+1(σ, v)
.

Denote D̃ = D ∪ {0} and use the convention that R−0 = R. Then, notice that for any i ∈ D̃:

∀π ∈ R−i, kπ < kmax. (B.3)

From Eq. (B.3), one can notice, for any i ∈ D̃:

lim
p→∞

∑
π∈R−i

εkmax−kπ
p Υd−i

kπ+1(π, v) = 0

and additionally, from Eq. (B.2), notice that for any i ∈ D:

lim
p→∞

∑
π∈R−imax

ε
kmax−k−imax
p Υd−1

kπ+1(π, v) =

{∑
π∈R−imax

Υd−1
kπ+1(π, v) if kmax = k−imax

0 otherwise.

Denote:
PV 0

(
(D, v)

)
= lim
p→∞

PV
(
D, vp

)
,
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and notice that, for any i ∈ D:

PV 0
i =


∑
π∈R−imax

Υd−1
kπ+1(π, v)∑

σ∈Rmax
Υd−1
kσ+1(σ, v)

if kmax = k−imax,

0 otherwise.

For any i ∈ D, the condition kmax = k−imax is equivalent to having a coalition A ⊆ D−i such that
|A| = kmax and v(A) = 0. On the other hand, the complement of this condition is that i must be in
every coalition A ⊆ D such that |A| = kmax and v(A) = 0. In the following, the set containing all such
coalitions is denoted K = argmax

A∈P(D) s.t. v(A)=0

|A|.

For any i ∈ D, and assuming that k−imax = kmax, one can notice that R−imax only contains the
permutations π ∈ SD−i such that v (Ckmax(π)) = 0, and by monotonicity, this implies that for any
π ∈ R−imax:

v (C1(π)) = v (C2(π)) = · · · = v (Ckmax−1(π)) = v (Ckmax(π)) = 0,

and that for kmax < k ≤ |π|,
v (Ck(π)) > 0.

For any i ∈ D, denote K−i =
{
A ∈ K : i 6∈ A

}
, and notice that R−imax is necessarily composed of

permutations having permutations of elements in K−i as their first kmax elements. In other words, for
every π ∈ R−imax,

Ckmax
(π) ∈ K−i.

Thus, for any i ∈ D, one has that:∑
π∈R−imax

Υd−1
kπ+1(π, v) =

∑
A∈K−i

kmax!
∑

π∈SD−i\A

Υ
|π|
1 (π, vA)

= kmax!
∑

A∈K−i

∑
π∈SD−i\A

|π|∏
k=1

v(A ∪ Ck(π))−1

= kmax!
∑

A∈K−i

R(D−i \A, vA)−1

where for any B ⊆ D \A, vA(B) = v(A ∪B), and using results from [16] on the ratio potential. This
leads to the following rewriting of PV 0, for any i ∈ D:

PV 0
i =


0 if i ∈ ∩A

A∈K∑
A∈K−i R(D−i \A, vA)−1∑
A∈KR(D \A, vA)−1

otherwise.

Finally, notice that for any positive game (D, v), i.e., , where v is positively valued, then necessarily,
for any permutation and sub-permutations π of players kπ = kmax = 0 and thus K = {∅}. Then for
any i ∈ D, K−i = {∅} and,

PV 0
i =

R(D, v)

R(D−i, v)
= PVi,

and hence the allocation PV 0
(
(D, v)

)
is a continuous extension of PV

(
(D, v)

)
to cooperative games

with nonnegative value function.

Proof of Lemma 1. Let A ⊆ D. First, assume that STA = 0, then necessarily,

V (G(X) | XA) := E
[
(G(X)− E [G(X) | XA])

2 | XA

]
= 0 a.s.
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which can only be attained, by non-negativity of the squared distance, if

G(X) = E [G(X) | XA] a.s.

Now assume that G(X) = E [G(X) | XA] a.s.. Then necessarily,

V (G(X) | XA) = 0 a.s.

implying that STA = 0, which proves Lemma 1.

Proof of Proposition 1. Let E ⊆ D be a subset of variables. Assume that XE is an L2-exogenous
vector. This entails that ∃f ∈ L2(PXE ) such that:

G(X) = f(XE) a.s.

Recall that the conditional expectation of G(X) w.r.t. XE is the unique projection defined as:

E [G(X) | XE ] = argmin
h∈L2

(
PX

E

)E
[
(G(X)− h (XE))

2
]
,

One can notice that, since f ∈ L2(PXE ) and Y = f(XE) a.s., then it necessarily minimizes the
projection of G(X) onto L2(PE), leading to

G(X) = f(XE) = E [G(X) | XE ] a.s.

and by Lemma 1, it entails that STE = 0. Reciprocally, if STE = 0, by Lemma 1, G(X) = f(XE) a.s. with
f(XE) = E [G(X) | XE ] and E is an exogenous vector. Then E is an exogenous vector is equivalent
to STE = 0.

Now let E be the coalition containing all the exogenous variables. Under Assumption 1, E is an
exogenous vector and then, from the previous equivalence, STE = 0. Suppose that there exists another
subset A ⊆ D such that A 6= E and |A| ≥ |E| veryfing STA = 0. Then, A \ (A ∩ E) 6= ∅ and for any
variable i ∈ A \ (A ∩ E), one has 0 ≤ STi ≤ STA = 0 since ST is monotonic w.r.t. set inclusion. Then
STi = 0 and from the previous equivalence, i is an exogenous variable, which is impossible since i 6∈ E
and E contains all the exogenous variables. Then one can not find any coalition A such that |A| ≥ |E|,
A 6= E and STA = 0.

Then, for the value function v = ST , one has that K = argmax
A∈P(D) s.t. v(A)=0

|A| = {E}. Also, from

Theorem 1 one has that PVi = 0⇐⇒ i ∈ ∩A
A∈K

. Then , PMEi = 0⇐⇒ i ∈ E.
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1 Random order model allocations

1.1 Cooperative game theory and allocations

A cooperative game is a tuple (D, v) where D = {1, . . . , d} is a set of d players and v : P(D) → R
is the value function, i.e., an application that maps a value to every possible coalition of players.
Usually, v is assumed to be monotonically increasing, meaning that, for any two sets T and A such
that T ⊆ A ∈ P(D), one has v(T ) ≤ v(A). In other words, the value of a coalition A cannot be
lower than the value of a sub-coalition T ⊆ A. In the following, cooperative games with monotonically
increasing value functions are referred to as “monotonic cooperative games”. Moreover, if the value
function v takes values in R+

∗ (resp. in R+), the corresponding cooperative game is referred to as
“positive (resp. nonnegative) cooperative game“.

One of the key aspects of cooperative games is the notion of allocation. In general, allocations
can be understood as a decomposition of the quantity v(D) in d elements, each one being allocated
to a specific player. When it comes to Sobol’ cooperative games, it translates to assigning a share of
the output’s variance V (Y ) to each input in the model, with limited assumptions on the probabilistic
structure between the inputs (in particular, no independence is assumed between the inputs). Formally,
an allocation can be understood as a mapping φ that associates, to a cooperative game (D, v), a real-
valued vector (φ1, . . . , φd)

> ∈ Rd.
The Shapley values, are a particular example of allocations. For any cooperative game (D, v), it is

uniquely characterized as the allocation φ
(
(D, v)

)
verifying a set of four distinct axioms:

†Sorbonne Université, Laboratoire d’Informatique de Paris 6, 4 place Jussieu, 75005 Paris, France.
‡EDF R&D, 6 Quai Watier, 78401 Chatou, France.
§SINCLAIR AI Lab., Saclay, France.
¶Institut de Mathématiques de Toulouse, 31062 Toulouse, France.
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1. Efficiency:
∑d
i=1 φi = v(D);

2. Symmetry: ∀i, j ∈ D with i 6= j, if v(A ∪ {i}) = v(A ∪ {j}) for all A ∈ P(D), then φi = φj ;

3. Null player: ∀i ∈ D, if v(A ∪ {i}) = v(A) for all A ∈ P(D), then φi = 0;

4. Additivity: If two cooperative games (D, v) and (D, v′) have Shapley values φ and φ′ respec-
tively, then the cooperative game (D, v + v′) has Shapley values φj + φ′j for j ∈ D.

For any cooperative game (D, v), its Shapley values can be expressed analytically, for any i ∈ D, as:

Shapi
(
(D, v)

)
=

1

d

∑

A⊆D−i

(
d− 1

|A|

)−1
[v(A ∪ {i})− v(A)] . (1)

This original formulation attributed to [6] can be interpreted as a weighted average, over every possible
coalition A, of the contribution of a player i to that coalition A. This contribution is quantified by the
quantity v(A ∪ {i}) − v(A), often called the “marginal contribution” of the player i to the coalition
A in the literature. The weighting scheme can be understood as the proportion of permutations
(or orderings) of D such that i appears after the players in A. While this interpretation can be
hard to understand, defining the Shapley values in terms of players permutations allows for a better
understanding of its underlying sharing mechanism, as it is done in the following.

1.2 Random order models

A particular class of allocations, known as random order models [8, 3], allows to define allocations
based on orderings of players, instead of reasoning in terms of coalitions as in Eq. (1). Let SD be
symmetric group on D (the set of all permutations of D). Let π = (π1, . . . , πd) ∈ SD be a particular
permutation, and for any i ∈ D, denote π(i) = π−1i its inverse (i.e., the position of i in π, such that
ππ(i) = i). Then, one can define the following set of players, for any i ∈ {0, . . . , d}:

Ci(π) = {πj : j ≤ i}. (2)

Ci(π) is the set of the i-th first players in the ordering π, with the convention that, for any permutation,
C0(π) = ∅. As an illustration, let D = {1, 2, 3}, and let π = (2, 1, 3) ∈ SD. Then,

π(1) = 2, π(2) = 1, and π(3) = 3.

Moreover,

Cπ(1)(π) = C2(π) = {1, 2}, Cπ(2)(π) = C1(π) = {2}, Cπ(3)(π) = C3(π) = {1, 2, 3}

As their names suggest, random order models endow SD with a probabilistic structure. For any game
(D, v), the set of random order model allocations (or probabilistic allocations) contains every allocation
φ
(
(D, v)

)
that can be written, for any i ∈ D, as:

φi =
∑

π∈SD
p(π)

[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]

= Eπ∼p
[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]

where p is a probability mass function over the orderings of D. For a player i, its random order
allocation can be interpreted as the expectation over the permutations π of D with respect to p, of the
marginal contributions of i to the coalitions formed by Cπ(i)−1(π). The random order model allocations
are always efficient and, when dealing with monotonic games, nonnegative (i.e., φi ≥ 0 for any i ∈ D)
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[8]. The Shapley values, in particular, can be expressed as a random order model allocation, under
the particular choice of p as a discrete uniform distribution over SD, which echoes Eq. (1):

Shapi
(
(D, v)

)
=

1

d!

∑

π∈SD

[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
. (3)

Random order models allow to apprehend allocations dynamically (see Section 1.3), meaning that
coalitions are formed regarding orderings, as opposed to the pure coalition point of view displayed
in Eq. (1). In this setting, Shapley values can then be understood as a maximum entropy a priori
(i.e., uniform over SD) about this dynamic. In the light of this equivalent expression, L. S. Shapley
himself interpreted the Shapley values as “[...] an a priori assessment of the situation, based on either
ignorance or disregard of the social organization of the players” [7].

1.3 Random order model allocations and dual games

The notion of the dual of a cooperative game is also of interest in the present paper. On the one hand,
under the game theory paradigm presented previously, the aim of the value function v is to quantify
the “value produced” by a coalition of players (e.g., the monetary value). On the other hand, the dual
of a cooperative game focuses on the “worth”, or “bargaining power” of a coalition, i.e., the shortfall
in value due to a coalition [2, 3]. The dual of a cooperative game (D, v) is usually denoted by (D,w)
where w is defined, for any A ∈ P(D) as:

w(A) = v(D)− v(D \A). (4)

The quantities w(A) are often referred to as the marginal contribution of a coalition A to the grand
coalition D in the literature, and is often interpreted as a measure of how crucial a coalition is in
producing v(D). For the sake of conciseness, in the following, one refers to w(A) as the marginal
contribution of the coalition A. The dual (D,w) of (D, v) is also a cooperative game, and thus one can
seek to construct relevant allocations for this game.

Following up this idea of dual game, one can draw a parallel between random order model allocations
and the well-known “forward” and “backward” variable selection procedures. Figure 1 illustrates this
similarity. Formally, one can notice that, for a player i and any permutation π ∈ Sd, one has:

w
(
Cπ(i)(π)

)
− w

(
Cπ(i)−1(π)

)
= v

(
D \ Cπ(i)−1(π)

)
− v

(
D \ Cπ(i)(π)

)
. (5)

A random order model allocation of the dual of a cooperative game can be understood as the expected
(with respect to a probability mass function p over SD) marginal contribution of a player i to the
players that follows in the orderings’ dynamic, whereas for the initial cooperative game, it is the
expected marginal contribution of i to the players that precedes in the orderings’ dynamic.

It is important to note that the Shapley values of a cooperative game are equal to the ones of
its dual (see, [4] Lemma 2.7), however, this behavior do is not intrinsic to every random order model
allocation.

2 Additional use-cases

2.1 Analytical toy-case : Unbalanced linear model

Beyond the detection of exogenous inputs, the Shapley effects and the PMEs fundamentally differ on
their redistribution process. While the Shapley effects allocate importance in an egalitarian fashion, the
PME follows a proportional principle. This toy-case aims at highlighting this difference, by introducing
a coefficient in a linear model with three correlated Gaussian inputs. This use-case is referred to as
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v
(
Cπ(i)(π)

)
− v

(
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)
v
(
D \ Cπ(i)−1(π)

)
− v
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D \ Cπ(i)(π)

)
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Figure 1: Analogy between random order model allocations and the forward-backward procedures
for D = {1, 2, 3}: (a.) represents the allocation of a cooperative game as a forward procedure; (b.)
illustrates the allocation of its dual as a backward procedure. The allocation of player 1 (resp. player
2 and 3) is the expected marginal gain (for a cooperative game (D, v)) or cost (for its dual (D,w))
computed for the blue (resp. red and green) ordering positions, weighted according to a probabilistic
distribution over SD.

unbalanced since the three linear coefficient are different. This toy-case writes:

Y = G(X) = X1 + βX2 +X3, X =



X1

X2

X3


 ∼ N






0
0
0


 ,




1 0 0
0 1 ρ
0 ρ 1




 , (6a)

V (Y ) = 2 + β2 + 2ρβ. (6b)

The analytical shares of output variance, according to the Shapley effects and the PMEs, are given
in Table 2.1.

V (Y )× Sh1 = 1 V (Y )× PME1 = 1

V (Y )× Sh2 = β2 + βρ+ 1
2ρ

2(1− β2) V (Y )× PME2 = β2(1+β2+2ρβ)
(1+β2)

V (Y )× Sh3 = 1 + βρ− 1
2ρ

2(1− β2) V (Y )× PME3 = (1+β2+2ρβ)
(1+β2)

Table 1: Reference analytical values for Shapley effects and PMEs (toy-case 2.1).

One can notice that, by considering the balanced case (i.e., β = 1), the Shapley effects and PMEs
are equal. However, as soon as the model is unbalanced, one can notice that both allocations behave in
a completely different fashion as soon as ρ approaches 1. Using an asymptotic-analysis-based reasoning,
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one can obtain the following set of resulting approximation:

Sh1 = PME1 −−−→
ρ→1

1

2 + β2 + 2β
−−−−→
β→∞

0, (7a)

Sh2,Sh3 −−−→
ρ→1

1
2β

2 + β + 1
2

2 + β2 + 2β
−−−−→
β→∞

1

2
, (7b)

PME2 −−−→
ρ→1

β2(1 + β2 + 2β)

(2 + β2 + 2β)(1 + β2)
−−−−→
β→∞

1, (7c)

PME3 −−−→
ρ→1

(1 + β2 + 2β)

(2 + β2 + 2β)(1 + β2)
−−−−→
β→∞

0. (7d)

In other words, in extreme cases of positive linear correlation between X2 and X3, the Shapley effects
allocates half the importance to each input despite a fairly high β value in favor of X2. The PMEs, on
the other hand, tend to favor X2 by granting it the whole variance, despite the high correlation with
X3. This behavior highlights the “egalitarian vs. proportional” behavior of both types of effects: the
Shapley effects tend to consider X2 and X3 as equally important due to their high correlation, while
the PMEs favor X3 in regards of its high linear coefficient.

While these results inform on the asymptotic behavior of both indices, their difference can also be
highlighted for punctual values of ρ and β. Figure 2 illustrates the behavior of both indices w.r.t. ρ,
for two different values of β (namely, 2 and 10). Whenever β = 2, one can notice that PME2 increases
w.r.t. ρ, while Sh2 decreases after ρ ' −0.24, and both indices are concave w.r.t. ρ. On the other hand,
Sh3 is convex w.r.t. ρ and becomes increasing at ρ ' −0.54, while PME3 remains concave increasing.
At extreme values of ρ (i.e., close to −1 or to 1), one can notice that Sh2 and Sh3 are considered
equally important. Furthermore, one can notice that PME2 > PME3, whatever the magnitude of their
correlation. Increasing β to 10 exacerbates this behavior of the Shapley effects. However, the PMEs
behave differently: X1 and X3 are given a negligible part of variance, while X2 is granted a seemingly
constant share, w.r.t. ρ, hovering around 98%.

In conclusion, in this unbalanced case, the proportional redistribution property of the PME allows
for a clearer importance hierarchy, even in situation of extreme correlation. On the other hand, the
Shapley effect tends to the even importance out between the correlated inputs, leading to a potentially
indecisive importance hierarchy.

2.2 Modified Ishigami model with a correlated exogenous input

In order to further study the behavior of the PME, the Ishigami model, well-known in GSA (see, e.g.,
[1]), is first considered. The Ishigami model is given by

G(X) = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1).

In our study, the following probabilistic structure of the inputs is considered:

X =



X1

...
X4


 ∼ N







0
...
0


 ,




(π/3)2 0 0 ρ
0 (π/3)2 0 0
0 0 (π/3)2 0
ρ 0 0 (π/3)2





 .

One can notice that X4 is, by design, an exogenous input, but it is linearly correlated to X1 by means
of the parameter ρ ∈ (−1, 1). The Shapley effects and the PMEs are estimated using a Monte Carlo
procedure, with chosen sample sizes Nv = 105, No = 2 × 103 and Ni = 300, for various values of
ρ (from −0.99 to 0.99 with a step of 0.01). Each Monte Carlo estimation has been independently
repeated 200 times in order to obtain confidence intervals. The results are provided in Fig. 3.
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Figure 2: PMEs and Shapley effects w.r.t. ρ (toy-case 2.1). Top row depicts the allocations for β = 2
while the bottom row is for β = 10.

First, one can notice a strong influence of X2, whose PMEs and Shapley effects are equal and
constant along ρ. This result is expected, since X2 has no interaction or correlation with other inputs
in the Ishigami model, and hence its importance should not be subject to variation w.r.t. the correlation
intensity. Second, focusing on X1 and X4, one can notice the same behavior of the Shapley effects as
depicted previously. Despite the fact that X4 is exogenous, in situation of extreme correlation, Sh4

can be as high as Sh1, which echoes the results in [5], but effectively grants a zero allocation to X4

whenever both inputs are independent (i.e., ρ = 0). However, their PMEs differ, in the sense that
PME1 is constant w.r.t. ρ, while PME4 is equal to zero whatever the correlation value. Hence X4 is
effectively detected as being exogenous. Third, one can notice that Sh3 does vary w.r.t. ρ, which can
be understood by the fact that X3 interacts with X1 in the model, which is itself correlated to X4.
However, since the PMEs detects X4 as being exogenous, PME3 remains constant w.r.t the correlation
structure. Finally, focusing on X3 and X1 whenever ρ = 0 (i.e., the inputs are independent), one
can notice that Sh1 > PME1, and Sh3 < PME3. This can be understood as the expression of the
proportional versus the egalitarian redistribution schemes. While the Shapley effects effectively grants
half the interaction surplus to both inputs, the PMEs tend to favor X3. This can be understood by
the fact that X1 does not have an overwhelmingly higher overall effect on G than X3.

Overall, the PMEs are less sensitive to the correlation of exogenous inputs than the Shapley effects.
In conclusion, this toy-case highlights further the fact that both effects are complementary when it
comes to a more precise interpretation of the model when its inputs are correlated. It reinforces the
previously found behavioral tendencies in a less straightforward model.

References

[1] S. Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis. Theory
and Practice in R. SIAM, 2021.

6



−1.0 −0.5 0.0 0.5 1.0

0.
05

0.
10

0.
15

0.
20

0.
25

X1

ρ

S
ha

re
 o

f o
ut

pu
t v

ar
ia

nc
e

−1.0 −0.5 0.0 0.5 1.0

0.
79

0
0.

80
0

0.
81

0
0.

82
0

X2

ρ

S
ha

re
 o

f o
ut

pu
t v

ar
ia

nc
e

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

X3

ρ

S
ha

re
 o

f o
ut

pu
t v

ar
ia

nc
e

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

X4

ρ
S

ha
re

 o
f o

ut
pu

t v
ar

ia
nc

e

PME Sh

Figure 3: PMEs and Shapley effects for the Ishigami model with a spurious variable, with respect to
the correlation coefficient ρ between X1 and X4. The grey and red areas around the solid plots give
the 95%-confidence intervals of the estimates.

[2] B. E. Feldman. Relative Importance and Value. SSRN Electronic Journal, 2005.

[3] B. E. Feldman. A Theory of Attribution. SSRN Electronic Journal, 2007.

[4] Y. Funaki. Dual axiomatizations of solutions of cooperative games, January 1996. preprint.

[5] B. Iooss and C. Prieur. Shapley effects for sensitivity analysis with dependent inputs: comparisons
with Sobol’ indices, numerical estimation and applications. International Journal for Uncertainty
Quantification, 9:493–514,, 2019.

[6] L. S. Shapley. Notes on the n-Person Game – II: The Value of an n-Person Game. Research
Memorandum ATI 210720, RAND Corporation, Santa Monica, California, August 1951.

[7] L. S. Shapley. A value for n-person games. In H. Kuhn and A. W. Tucker, editors, Contributions
to the Theory of Games, Volume II, Annals of Mathematics Studies, chapter 17, pages 307–317.
Princeton University Press, Princeton, NJ, 1953.

[8] R. J. Weber. Probabilistic values for games. In A. E. Roth, editor, The Shapley value: essays in
honor of Lloyd S. Shapley, chapter 7, pages 101–120. Cambridge University Press, New York, NY,
1988.

7


	Introduction
	Cooperative game theory for variance-based global sensitivity analysis
	Analogy between allocation and variance-based GSA indices
	Detecting exogenous inputs

	From proportional values to proportional marginal effects
	Proportional values as an alternative allocation strategy to Shapley values
	Extension of proportional values to nonnegative games
	Proportional marginal effects and exogeneity detection

	Illustration on analytical cases
	A linear model with an exogenous input
	Unbalanced linear model with interactions
	First conclusions

	Estimation and numerical results
	Estimation strategies
	Transmittance performance of optical filters
	Importance quantification
	Input selection and surrogate model performance


	Discussion and perspectives
	Software and reproducibility of results
	Proofs
	Random order model allocations
	Cooperative game theory and allocations
	Random order models
	Random order model allocations and dual games

	Additional use-cases
	Analytical toy-case : Unbalanced linear model
	Modified Ishigami model with a correlated exogenous input


