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Abstract  
 
This article deals with the question of the maximal correlation degree of two 
intelligent machines that cannot exchange any signals. After reminding the 
reader of the incorrectness of the mainstream statistical interpretation of the 
“no-signaling” condition, its informational meaning is explored. It is emphasized 
that if Pawlowski et al.’s Information Causality Principle correctly expresses (and 
generalizes) the no-signaling condition, its application is, for now, based on a 
specific scenario (suggested by van Dam) and a no less specific (and simplified) 
relationship between mutual information and correlators. A more general 
informational interpretation of the no-signaling condition from which the 
Tsirelson bound can be derived is then formulated in terms of correlational 
independence. 
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Introduction 

 
The no-signaling condition (NS) obviously is a condition asserting the impossibility of any 

exchange of signals or information between physical systems. However, this informational 

condition is currently reduced to the only statistical independence of the observables that can 

be respectively measured in these systems. As explained in this article, such a statistical 

interpretation of the no-signaling condition is far too weak to really express the informational 

independence of all possible events occurring, respectively, in each of these systems.   

Section 1 will remind the reader of the incorrectness of this mainstream statistical 

interpretation of the no-signaling condition. In section 2, its informational interpretation by 

Pawlowski et al’s Information Causality Principle will be considered. It will be emphasized that 
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the derivation of the Tsirelson bound they propose lacks of generality. Section 3 will propose a 

more general informational formulation of the no-signaling condition in terms of correlational 

independence that allows a purely informational derivation of the Tsirelson bound (section 4).  

     
 
1. Incorrectness of the mainstream statistical interpretation of the (NS) condition 

One refers to the usual bipartite (Alice and Bob) Bell game where the question of super-

quantum correlations is generally discussed –see, for example Popescu1, Barrett et al.2 or Gisin3. 

In this bipartite game, which can be seen as modeling the possible connection between two 

intelligent machines, the incomes chosen by Alice and Bob are noted as x and y respectively, 

and the corresponding outcomes, noted as a and b respectively, can take the values 0 or 1. A 

“box” is an abstract description of the relation between inputs and corresponding outputs, that 

is, it is the given of the conditional probabilities P(a,b/x,y) for all combinations of a, b, x and y. 

In the current literature, the no-signaling condition, called (NS) in the following, is interpreted 

as a condition of statistical independence. This condition asserts that the probability that Alice 

obtains a particular outcome “a” is independent of Bob’s choice, that is, of the value of y, and 

vice versa1-5. This statistical condition is formulated as follows: 

(NS)stat   For all possible actions x, x’, y, y’ and for all possible outcomes a and b:   

b P(a, b / x, y) = b P(a, b / x, y’)    and   a P(a, b / x, y) = a P(a, b / x’, y), 

  which can be more simply written as:  

P (a / x, y) = P (a / x) and P (b / x, y) = P (b / y) for all a, b, x and y. 

 
As shown by Popescu and Rohrlich, (NS)stat allows the “theoretical” existence of super-quantum 

correlations, that is, correlations whose CHSH degree is greater than the Tsirelson bound6: 

(SQ)                                                         R  > 2 2, 

where the Bell number R is defined as7:  

R = C00 + C01 + C10 - C11 

and the correlators are defined as the expectation values of the products of the respective 

outcomes ai and bj of the conjunction of actions “Alice chooses x and Bob chooses y”:  

   Cxy = i,j  p (ai , bj / x, y) ai bj 

In particular, Popescu and Rohrlich have shown that PR-boxes, defined as: 

                                        a  b = x.y, where “” is the addition modulo 2,  

or, equivalently, in terms of probabilities of outcomes:    

(PR)                                 P (a, b / x, y) = ½     if a  b = x.y is realized 

                                                                   = 0      otherwise 

satisfy the condition (NS)stat and violates maximally (SQ) -that is, for PR-boxes R= 4.  

However, as shown by Uzan8-9, counter-examples of boxes that satisfy the statistical condition 

(NS)stat and allow the exchange of signals informing one of the parties of the choice of the other 

can easily be found. For example, in a deterministic box, for which xi determines the outcome ai 

for Alice and yj determines the outcome bj for Bob, the fact that Bob is informed about Alice’s 
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choice does not change at all the conditional probability distribution that defines this 

deterministic box:  

(D)                                                   P (ai, bj / xi’,y j’) = i i' . j j'. 

In this situation, (NS)stat is satisfied since p (ai/xi’,y) = p (ai / xi’) = ii', which is independent of y, 

and p (bj/x,yj’) = p (bj / yj’) = j j', which is independent of x. However, (NS) is obviously not 

satisfied since Bob is informed about Alice’s choice. This communication between Alice and Bob 

has no influence on the conditional probabilities of (D) that regard the probability of obtaining 

a result if they chose to draw such or such inputs (which are the values of x and y).      

 
Let us emphasize that this exchange of information between Alice and Bob does not define a 

distinct communication channel beside the one defined by this deterministic box (that is, by the 

given of the conditional probabilities P (a, b/ x, y) above, in (D)): the definition (D) correctly 

characterizes such a deterministic box where Alice and Bob exchange information about their 

inputs. This exchange of information can be regarded as an integral part of this deterministic 

box since it is taken into account in its very definition –nothing more needs to be added to this 

definition to say that Alice and Bob can communicate about their choice of input. Also note that 

even in the case Bob explicitly uses the information sent by Alice about her input, for example by 

drawing y = x, this protocol still remains compatible with the definition (D). This deterministic 

box satisfies (NS)stat even though Bob is informed about Alice’s choice of input and can use this 

information for selecting his input. The definition (D) does not impose that an exchange of 

information between Alice and Bob is impossible. 

 

Another paradigmatic example of such a signalling box that nevertheless satisfies the statistical 

condition (NS)stat  is nothing but… the PR-box defined above. The definition of this box, which 

satisfies (NS)stat  (see above), does not at all prevent Bob to be explicitly informed about Alice’s 

choice and even to choose his income according to the latter, since this exchange of information 

is quite compatible with the conditional probability distribution (PR) that defines the PR-box. 

Indeed, as was the case for the deterministic box above, this exchange of information between 

Alice and Bob and the fact that Bob’s choice is made according to Alice’s choice is independent 

of the definition of this PR-box, which is the given of the conditional probabilities (PR). A PR-

box does not prevent Alice and Bob to exchange information about their input.  

 
Thus, it can be concluded that the statistical condition (NS)stat  is too weak to characterize (NS), 

which denotes the absence of any exchange of information between the parties, and, in particular, 

any exchange of “significant” information that could be used by the parties to choose their input. 

Consequently, the mainstream results about super-quantum correlations is skewed by this 

statistical misinterpretation: if (NS)stat allows the existence of super-quantum correlations that 

satisfy (SQ), it could be quite wrong that the stronger no-signaling condition (NS) allows their 

existence –which is actually the case (see below)! We then have to reject this statistical 

interpretation of (NS) -unless we use (NS)stat only as a necessary (but not sufficient) condition of 

(NS). 
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2. The no-signaling condition as an informational constraint 

(NS) obviously is a condition of informational independence asserting that what occurs in Alice’s 

subsystem cannot be known by Bob, whatever he does –and symmetrically, that what occurs in 

Bob’s subsystem cannot be known by Alice, whatever she does. Along this line of thought, 

Pawlowski et al.10 provided such a purely informational formulation of the no-signaling 

condition. These authors have suggested that (NS) could be reasonably interpreted by the 

Information Causality Principle according to which “Bob can gain no more than m (classical) 

bits of information about Alice’s data if she sends him only m bits”, with the additive constraint 

that m = 0 (no information is sent by Alice).  

 
This informational condition is then applied by considering the amount of Shannon information 

that can be exchanged between the two parties in a specific scenario designed by van Dam11: 

Alice is endowed with a list of N random and independent bits {a0, …, ak…, aN-1} and sends m 

classical bits to Bob, with the help of which Bob tries to guess the value of the bth bit in Alice's 

list. If Bob can perfectly determine this bth bit when Alice sends him the sequence {a0, …, am-1} 

and 0  b  m-1, it is not the case for b > m-1. In order to evaluate his chance of success, these 

authors then compute the Shannon mutual information between Alice’s data and Bob’s output, 

denoted as β, when Alice sends him this message of m classical bits:   

I  ∑ k = 0 to N I (ak : β / b = k), 

and they assert, in agreement with their Information Causality Principle, that this mutual 

information must be smaller than m: I ≤ m. In this scenario, they compute Bob’s probabilities of 

success for guessing specific bits in Alice’s data, probabilities which are involved in the CHSH 

correlation factor and in the mutual information I. They can show that, always in this scenario, 

the Information Causality principle is violated as soon as the Tsirelson bound is. 

 

These authors also claim that this result remains true for any no-signaling box. To show this, 

they use the fact that, as shown by Masanes et al.12, the local outcomes of any no-signaling box 

are uniformly random and that their conditional probabilities can be expressed as the following 

function of the Bell number (and then in terms of the correlators)–with the above notations: 

P (a  b = x.y / x, y) = ½ (1 + R / 4) 

This relationship between the conditional probabilities, which are involved in the computation 

of the mutual information I, and the correlators Cxy, which are involved in the Bell number R, is 

then used to derive the Tsirelson bound for any no-signaling box. However, this more general 

derivation (for any no-signaling box) still lacks generality since the mutual information I is still 

computed for the specific scenario suggested by van Dam, the consequence of which being that 

the mutual information I can be written as a specific function of the correlators Cxy which can 

be minored by an expression that directly involves (the square of) the Bell number R (see the 

supplementary materials of this reference10, page 8). However, it is not at all certain that this 
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specific minoration of the mutual information I, which is essential to derive the Tsirelson 

bound, generally holds. In the general case the relationship between mutual information and 

correlators looks more complex and might even reverse this order13. Pawlowski et al.’s 

derivation is then based on a specific scenario and a specific relationship between correlators 

and mutual information.  

 

Could this derivation be made more general, that is, without appealing to a specific scenario 

and to a particular relationship between mutual information and correlators? As will be shown 

in the following, a more general derivation of the Tsirelson bound from the no-signaling 

condition can be proposed if the latter informational condition is expressed by the choice-

independence of the correlators between one party’s choice of action and all the possible activities 

of the other. This derivation, which is made in terms of correlators, is not based on a specific 

scenario of information exchange. 

 
 
 
3. A more general, informational interpretation of (NS) 

What we want to express is the informational independence of the events occurring in the two 

subsystems: by her activity of choosing an input and observing the outcome, Alice cannot obtain 

any information about Bob’s activity, and vice-versa. However, this independence cannot be 

reduced (as is the case in (NS)stat) to the only independence of Alice’s conditional probabilities 

of outcomes and Bob’s choice of input (the value of y), and vice versa. As reminded in section 1, 

this condition of statistical independence is not sufficient: it does not forbid the two parties to 

communicate.  

 
In order to forbid any communication capable of informing Alice about Bob’s choice of action, 

we have to set a more constraining condition bearing on the independence of Alice’s all possible 

activities and Bob’s choice of input –and symmetrically, between Bob’s all possible activities and 

Alice’s choice of input. This condition can be expressed in terms of the relevant correlators: In 

order to impose the condition according to which Alice’s choice A0 or A1 (for the two possible 

inputs, noted as 0 or 1) does not have any influence on Bob’s activity -and vice versa- we have 

to assert that the correlator of Alice’s activities and Bob’s choice of input does not depend on 

the latter and that the correlator of Bob’s activities and Alice’s choice of input does not depend 

on the latter. This condition can simply be expressed by the equality of the correlators of Bob’s 

activity and Alice’s all possible choices –and symmetrically, by the equality of Alice’s activity and 

Bob’s all possible choices.    

 
In order to formulate this constraint, let’s consider the correlators between Alice’s choice A0 

and Bob’s all possible activities, that is, when Bob chooses B0 and obtains the outcome b0 j or 

when Bob chooses B1 and obtains the outcome b1k. The respective correlators between these 

two exclusive activities of Bob and Alice’s choice A0 are, respectively, C00 and C01. As will be 
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shown hereafter, the correlation degree between Alice’s choice A0 and Bob’s all possible 

activities (that is, whatever Bob’s choice and whatever Bob’s results) can be defined by the 

product of these correlators: C (A0, B) = C00.C01. 

 
This definition merely extends that of the correlators for two random variables: C (A0, B) is 

computed as the expected value of the product of possible outcomes of the event relating the 

(sequential) realization of the two following independent events “Alice choose A0 and Bob 

chooses B0” and “Alice choose A0 and Bob chooses B1”. These two joint events, which are 

incompatible (since B0 and B1 cannot be chosen at the same time), can be understood as 

occurring sequentially, say at times t1 and t2 > t1 respectively, and, as mentioned above, they 

are independent (because Ax and Ay are, like Bx and By, randomly chosen).  If the outcomes of 

these sequential joint events are respectively noted as (a0i, b0j)t1 and (a0i’, b1k)t2, their 

expectation value, which provides an evaluation of the correlation degree between Alice’s 

choice A0 and Bob’s all possible activities, can thus be computed as:   

C (A0, B) = i,i',j,k p ((a0i, b0 j)t1, (a0i’, b1k)t2 /(x0, y0)t1, (x0, y1)t2) a0i b0 j a0i’b1 k 

where the joint sequential probability p ((a0i, b0 j)t1, (a0i’, b1k)t2 /(x0, y0)t1, (x0, y1)t2) denotes the 

probability of the conjunction of events “Alice draws x0 at time t1 and obtains a0i while Bob 

draws y0 and obtains b0j ” and “Alice draws x0 at time t2 and obtains a0i’ while Bob draws y1 and 

obtains b0k ”. Since these two joint events are independent, the probability of their conjunction 

can be factorized: 

p ((a0i, b0 j)t1, (a0i’, b1k)t2 /(x0, y0)t1, (x0, y1)t2) = p (a0i , b0 j/x0, y0) . p (a0i’, b1k/x0, y1). 

(Note that in the above expression the mention of time has been deleted since it has no other 

significance than that of remembering that these events cannot be realized at the same time). 

The associated “composed” correlator C (A0, B) can thus be written as: 

C (A0, B) = (i,j p(a0i, b0 j/x0, y0) a0i b0 j) (i',k p(a0i’,b1k/x0, y1) a0i’b1k) = C00 C01. 

A similar reasoning shows that the correlator of A1 and Bob’s all possible activities is: 

                   C (A1, B) = C10.C11.     

 
The condition that Bob’s all possible activities are performed independently of Alice’s choice of 

action (x = 0 or 1), which is expressed as C (A0, B) = C (A1, B), can thus be written as:  

C00 . C01 = C10 . C11 

Similarly, the condition that Alice’s all possible activities are performed independently of Bob’s 

choice of action (y = 0 or 1) is: C00 . C10 = C01 . C11 

Consequently, the no-signaling condition (NS) can be express as follows:  

(NS)                                            C00 . C01 - C10 . C11  = C00 . C10 - C01 . C11 = 0.  

Note that this condition means that the absolute values of the correlators are equal two by two: 

C00 = C11  and C01  = C10. However, the expression of (NS) written above will be more 

useful below for deriving the Tsirelson bound.   
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4. The Tsirelson bound derived from the no-signaling condition 

Let’s consider the square of the CHSH correlation factor R defined above:                               

R2 = (C00 + C01)2 + (C10 - C11)2 + 2 (C00 + C01) (C10 - C11). 

 

Since the absolute values of the correlators Cxy are all bounded by 1, their squares are also 

bounded by 1 and then: 

R2    4 + 2 (C00 C01 - C10 C11 + C00 C10 - C01 C11 + C01 C10 - C00 C11) 

Using now the no-signaling condition (NS) expressed above, the combination of the four first 

products between brackets is equal to zero:  

C00 C01 - C10 C11 + C00 C10 - C01 C11 = 0. 

Consequently, we have: R2    4 + 2 (C01 C10 - C00 C11). 

Taking now into account that Cxy 1, one has C01 C10 - C00 C11    2 and then R2    8. 

Consequently the Tsirelson bound is satisfied: R 2 2. 

 
The no-signaling condition, if correctly understood as an informational constraint asserting the 

informational independence of the events occurring in the two subsystems is thus sufficient to 

derive the Tsirelson bound. Of course, this result corroborates Pawlowski’s derivation, which 

is based on a specific (van Dam’s) scenario and then on a particular relationship between 

mutual information and correlators (see section 2), but it has been shown here more generally. 

The non-signaling condition has been expressed in terms of correlators, as the independence 

of the activities of each of the parties and the choice of action of the other. This very general 

result shows that, unless non-local communication (conflicting with quantum theory) would be 

possible, the maximal correlation degree of two intelligent machines that cannot exchange any 

signal is the Tsirelson bound.  
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