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Generation of measures on the torus with good sequences
of integers
E. Lesigne, A. Quas, |. Rosenblatt, M. Wierd|

November 12, 2023

Let S := (51 < sp < ...) be astrictly increasing sequence of positive inte-
gers and denote e(B) = e¥™F. We say S is good if for every real a the limit
limy & ¥<n e(sna) exists. By the Riesz representation theorem, a se-
quence S is good iff for every real a the sequence (s,a) possesses an asymp-
totic distribution modulo 1. Another characterization of a good sequence
follows from the spectral theorem: the sequence S is good iff in any proba-
bility measure preserving system (X, m, T) the limit limy 3 ¥« n f(T*"x)
exists in L2-norm for f € L2(X).

Of these three characterization of a good set, the one about limit mea-
sures is the most suitable for us, and we are interested in finding out what
the limit measure pg, = limy % Yn<N Os,a on the torus can be. In this
first paper on the subject, we investigate the case of a single irrational . We
show that if S is a good set then for every irrational & the limit measure g ,
must be a continuous Borel probability measure. Using random methods,
we show that the limit measure pig , can be any measure which is absolutely
continuous with respect to the Haar-Lebesgue probability measure on the
torus. On the other hand, if v is the uniform probability measure supported
on the Cantor set, there are some irrational « so that for no good sequence
S can we have the limit measure yig , equal v. We leave open the question
whether for any continuous Borel probability measure v on the torus there
is an irrational « and a good sequence § so that pg, = v.
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1 Introduction, main results

Throughout the paper we will use the arithmetic average operator A:: for a
finite index set S, a vector space V and a S — V function f we define

Asf(s) .
Asf(s) = Asesf(s) = 5¢ Y f(s) (2.1)

seS

where #S denotes the number of elements in S.

We use the convention that if an interval appears as an index set in
a summation then we consider only the integers in the interval. For
example, ¥,c(o,N) @n = Lne{o1,..,N—1} In-

We also use Weyl’s notation e(B) := e*™f. Note that e () = e(pp)
for every integer p.

We denote by T the torus R/Z and we represent it as the unit closed
interval [0,1] with 0 = 1.

11 Good sequences, main question

2.1 Definition » Good sequence

We say that a sequence S = (s;) e of integers is good if the limit
limy A, e n) €(snat) exists for every real number a.

Good sequences have been extensively studied in many parts of mathe-
matics, such as in number theory and ergodic theory.
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In this paper we restrict our attention to strictly increasing sequences S
of positive integers in which case we can and will consider S as a subset of
IN, and we’ll use the concept of good sequence and good set interchange-
ably.

Among the wellknown good sequences are the full set IN of positive

integers' , the sequence (12),cn of squares? and the sequence (py)nen of " Weyl 1916.
primes3 where p,, denotes the nth prime number. For these sequences the * Weyl 1916.
limits limy A,c (1 np €(snet) are as follows * Vinogradow 1937.

1 ifa=1

lim A, -
i Aneion) elna) {o ifa 0

A e b2a> ifao =2 gcd(a,g) =1
o (1) = bellq] ( p g gcd(a, q)

lim A, ¢
N e e
0 if a is irrational
A pepg e(b/q) ifa=7, ged(a,q) =1
111{]'1'1 Ane[l,N] e(Pan) = ged(bg)=1
0 if a is irrational
(1)
In case of a good sequence S = (s,) and a fixed a, the existence of

limy A, cpp N e(snpa) for every p € Z implies, by uniform approxima-
tion of a continuous T — C function by trigonometric polynomials, that
for every continuous T — C function ¢ the limit limy Ac (1 N (snat)
exists. By the Riesz representation theorem, this implies that the weak
limit limy A1, n) 95,0 Of discrete measures A, ¢y nJs,a on T exists.

By this argument, the existence of limy A,,c(1 nj e(sna) for every a
implies the existence of the limit measure limy A1 n]s,« for every a.
Denote the Haar-Lebesgue probability measure on the torus T by A and
recall that the Fourier coefhicients A(e?) of A satisfy

A) 1 forp=0 (.2)
ef) = 2
0 forpeZ,p#0 !

where for a given measure v and v-integrable function ¢, we use# the +and will use troughout the paper
functional notation v(¢) for the integral of ¢ with respect to v,

v(¢) = / ¢dv (3.3)
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For our three good sets the limit measures are as follows.

Aperigdv/q fa=a/q, ged(a,q) =1

lim A 1)
N nElLN]Tm A if w is irrational
. Apepiq0pe ifa= o ged(a,q) =1
i Ao N Oz = q (41)
N A if a is irrational :
A pepg O/g ifa = g, ged(a,q) =1
111’1’1 Ane[l N]5P1106 = ng(b’q):l
N ’ . .. .
A if o is irrational

What we see in these three examples is that in case of irrational « the
limit measure is the Haar-Lebesgue measure A and in case of rational

a = a/q, ged(a,q) = 1, the limit measure is supported on a subset of the
gth roots of unity and appears to be quite uniform on its support. In case
of irrational &, the simplest question is if it’s possible that the limit measure
is not A. In case of rational «, we can ask if the limit measure always has
to show some kind of uniformity.

Let us consider a good sequence S = (s;,). The existence of the limit
limy A, cpp N e(snat) for every a implies that the weak limit limy A, ¢ (1 N19s,a
of discrete measures A ¢ (1 Njds,a On T exists for every a. Let us denote
this weak limit measure by g 4,

HSu = lil{]n Ae1,N]9sna (4-2)

The main question we want to investigate in this paper is

4.1 Question » Main question

What can the limit measure pg, be? Can it be any Borel probability
measure on T?

1.2 Main results

As we stated earlier, we try to answer question 4.1 for strictly increasing
sequences, and unless we say otherwise, we assume from now on that
S = (sn) is a strictly increasing sequence of positive integers which we
often consider as a subset of IN.

Our first observation is that the answer to question 4.1 will depend on
with ged(a,q) = 1, then the limit

a
) q
measure is clearly supported on the set

Ty:={b/q:be[lq]} (4.3)

of gth roots of unity. So the question is if the limit measure pg 4/, can

a. If w is a rational number, say, & =

be any probability measure supported on T4? The answer is yes. First a
terminology.
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5.1 Definition » Representable measure at

Let S be a good set, and let v be a nonzero, finite Borel measure on T.

We say that S represents v at « € T if g, = %v.

T)
We say v is representable at o if there is a good set which represents v at

.

5.2 Theorem » Every probability measure on T;; can be represented —

Let g and a be positive integers with ged(a,q) =1, and let v be a
probability measure supported on the set T, of gth roots of unity.
Then v can be represented at %, that is, there is a good set S so that

a = .
Vs,q

Before discussing the limit measure jg , for irrational a, let us note the
following fact which will help us appreciate the concept of a good set.

Suppose we are given an irrational number « € T and a Borel prob-
ability measure v on T. We claim that there exists a sequence (x,) in T
with asymptotic distribution v, i. e. such that limy A,¢y Njdx, = V.
Considering such a sequence and using the density of the sequence (na),
in T, we can select a strictly increasing sequence (s,) of integers so that
limy (sya — x,) = 0 mod 1, and we have limy A,,c [y N10s,« = V. Taking
S = {s, : n € N}, we could say that i, = v, but nothing insures us
that the set S is good.

There are different ways to prove the preceding claim. For example
we can pick the numbers x,, randomly and independently with law v, and
the strong law of large numbers asserts that the sequence (x;,) has, almost
surely, the right asymptotic distribution.

It is particularly simple to get a point-mass as a limit measure. For
example, to get the Dirac measure at 1/2, so v = &y, take a strictly
increasing sequence (s,;) of natural numbers so that s, converges to 1/2
mod 1, and let S := {’s,, : n € IN}. In contrast to this example, for good
sets we have a dramatic departure from the case of rational .

5.3 Theorem » g, is continuous for irrational «

Only continuous measures can be represented at an irrational number.
To spell this out, let S = (s,,) be a good sequence and « be an irrational
number.

Then the limit Borel probability measure ps, = limy Ac(y N]Js,a 15 @
continuous measure.

The obvious question in turn is if any given continuous Borel proba-
bility measure can be represented at any irrational number. The answer is
no, as the next result shows.
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6.1 Theorem » Some continuous measures cannot be represented at every irrational point

Let v be a Borel probability measure on T so that its Fourier
coefhicients do not converge to 0, so

limsup|pu(e?)| > 0 (6.1)

p—o0

Then there is a set A C T of full Lebesgue measure so that v cannot be
represented at any a« € A.

Since a measure v is called a Rajchman measure’ if its Fourier coeffi- 5 Lyons 1905.
cients vanish at infinity, that is, lim, v(e?) = 0, we can rephrase the-
orem 6.1 by saying that if v is representable at every irrational & then it
must be a Rajchman measure. A well known non-Rajchman continuous
measure is the uniform measure on the triadic Cantor set.
While theorem 6.1 doesn’t exclude the possibility that A = T, that is,
a non-Rajchman measure cannot be represented anywhere, Christophe

Cuny and Frangois Parreau®

constructed a non-Rajchman measure which ¢ Parreau and Cuny 2022.
is representable at uncountably many a’s. Nevertheless, the following

question remains open.

6.2 Question » Is every continuous measure representable somewhere?

Let v be a continuous Borel probability measure on T.
Is there an irrational & so that v is representable at a?

The next result says that if v is absolutely continuous with respect
to the Lebesgue probability measure A on the torus T, then it can be
represented at every irrational .

6.3 Theorem » Absolutely continuous measures are representable at every irrational point
Let v be a Borel probability measure on T which is absolutely
continuous with respect to the Lebesgue probability measure on T. Let
« be an irrational number.
Then v is representable at «.

Our proof of theorem 6.3 is flexible and enables us to show a more
general result, namely it turns out that a given absolutely continuous
measure can be represented by a good subset of any given good set, pro-
vided it doesn’t increase too fast, it is sublacunary. For a given set R C IN
let R(N) denote the Nth initial segment of R,

R(N) :== RN [1,N] (6.2)

We say R is sublacunary” if it satisfies the growth condition 7 Traditionally, (r,) is called lacunary if
it satisfies lim inf, r’:::l > 1, and such a
sequence satisfies #R(N) = O(logN).
Traditionally, a sublacunary sequence is
one that satisfies lim,, ’”r:]

#R(N) _
TogN — Our

definion of a sublacunary sequence in

sequence satisfies limy

6

= landsucha

eq. (7.1) describes sequences which satisfy

. . )'”+1 _ .
liminf, % =1 but may not satisfy
: "n4l _

lim,, 28 = 1.
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#R(N)
log N

lim = o0
N

In case we consider the sequence (r,) instead of the set R, it’s more useful

to write eq. (7.1) in the form

N
logrn

lim = 00
N

(7.1)

(7.2)

7.1 Theorem » Absolutely continuous measures can be represented by subsets of a good set

Let R be a sublacunary good set. Let & be an irrational number, and let
the Borel probability measure v be absolutely continuous with respect

to “I/lR,a.
Then there is a good set S C R which represents v at a.

We will see that the proof of theorem 7.1 reveals a close connection
between the Radon-Nikodym derivative p of v with respect to pg , and
the relative mean® of the set S representing v. For a given R C IN and
S C R, the relative mean Mg (S) of S in R is defined by

#S(N)
#R(N)

Mg($) = lim (7.3)
provided the limit on the right exists. The relative upper mean Mg(S) of S
in R is defined by

#S(N)
#R(N)

Mg (S) := limsup (7.4)
N

In case R = IN, we suppress the base set in our notation, and we write
M(S) for M (S) and M(S) for M (S).

7.2 Theorem » Connection between %, Mg (S) and Mg(S)

Let R be a sublacunary good set.

a) For an irrational & let the unsigned function p € L (pg ,) with

#ra(p) = 1 be bounded so ||| ooy ) < -

HR
Then there is a good set S C R representing the measure p - jig 5 at
« and satisfying Mg (S) = W
e L*® (I‘R,m)
b) Let S be a good subset of R with positive upper density in R, so
Mg(S) > 0.
Then for every irrational B the limit measure pig g is absolutely
continuous with respect to y R Furthermore, the Radon-Nikodym

o d
derivative pg = dg z}z
K.

logll L (g ) = Wiy

is a bounded function satisfying

As a consequence of theorem 7.1, every
measure which is absolutely continuous
with respect to the Lebesgue measure
can be represented at any given irrational
« by a subset of the primes, squares, or
{|n*logn| : ne N}

¥ The usual terminology is relative density
instead of relative mean, but we will use
the more general concept of the mean of
a R — C function in section 1.3 and we
prefer to use a single terminology and
notation for economical reasons.

7
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We see that theorem 7.1 gives a full characterization of the limit measure
for sets with positive upper mean?, giving an exact relationship between 950 now R = IN
the upper mean of the set and the bound of the RN derivative: On the
one hand if M(S) > 0, the limit measure ys g for every p must be ab-
solutely continuous with respect to A with bounded RN derivative pg
satisfying [|oglli=(r) < ﬁ On the other hand, any Borel proba-
bility measure v which is absolutely continuous with respect to A with
bounded, nonzero RN derivative p is representable at any irrational a

with a set of positive mean satisfying M(S) = m

Theorem 7.2 (b) has the following consequence.

8.1 Corollary » If the RN derivative p is unbounded, then Mg (S) =0

Let R be a good set and « an irrational number. Suppose the unsigned
function p € L' (g ) with pg 4(p) = 1 is unbounded, and that the
good set S C R represents the measure p - jig 4 at a.

Then S must have 0 mean in R, so Mg(S) = 0.

13 Weighted averages

Our results in theorems 7.1 and 6.3 will be consequences, via a random
procedure, of results on weighted averages.
We need to fix some terminology and notation. We define the Besi-
covitch type seminorm ||||; for all complex valued sequences f € CN
by
1l = limﬁup Apnlfl, fech (8.1)

The number 1 in the subscript of ||||; expresses the similarity of this norm
to the L! norm.
Foraset S C IN, we may use the notation ||S||; instead of ||1g]|;,
though in this case we do not get a new concept, since ||S||; = M(S).
For an infinite set R C IN we define the relative 1-norm || f|; ; of a
complex valued R — C function by

1fllg = lim sup Agawlfl, feCf (8.2)

If the set R is given as a strictly increasing sequence (r,) and for an f €
CR we define F by F(n) := f(rn), then [|f[ly g = [[Fll;.

Let R C N be an infinite set. The R — R function w is called a R-
weight if w is unsigned, so w > 0, and }_,cg w(r) = co. We may refer to

an R-weight as “a weight supported on R”.

An R-weight w can be considered a measure on the set R and in that
case for S C R we may briefly write w(S) for the sum Y g w(s).

For a finite set S C IN let o be a real valued, unsigned function defined
on S. We can consider ¢ a measure on S, and as such, we assume ¢(S) >



GENERATION OF MEASURES ON THE TORUS WITH GOOD SEQUENCES OF INTEGERS

0. For a vector space V and S — V function f, define the o-weighted
average AZf of f on S by

1

ASf = Alcsf(s) = —= D o(s)f(s) (9.1)

U(S) seS

9.1 Definition » Good weights and represented measures by them —

Let R C IN be infinite. Let w be an R-weight.
We say w is a good R-weight if the weak limit limy AY_, (N)Jrﬁ exists
for every B € T. We denote this limit by p, s,

(9-2)

Hw,p = liI{]n AL r(n)Orp

Let v be a Borel probability measure on T and let « € T.
We say the R-weight w represents v at a if w is good and pg e = v.

Note the following characterization of good weights: The R-weight w
is good iff the limic limy A} R €(ra) exists for every a.
In the special case of a good set S C IN, we have pg, = pigq since the

Note the following form of the defini-
tion of the limit measure 4, when we

consider R as the strictly increasing se-
v

quence (74): pwa = limy A;e[l,N]é’nﬂ"

w —
so now we have Al Orp =

1

9

weighted averages with weight w := 1¢ correspond to the averages alon

S g g & 5 P g ) Trein] @) e, N @ (rn)0rya-
In contrast to good sets, the representation of absolutely continu-

ous measures by weights can always be accomplished by weights with

positive, finite mean. In fact, the representing weight has an additional

property.

9.2 Definition » Integrable weight

Let R C IN be infinite.

We call the R-weight w integrable if it can be approximated arbitrary
closely in the seminorm |[|||; by bounded, good weights: for every
€ > 0 there is a good R-weight v with ||v||, < o0 so that

o —wly g <e.

9.3 Theorem » Representation by weights

Let R be a good set.

a) For an irrational & let the unsigned function p € L (pg 4) satisfy
Hra(p) = 1.
Then there is an integrable R-weight w with Mg (w) = 1 which
represents the measure p - jig 4 at a. If p € L®(pug o) then the

R-weight w representing the measure p - g , can also satisfy

oMo ug ) = 0] co-
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b) Let w be a good, integrable R-weight which satisfies ||w]|; > 0.

Then for every B the limit measure py,g is absolutely continuous
with respect to pg g.

14 Applications in ergodic theory

Besides the intrinsic interest of our main question, question 4.1, there may
be several applications of studying limit measures. One major application
is in ergodic theory.

Recall that a measure preserving dynamical system is a probability
space (X, m), where m(X) = 1, equipped with a measurable, measure
preserving transformation T of X. By the spectral theorem, a good set has
the following characterization: the sequence S = (s,,) of positive integers
is good iff the limit limy A,¢ ) f (T x) exists in L?(X)-norm in any
measure preserving dynamical system (X, m, T) for any f € L?(X).

This means that our work in describing the possible limit measures
in case of a good set yields an identification of the limit in mean ergodic
theorems. Identification of the limit is often the crucial step in some ap-
plications, and here we just mention two of these, recurrence and almost
sure convergence. In case of studying recurrence, the identification of
the limit readily tells us whether a given set is a set of recurrence. In case
of trying to see if some ergodic averages converge almost everywhere,
after the identification of the L2-limit, we usually want to see if there is
some kind of rate with which the averages converge to the L2-limit. For
example, this is the case when one proves that the ergodic averages along
the squares converge almost surely. The application of the circle method
here is exactly a quantitative expression of how the averages converge in
L?-norm.

1.5 Future work

The techniques developed in this paper allow one to address the simulta-
neous representability of probability measures at several different points
of the torus, and we plan to explore this in a future work. But which
family { v, : @ € T } of measures can be represented by a single good
set remains open even if we restrict the family to absolutely continuous
measures with respect to the Lebesgue probability measure A. What we
can say at this point is that for a given good set S, the set of & € T where
the limit measure g , is not the Lebesgue measure is small: it is both of

first Baire category and of 0 measure under every Rajchman measure'® on © Lyons 1985, Theorem 3; see also Lyons

T,sov{a : psy # A} = 0 for every Rajchman measure v. 1995-

10
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1.6 Summary ofnotation

We realize that we use quite extensive notation, many of which are new,

SO we give a summary of our notations in table 1.

Table 1: Notations

Symbol Definition Parameters Name

N {1,2,3,...} Natural numbers

T torus

A Haar-Lebesgue measure on T
e(0) exp(27if) feT

ef(0) e(ph) peZ

S(N) SN[1,N] SCNN initial segment of S
#S(N) Ysesny 1 SCNN counting function of S
Agf 2 Yees f(5) set S is finite average of fon S
AYf ﬁ Ysesw(s)f(s) w is a weight on S w-average of f onset S
1S limy Ageg(n)dsa SCN,aeT limit measure of S at «
o limy AY ( N)(Ss,x weightwon S, € T limit measure of w at «
v(9) Jrpdv

M(f) limy Ay f fech mean of f

Mg(f) limy Ag(n) f RCN, fecCR relative mean of f

M {f: f € CN,M(f) exists and is finite } sequences with mean
M(f) lim sup,, A[l,N}f’ fech upper mean

Mk (f) lim supy AR(N)f‘ RCN, fecCR relative upper mean

Il £ll4 limsupy Azl f] fecN 1-seminorm

(RALEYS limsupy A gyl f] RCN, fecCR relative 1-seminorm
C+ {¢ : ¢:T — [0,1], continuous }

v =vally  supyec, [vi(¢) —va(¢)]

v; finite Borel measures on T

variation distance

2 Basic example for representation

In this section we want to work out a rather simple but instructive ex-

ample, which will then motivate and form the basis of many of our con-

structions later on. When we are done with presenting this example, we

in fact proved theorem 7.1 in case the Radon-Nikodym derivative is the

indicator of a Jordan measurable set.

Let a be irrational and let I C T be an interval. We want to show that

if a probability measure v is absolutely continuous with respect to A with

the Radon-Nikodym derivative equal 1}, the indicator of I, then there is a

set S which represents v at «. Probably the simplest way™ to define such a

set S is by taking

S={n:nelNnaecl}

""We could also define such a set by taking

{n:neNn?a el (mod1l)}or
{p:peP,pa €l (mod1)} where P
(H'I) is the set of primes.
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There are two things to verify. First, that S is indeed a good set, and to
do that, we need to show that the weak limit g = limy Agcg(n)dsp
exists for every B. Second, we then have to verify that yg, = ﬁ]ll A
The second one, in fact, is almost instantaneous to do since it follows from
the uniform distribution of (na),cx (mod 1). To see how it follows,

it's enough to show that for every interval ] C T we have pg,(]) =

/\(11, : ﬁ]l[),that is

lim Asesn) Ly (se) = A(JNT) (r2.1)

1
M)

The left hand side can be written as

. . N
lim Ascs(n) 1y (sa) = lim mAne[l,N]]ll(”“)]l](m‘)

since limpy &I\fv) = A(I) by the uniform distribution of (na),cn
(mod 1),
1 .
— m h{ln AHE [LN] ]l[m] (7’10()

again by the unifom distribution of (na),eny  (mod 1)
1

To show that the weak limit ps g = limy A g(n)dsp exists for every B,
i’s enough to show that limy A e(sp) exists for every p. Since

Asesin e(sB) = ’(V> Apep 11 (1a) e(nB) (12.2)

and since limy #S( ) = A(I), it’s enough to show that the limit limy A1 nj11(na) e(np)
exists for every B E T. To see this, first note that if we replace 1; by the

character e the limit of Aycpr Ny @ ek (na)e(np) = Ayep N e(n(ka +B))

as N — oo exists and is as follows

1 ifp=—ka (mod1)

12.3
0 otherwise (12.3)

Hm Ay v € et (na)e(np) = {

From this we get that if we replace 1 by a trigonometric polynomial ¢,

the limit of A,c(1 nj¢(na) e(np) exists and can be given explicitly as' * Notice that in eq. (12.4) A(¢peX) is the

kth Fourier coefficient of ¢.

)\<4Jek) if f=—ka (mod 1)

hlf;n Ayepnp(ne) e(np) = {0 (12.4)

otherwise

Using Weierstrass’ theorem on being able to uniformly approximate a
continuous function by trigonometric polynomials, we can verify that in
eq. (12.4) we can take ¢ to be any continuous function.

I2
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Now, to go from continuous functions to the indicator 1 of any in-
terval I, it is enough to know that the indicator 1 can be sandwiched
between two unsigned continuous functions whose integrals (with re-
spect to A) are arbitrarily close. We thus have

Alyer) ifp=—ka (mod1)

lim A 1 = .
11{,11 ne(1,N] 1(na) e(np) 0 otherwise. (13.1)
We finally get, since s g(e) = ﬁ limy A, e w11 (ne) e(np),
_ ﬁ/\(]llek) ifp=—ka (mod1)
psp(e) , (13.2)
0 otherwise

The above shows that g g(e) can be nonzero only if B is an integer

multiple of &, and we recognize A (]1 I ek) as the kth Fourier coefhicient of

the function 1y, that is, ﬁ)\ (]l I ek) is the kth Fourier coefficient of the

measure ﬁll IA.

One can rather easily extend this example in two ways. First, the proof
can be repeated almost verbatim for the case when we take any Jordan
measurable set B in place of the interval I. Indeed, all we need to remark
is that a set B is Jordan measurable iff, for every given € > 0, its indicator
function 15 can be sandwiched between two unsigned, continuous func-
tions ¢ and ¢y so that ¢ < 1p < ¢, and A(¢s — ¢p) < €. Another way
of expressing that the indicator of a set can be sandwiched between two
continuous functions is that the boundary of the set has zero Lebesgue
measure.

13.1 Definition » v-Riemann integrability

Let v be a finite Borel measure on T and let ¢ be a Borel measurable
T — C function.

We call the function ¢ v-Riemann integrable if it’s continuous at
v-almost every point.

We call the Borel measurable set B v-Jordan measurable if its indicator
function 1 is v-Riemann integrable.

As it is well known, the equivalence of approximability by contin-
uous functions and the boundary having zero measure carries over to
the setting of any finite Borel measure on the torus. We can thus extend
the example to the setting when the Lebesgue measure is replaced by an
arbitrary finite Borel measure.

We record our findings in the following result.
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14.1 Proposition » The Radon-Nikodym derivative can be the indicator of a Jordan measurable set

Let R be a good set, a be an irrational number and let B C T be

R -Jordan measurable with ug ,(B) > 0.

Then the measure 1R 4, which is absolutely continuous with respect
to MR o, can be represented at a by the good set S defined by

S={r:reRracB} (14.1)

so we have ug, = m]llgy[w. We also have g ,(B) = Mg(S).

Let us go back to trying to represent measures which are absolutely
continuous with respect to the Lebesgue measure A. New ideas are
needed to cover the case when we want to represent the measure 1A
when B is a Borel set which is not Jordan measurable. What is the new
difficuley? We’d like to think that we could just again take the “visit set”
S={n:neNnxec B}, but this is not the case anymore. Indeed, take
B to be an open set with A(B) < 1 and containing all integer multiples
of our irrational a. This open set is not Jordan measurable anymore. The
set S cannot represent the measure 1A anymore since S = IN. In fact,
we show in section 10.3 that for any given irrational &, one can construct
an open set B so that the visit set of B doesn’t even have mean. So we
definitely need new ideas.

We also need new ideas even for the case when we try to represent
a measure which is absolutely continuous with respect to the Lebesgue
measure with a Radon-Nikodym derivative which is not an indicator
function. We need these new ideas even if this Radon-Nikodym deriva-
tive is a continuous function.

3 Proof of theorem 7.1 for indicators

Strictly speaking, we have already begun the proof of theorem 7.1 in
the previous section, when we proved that at an irrational number every
measure with Jordan measurable Radon-Nikodym derivative can be
represented. Our fixed set up in this section is that we are given a good
“base” set R C IN and an irrational number . Since the set R is fixed
throughout the section, we suppress the set R from our notation for the
limit measure,

Jp = Jr,p, for every B (14.2)
Since our focus is to widen the class of the Radon-Nikodym derivatives

with respect to the base limit measure 1, the following definition will
simplify our language.
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15.1 Definition » Representing a function, a Borel set
Let p € LY(T, pa) be unsigned and s (p) > 0.
We say that the good set S C R represents p at  if it represents the
measure p - Jiy, that is, g, = mp “ Ug.
If p is the indicator of a Borel measurable set B C T, we then say S
represents B at «.

The sets S C R we consider in this section have positive mean in
R. For such a set, the non-normalized averages A, ¢}y Nj15(72),,p are
easier to handle than the normalized ones A x)dsp. The convergence
or divergence properties of the two averages are identical since they are
connected by

lim Ay ep1,nyLs (7n)dr,p = MR(S) im Ases () dsp (15.1)

as can be seen from writing A cg(n)dsp = %A%R(N)]ls(r)érﬁ

#
:fé((%)) = Mg(S) and limy A, gy Us(r)drp =

limN Ane[l,N] ]15 (rn)érnl;.
In section 2 we proved that if B is jy-Jordan measurable, then it can be

and noting that limy

represented by the set Sp defined by
Sg={ry : ma€B} (15.2)
and we have the relation

MR (Sp) = pa(B) (15.3)

We also indicated that this definition of S may not give a good set if B is
not Jordan measurable. The idea of extending the representation to any
Borel measurable set is via a limit procedure. To explain what we mean
by “a limit procedure”, consider the case when B is an open set, and write
it as a disjoint union of open intervals, B = U;I;. Defining By := Ujepy [
for every k € NN, each By is Jordan measurable and the sequence (By)
increases monotonically to B. We have limy j14 (Bg) = pa(B). Denoting
Sk = Sp,. the sequence (Sy) also increases to aset S C R, but Mg(S)
not only may not be equal limy Mg (Si) but Mg (S) may not even exist'3. 1 See also section 10.3.
The limit procedure which is suitable for our purposes is determined by
the seminorm || f||; which is defined by

£l = limsup A,y f(m)], fech (15.4)

Our main tools will be two lemmas. The first one is modeled after a
result of Marcinkiewicz'# on the completeness of Besicovitch spaces. 14 Marcinkiewicz 1939.
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16.1 Lemma » Cauchy sequence is convergent in the seminorm |||; —

For each k € IN, let f; € CN. Suppose that (f;) is a Cauchy sequence
in the seminorm ||||;, so we have

limsup||f; = fill, =0 (16.1)
1>k

Then there is f € CN satisfying
il — 71y =0 5.

The f in eq. (16.2) is pasted together from the f}’s in the following
way: there are indices Ny < N < ... so that f = f on the interval
(Nis Nie+1]»

f= ;fk : ]l(Nk,NkJrl] (16-3)

16.2 Remark » f inherits properties of (fi)

Since f is pasted together from the fi’s the way we can see it in
eq. (16.3), f inherits some common properties the fy may have. For

example

a) If f > 0 for every k then f > 0.

)
b) If |fx| < c for a constant c for every k then |f| < c.
c) Ifeach fiis 0 — 1 valued then so is f.

)

d) If each fy is a weight, then the construction can be adjusted so that f
also becomes a weight.

Only remark 16.2 (d) requires some explanation since we need to have
Yuen f(n) = oo. For this, we observe a flexibility in the choice of the
sequence Ny < N < ... in the upcoming proof of lemma 16.1. Namely
the sequence (Nj) is defined recursively, and once Ny < Np < -+ <
Nj_1 are chosen, the index Ny, Ny > Nj_1, is chosen “large enough”
to satisfy some criteria. So it can always be chosen to be “even larger” to
satisfy additional criteria. For our case the single additional criterion is to
ensure Y,e (N, N, fk—1(1) > 1, which is possible since fi_; is assumed
to be a weight, 50 ¥,c(n, ,,00) fi—1(1) = o0

Proof of lemma 16.1. For the recursive definition of the (N ), define first
the sequence (e;) by

ex = 2sup| fi — fill4 (16.4)
I>k

We can assume, without loss of generality, that €, > 0 for every k, since
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€x = 0 for some k would imply || f; — fi||; = 0 for I > k hence we could
take f = f.

In the first step of the recursion, let Ny = 1.

In the second step, let N, > Nj to be large enough to satisty

Ny
N, <€ (17.1)
Apnilfi — fa < e forevery N> N, (17.2)
and
Apnlfi—fil <e for every N > N, (17.3)

Complete the second step of the recursion by defining f to be equal f;

on the interval (N7, N7]. Let k > 2 and assume that we have defined

N; < Ny < --- < Ni_1 and f to be equal f; on the interval (Nj, Nj4] for
j € [1,k — 2]. For step k of the recursion let Ny > Nj_; be large enough

to satisfy
L5 5l < e foreveryj € (152 7.4
k [LNk—l}
Apn|fj = fia| <€ forevery N> Ny, j € [1,k—2] (17.5)
and
Ap N ‘f] — fk| <€ for every N > Ny, j € [1,k — 2] (17.6)

Complete the kth step of the recursion by defining f to be equal f;_; on
the interval (Nj_1, Ni].
Let us fix j and let N be large enough so that for some k > j 4 2 we
have
N < N < Niga (17.7)

We want to show that
Ap N lfj = f] < 3¢ (17.8)

Let us estimate A\[l,N} |f] - f| as,

1
Apnlfi-fl=x5 X [fi—fl (17.9)
[11Nk71}
1
N Y. Ifi—fl (17.10)
(Ni—1,Nk]
1
+N Z |f]—f| (17.11)
(Ni,N]
We can estimate the term in eq. (17.9), using eq. (17.4) and that N > Nj,
as
1
N Z |fj—f|<e]- (17.12)

[1,Ng-1]
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For the term in eq. (17.10) we have

1
N Y. lfi—fl<g (18.1)
(Ni—1,N]
This follows from eq. (17.5) since f = fx_1 on the interval (Ny_1, Ni].
For the term in eq. (17.11) we have

1
N (NZ:N}‘f]- — f‘ <€ (18.2)
ks

This follows from eq. (17.6) since f = fi on the interval (Ni, N].
Putting the estimates in eqs. (18.1), (18.2) and (17.12) together we obtain
eq. (17.8). O

The second lemma shows that the family M of sequences f for which
M(f) = limy Ay f exists is closed with respect to the upper mean M()
defined by

, fecW (18.3)

M(f) = limsup| A, ey n f ()
N

18.1 Lemma » M is closed with respect to M()

Let (f;) be a sequence from M. Suppose that (f;) converges to
f € €N in the seminorm M(), so

11?11\7[(fj —f)=0 (18.4)

Then f € M and
M(f) = lim M) (8.5

Proof. First note that, as a consequence of eq. (18.4), the sequence (f;) is a
Cauchy sequence, meaning that for a given € > 0 there is  so that

M(fj — fj) < eforeveryj>] (18.6)
Since ’M(f]) —M(f))| = ‘M(f] — )| = M(f; — fj) we see,
IM(fj) — M(f})| < eforeveryj>] (18.7)

so the sequence M(f;) of means is a Cauchy sequence of numbers. De-
note L = lim; M(f;). We want to show that M(f) = L. For a given

€ > 0, choose a j so that [M(fj) — L| < e and M(f — f;) < e. We then
have, for an arbitrary N,

‘A[l,N]f - L‘ < ‘A\[LN] (f —fj)‘ + ‘A[l,N]fj - L‘ (18.8)

Taking lim sup,; of both sides, we get

hm}\?up’A[l,N]f_ L‘ <M(f - fj) + [M(fj) - L| (18.9)
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Since M(f — fj) < e and |[M(f;) — L| < €, we get limsupN‘A[LN}f — L’ <
2e. Since € > 0 was arbitrary, we have limN‘A[LN}f - L’ = 0 which
means M(f) = L = lim; M(f;).

How do we now show that every open set can be represented? Let
B C T be open with positive p1, measure, let B = U;1; be its decomposi-
tion into pairwise disjoint open intervals I; and set By == Ujc[1 Ij. Since
#a(B) > 0, we have jy(Bg) > 0 for large enough k. For simplicity, we
assume that 1, (By) > 0 for every k. The sets By increase to B monoton-
ically, hence, in particular, we have limy pi (ByAB) = 0. According to
proposition 14.1, the set B can be represented by the set Sy C R defined
by

Sk:={rn: raa € By} (19.1)

and we have Mg(Sg) = pa(By). Since for every k, I the set ByAB; is
Jordan measurable, we also have

MR (SkAS)) = pa(BeABy) (19.2)
For each k let us define the sequence fi by

fi(n) =15 (r,), neN (19.3)
We have
M(fi) = Mg(S) for every k € IN (19.4)

and we can rewrite eq. (19.2) as

M|fi — fil = pa(BeABy) (19.5)

Since (By) is a Cauchy sequence, so limy sup;-; pa(BxAB;) = 0,
eq. (19.5) implies that (f) is also a Cauchy sequence in |||, so we have

lim sup;» M| fi — fil = 0. Since M|f — fi| = ||f¢ — fill accord-
ing to lemma 16.1, there is f to which the (fi) converges, that is, so
lim || fx — fll; = 0, and by lemma 18.1, M(f) = lim; M(f). Since
M(f) = Ha(B) and limy pio(By) = pa(B), we have M(f) = pa(B) > 0.
According to remark 16.2 (c) f is 0 — 1 valued hence we can define a set
S C R by its indicator as

15(rn) = f(n), neN (19.6)

We have

Mg(S) = M(f) (19.7)
We want to show that S is good and it represents B at a. To this end, let
B € T be arbitrary and define the sequences ff and ff by

FP(n) = fi(n)e(rap) forn € N (19.8)
B(n) = f(n)e(ryB) forn € N (19.9)

19
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Since M(f) = limy M(fx) > 0and M(fy) = Mg(Sk), we have M(S) >
0. It follows that, by eq. (15.1), to show that S is good, it’s enough to show
that M(fP) exists for every B and to show that S represents B at a it’s
enough to show that M(fP*) = u,(e” 1p) for every p € Z.

Let us first show that M(fP) exists for every B. Since each set Sy is
good with M(S;) > 0, we have, as a consequence of eq. (15.1), that
ff € M for every k, B. The fact that for every B, the sequence (ff)
converges to fF in the norm M() follows from the uniform estimate

M(ff — fP) < |l fi — flly for every p (20.1)
By lemma 18.1, fﬁ € M and

M(fF) = im M(f}) (20.2)

Let us now show that S represents B at a, that is, M(fP*) = p,(e? 1p) for
every p € Z. Since the sequence (By) converges to B in L!(jy)-norm we
have

h;fn pa (e 1p,) = pa(ef 1p) for every p € Z (20.3)

Since M(f") = pa(eP 1p,) and, by eq. (20.2), limy M(f]") = M(fP),

eq. (20.3) implies that M(fP*) = p,(e? 1p).
We record the general idea we used as proposition 20.1 (b) below.

20.1 Proposition » Limit of good sets with positive mean is good ——

Let (Sk) be a sequence of good subsets of R with mean which
converge to S C R in [|||; g-seminorm, that is, lim || St AS||; g = 0.
Assume that lim sup, Mg (S;) > 0.

Then we have the following,.

a) limy, MR(Sk) exists and MR(S) = limy MR(Sk) > 0.
b) Sisa good set.

c) The sequence (ps,,p), of limit measures converge to pig g in
variation distance and uniformly in B,

limsup[ps.p = s plly =0 (20.4)

d) Let v be a Borel measure on T.

If for some a, g, 4 is absolutely continuous with respect to v with
Radon-Nikodym derivative p for every k, then yg , is also
absolutely continuous with respect to v with Radon-Nikodym
derivative p which satisfies

liml|ox = pllp1(,) =0 (20.5)

20
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Proof- The proof of proposition 20.1 (a) follows from the triangle inequal-
ity for the ||||;-seminorm, since we then have

Mg (S) = MR (S)] =[Skl = 1S 111
< [[SkAS|l4r

and just use the assumption that limy[|SxAS|[; r = 0.

The argument we gave just before the enunciation of our proposition
proves that S is a good set.

For the proof of proposition 20.1 (c) note that in the argument pre-
ceding our proposition we proved that the sequence (us, g), of measures
converges weakly to jg g for every B but an estimate similar to eq. (20.1)
enables us to draw the stronger conclusion of eq. (20.4).

The following lemma gives us the estimates we need.

2r.1 Lemma » ||[|; z dominates |||y and [[[| .1

Let v1, v, be good R-weights. Assume that

max{|[o1 | g lo2ll 1z } >0 (211
Then we have the following.

2)

2

s‘;PHVDLﬁ — Hopplly < }”Ul — vl &

max{ |01 | & 102l 1.2

(21.2)

b) If, for some a, the limit measures iy, o and jiy, o are absolutely
continuous with respect to a Borel measure v on T with Radon-
Nikodym derivatives p; and py, respectively, then

4

o1 = P2l <

} lor —vally g (213)

max{ o1 1,R” |v2 1,R

Proof. To prove lemma 21.1 (a), that is, the inequality in eq. (21.2), fix B
and ¢ € C4,s0 ¢ isacontinuous T — C function with0 < ¢ < 1.
We can assume without loss of generality that max{ [91l1 /|22 HI,R} =
[01]l r- Let (N;); be a strictly increasing sequence of indices so that

lim Ay, o1 = [[o1fly g (21.4)

21
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Let us estimate as

ALy PrB) = ALy 9(raf)

1 1

LI | - A
Apn 01 e[, Ny 01(rn)@(rnp) A o2 ne[l,Nz]UZ(”n)q’(rnIS)‘

adding 0 = _WAne[l,Nl]UZ(”n) ¢(rnp) + AlN]vl ne[l,Nl]UZ(”n)¢(7’n/3)

inside the absolute value and using the triangle inequality,

1
SW\AHEH,N,]MM $(raB) = A 02 () P(ruB)|
- | A ne2(r)g(rap)|
- 2
Apnjor Ap o ||
1 Ap Ny lor — o2
<—— A v — 0o + Al v
Ap o1 gl =2l A norAp o N2
2
= —A U1 — 0
g 1,101 — o2
so we have

2
e (nB) = Ay ¢ ()| < WA[LNZ] o1 =02 (22.1)

Since limy Al )\ @(ruB) = pho,p (¢) lim; Apy njo1 = [|o1][4r and
lim sup, A 2] A nlor — 2] < Toilir H X l[o1 = v2][4,rs We get
2
’Viil,ﬁ(ﬁb) - sz,ﬁ(gb)} < ||Ul||1 R ”vl - UZHLR (22'2)

which is independent of B and ¢ € C, proving eq. (21.2).

To prove lemma 21.1 (b), observe first that, since piy,« = p;v and p;
are probability densities with respect to v, we have ||p1v — pov|ly =
o1 —p2 I11)- It follows that

1
[Hora = Hopally = §||P1 - P2||L1(v) (22.3)
and now just use eq. (21.2). O

Now, let us come back to the proof of proposition 20.1. Using eq. (21.2)
with v; = 15, and v, = 15, we get
2
ax{ 1Skl 115 1 1

Using the assumption that limy[|SxAS||; g = 0 and that, by proposi-
tion 20.1 (a), we have limy||Sg ||y g = lim Mg(Sx) = Mg(S) = [|S||y x>
0, we get eq. (20.4).

SI;pH#sk,ﬁ —tsplly < } ISkAS|l g (22.4)

22
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For the proof of proposition 20.1 (d), by proposition 20.1 (a), we can
assume, without loss of generality that Mg (Sx) > 0 for every k. Using
eq. (21.3) with o1 = 15, and v; = 15, we get

4
max{ [[Sll1 15111z }

This implies, since the sequence (S) is convergent in ||||; g-seminorm

|SkAS;

llor = pxll 1) < 1R (23.1)

and hence is Cauchy, that the sequence (o) is Cauchy in L!(v)-norm.
Since L!(v) is complete and v(p;) = 1 for every k, thereisap € L'(v)
with v(p) = 1 so that

lim||ox = pllp1(,) =0 (23.2)
Since [|ox — I 1) = 2lloxv — pvlly and prv = pg a0, we get
lim||pts, o = pv||y =0 (23.3)

But by proposition 20.1 (c) we also have limy || s, » — ps2||y = 0 hence
we must have yg, = pv.
O

We can use proposition 20.1 in an argument similar to the one we used
to show that any open set can be represented at a to prove that if a G4 set
B has positive ju-measure then it can be represented at a. Only the initial
setup of the proof is different. This time let (By) be a decreasing sequence
of open sets which converges to B. Let Sy C R represent By at o. We
again have the isometry eq. (19.2) from which everything follows: the
existence of a good set S which represents B at & and M(S) = i (B).

Since every Borel measurable set differs from a G set on a set of p,-
measure zero, we in fact showed that every Borel set of positive s~
measure can be represented. So we proved the following more precise
version of theorem 7.1 for the case when the Radon-Nikodym derivative
of a measure with respect to i, is an indicator.

23.1 Proposition » Theorem 7.1 for indicators

Let R C IN be a good set, & be an irrational number, and let B be a
Borel set with y,(B) > 0.
Then B can be represented at « by a set S C R which satisfies

Mg (S) = pa(B) >0 (23.4)

4 Measures that cannot be represented at every irrational o

For this section, we suspend the proof of theorem 7.1 just to see how
proposition 23.1 can be used to prove theorem 5.3. We will also prove
theorem 6.1.
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4.1 Proof of theorem 53

In this section we want to prove that if the Borel probability measure v
has a point-mass at a point v € T and w is irrational then v cannot be
represented at .

The proof is by contradiction: let us assume that for some y € T,
v({7}) > 0and that v can be represented by the set R at a, s0 jig 4 = v.
Then the Dirac mass §, is absolutely continuous with respect to pg , with
Radon-Nikodym derivative equal ﬁ]l {y}- By proposition 23.1 there is a
good set S C R which represents 6, at &, so g, = 6. Let us define the
function ¢ : T — C as

¢(B) = psp(e) (24.1)

Then, by the definition of 5 g(e), ¢ is the limit of the sequence (¢n) of
continuous functions defined by ¢pn (B) = A,,c(1,n) e(snB) where (sy) is
the elements of S arranged in increasing order. Since for every p € Z we
have pig pu(€) = pisq(e?) and pg 4 (e?) = e (y), we have

|¢| =1 on the dense set { pa : p € Z } (24.2)

By Weyl’s theorem,’ ¢ = 0 on a set of full Lebesgue measure, so, as a
consequence,
¢ = 0 on a dense set. (24.3)

By Baire’s theorem,'® eqs. (24.2) and (24.3) together are impossible to
hold simultaneously for the limit of continuous functions.

42 Proof of theorem 6.1

So in this section we want to prove that if v is a Borel probability measure
on T with limsup,,_,[v(e?)[ > 0 then there is an irrational « where
v cannot be represented. In fact the set of such «’s is of full Lebesgue
measure.

From the assumption that limsup,,_,,|[v(e”)| > 0 it follows that there
is an € > 0 and a infinite sequence p; < pp < ... of indices so that

lvePk| > efork € N (24.4)

By Weyl’s result,'” the set A C T defined by
A= {uc : { pxa : k € IN } has nonempty interior (mod 1) } (24.5)

has full A measure. We want to show that A is a subset of those a’s at
which the measure v cannot be represented.

Let « € A, and suppose the measure v can be represented at a, say, by
the set S = (s,), that is, pg, = v. Let us define the function ¢ : T — C as

¢(B) = sple) (24.6)

5 Weyl 1916, Satz 21; Kuipers and Nieder-
reiter 1974, Theorem 4.1.

' Baire 1905, Page 83.

7 Weyl 1916, Satz 21; Kuipers and Nieder-
reiter 1974, Theorem 4.1.
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Then, by the definition of 5 g(e), ¢ is the limit of the sequence (¢n) of
continuous functions defined by ¢n(B) = A,,c[1,n) €(sup)- Since for
every p € Z we have g pu(e) = psq(e) and ps,(e?) = v(eP), by
eq. (24.4) we have

|y5,pka(e)| > ¢ for every k € IN (25.1)

By the definition of ¢, we can write the above as

|¢| > eontheset {pyax : k€ N} (25.2)
Since & € A, the set { pya : k € IN } is dense in a nondegenerate interval
ICT.
By Weyl’s theorem,™ ¢ = 0 on aset U of full Lebesgue measure 1 Weyl 1916, Satz 21; Kuipers and Nieder-

reiter 1974, Theorem 4.I.

$p=0onU (25.3)

Since both { pya : k € IN } and U are dense in the interval I, by Baire’s
theorem,™ eqgs. (25.2) and (25.3) cannot be true together for the limit ¢ of v Baire 1905, Page 83.
continuous functions.

5 Representing by weights

In this section, we fix the good set*> R and the irrational number «, and 20 Note that we make no further assump-
we continue in the tradition of section 3 suppressing the set R in our tion on R, such as sublacunariy
notation for the limit measure, so py = yg 4.

In trying to extend the class of representable functions p from indica-
tors, we first consider an easier problem. Instead of representing by sets,

we represent by R-weights.

25.1 Definition » Function represented by a weight

Let p be an unsigned L!(T, s, ) function with i, (p) > 0.
We say the R-weight w represents p at « if w is good and it represents
the measure p - jiy, that is, pyp = ﬁp “ Ug

The R-weights w we consider in this section have positive mean
in R, so Mg(w) > 0. For such a weight, the non-normalized aver-
ages A1 Njw(7n )0y, p are easier to handle than the normalized ones

Aw
ne[1,N]
ages are identical since they differ only by the nonzero factor Mg (w),

or,p- The convergence or divergence properties of the two aver-

w

1il{]n Ay N (rn)ér,p = Mg (w) liI{]n Al 1N]0r8 (25.4)

as can be seen from writing AY_ AN OB = WA\”G[LN]W(M)&,&

In section 2 we have already seen that if p is an unsigned continuous
function with i, (p) > 0 then the R-weight w defined by

w(r) = p(rut) (25.5)
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is good, unsigned and it represents p at a. Since every unsigned pi,-
integrable function can be approximated arbitrary closely by unsigned
continuous functions in L!(T, pt, )-norm, the proof of theorem 9.3 (a)
requires only an approximation argument similar to what we had in
section 3. We restate theorem 9.3 (a) in the following form for the readers
convenience.

26.1 Proposition » Any integrable function is representable with weights
Let p be an unsigned function from L(T, yts) with ps (p) > 0.

Then there is an R-weight w which represents p at a. In particular, we
have

MR (w) = pa(p) (26.1)

Furthermore, if p is a bounded function then the representing
R-weight w can be chosen to be bounded.

The proof of proposition 20.1 can be easily adjusted to obtain the
following analog for weights.

26.2 Proposition » Limit of good weights with positive mean is good

Let (wy) be a sequence of good R-weights with mean which converge
to the R-weight w in [|||; g-seminorm, so limy||wy — wl|; z = 0.
Assume that lim sup; Mg (wy) > 0.

Then we have the following.

a) limy, MR(wk) exists and lim; Mg (wk) = MR(ZU) > 0.
b) w is a good R-weight.

c) The sequence (Vwk/ﬂ)k of limit measures converge to i, g in
variation distance and uniformly in B,

li{n SLﬁlpH‘uwk,ﬁ — Hwp {V =0 (26.2)

d) Let v be a Borel measure on T.

If for some &, iy, o is absolutely continuous with respect to v with
Radon-Nikodym derivative py for every k then py 4 is also
absolutely continuous with respect to v with Radon-Nikodym
derivative p which satisfies

lim||ox = pllp1(y) =0 (26.3)

With this proposition, we can complete the proof of proposition 26.1
exactly as we proved proposition 23.1, using a sequence (pi) of unsigned
continuous functions that converge to p in L!(j4)-norm. We need to

26
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remark only that if p is a bounded function, then the sequence (o) of
continuous functions can be chosen to be uniformly bounded.

6 Proof of theorem 7.1 for bounded p

In this section, we still are working with a fixed good set R of positive
integers, an irrational number &, but now we also fix a bounded Borel
measurable, unsigned function p with 4 (p) > 0. We proved in section 5
that p can be represented at a by a good, bounded R-weight w. In this
section we will show that there is a good set S C R which also represents
p at &, hence proving theorem 7.1 for bounded p. It follows from the
definition of representation that if the good R-weight w represents p then
so does the R-weight cw for every positive constant c. In particular, we
can assume that the R-weight w representing p is bounded by 1. We will
show that then there is a set S C R so that

A R e(rup)| =0 (27.)
The “construction” of S satisfying eq. (27.1) is done randomly. Our ran-
dom method requires that we limit the growth of the set R; we need to

assume that R is sublacunary.?' We need the concept of a sublacunary * Jones, Lacey, and Wierdl 1099, Theorem
weight. B.

27.1 Definition » Sublacunary weight

The R-weight w is called sublacunary if it satisfies

oo WR(N))

N logN (27.2)

We often consider the sequence (7,) instead of the set R in which case
we can use the following more convenient version of eq. (27.2).

. Lne[LN] w(rn)
lim ———— =0 (27.3)
N log rn+1

Our main tool in this section is the following.

27.2 Proposition » There is a set representing the same measures as a bounded weight

Let w be a bounded, sublacunary R-weight.
Then there is a set S C R so that

lil{[n %1211)‘( Asesnye(sB) — Aftrv) e(rﬁ)‘ =0 (27.4)

As a consequence, if the R-weight w is good then so is the set S and we
have

Hs,p = Huw,p for every B (27.5)
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Proof. Since we can always assume that the bound of the R-weight w is 1,
proposition 27.2 follows from the following lemma.

28.1 Lemma » Random selection of a good set

Let 0 be an R-weight bounded by 1. We assume that for a constant

b > 0 we have (RON))
.. 0(R(N
hn}\]me >b (28.1)

Let (€, P) be a probability space and and let (X;),cg be a sequence of
totally independent Q) — {0, 1} random variables indexed by R and
with distribution P(X; = 1) = o(r) (so P(X, =0) =1 —0(r)).
Then we have

[ Zreran) (Xo(w) = (1)) e(rp)|
P{ w : supmax
N BET \/(logN)(T(R(N))

<o »=1

(28.2)

To see that proposition 27.2 indeed follows from lemma 28.1, let

o= so 0 is bounded by 1. Here we make a bit more compli-

w
Mol
cated argument than needed to show that there is a rate of convergence in
eq. (27.4).

The sublacunarity assumption on w implies that ¢ is sublacunary. We
then have, as a consequence of eq. (28.2), that there is a measurable subset
O of Q with P(€Q;) = 1 so that for every w € () there is a finite
positive constant C,, with

max ot e(r _logN _
o R AR , 2o, KB = SRy, 2o 1) ””‘ < Corl SR
(28.3)
For B = 0, we then have
1 w log N 5
RO &, O = Ty @

This implies that if we replace o(R(N)) by ¥,cg(n) Xr(w) in m Yrer(n) Xr(w) e(rp)

we make a O( log N > error, hence eq. (28.3) implies

7(R(N))
maX| —m—mmmmm————~ # ryelr logN
e >x,< 5 L MR iy o) (ﬁ)‘gc T
(28.5)

Defining S, C R by
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we can write eq. (28.5) as

log N

—2 Q
O'(R(N)) or every w € {)q

max|Aes, ) €(56) — Aery e7B)] < Cu

(29.1)
Since ¢ is a constant multiple of w, we can replace ¢ by w in eq. (29.1),

|w|o log N

fc Q
w(R(N)) or every w € {)q

max|Aes, ) €(56) — Afry e(7B)] < Cu

(29.2)
Since limy [“l=18N" — 0 due to the sublacunarity assumption on the
w(R(N))

R-weight w, we get eq. (27.4) if we take S = S, for any w € ().

Proof of lemma 28.1. To see clearly what we need to do, denote

Y (%) —o(r) e(rp)

reR(N)

ZN(B)

and

ty=c- \/(logN)(T(R(N))

where we’ll choose the constant ¢ appropriately later. By the Borel-
Cantelli lemma, it’s enough to prove

gp(rﬁneapzwwn > ty) <o (20.3)

The first idea in proving eq. (29.3) is that we do not have to take the max-
imum over all B € T, but over a finite subset B of T which contains N3

29

elements??. Since the degree of the trigonometric polynomial Zx(B) is at > In fact, we can take a set B with as few

most N, we can readily see that supgcq [Zy(B)] < N? supger | Zn(B)-

. . . . ) 10N won’t improve anything over N°.
It follows that if we take By C T to be an arithmetic progression with

|By| = N3 then
max|Zn (B)] < 2 max|Zy (p)] (20.4)
Hence we have
P(max|ZN(/3)| > tN) < P(max|ZN(/3)| > tN/2> (29.5)
BET BEBy

Using the union estimate, we get
P(max|ZN(,B)| > tN/2> < N3max P(|Zn(B)| > tn/2)  (29.6)
BEBy BEBN

Thus eq. (29.3) follows from

Y " N°max P(|Zy(B)| > tn/2) < oo (29.7)
N BeBn

elements as 10N, but in our applications,
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This follows if we prove

2
P(|ZN(,B)| > tN/Z) <5 for every p € T (30.1)
To prove eq. (30.1), we use the Bernstein-Chernoff exponential esti-
mate.3 This estimate says that if Yy, k € [1, K], are totally independent, 2 Tao and Vu 2006, Exercise 1.3.4 with
t = Ac.

mean zero, complex valued random variables with | Y| < 1, then

2
P( Zt> §4max{exp<—z‘lke[:K}/ISE|Yk|2>,exp(—t/3)} for every t > 0

(30.2)
Take K = #R(N) and Y;(B) := (X; — o(r))e(rB) for r € R(N). Then
|Y:(B)] < 1so the Y, satisfy the assumption in Bernstein’s inequality,

Y Y

ke[1,K]

hence, with t = tx/2, we get the estimate

t3,/32

(303)
Since E|Y,(B)|?> = o(r)(1 — o(r)) we have
Y. EY(p)]? <o(R(N)) (30.4)
reR(N)
Using that ty = ¢ - \/(log N)o(R(N)), we get
t3,/32 _ (c/32)(log N)o(R(N))
Yrern) B (B)2 T Lreron) BIYA(B)[?
using the estimate in eq. (30.4)
(c2/32)(log N)o(R(N))
7(R(N))
= (c?/32)(log N)
hence ,
ol — ty /32 —(2/32)(log N)
¢ p( ZreR(N)EYr(ﬁ)P) =¢ (go5)

In order to get e~ (¢/32)(logN) < N5 = ¢75198N e need to have
c2/32 > 5,50 it enough to have, since v/160 < 13,

c>13 (30.6)

We also have

in/6= (c/6) -1/ (log N)o (R(N))
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by the assumption in eq. (28.1) for all large enough N
> (c/6)Vblog N

It follows that
exp(—tn/6) < ¢ (c/6)VblogN (31.1)

We again need to have ¢~ (c/6)VblogN < N5 = ¢ 518N which poses the
requirement (c/6)\/5 > 5, that is,

c> f)/OE (31.2)

Thus choosing the constant ¢ large enough to satisfy both eqs. (31.2)
and (30.6), the estimate in eq. (30.3) implies the one in eq. (30.1). O

O

6.1 Notes to lemma 28.1

The type of method we used in lemma 28.1 to estimate trigonometric
polynomials goes back to Salem-Zygmund.?# Recent developments have > Salem and Zygmund 1954, Chapter IV.

been given for example by Weber?S and by Cohen-Cuny.26 > Weber 2000.
26 Cohen and Cuny 2006.

7 Absolute continuity and positive mean

The general theme of this section is that if a good set or weight has pos-
itive mean then it can represent only an absolutely continuous measure.
To be specific, we want to prove theorems 7.2 (b) and 9.3 (b).

Our standing assumption is that R is a sublacunary good set, and hence
we suppress it in our notation for the limit measure, so we write i, in-
stead of ug 4.

7.1 Proof of theorem 7.2 (b)

Theorem 7.2 (a) says that if p is an unsigned L*(j,) function with
#a(p) > 0and w is an irrational number then p can be represented at

a with a good set S C R satistying Mg (S) = W We have proved
[oe) yv‘

this in section 6.

Theorem 7.2 (b) says that the converse is also true: if the good set S C
R satisfies ||S||; g > O then the limit measure pg g is absolutely continuous
with respect to pg with a bounded Radon-Nikodym derivative pg which

must satisfy )
< .
HP,SHLOO(M) < TThix for every B (31.3)

This is what we intend to prove now. Since B € T is fixed, we suppress
it in our notation, so for example we write y for pg and g for g g. Let
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S C Rbe such that [|S]|; g > 0. Let us first show that for every B, the
limit measure pg is absolutely continuous with respect to .
This will follow if we show that for every Borel set B we have

#s(B) < #(B) (32.1)

To see this, it’s enough to show that for every unsigned, continuous func-
tion ¢ on T we have

pus() < w(e) (32.2)

15114,

Let ¢ be such a function and let Ny < N, < ... be a sequence of indices
for which limy A, cg(n,)Ts(7) = [|S]l1 r- We can then estimate as

#s(¢) = lim Ases(n) P (sp)

= hIEHAsES(Nk) ¢(sB)

1
=lim——FA )1 r
1}1;11 Ang(Nk)]lS(T’) 'r‘ER(Nk S( ) ( ﬁ)

. 1
< limsup A—]ls(r)ArER(Nk)(P(rﬁ)

I’ER(Nk)

since limy & and limy A,cg(n,)P(7B) exists,

1 _
ne[l,z\/k]ﬂs(”) - HSHLR

1
hmAreR (N9 (7B)

since limy A, cr(n) ¢ (rB) = u(¢),

proving eq. (32.2).

Now, inequality y( ﬁ]lg) <

it
B= {p/g > m} readily gives eq. (31.3).

14 (B) applied to the Borel set

7.2 Proof of theorem 0.3 (b)

Since the good set R is fixed, we suppress it in our notation for the limit
measures, sO we write y, instead of yig 4.

In this section, we need to prove that if the good R-weight w has pos-
itive relative 1-norm and it is integrable, that is, it can be approximated
arbitrary closely by bounded, good R-weights in ||||; r-seminorm, then
for every irrational B the limit measure pi,, g is absolutely continuous with
respect to fig.

Let (wy) be a sequence of good, bounded R-weights which converges

to w in |||, g-seminorm, lim [w; — wlly = 0. Since ||[wglly g — lwlly 5| <

32
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|[wi — ]|y g> we have limg|Jwy ||, g = [[w||y g > 0, and hence we can as-
sume without loss of generality that ||wg||; g > 0 for every k. That for
every k the measure iy, g is absolutely continuous with respect to g for
every B follows from

Hw,p(B) < Myﬁ(B) for every Borel set B (33.1)

[[wkll1,r

The proof of this inequality is almost identical to the proof of the inequal-
ity in eq. (32.1), hence we omit it.
Now the rest of the proof of theorem 9.3 follows from lemma 21.1.

8  Proof of theorem 7.1 for unbounded p

In this section we again work with a fixed, sublacunary good set R C IN
which we view as a sequence (r,) arranged in increasing order. We omit
R from our notation for the limit measures, so we write Hp instead of
jg,g- We also fix an irrational number a. Let p € L'(a). We want to

33

find a gOOd set?” S C R which represents p at a. ACCOI‘ding to prOpOSi— 27 Which can be shown to be sublacunary

tion 26.1 there is a good R-weight w which represents p at a. Since this the weight b below,
weight w has positive relative mean with respect to R, it’s a sublacunary ©
weight. The problem is that, as per construction, w is not a bounded
weight if p is unbounded, hence we cannot use our proposition 27.2 to
construct the desired set S.

Our main job in this section hence will be to construct a good R-

weight v satisfying the following properties
* v is bounded by 1;
* v is sublacunary;

* 0 represents the same measure at every f as w, so fiyg = Jy,p for every

Once we have such a good weight v, we can use proposition 27.2 to
“construct” the desired good set S.

The weight v will be of the form ¢ - w where the weight ¢ is a decreas-
ing weight, that is, o(r,) > o(r,41) for every n € IN. That a weight v of
this form represents the same measures everywhere is a consequence of a
general but probably familiar result—our main new tool in this section.
Not to get bugged down with unnecessary notation, we will state the re-
sult for weights with the reindexing w(n) = w(r,) with which R weights
become IN-weights.

First recall the definition of a dissipative sequence of measures on IN.

as a consequence of the sublacunarity of
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34.1 Definition » Dissipative sequence of measures

Let (vn)Nen be a sequence of finite measures on IN.
We say, the sequence (vn)nen is dissipative if

lim on(f)

) 0, for every j € N (34.1)

34.2 Proposition » Decreasing weights preserve limits

Let w be a weight, (o) new be a sequence of finite measures on IN and
let x = (x,,) be a sequence from a normed space (X, ||||). Denoting
vN = Oy - w, we assume the following

a) Each oy has finite support.
b) The sequence (vy) is dissipative.
c) For each N the measure oy is decreasing, o (1) > on(2) > ...

d) The sequence (Afg LN] xn> \, converges to some y/ & X,

hmA LN X =Y (34.2)

Then, the sequence (A J G ) of averages converge to the same limit

as the w-weighted averages,
hm A\]é\’]N =y (34.3)

At the heart of this result is the following quantitative estimate: For a
given € > 0, if K is such that HA e~ yH < € for j > K then we

have

Az -y <e +jg§§]HAZ€p,ﬂxn -y W (34.4)

for every N > K.

Note that the estimate in eq. (34.4) indeed implies the conclusion

of the proposition in eq. (34.3). To see this,let N — o0 in eq. (34.4).
on([LK])

Then, since (vy) is a dissipative sequence so limy o)~ 0, we

get that lim supNHA].elej — yH < e. Since € > 0 is arbitrary, we get
. v
thHA‘jeNlej - y” =0.

Proof of proposition 34.2. The main idea of the proof is to write A;-]g]ij as
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an average of the w-averages with respect to another measure gy on IN
A;’g’mx- = A?QNA:;’E[L].] xy, for all N (35.1)
These measures gy will also satisfy
gn(N) = vy (IN) for every N € IN (35.2)

The measure g appears during performing summation by parts: setting
on(0) :== 0, w(0) := 0 and xg := 0, we have

A= g B 0
1 .
= o) jgv on(f) (nex[l:,ﬂ w(n)x, — ne%“iu W(n)xn)
1 , '
= @ jg\l(m(]) —on(j+ 1)) HGX[:Lj] w(n)xy
1

I
g

N . YA
N(m)jem(aNo> on(j+1)) - w([L,]) - Ay %
Thus, defining the measure gy by

an() = (on() —on(+1) -w(Lj), forje N (35.3)

we get the identity in eq. (35.1) once we show that gy really is a measure
satisfying eq. (35.2). That gn(j) is unsigned follows from the assumption
that the sequence (on(f));ew is decreasing for fixed N. That gy (IN) =
on(IN) follows by setting x; = 1 for every j in the summation by parts
argument above since then we get exactly gn(IN) = vy (IN):

4
1= A1

- Z)NE]N) ]';1:\1(‘71\1(]') —on(j+ 1)) ~w([1,]]) 'A;UE[lJ']l
1

= )ZqN(])l

N(N jeEN
1

Q!

on(IN) an

N

Using the now obvious identity y = A? Y together with eq. (35.1),

€
1 UN .
we can now write A].G]Nx] yas

A?Q]ij —¥= A\-;ig]N (AZJE[L]'] Xn — ]/) (35.4)
Let € > 0. Since we assumed limy A?rfe[l,l\l] Xy = Y, thereisan K =

K(€) so that

HA;UE[Lj]x" —yH <eg forj>K (35.5)

35
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Splitting the summation on j in AN jeN (An e, — y) into two parts at

K and using the triangle inequality, we get the estimate

HA]EN(A\Z)G[Mxniy)H = qulN) je%qq (])(Affe[lﬂ *?/)
| gn(IN ];:(qN ( ;Ue[l,j]Xn —y)H (36.1)

We can estimate the first term as

~([LK))
QN(]N)]E[;K]qN D (A =) Jren%HA”e“f y‘ N(IN)
(36-2)

Using the definition of qx/(j) as given in eq. (35.3), we can estimate
gn([1,K]) as

av([LK) = ¥ (on(i) —on(i+1)) -w((1, 1))

jE[LK]

= ¥ on(i) (w(L]) = w([i—1])) = on(K +1)aw([1,K))

jE[LK]

= Y on()w(j) — on(K + Dw([1,K])
jEILK]

— Z UN(])—U’N(K+1)W([1/K])
jel1LK]

<on([1K])

Using this estimate and that gy (IN) = vy (IN) in eq. (36.2) we get

o, 2 0 (g 0)| = o] G
(36.3)

The second term in eq. (36.1) can be estimated, using eq. (35.5), as

Putting the estimates in egs. (36.3) and (36.4) into eq. (36.1) and using the
identity in eq. (35.4) we get eq. (34.4). O

<e (36.4)

ZQN ( nelj]x”_y)

]>I<

36.1 Corollary » Decreasing weights preserve limit measures of weights

Let w and ¢ be R-weights. Denoting v := ¢ - w, we assume the
following
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a) v(R) = co.

b) The R-weight ¢ is decreasing (r1) > o' (rp) >

c) The R-weight w is good.

Then v is a good R-weight and it represents the same measures
everywhere as w,

Hop = Hu,p for every B (37.0)

Proof. We need to show that for a given p we have
lim Ay vy e(raB) = tup(e) (37.2)

to do this, use proposition 34.2 with oy defined by

on(n) = o (rn)ly N (n) (37.3)

and (x;,) defined by
Xn = e(rnp) (37.4)
O

Let us now go back to our good R-weight w which represents p at a.
Since we now consider R as the sequence (r,,), its sublacunarity assump-
tion is expressed more conveniently as

hz{]n =0 (37.5)

logryn

as we noted in eq. (7.2). Since the weight w satisfies Mg (w) > 0,

eq. (37.5) implies that w is also sublacunary. Writing 102’;:}11 = % .
logry; We see that eq. (37.5) implies
N
=00 (37.6)

im—
N logrni1

According to the proof of lemma 16.1, we obtained w as the limit of a
sequence (wy) of bounded good weights by pasting the wy together piece
by piece in a sense that after choosing indices Ny < N, < ..., we define
w to be equal wy on the interval (N, Ny 1]

w(ry) = Zk:wk(rn)]l(wk,wm] (n) (37.7)

Now, in order to obtain a good weight v which is bounded by 1 and
would represent the same measures as w, we could do the following.
Define ¢ by

o(ry) = 1

" maxcng [0 (N Ny ] (1) (37.8)

37
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Then ¢ is decreasing and v := ¢w is bounded by 1. The remaining issue
is to ensure that v is sublacunary, and to do that it’s enough to ensure

lim Lne,n) ©Un) olrn) = o0 (38.1)
N log rn+1

as we noted in eq. (27.3). This would also ensure that both o and v are
weights. It turns out that in the recursive process of choosing the indices
(Ni) if we choose Nj large enough compared to Ny_; we can ensure that
v is sublacunary. We want to show that we can choose the indices Nj so
that we will have eq. (38.1). Let us note that in the proof of lemma 16.1
the choice of Ny is flexible, since it just has to be large enough to staisfy
some criteria. So we now add one additional criterion, namely we want
to choose Ny large enough to also satisfy

N

> klogrny1 for every N > Ny (38.2)
maxje( || @]

This is possible because of the sublacunarity condition in eq. (37.6), and
eq. (38.2) ensures the sublacunarity of v, that is, eq. (38.1).

That v represents the same measures as w at every B follows from
corollary 36.1. As in the last step of our proof of theorem 7.1, we use
proposition 27.2 to show the existence of a good set S C R which
represents the same measures as v at every 8, hence at f = « we have

USu = PHa-

9 The limit measure at rational points

In this section we want to prove theorem s.2. The base set is IN which we
suppress in our notation, so we write jg instead of p g.

Given the probability measure v on T, and the rational number £
ged(a,q) = 1, let us see what properties a good set S would need to have
so that pig /g = V-

Introducing the sets S; by

Si={s:seSsa=j (modgq)}, foreveryje [1,q] (38.3)

let us write, using that the S; are pairwise disjoint,

ASGS( (N Z 5su/q

1
= Y X 9y
#S(N) i emg sesiny
# J(N)(s
#S(N) I/
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. . #S(N) .
28 ]
If we make the assumption®® that limy FI(N) CXists for every j then,

letting N — oo, we get
#5;(N)

Hs,a/ /g lim o (39.1)
v ]E%q] ! (N)

Since pg,q/4 is supposed to be equal v, we get

#S:(N
lim ]( )

N #S(N) = U(]/Q) (39-2)

This gives us the idea how to construct S: we start out from the set R;

defined by

Ri={n:na=j (modq)}, forevery;e [l,q] (39.3)

Note that Rjisa full residue class mod g, namely, if j* denotes the
unique solution to the congruence j'a = j (mod q), then R; is the
arithmetic progression { kg +j' : k € IN }. Note that R; is a good set, as
are all arithmetic progressions. We clearly have

1 )
M(R;j) = p for every j € [1,4] (39-4)

Now what remains is to find a set S; C R; with relative mean v (%)

and make sure that S; is a good set. Let <y be an irrational number and
consider

Sj= {7” treRjrye {0,1/(;)) } for every j € [1,4] (39-5)

Using proposition 14.1 witha = yand R = R, we deduce that Sjisa
good set with Mg, (S;) = 1/( ) as desired. We finally define S as

s=J s (39-6)

jelLq]

The set S is good since it’s the finite union of pairwise disjoint good sets

with mean. Indeed, we have M(S;) = % v(é) and hence M(S) = %

10  Examples

101 Two good sets, but their intersection has no mean.

Here we construct randomly two good sets, R, S with M(R) = M(S) =
1/2 but M(R N S) doesn’t exist.

Let (X;) be a iid sequence of random variables on the probability space
(Q, P), modeling fair coin flipping, so with distribution P(X,, = 1) =

#5;(N)

**In fact, the existence of limy -
follows from S being a good set.

#S(N)

)
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P(X, = 0) = 1/2. Let us also consider another sequence of random

variables (Y},) defined by

Xy if n € [2k, 2541 for even k
Y, = ' L oied (40.1)
1—X, ifn €[22 for odd k

The (V) is also an iid sequence with the same distribution as the (X},).

Define the sets RY, 5 by RY :== {n : X,(w) =1}and S¥ = {n : Y, (w) =1}.
By lemma 28.1 both R and S“ are good sets almost surely with M(R¥) =
M(S¥) = 1/2. We claim that M(R“ N §¢) almost surely doesn’t exists.

To see this, denote T% := R N S“ and observe that if M(T%) existed
Twﬂ[Zk,ZkH)
2k
and by E the even numbers, we almost surely have

then limy would exist. But, denoting by O the odd numbers

T N [zk, 2k+1)

li =0
keO 2k

. TYN [2k/ 2k+1) 1
Iim —-— % = —
keE 2k 2

102 Ry URy and Ry N Ry have means but are not good

Here is an example of two good sets Ry and R each with mean 2/3,
M(R; N Ry) = 1/2 but Ry N Ry is not good and M(Ry UR;y) = 5/6 but
Ry URy is not good.

Both sets will be defined in blocks of intervals. Partition IN into a
sequence of disjoint intervals I,, so that their lengths go to infinity but
slower than the left endpoints go to infinity. For example, I, = [n?, (n +
1)?) will do.

The first good set Ry will contain all iNtegers from Iy, then only Odd
numbers from I, then Even numbers from I3 then repeat this pattern for
Iy, Is, Ig etc:

NOENOE... (40.2)

The set R; is defined similarly, except it will have one pattern in inter-
vals J; == [3,35*1) for even k and another for odd k.

EONEON... for even k (40.3)

ONEONE... for odd k (40.4)

Both of these sets are good and they represent the same (uniform)
measure at every f3.
The intersection Ry N Ry has the patterns

EOEEOE... for even k (40.5)

OOEOQOE ... for odd k (40.6)
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Clearly M(Rq N Ry) = 1/2 but the average of e(1/2) is different on
Ji for even k from those on odd k: for even k the average will go to 1/3
while for odd k it goes to —1/3.

As for the union Ry U Ry, it has the patterns

NONNON ... for even k (41.1)

NNENNE... for odd k (41.2)

Clearly M(Rq U Rp) = 5/6 but the average of e(n/2) is different on J;
for even k from those on odd k: for even k the average will go to —1/3
while for odd k it goes to 1/3.

103 Open set U with visit set {n : na € U } not good

Let a be an irrational number in the torus T. We show that there exists
an open subset U of the torus such that the sequence (Ane[l,N]]lu(na)) N
does not converge when N goes to infinity.

We want to construct an open subset U of the torus and an increasing

sequence of positive integers (Ni)x>o such that the averages A,y Ny, Tu(na),

The construction does not use at all the
group structure or the dimensional prop-
erties of the torus. This can be extended
in a general context of a sequence in a
compact metric space with a non purely
atomic asymptotic distribution.

k=0,1,2,..., with even indices are large whereas the averages A, ¢ n,,.,,11u (1),

k=0,1,2,... with odd indices are small.

The sequence (Ni) will be constructed by induction and each Ny will
be associated to ¢ := 1/ (2k+4Nk). In this induction process, we construct
also a sequence of open subsets (Uj)>o.

We start with Ny > 1 fixed and we define

Uy = U (na — eg, na+ €g)
ne[l,Ng}

We have of course
Ane[l,No]]on (1’10() =1 and 0< )L(ﬁo) < 2Noeg

This is the initial step of our construction. In order to be understand-
able, let us describe the two next steps.

By the uniform distribution of the sequence (na), in the torus, there
exists a number N > N such that

Ay U (ne) < 2A(Up) < 4(Noeo)

We fix such a Nj. To any n € [1, Nq] with na ¢ Up we associate a real J,,
that
0<6,<e and (na—éy,na+6,)NUy=02

We define
u, = U (na — oy, na + 6y)

ne(l,N|
nag¢ Uy
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We have
Ane[l,Nl]]llh (nzx) >1—4Nyeg and 0< )L(E) < 2Nj€q

Note also that by construction Uy N U; = @.
By the uniform distribution of the sequence (na), in the torus, there
exists a number Np > Nj such that

Ayep g L (na) < 2A(Ur) < 4(Nier)

We fix such a Np. To any n € [1, Np] with na ¢ Uj we associate a real 6y,

satisfying
0<dép<e and (na—oy,na+d,)NU =0
Note that the values of the §,,’s are reini-
We define tialized.
Up:=UyU |J (na—d,,na+d,)

nE[l,Nz]

nag U
We have

Ane[l,Nz]]lUZ (7’10() >1—4Nieq and /\(Uz) < 2No€eg + 2Nrer

Note also that by construction Uy N Uy = @ and Uy C Ua.
Let us state now our induction hypothesis. Suppose that, for a fixed inte-
ger k > 0 we have already constructed two sequences

(Ur)g<p<x and Nog < Np < Np < ... < Ng
such that
cUyclU,cUycC...andUjCcUzsCUsC...,
* If £ is even and ¢ is odd, then U, and Uy are disjoint,
* Each Uy is a finite union of open intervals,
« 1f0 <24 <k, then
A(Uyp) < 2(Noeo 4+ Noex + ... 4+ Nopeny)
and
Apeiny Ly, (ne) > 1 —4(Nier + Naes + ...+ Nog_1€01)
« If1 <20+1 <k, then
A(Uzey1) < 2(Ni€r + Nzez + ...+ Nopr1€241)
and

AHE[LNMH]]IUNH (1’10() >1-— 4(NQ€0 + Noer + ...+ Nzgezg)
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Here begins the induction process. By the uniform distribution of the
sequence (na)y in the torus, there exists a number Ny 1 > Nj such that

Ay N, L (ne) < 2A(Uy)

We fix such a Ny 1. Toany n € [1, Ny, 1] with na ¢ Uy we associate a
real ,, that

0<6y <€y and (na—6,,na+6,)NU =0
We define
Uy =W U J (na— 6y, na+6,)

ﬂG[l,Nﬁl]
nad Uy

The items of the induction hypothesis are now satisfied by the se-

quences (llg)oggkJrl and (Ng)ogégk_H.
We can consider these sequences as infinite, and we define U :=

Uk=0 Uzk-
Recalling our choice Nyex = 2754, we obtain

A?’le [l'NZk} ILU(”“) 2 A)’le [l,Nzk} ILuzk (na)
>1—4) Nyi€x41
l

=5/6
and
Ae it Ny Lu(ne) < Ayepn g, Lug, ()
<4y Nye*
7
=1/3
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