N

N

Consistent Ontologies Evolution Using Graph Grammars

Mariem Mahfoudh, Germain Forestier, Laurent Thiry, Michel Hassenforder

» To cite this version:

Mariem Mahfoudh, Germain Forestier, Laurent Thiry, Michel Hassenforder. Consistent Ontologies
Evolution Using Graph Grammars. International Conference on Knowledge Science, Engineering and
Management (KSEM), Aug 2013, Dalian, China. pp.64 - 75, 10.1007/978-3-642-39787-5_6 . hal-
03825909

HAL Id: hal-03825909
https://hal.science/hal-03825909
Submitted on 23 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03825909
https://hal.archives-ouvertes.fr

Consistent Ontologies Evolution
Using Graph Grammars

Mariem Mahfoudh, Germain Forestier, Laurent Thiry, and Michel Hassenforder

MIPS EA 2332, Université de Haute Alsace
12 rue des Freéres Lumiere F-68093 Mulhouse Cedex
{mariem.mahfoudh, germain.forestier,laurent.thiry,michel.hassenforder}@
uha.fr

Abstract. Ontologies are often used for the meta-modelling of dynamic
domains, therefore it is essential to represent and manage their changes
and to adapt them to new requirements. Due to changes, an ontology may
become invalid and non-interpretable. This paper proposes the use of the
graph grammars to formalize and manage ontologies evolution. The ob-
jective is to present an a priori approach of inconsistencies resolutions to
adapt the ontologies and preserve their consistency. A framework com-
posed of different graph rewriting rules is proposed and presented using
the AGG (Algebraic Graph Grammar) tool. As an application, the ar-
ticle considers the EventCCAlps ontology developed within the CCAlps
European project.

Keywords: ontologies, graph grammars, evolution, rewriting, ontology
changes, category theory, AGG.

1 Introduction

Designed as a response for vocabulary heterogeneity problems and semantic am-
biguities of data sources, ontologies play the role of a semantic structure that
represents and formalizes human knowledge of a specific domain. As they are
often used for meta-modelling of dynamic domains, they constantly require to
adapt to knowledge evolution. However, this evolution presents several chal-
lenges, especially in the changes definition and consistency preservation of the
modified ontology. In fact, a misapplication of a change can alter the consistency
of an ontology by affecting its structure and/or its semantic. This promotes the
need to formalize the process of evolution.

This work proposes the use of graph grammars, based on algebraic approaches
to express and manage ontologies evolution. Graph grammars are a rigorous
formal method, allowing the verification of the feasibility of ontology changes.
Thanks to their application conditions, they avoid the execution of changes that
do not satisfy a set of constraints. They also offer many tools such as AGG
(Algebraic Graph Grammar) which provides a simple environment for defining
rewriting rules, helping the user to easily express his needs. Thus, the main

This is the author’s version of an article published at KSEM 2013. The final authenticated version
is available online at: https://doi.org/10.1007/978-3-642-39787-5_6

https://doi.org/10.1007/978-3-642-39787-5_6

2 M.Mahfoudh and al.

objective of this work is to present a formal method for managing ontology
changes and ensuring the consistency of the modified ontology.

This paper is organized as follows: section 2 presents the ontologies changes
and the graph grammars. Section 3 proposes the formalization of ontology changes
with graph grammars. Section 4 presents an application using the ontology EC-
CAlps which has been developed in the context of the European project CCAlps.
Section 5 shows some related works. Finally, a conclusion summarizes the pre-
sented work and gives some perspectives.

2 Ontology changes and Graph Grammars

2.1 Ontology changes

Ontologies are commonly defined as a ”specification of a conceptualization” [1].
They are composed by a set of classes, properties, individuals and axioms and
they often need to evolve to integrate and reuse knowledge. Different classifica-
tions of ontology changes have been proposed [2,3]. One of the most widely used
[4] distinguishes two types:

1. Elementary/basic changes: represent primitive operations which affect a sin-
gle ontology entity, e.g. addition, deletion and modification;

2. Composite/complex changes: are composed of multiple basic operations that
together constitute a logical entity, e.g. merge or split of classes.

Whatever its nature (basic or complex), an ontology change should be formal-
ized in order to properly identify its inputs, its outputs and the inconsistencies
that it is likely to generate. In this work, the ontology is considered as a graph
G = (V, E) where V is a set of vertices which represent classes, individuals, etc.
E is a set of edges which represent axioms. Thus, an ontology change can be
expressed and formalized as a graph rewriting rule r : G — G'.

2.2 Graph grammars

Definition 1 (Graph Grammars). A graph grammar (GG) is a pair composed
of an initial graph (G) called host graph and a set of production rules (P) also
called graph rewriting rules or graph transformation.

A production rule P = (LHS, RHS) is defined by a pair of graphs:

— LHS (Left Hand Side) presents the precondition of the rule and describes
the structure that has to be found in G.

— RHS (Right Hand Side) presents the postcondition of the rule and should
replace LHS in G.

Graph grammars can be typed (TGG) and is defined as: TGG = (Gr, GQG)
where Gr = (Vr, ET) is a type graph which represents the type information
(type of nodes and edges). The typing of a graph G over Gr is given by a total
graph morphism ¢t : G — Gy wheret : E — Ep and t: V — Vp.

Ontologies evolution 3

The graph transformation defines how a graph G can be transformed to a
new graph G’. More precisely, there must exist a morphism (m) that replaces
LHS by RHS to obtain G’.

There are different graph transformation approaches to apply this replacement,
as described in [5]. The algebraic approach [6] is based on category theory with
the pushout concept.

Definition 2 (Category Theory). A category is a structure consisting of:

1. a collection of objects O;

2. a set of morphisms M and a function s : M — O x O, s(f) = (A, B) is noted
f:A— B;

3. a binary operation, called composition of morphisms (o) : M x M — M;

4. an identity morphism for each object id : O — O.

The composition of f : A — B and g : B — C is associative and is written
gof:A—C.

Definition 3 (Pushout). Given three objects A, B and C and two morphisms
f:A— Band g: A— C. The pushout of B and C consists of an object D and
two morphisms m, : B — D and my : C — D where mjo f = mgog.

The algebraic approach is divided into two sub-approaches: the Single pushout
SPO [7] and the Double poushout DPO [8]. In this work, only the SPO approach
was considered as it is more general (e.g. without the gluing condition) and suffi-
cient to represent the different ontology changes. Therefore, applying a rewriting
rule (r) to an initial graph with the SPO method, consists in (Figure 1):

1. Find LHS in G using a morphism m : LHS — G.

2. Delete LHS — (LHS N RHS) from G.

3. Add RHS—(LHSNRHS) to G. This operation is done by the construction
of a pushout and gives a new version G’ of G.

LHS . RHS
B@—@®D > BT‘E
F

m

my
A B D m, A B E
v—m 'W
o
C G C o F

Fig. 1. Application of a rewriting rule graphs with the SPO approach.

4 M.Mahfoudh and al.

AGG tool Several tools have been proposed to support graph rewriting as
AGG [9], Fujaba [10] or Viatra [11]. The AGG tool is considered as one of the
most important tools. It supports the algebraic approach and typed attributed
graphs. The AGG environment provides graphical editors for graphs and rules.
It also allows to add the NACs (Negative Application Condition) which specifies
a subgraph that may not occur when matching a rule. It is important to note
that the internal graph transformation engine can also be used by a Java API
and thus, be integrated into other custom applications.

3 Formalisation of ontology changes

This section introduces the definition and formalisation of ontology changes using
typed graph grammars. The first step consists in creating the type graph which
presents the meta-model of the ontology. The next step defines the ontology
changes under the form of graph rewriting rules (ry, 7o, ...7,,).

3.1 Type graph

In this article, OWL was chosen to describe ontologies since it is the standard
proposed by the W3C, and the language usually adopted to represent ontologies.
However, other languages can be considered by using converters®.

Figure 2 shows the representation of OWL meta-model with AGG (Gr).
The OWL meta-model [12] defines the basic conceptual primitives of OWL
which are classes, properties (ObjectProperty and DataProperty), individu-
als, axioms (disjointWith, equivalentTo, etc.). The classes model the set of
individuals and it can be primitive or complex (UnionClass, ComplementClass,
IntersectionClass). The ObjectProperty models the relationship between
classes (Domain and Range) whereas the DataProperty link a class (Domain)
to a Datatype. All these primitives are represented as nodes and each of them
have two attributes inherited from the class Entity. The attribute name specifies
the name of the local entity, while the attribute iri (Internationalized Resource
Identifier) allows to identify and to reference them. The Gr also defines the re-
strictions which are a particular type of class description. There are two types:
restriction values (AllValuesFrom, SomeValuesFrom, HasValue) and cardinal-
ity (CardinalityRestriction). Axioms are represented as edges expressing the
relationships between classes, properties and individuals. For example, the edge
disjointWith represents the disjunction between two classes or two properties.

3.2 Ontology changes with graph grammars

Adapting an ontology to new requirements consists in modifying its structure.
However, these changes can cause inconsistencies which require the application of
derived changes to correct them. This section describes how consistently express

Ontologies evolution 5

ohjecProperyAssertion

dataPropertyAssertion

trirgrvatore

Entity

Sting i K TVETsETe
String name v

entTo
twVith
ObjectProperty -
domain |Peolean inverseFunctional
hoolean transitive

boolean asymmetric
hoolean irreflexive

memheraf

subClassor

equivalentTo
disjointwitl

v
i DataPropary ™

Property "
hoolean functional

Ca\dmalleesluclmn'
String type
int value

UnionClass

IntersectionClass ™

hasValue

hasValue

Fig. 2. Type Graph used for graph rewriting.

some ontology changes using graph grammars. In this paper, only elementary
changes were considered (Figure 3).

Definition 4 (Ontology changes). An ontology change is formalized by 5-
tuplet CH = (Name, NAC, LHS, RHS, CHD) where:

1. Name specifies the type of change;

2. NAC defines the condition which must not be true to apply the rewriting
rule;

3. LHS presents the precondition of the rewriting rule;

. RHS defines the postcondition of the rewriting rule;

5. CHD presents the derived changes. They are additional operations that could
be attached to CH to correct its inconsistencies.

>~

Inconsistencies addressed in this work are:

— Data redundancy can be generated following an add or rename operation.
This type of inconsistency is corrected by the NACs.

— Isolated node, a node N, called isolated if VN; € N, AV; € V|V; = (N, N;).
This incoherence requires to link the isolated node to the rest of the graph.
Depending of the type of node, derived changes are proposed.

— Orphan individual is an inconsistency which is generated as a result of re-
moval of classes containing individuals.

— Axioms contradiction, the addition of a new axiom should not be accept if
it contradicts an axiom already defined in the ontology. Such verification is
necessary to maintain the semantics of the evolved ontology.

! owl.cs.manchester.ac.uk/converter

6 M.Mahfoudh and al.

Add

Class, Individual R
Entit emove
y< Property (ObjectProperty, DataProperty)

Rename

AxiomClass (subClassOf, equivalentTo, disjointWith)

AxiomProporty (subProperty, equivalentTo,
CH — Axiom disjointWith, inverseTo)
AxiomIndividual (equivalentTo, disjointWith)
AssertionIndividual (AssertionObjectProperty, Add
AssertionDataProperty)

RestrictionValue (allValuesFrom, Remove
Restriction < someValuesFrom, hasValue)
CardinalityRestriction

Fig. 3. Elementary changes.

Thus, the RenameObjectProperty(OBIRI, OBIRINew) change consists in the
renaming of a node ObjectProperty (OB). Then, three graphs should be cre-
ated: 1) the LHS consisting of a node 0B where its attribute iri is equal to
OBIRI; 2) the RHS consisting of a node 0B where its attribute iri is equal to
OBIRINew; 3) the NAC is equal to RHS to prevent the redundancy (Figure 4).

GraGras

) notExist 4| CHRenameObjectProperty of RenameObjectProperty
T @ RenameObjectProperty

(]

* [EmlOntologyMetamodel ObjectProperty | || [1onjectPropeny] || [1:objectPropery]

% Ontology if="0BIRINew'| | | |in="0BIRI | [[r="oBRINew |
¢ [L*R] [0]CHRenameObjectProperty | - : :
HEL NotExist : : A

Fig. 4. Rewriting rules of the RenameObjectProperty change.

The AddClass(Cnew) change allows the add of a new node of type Class in
the host graph G (Cnew € G At : Cnew — Viiass). The rewriting rule consists
of three graphs: 1) LHS = ©; 2) RHS = Cnew; 3) NAC = RHS = Cnew;
the NAC should be equal to RHS to prevent data redundancy. Besides, a node
should not be isolated. To attach a node of type Class to the graph, two types
of correction can be applied: AddObjectProperty or AddAxiom. The first one
consists in adding a new property where the node Cnew is one of its member. The
second inserts a new axiom to link Cnew to an existing property (addDomain,
addRange) or connect it to another node of type Class applying the changes
AddEquivalentClass, AddDisjointClass, AddSubClass, etc.

Ontologies evolution 7

Figure 5 shows the rewriting rules of the AddClass change followed by some
derived changes. They are classified by layers to define the sequence of their
application: the user can select by a simple activation the derived changes which
he wishes to apply.

GraGras NotExist 4/CHAddClass of AddClass otExist 4|CHD_ObjectProperty1 of AddClass
¢ @ AddClass : i i {
1 1.Class 1.Class
** [EmmiOntologyMetam... Class s - o
:] ass T
% Ontology name="Crew’ | {name="Crew pame="Cnew] domain rame=oner| | | 22 Cnew) domin

¢ LR] [0]CHAddClass ir="cirt | =i bjectProperty iri="Ciri" ObjecPropery

1@ NotExist A name="0Phlew’" ! o - :
name="0PNew’

[[D][0]CHD_ObjectProperty1 : ir="0PNewlRl" iri="OPhewIRI
HEE NotExist i 2Chass [range iacr‘ﬂa:jv fangE

o~ [[+R] [D][0]CHD_ObjectProperty2] name=C' il

¢ [0]CHD_AddDamain]

HNotExist HotExist NotDisjointSubClass NotConflicting [/[CHD_AddSubClass of AddClass

[[DJ[0]CHD_AddRange :

¢~ [GPR] [0]CHD_AddEquivalentClass 1.Class 1.Class [1:Class_| l2chss | | [tclass | [1-class_] 1:Class

[[0]CHD_AddDisjointClass name="C" name="C' \name:“c“| ‘HBWF“CHEW" \name:"c“| |name=“C"‘ name="C"

9 [0]CHD_AddSubClass Hisjointiith kubClassof
l@? NotExist subClassOf bClassO)

hClassof UbClassOf]

HRY Notdisioit subicass 2Chss
HEY NotDisjointSubClass 2Class 2Class [2Class | [name="Crew’| || [class |
HEY NotConficting name="Cnzw| | [name="Cnew’ name=Caw’ hame="Cneaw’

- [D][0]CHD_AddSupClass

Fig. 5. Rewitting rules of the AddClass change.

The AddDisjointClass (C1, C2) change adds a disjunction axiom between
two nodes of type Class (see Figure 6). Thus, three NACs are defined to verify
the absence of edges of the type: 1) disjointWith to avoid redundancy; 2)
equivalentTo, two classes can not be disjoint and equivalent at the same time; 3)
subClass0f, two classes what share a subsumption relation can not be disjoints.

GraGras : NotExist HotEquivalent NotSubClassOf NotsupClassOf ¢|CHAddDisjointClass of AddDisjointClass
¢ @ AddDisjointClass : i f
‘* Emm]OntologyMetam... || | [1Class 1 Class _ [1:Class | [tChss | [i:clss | [tClass |
. Ontology | [name="c1" name='C1 |name="C1" |name="c1"| | [name=c1"| |name="C1"|
¢ L*R] cHAddDisjointClass | - L : o
HEE Wotkxist : disjaintAith quivalzniTo sunClassOf KubClassOf | disjointivith
HEL NotEquivalent : Y I [:
I@Z NotSubClassOf | l2class 2 Class 2Class 2Class
1@ NotSupClassOf | |name="C2" name=07 name="c2" Rame="C2"

Fig. 6. Rewriting rule of AddDisjointClass change.

The RemoveClass(C) change. The application of this type of change may
cause some inconsistencies such as the existence of orphans individuals or the
lack of restriction members. Thus, before deleting a node, all its dependencies
(its axioms) should be checked to propose correction alternatives. Indeed, the

8 M.Mahfoudh and al.

restriction should be deleted whereas the processing of individuals goes through
different steps illustrated in Figure 7. Then, before deleting a class C defining
individuals (I memberOf C), it should check: 1) If C' subClassOf C, A VC;
subClassOf Cp A \disjointWith C. Then, I memberOf Cp; 2) Else If 3C; € G
where C; equivalentTo C. Then, I memberOf C;; 3) Else if 3I; € G where I;
memberOf C; A I; equivalentTo I. Then, I memberOf C;; 4) If none of these
cases is satisfied, the orphans individuals will be deleted from G.

Nac 1] CHD_Removelndividual_cas1 of RemoveClass 1 CHD_Removelndividual_cas? of RemoveClass
¥ 4

4
¥
: EquivalentTor———
[3:Class] YT
k 1.Class
memberof [name="c"
Individual

‘member0f

2Individual

subClassOf subClassOf

2

berQf -
’ disjaintAfith 7o member Zindividual
name="C" ZiIndividual

[CHD_Removelndividual_cas3 of RemoveClass 4| CHD_Removelndividual_cas4 of RemoveClass
14 " []
¥ _5 v

1:Class
name="C"
A

1.Class
member0f name="C" name=C"

| [zinavidual o Individual o

Fig. 7. Processing of Removelndividual of the RemoveClass change.

1:Class

ImemberQf

aquivalentTo

ZIndividual

4 Application

This work was developed in the frame of the CCAlps European project? which
aims at providing an infrastructure to facilitate the collaboration between the
creative industries and regions.

In this context, four OWL ontologies have been proposed: EventCCAlps,
HubCCAlps, CompanyCCAlps and RegionCCAlps. The EventCCAlps ontology
defines the concepts of the events. It presents the characteristics of an event (de-
scription, location, time, etc.) and its different relationships with other concepts
(Company, Region, Hub, etc.). EventCCalps is based on the Event Ontology [13]
and the Linking Open Descriptions of Events [14].

As an example of transformation, this section presents the deletion of the Employee
class. In order to start the process of transformation and apply the rewriting
rules, the ontology should be converted into an AGG graph. Indeed, two pro-
grams (OWLToGraph and GraphToOWL) have been developed to automate the
transformation of OWL to AGG and vice versa. They are based on the AGG
API and Jena library®, an open source API to read and manipulate ontologies

2 www.ccalps.eu, the project reference number is 15-3-1-I1T
3 jena.sourceforge.net

Ontologies evolution 9

described in OWL, RDF and RDFS.
Figure 8 shows a result of the transformation of EventCCalps. Note that for
reasons of readability the IRI have been removed from the figure.

tion subClassOf Class member0f
Class name="Employee' 4 Individual
name="Persan"

memberdf name="mariem"

MEmTere

- Individual
ObjectProperty membeTo
name="definedBy" vl
SomeValueFrom anfeaperty domain %
name="organizsdhy description="subClass0f"

on / range Tame

ontiass range

domain ObjsctProperty ‘ Class ___ Individual
hasRestriction domain name="proposedBy" o Ll Tag name="michel"
ObjectProperty domain }
name:“staﬁedA‘"l‘H Class domain
thomTTai

DataType
name="string"

OhjectProperty
name="hasTags"

DataProperty
name="country"

memberof ObjzciPropery |
name="createdBy”
Individual wnae

as) {on name="s_a_5tart' Class
doprdin s _HasRestricon |name="Region" |

ranisc

Fig. 8. An extract from EventCCAlps ontology after transformation to AGG graph.

The Employee class has different individuals: mariem, laurent, germain and
michel. It is a subClassOf the Person class and there is no class in the ontol-
ogy which inherits from Person class and it is, in the same time, disjoint with
the Employee class. Then, the RemoveClass change invokes the derived change
Removelndividual and attaches the individuals to the Person class. In this way,
the individuals and the knowledge can be saved without affecting the consis-
tency of the ontology. Figure 9 shows the definition of this change with AGG
and the Figure 10 presents the result of the transformation. This simple example
illustrates how the presented work could be used to manage ontology evolution.

5 Related work

Ontologies evolution is often confused with the filed of database schemas evo-
lution. In fact, many issues in ontology evolution are exactly the same as the
issues in schema evolution. However, there are several differences between them.
Instead of comparing directly the process of evolution, ontologies and database
schemas evolutions are generally compared through an analyses of the differences
between the ontology and the database schemas.

Noy and al. [15] have summarized this difference by the following points:
1) Ontologies themselves are data to the extent to which database schemas
have never been. So, ontologies evolution must consider both the structure and
instances of the ontologies; 2) Ontologies themselves incorporate semantics while
database schemas do not provide explicit semantics for their data. Then, the
restrictions must be considered in the ontology evolution process; 3) Ontologies

10 M.Mahfoudh and al.

fraGras Nac {[CHD_Removelndividual_cas3 of RemoveClass
[@ RemoveClass : ' :
Y’ [Emm]OntologyMetamodel : ; E

Y‘ Ontology
[0]CHD_RemoveRestriction_casd
[0]CHD_RemoveRestriction_cas22
[0]CHD_RemoveRestriction_cas21
[0]CHD_RemoveRestriction_cas3
]
]

=4

1:
name="Employeg"

subClassOf

suhClassor, SubClassOf

name="Employeg"

disjointWith

1.Class

name="Employee’ member0f

2Individual

=]

CHD_RemoveRestriction_cas11
[0]CHD_RemoveRestriction_cas12
[1]CHD_Removelndividual_cas1 :

+ E*RI[MicHD R Individual cas3 -} CHRemoveClass of RemoveClass

l@: Nac :

CHD_Removelndividual_cas4
CHD_MoveHirearchy
[CHRemoveClass

|/ [Zndlividual

Fig. 9. Rewriting rules of deleting ”Employee” class from EventCCAlps ontology.

memberof [Individual ‘
ction e Of ——— -
Class L [namne="marier’ | [individual |
name="Person’ A mermberof name="laurent'
= memhberso
" e
ontlass range AN0E name="germain
Individual
ObjectProperty name="michel"
%&Ndb' SomeValueFrom onPraperty name="definedBy" domain
4 name="organizedhy description="subClassOf'
V4 domain ObjectProperty | Class
SRestriction dormain name="proposedBy" range |name="Tag"
ObjectProperty dormain
5 name="slaedAt ~——yIciass domain ObjectProperty
aerE name="hasTags"
OhjectProperty
name="createdBy"
il DataType
ange range |——————
lan na tring’
DataProperty
|1asRestiHgn [name="Region’| glname="country'|

Fig. 10. EventCCAlps ontology after delete the ”Employee” class.

are decentralized by nature so their content and usage are often more complex
than a database schemas.
Ontologies evolution has been influenced by the research on schema evolution
database [16] but it is a different area of research having its own characteristics.
The first proposed methods in the literature [17,4,18] have presented ontolo-
gies evolution process in general but they are considered as the basis of most
current works. Thus, Hartung and al. [19] have studied the evolution and the
difference between two versions of the same ontology. This work provided a
COnto-Diff tool which can detect different basic changes, however, it has not
presented any processing for inconsistencies. Khattak and al. [20] and Luong and
al. [21] have proposed posteriori approaches to solve inconsistencies. This type
of approach, unlike the a priori process that we propose, requires the implemen-
tation of changes to verify the alteration of the ontology and then cancel them
if something went wrong. This causes a waste of time and resources. Dragoni

Ontologies evolution 11

and al. [22] have also addressed the impact of the ontologies evolution. They
consider the ontology as a hierarchy of concepts and they ignore the conceptual
and semantic relation which it models. Then, the proposed correction for mon-
itoring changes have addressed only the subsumption relation. An interesting
work has been presented in [23] which is based on pi-calculus. It manages the
ontology changes with a formal method and it proposed some rules for preserving
ontologies consistency.

The graph grammars allow the definition, formalization and application of
ontology changes. Their ability to avoid the inconsistencies is the most important
characteristics. It allows, due to application conditions, to verify the validity of
each type of change and its effects on the graph.

6 Conclusion and future work

In this paper, we presented the use of the graph grammars to formalize and
implement the ontology changes. We proposed an a priori approach of inconsis-
tencies resolutions to adapt ontologies and preserve their consistency. The use
of AGG allowed a simple definition of rewriting rules and it presented many
advantages. Two programs were developed OWLToGraph and GraphToOWL
to automate the back and forth process of transformation of the ontologies to
graphs. They allow the user to work and avail the benefits of graph grammars
even if his ontologies are defined by another representation language.

Many perspectives can be identified. Firstly, it is important to extend the
study for the complex ontology changes. It would also be interesting to exploit
ontology changes to define a formal approach of ontologies composition know-
ing that the composition is a combination of some basic changes (AddClass,
removeClass, AddAxiom, RemoveAxiom, etc.). Integration of a query language
(e.g. SPARQL) is envisaged in order to optimize the selection of ontologies en-
tities.

References

1. Gruber, T.R., et al.: A translation approach to portable ontology specifications.
Knowledge acquisition 5(2) (1993) 199-220

2. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, University
of Karlsruhe, Germany (2004)

3. Qin, L., Atluri, V.: Semdiff: An approach to detecting semantic changes to ontolo-
gies. International Journal on Semantic Web and Information Systems (IJSWIS)
2(4) (2006) 1-32

4. Klein, M.: Change Management for Distributed Ontologies. PhD thesis, Vrije
Universiteit Amsterdam, Amsterdam, The Netherlands (2004)

5. Rozenberg, G.: Handbook of graph grammars and computing by graph transfor-
mation. Volume 1. World Scientific (1999)

6. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach.
In: Switching and Automata Theory, 1973. SWAT’08. IEEE Conference Record of
14th Annual Symposium on, IEEE (1973) 167-180

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M.Mahfoudh and al.

Lowe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109(1) (1993) 181-224

Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey).
In: Graph-Grammars and Their Application to Computer Science and Biology,
Springer (1979) 1-69

Ermel., C., Rudolf., M., Taentzer, G.: The agg approach: Language and environ-
ment. In: Handbook of graph grammars and computing by graph transformation,
World Scientific Publishing Co., Inc. (1999) 551-603

Nickel, U., Niere, J., Ziindorf, A.: The fujaba environment. In: Proceedings of the
22nd international conference on Software engineering, ACM (2000) 742-745
Varré, D., Pataricza, A.: Generic and meta-transformations for model transfor-
mation engineering. In: UML 2004-The Unified Modeling Language. Modelling
Languages and Applications. Springer (2004) 290-304

Object Management Group: Ontology definition metamodel (omg) version 1.0.
Technical report, Object Management Group (2009)

Raimond, Y., Abdallah, S.: The event ontology. Technical report, Technical report,
2007. http://motools.sourceforge.net/event (2007)

Shaw, R., Troncy, R., Hardman, L.: Lode: Linking open descriptions of events.
The Semantic Web (2009) 153-167

Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution.
Knowledge and information systems 6(4) (2004) 428-440

Rahm, E., Bernstein, P.A.: An online bibliography on schema evolution. ACM
SIGMOD Record 35(4) (2006) 30-31

Stojanovic, N., Stojanovic, L., Handschuh, S.: Evolution in the ontology-based
knowledge management system. In: Proceedings of the European Conference on
Information Systems-ECIS. (2002)

Rogozan, D., Paquette, G.: Managing ontology changes on the semantic web.
In: Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International
Conference on, IEEE (2005) 430-433

Hartung, M., Gro8}, A., Rahm, E.: Conto-diff: Generation of complex evolution
mappings for life science ontologies. J Biomed Inform (1) (2013) 15-32

Khattak, A.M., Latif, K., Lee, S.: Change management in evolving web ontologies.
Knowledge-Based Systems 37(0) (2013) 1-18

Luong, P.H., Dieng-Kuntz, R.: A rule-based approach for semantic annotation
evolution. Computational Intelligence 23(3) (2007) 320-338

Dragoni, M., Ghidini, C.: Evaluating the impact of ontology evolution patterns
on the effectiveness of resources retrieval. In: 2nd Joint Workshop on Knowledge
Evolution and Ontology Dynamics EvoDyn 2012. (2012)

Wang, M., Jin, L., Liu, L.: A description method of ontology change management
using pi-calculus. Knowledge Science, Engineering and Management (2006) 477—
489

	Lecture Notes in Computer Science
	Introduction
	Ontology changes and Graph Grammars
	Ontology changes
	Graph grammars
	AGG tool

	Formalisation of ontology changes
	Type graph
	Ontology changes with graph grammars

	Application
	Related work
	Conclusion and future work

