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E. Lesigne, A. Quas, J. Rosenblatt, M. Wierdl

October 22, 2022

Let S := (s1 < s2 < . . . ) be a strictly increasing sequence of positive
integers and denote e(β) := e2πiβ. We say S is good if for every real α

the sequence
(

1
N ∑n≤N e(snα)

)
N∈N

of complex numbers is convergent.

Equivalently, the sequence S is good if for every real α the sequence
(snα) possesses an asymptotic distribution modulo 1. We are interested
in finding out what the limit measure µS,α := limN

1
N ∑n≤N δsnα can

be. In this first paper on the subject, we investigate the case of a single
irrational α. We show that if S is a good set then for every irrational α

the limit measure µS,α must be a continuous Borel probability measure.
Using random methods, we show that the limit measure µS,α can
be any measure which is absolutely continuous with respect to the
Haar-Lebesgue probability measure on T. On the other hand, if ν is
the uniform probability measure supported on the Cantor set, there
are some irrational α so that for no good sequence S can we have the
limit measure µS,α equal ν. We leave open the question whether for
any given singular, continuous Borel probability measure ν there is an
irrational α and a good sequence S so that µS,α = ν.
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2 Notations, definitions

Natural numbers N The set {1, 2, 3, . . . } of natural numbers is denoted
by N.

Torus T We identify the torus T := R/Z with the unit right-open
interval,

T := [0, 1) (3.1)

Haar-Lebesgue measure λ We denote by λ the Haar-Lebesgue probabil-
ity measure on the torus.

e(θ), ep(θ) We use Weyl’s notation1 1 Weyl 1916.

e(θ) := exp(2πiθ), for θ ∈ T (3.2)

and
ep(θ) := exp(2πipθ), for p ∈ Z, θ ∈ T (3.3)

so e = e1.

[N] We borrow the following convenient notation from combina-
torists

[N] := {1, 2, . . . , N} (3.4)

Nth initial segment S(N) We denote by S(N) the Nth initial segment
of S ⊂ N

S(N) := S ∩ [N] (3.5)

Counting measure #S We denote by # the counting measure on N, so
#S = #(S) = ∑n∈N 1S(n) is the number of elements in S ⊂ N.

Arithmetic average AS f For a finite set S and for a function f defined
on S, we denote by AS f the arithmetic average of f on S,

AS f :=
1

#S ∑
s∈S

f (s) (3.6)

σ-average Aσ
S f If σ is a non-identically 0, finite measure on a set S, we

then denote by Aσ
S f the σ-average of f on S,

Aσ
S f :=

1
σ(S)

∫
S

f dσ. (3.7)



generation of measures by statistics of rotations along sets of integers 4

So Aσ is simply the normalized integral with respect to the mea-
sure σ, and hence the integral of f with respect to σ has to make
sense. We usually encounter this notation for S ⊂ N, and in this
case it takes the form

Aσ
S f =

1
σ(S) ∑

s∈S
σ(s) f (s). (4.1)

2.1 Good set

In this paper we are interested in those sets S ⊂ N for which the
averages As∈S(N) e(sα) converge for every α ∈ T as N → ∞.

4.1 Definition I Good set
Let S ⊂ N be an infinite set.
We say that S is a good set if for every α ∈ T the limit

lim
N
As∈S(N) e(sα) (4.2)

exists.

We see immediately that the set N is good. Since the work of

Weyl,2 we know that if S is the set of kth powers, S =
{

nk
∣∣∣ n ∈ N

}
2 Weyl 1916, Satz 9; Kuipers and Nieder-
reiter 1974, Theorem 3.2.for a k ∈ N, then S is good. That the set of primes is good follows

from the work of de la Vallée Poussin and Vinogradov.3 In both 3 The case of rational α is equivalent
with the prime number theorem for
arithmetic progressions which is proved
in Vallée Poussin 1896; the case of
irrational α follows from the corre-
sponding uniform distribution result of
Vinogradov, see Vinogradow 1937.

cases, for irrational α the limit in eq. (4.2) is 0.
We find that it’s more intuitive to describe the meaning of the limit

in eq. (4.2) in terms of Borel probability measures on T. To do this,
we need some more notations.

Nth average measure As∈S(N)δs We call As∈S(N)δs, where δs is Dirac’s
delta function at s the Nth average measure along S.

Nth transform measure As∈S(N)δsα We call As∈S(N)δsα the Nth trans-
form measure along S.

ν(φ) It is often convenient for us to use the functional notation for
the integral with respect to a Borel measure ν on T, so for a ν-
integrable T→ C function φ we denote

ν(φ) :=
∫
T

φ dν (4.3)

With this notation, for a Borel measurable set B ⊂ T we have
ν(B) = ν(1B).

For a fixed α, the transform measure As∈S(N)δsα is a Borel proba-
bility measure on the torus. Notice that if the set S is good, that is the
limit in eq. (4.2) exists for every α ∈ T, then, by Weierstrass’s theorem
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on the density of trigonometric polynomials in the space of continu-
ous functions on T, for every continuous function φ defined on T the
limit limN As∈S(N)φ(sα) exists for every α ∈ T. This means that for

a fixed α ∈ T, the sequence
(
As∈S(N)δsα

)
N

of transform measures
converges weakly to a Borel probability measure on T.

Limit transform measure µS,α For a good set S and α ∈ T, we define
the limit measure µS,α along S at α by ,

µS,α := lim
N
As∈S(N)δsα (5.1)

where the limit is in the weak sense, that is, for every continuous
T→ C function φ we have

µS,α(φ) = lim
N
As∈S(N)φ(sα) (5.2)

Let us record what we have established as a proposition.

5.1 Proposition I Good set in terms of limit measures
Let S ⊂ N be an infinite set.
Then S is a good set if and only if the weak-limit measure
µS,α := limN As∈S(N)δsα exists for every α ∈ T.

Note that if α is irrational and limN As∈S(N) e(psα) = 0 for every
nonzero p ∈ Z, then the limit measure µS,α is λ.

Our main object in this paper will be to try to figure out what the
limit transform measure µS,α can be, and for this it’s convenient to
introduce the following definition.

5.2 Definition I Representable measure at α

Let S be a good set, and let ν be a finite Borel measure on T.
We say that S represents ν at α ∈ T if µS,α = 1

ν(T)
ν.

We say ν is representable at α if there is a good set which represents
ν at α.

It’s possible to reformulate the concept of a good set in terms of
dynamical systems4. By the spectral theorem, we have the following 4 By a dynamical system, we mean a

probability space (X, p) equipped with
a measurable, measure preserving
transformation T of X.

proposition.

5.3 Proposition I Good set in terms of a dynamical systems
Let S ⊂ N be infinite.
Then the set S is good if and only if in every dynamical system

(X, p, T) for every f ∈ L2(X) the sequence
(
As∈S(N) f ◦ Ts

)
N∈N

is

convergent in L2-norm.
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Mean M( f ) The mean M( f ) of f ∈ CN is the limit of the sequence(
A[N] f

)
N∈N

as N → ∞ if the limit exists,

M( f ) := lim
N
A[N] f (6.1)

If f is the indicator of a set S ⊂ N, we then often write M(S) in
place of M(1S). Of course, M(S) is the density of S.

Relative mean MR( f ) Let R ⊂ N be an infinite set. The relative mean
MR( f ) of f ∈ CN in R is the limit of the sequence

(
AR(N) f

)
N∈N

as

N → ∞ if the limit exists,

MR( f ) := lim
N
AR(N) f (6.2)

If f is the indicator of a set S ⊂ R, we then may write MR(S) in
place of MR(1S). Of course, MR(S) is the relative density of S in
R.

Sequences with meanM We denote byM the collection of f ∈ CN for
which the mean exists and is finite

M := { f | f ∈ CN, M( f ) exists and is finite } (6.3)

Weights,W , good weights, µw,α The sequence w ∈ RN is called a
weight if w is unsigned and ∑n w(n) = ∞. A weight can be con-
sidered a measure on N and in that case for S ⊂ N we may briefly
write w(S) in place of ∑s∈S w(s).

The set of all weights is denoted byW ,

W := {w |w ∈ RN, w ≥ 0, ∑
n

w(n) = ∞ } (6.4)

Let R ⊂ N be an infinite set. We often consider R as a strictly in-
creasing sequence (rn) of integers, in which case we sometimes
write w(n) instead of w(rn), so in this way we view w as sup-
ported on N.

For a weight w supported on R we say w is good if the weak limit

of the sequence
(
Aw

n∈[N]
δrn β

)
N

of measures exists for every β ∈ T.
We denote this limit by µw,β,

µw,β := lim
N
Aw

n∈[N]δrn β = lim
N

1
w([N]) ∑

n∈[N]

w(n)δrn β (6.5)

In the special case of a good set S, we have µS,α = µ1S ,α since the
weighted averages with weight w := 1S correspond to the averages
along S.

Let ν be a Borel probability measure on T and let α ∈ T.

We say the weight w represents ν at α if w is good and µw,α = ν.
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Seminorms ‖‖1, ‖‖1,R We define the Besicovitch type seminorm ‖‖1
for all complex valued sequences by

‖ f ‖1 := lim sup
N

A[N]| f |, f ∈ CN (7.1)

The number 1 in the subscript of ‖‖1 expresses the similarity of
this norm to the L1 norm.

For a set S ⊂ N, we may use the notation ‖S‖1 instead of ‖1S‖1. It
is the upper density of S.

For an infinite set R ⊂ N we define the relative 1-norm ‖‖1,R by

‖ f ‖1,R := lim sup
N

AR(N)| f |, f ∈ CR (7.2)

If the set R is given as a strictly increasing sequence (rn) and for
an f defined on R we define F by F(n) := f (rn), then ‖ f ‖1,R =

‖F‖1.

Seminorms ‖‖M We define the M-seminorm ‖‖M for all complex
valued sequences by

‖ f ‖M := lim sup
N

∣∣∣A[N] f
∣∣∣, f ∈ CN (7.3)

Variation distance ‖ν1 − ν2‖V For finite Borel measures ν1, ν2 on T we
denote by ‖ν1 − ν2‖V their variation distance.

‖ν1 − ν2‖V := sup
B∈B
|ν1(B)− ν2(B)| (7.4)

where B is the family of Borel subsets of T. Note that we have

‖ν1 − ν2‖V = sup
φ∈C+
|ν1(φ)− ν2(φ)| (7.5)

where C+ denotes the set of [0, 1]-valued continuous functions on
T,

C+ := { φ | φ : T→ [0, 1], continuous } (7.6)

We summarize our notations in table 1.

3 Main results

To appreciate the concept of a good set, note the following. Sup-
pose we are given an irrational number α ∈ T and let ν be any
Borel probability measure on T. Then we can always find a set
S ⊂ N so that limN As∈S(N)δsα = ν. To do this, take an iid se-
quence (Xn) of T-valued random variables, each with law ν. Then
the sequence (ep ◦Xn) is also an iid sequence of random variables
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Symbol Definition Parameters Name

N {1, 2, 3, . . . } Natural numbers
T [0, 1) torus
λ λ(T) Haar-Lebesgue measure on T
e(θ) exp(2πiθ) θ ∈ T
ep(θ) e(pθ) p ∈ Z
[N] {1, 2, . . . , N} N ∈ N
S(N) S ∩ [N] S ⊂ N initial segment of S
#S(N) ∑s∈S(N) 1 S ⊂ N counting function of S
AS f 1

#S ∑s∈S f (s) set S is finite average of f on S
Aσ

S f 1
σ(S)

∫
S f dσ σ is a finite measure on set S σ-average of f on set S

µS,α limN As∈S(N)δsα S ⊂ N, α ∈ T limit transfer measure of S at α

µw,α limN A
w
n∈[N]

δrn β weight w on (rn), α ∈ T limit transfer measure of w at α

ν(φ)
∫
T

φ dν

M( f ) limN A[N] f f ∈ CN mean of f
MR( f ) limN AR(N) f f ∈ CN, R ⊂ N relative mean of f
M { f | f ∈ CN, M( f ) exists and is finite } sequences with mean
W {w |w ∈ RN, w ≥ 0, ∑n w(n) = ∞ } set of weights
‖ f ‖1 lim supN A[N]| f | f ∈ CN 1-seminorm
‖ f ‖1,R lim supN AR(N)| f | R ⊂ N, f ∈ CR relative 1-seminorm

‖ f ‖M lim supN

∣∣∣A[N] f
∣∣∣ f ∈ CN M-seminorm

C+ { φ | φ : T→ [0.1], continuous }
‖ν1 − ν2‖V supφ∈C+(ν1(φ)− ν2(φ)) νi finite Borel measures on T variation distance

Table 1: Notations

for every p ∈ Z, and by the strong law or large numbers we have
limN An∈[N] ep ◦Xn = ν(ep) with full probability for every p ∈
Z. This implies that there is an ω so that limN An∈[N]δXn(ω) =

ν. Then, using the density of the sequence (nα)n (mod 1), we
can select a strictly increasing sequence (sn) of integers so that
limn(snα− Xn(ω)) = 0 (mod 1). We finally take S := { sn | n ∈ N }.

It is particularly simple to get a point-mass as a limit measure. For
example, to get the Dirac measure at 1/2, so µ = δ1/2, take a strictly
increasing sequence (sn) of natural numbers so that snα converges to
1/2 mod 1, and let S := { sn | n ∈ N }. In contrast to this example,
for good sets we have,
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9.1 Theorem I Only continuous measures can be represented at irrational points
Let S ⊂ N be a good set and α be an irrational number.
Then the limit Borel probability measure

µS,α = lim
N
As∈S(N)δsα (9.1)

is a continuous measure.
In other words, only continuous measures can be represented at an
irrational number.

The obvious question in turn is if every continuous Borel proba-
bility measure can be represented at a given irrational number. The
answer is no, as the next result shows.

9.2 Theorem I Some continuous measures cannot be represented at every irrational point
Let ν be a Borel probability measure on T so that its Fourier
coefficients do not converge to 0, so

lim sup
p→∞

∣∣µ(ep
)∣∣ > 0 (9.2)

Then there is a set A ⊂ T of full Lebesgue measure so that ν

cannot be represented at any α ∈ A.

Since a measure ν is called a Rajchman measure5 if limp µ ep = 5 Lyons 1995.

0, we can rephrase theorem 9.2 that if ν is representable at every
irrational α then it must be a Rajchman measure.6 A well known non- 6 After discussions on the content of

the present paper, Christophe Cuny
and François Parreau constructed
a non-Rajchman measure which is
representable at uncountably many α’s.
This appears in the preprint Cuny and
Parreau 2022.

Rajchman continuous measure is the uniform measure on the triadic
Cantor set.

The following questions remain open.

9.3 Question I Is every continuous measure representable somewhere?
Let ν be a continuous Borel probability measure on T.
Is there an irrational α so that ν is representable at α?

9.4 Question I Is a Rajchman measure representable at every α?
Let ν be a Rajchman probability measure on T and let α be
irrational.
Is ν representable at α?

These questions can also be addressed for particular examples of
singular measures such as the uniform probability measure on the
triadic Cantor set (a non-Rajchman measure) or its modification by
Menshov who gave the first example of a singular Rajchman mea-
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sure.7 7 Menchoff 1916; see also Lyons 1995.

The next result says that the answer to question 9.4 is yes if ν is
absolutely continuous with respect to the Lebesgue measure on the
torus T.

10.1 Theorem I Absolutely continuous measures are representable at every irrational point
Let ν be a Borel probability measure on T which is absolutely
continuous with respect to the Lebesgue probability measure on T.
Let α be an irrational number.
Then ν is representable at α.

Our proof of theorem 10.1 is flexible and enables us to show a
more general result.

10.2 Theorem I Absolutely continuous measures can be represented by subsets of a good set
Let R be a good set which is “sublacunary”, that is, it satisfies the
growth condition

lim
N

log N
#R(N)

= 0. (10.1)

Let α an irrational number, and let the Borel probability measure ν

be absolutely continuous with respect to µR,α.
Then there is a good set S ⊂ R which represents ν at α.

As a consequence of theorem 10.2, ev-
ery measure which is absolutely contin-
uous with respect to the Lebesgue mea-
sure can be represented at any given
irrational α by a subset of the primes,
squares, or

{ ⌊
n2 log n

⌋ ∣∣ n ∈ N
}

.

In fact, the proof of theorem 10.2 reveals a close connection be-
tween the Radon-Nikodym derivative ρ of ν with respect to µR,α and
the mean of the set S representing ν.

10.3 Theorem I Connection between dν
dµR,α

, MR(S) and ‖S‖1,R

Let R be a sublacunary good set.

1. For an irrational α let the unsigned function ρ ∈ L1(µR,α) with
µR,α(ρ) = 1 be bounded so ‖ρ‖L∞(µR,α) < ∞.

Then there is a good set S ⊂ R representing the measure ρ · µR,α

at α and satisfying MR(S) = 1
‖ρ‖

L∞(µR,α)
.

2. Let S be a good subset of R with positive upper density in R, so
‖S‖1,R > 0.

Then for every irrational β the limit measure µS,β is absolutely
continuous with respect to µR,β. Furthermore, the

Radon-Nikodym derivative ρβ :=
dµS,β
dµR,β

is a bounded function

satisfying ‖ρβ‖L∞(µR,β)
≤ 1
‖S‖1,R

.

Item 2 of theorem 10.3 has the following consequence.
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11.1 Corollary I If the RN derivative ρ is unbounded, then MR(S) = 0
Let R be a good set and α an irrational number. Suppose the
unsigned function ρ ∈ L1(µR,α) with µR,α(ρ) = 1 is unbounded,
and that the good set S ⊂ R represents the measure ρ · µR,α at α.
Then S must have 0 mean in R, MR(S) = 0.

In contrast to good sets, the representation of absolutely contin-
uous measures by weights can always be accomplished by weights
with positive, finite mean. In fact, the representing weight has an
additional property.

11.2 Definition I Integrable weight
We call the weight w integrable if it can be approximated arbitrary
closely in the seminorm ‖‖1 by bounded, good weights: for every
ε > 0 there is a good weight v with ‖v‖∞ < ∞ so that
‖v− w‖1 < ε.

11.3 Theorem I Representation by weights
Let R be a good set.

1. For an irrational α let the unsigned function ρ ∈ L1(µR,α) satisfy
µR,α(ρ) = 1.

Then there is an integrable weight w on R with MR(w) = 1
which represents the measure ρ · µR,α at α. If ρ ∈ L∞(µR,α) then
the representing weight w can also satisfy ‖ρ‖L∞(µR,α)

= ‖w‖∞.

2. Let w be a good, integrable weight supported on R which
satisfies ‖w‖1,R > 0.

Then for every β the limit measure µw,β is absolutely continuous
with respect to µR,β.

In contrast to the case of irrational points, representation of mea-
sures at rational points is completely resolved. Consider the rational
number α = a

q where q ∈ N and a ∈ [q] and let S be a good set. Then,
as can be seen readily, the limit probability measure µS, a

q
is supported

on the set Tq of qth roots of unity

Tq :=
{

j
q

∣∣∣∣ j ∈ [0, q− 1]
}

. (11.1)

The next result says that this limit measure µS, a
q

can be any probabil-
ity measure supported on Tq.
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12.1 Theorem I Every probability measure on Tq can be represented

Let q and a be positive integers with gcd(a, q) = 1, and let ν be a
probability measure supported on Tq.
Then ν can be represented at a

q , that is, there is a good set S so that
µS, a

q
= ν.

The techniques developed in this paper allow one to address the
simultaneous representability of probability measures at several differ-
ent points of the torus, and we plan to explore this in a future work.
But which family { µα | α ∈ T } of measures can be represented by a
single good set remains open even if we restrict the family to abso-
lutely continuous measures with respect to the Lebesgue probability
measure λ. What we can say at this point is that for a given good set
S, the set of α ∈ T where the limit measure µS,α is not the Lebesgue
measure is small: it is both of first Baire category and of 0 measure
under every Rajchman measure8 on T. 8 Lyons 1985, Theorem 3; see also Lyons

1995.

4 Basic example for representation

In this section we want to work out a rather simple but instructive
example, which will then motivate and form the basis of many of
our constructions later on. When we are done with presenting this
example, we in fact proved theorem 10.2 in case the Radon-Nikodym
derivative is the indicator of a Jordan measurable set.

Let α be irrational and let I ⊂ T be an interval. We want to show
that if a probability measure ν is absolutely continuous with respect
to λ with the Radon-Nikodym derivative equal 1I , the indicator of
I, then there is a set S which represents ν at α. Probably the simplest
way9 to define such a set S is by taking 9 We could also define such a set by

taking { n | n ∈ N, n2α ∈ I (mod 1) }
or { p | p ∈ Π, pα ∈ I (mod 1) }
where Π is the set of primes. Here
is a dynamically generated good set:
in a dynamical system let A be a set
with positive measure and consider
{ n | n ∈ N, Tnx ∈ A }. By the Wiener-
Wintner theorem, this set is good for
a.e. x.

S = { n | n ∈ N, nα ∈ I } (12.1)

There are two things to verify. First, that S is indeed a good set, and
to do that, we need to show that the weak limit µS,β = limN As∈S(N)δsβ

exists for every β. Second, we then have to verify that µS,α = 1
λ(I)1I ·

λ. The second one, in fact, is almost instantaneous to do since it fol-
lows from the uniform distribution of (nα)n∈N (mod 1). To see how
it follows, it’s enough to show that for every interval J ⊂ T we have

µS,α(J) = λ
(
1J · 1

λ(I)1I

)
, that is

lim
N
As∈S(N)1J(sα) = λ

(
1J ·

1
λ(I)

1I

)
(12.2)

The right hand side is 1
λ(I)λ(J ∩ I). The left hand side can be written
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as

lim
N
As∈S(N)1J(sα) = lim

N

N
#S(N)

An∈[N]1I(nα)1J(nα)

since limN
#S(N)

N = λ(I) by the uniform distribution of (nα)n∈N
(mod 1),

=
1

λ(I)
lim

N
An∈[N]1I∩J(nα)

again by the unifom distribution of (nα)n∈N (mod 1)

=
1

λ(I)
λ(I ∩ J).

To show that the weak limit µS,β = limN As∈S(N)δsβ exists for every β,
it’s enough to show that limN As∈S(N) e(sβ) exists for every β. Since

As∈S(N) e(sβ) =
N

#S(N)
An∈[N]1I(nα) e(nβ) (13.1)

and since limN
#S(N)

N = λ(I), it’s enough to show that the limit
limN An∈[N]1I(nα) e(nβ) exists for every β ∈ T. To see this, first note
that if we replace 1I by the character ek the limit of An∈[N] ek(nα) e(nβ) =

An∈[N] e(n(kα + β)) as N → ∞ exists and is as follows

lim
N
An∈[N] ek(nα) e(nβ) =

{
1 if β = −kα (mod 1)

0 otherwise.
(13.2)

From this we get that if we replace 1I by a trigonometric polynomial
φ, the limit of An∈[N]φ(nα) e(nβ) exists and can be given explicitly
as10 10 Notice that in eq. (13.3) λ(φ ek) is the

kth Fourier coefficient of φ.

lim
N
An∈[N]φ(nα) e(nβ) =

{
λ(φ ek) if β = −kα (mod 1)

0 otherwise.
(13.3)

Using Weierstrass’ theorem on being able to uniformly approximate a
continuous function by trigonometric polynomials, we can verify that
in eq. (13.3) we can take φ to be any continuous function.

Figure 1: Approximating the indicator
1I of the interval I by continuous
functions φa (from above) and φb (from
below).

I

φb φa

ε
2

ε
2

Now, for a given ε > 0 let us choose unsigned continuous func-
tions φa, φb so that φb ≤ 1I ≤ φa and λ(φa − φb) < ε (see fig. 1). We
then have∣∣∣An∈[N]1I(nα) e(nβ)−An∈[N]φb(nα) e(nβ)

∣∣∣ = ∣∣∣An∈[N]

(
1I(nα)− φb(nα)

)
e(nβ)

∣∣∣
≤ An∈[N]

(
1I(nα)− φb(nα)

)
≤ An∈[N]

(
φa(nα)− φb(nα)

)
.
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It follows, since the sequence (nα)n∈N is uniformly distributed
mod 1 and λ(φa − φb) < ε, that

lim sup
N

∣∣∣An∈[N]1I(nα) e(nβ)−An∈[N]φb(nα) e(nβ)
∣∣∣ < ε. (14.1)

Denoting L(ε, β) := limN An∈[N]φb(nα) e(nβ), we can rewrite
eq. (14.1) as

lim sup
N

∣∣∣An∈[N]1I(nα) e(nβ)− L(ε, β)
∣∣∣ < ε. (14.2)

Since

lim
ε→0

L(ε, β) =

{
λ(1I ek) if β = −kα (mod 1)

0 otherwise,
(14.3)

the limit of An∈[N]1I(nα) e(nβ) as N → ∞ exists and is given by

lim
N
An∈[N]1I(nα) e(nβ) =

{
λ(1I ek) if β = −kα (mod 1)

0 otherwise.
(14.4)

We finally get, since µS,β(e) = limN As∈S(N) e(nβ) = 1
λ(I) limN An∈[N]1I(nα) e(nβ),

µS,β(e) =


1

λ(I)λ(1I ek) if β = −kα (mod 1)

0 otherwise.
(14.5)

The above shows that µS,β(e) can be nonzero only if β is an integer
multiple of α, and we recognize λ(1I ek) as the kth Fourier coefficient
of the function 1I , that is, 1

λ(I)λ(1I ek) is the kth Fourier coefficient of

the measure 1
λ(I)1Iλ.

One can rather easily extend this example in two ways. First, the
proof can be repeated almost verbatim for the case when we take
any Jordan measurable set B in place of the interval I. Indeed, all
we need to remark is that a set B is Jordan measurable iff, for every
given ε > 0, its indicator function 1B can be approximated by a pair
of unsigned, continuous functions φa and φb so that φb ≤ 1B ≤ φa

and λ(φa − φb) < ε. This approximability by continuous functions
both below and above is also equivalent with saying that the bound-
ary of the set has zero Lebesgue measure.

14.1 Definition I ν-Riemann integrability
Let ν be a finite Borel measure on T and let φ be a Borel
measurable T→ C function.
We call the function φ ν-Riemann integrable if it’s continuous at
ν-almost every point.
We call the Borel measurable set B ν-Jordan measurable if its
indicator function 1B is ν-Riemann integrable.
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As it is well known, the equivalence of approximability by con-
tinuous functions and the boundary having zero measure carries
over to the setting of any finite Borel measure on the torus. We can
thus extend the example to the setting when the Lebesgue measure is
replaced by an arbitrary finite Borel measure.

We record our findings in the following result.

15.1 Proposition I The Radon-Nikodym derivative can be the indicator of a Jordan measurable set
Let R be a good set, α be an irrational number and let B ⊂ T be
µR,α-Jordan measurable with µR,α(B) > 0.
Then the measure 1BµR,α, which is absolutely continuous with
respect to µR,α, can be represented at α by the good set S defined
by

S := { r | r ∈ R, rα ∈ B } (15.1)

so we have µS,α = 1
µR,α(B)1BµR,α. We also have µR,α(B) = MR(S).

Let us go back to trying to represent measures which are abso-
lutely continuous with respect to the Lebesgue measure λ. New ideas
are needed to cover the case when we want to represent the measure
1Bλ when B is a Borel set which is not Jordan measurable. What is
the new difficulty? We’d like to think that we could just again take
the “visit set” S = { n | n ∈ N, nα ∈ B }, but this is not the case any-
more. Indeed, take B to be an open set with λ(B) < 1 and containing
all integer multiples of our irrational α. This open set is not Jordan
measurable anymore. The set S cannot represent the measure 1Bλ

anymore since S = N. In fact, we show in section 12.3 that for any
given irrational α, one can construct an open set B so that the visit set
of B doesn’t even have mean. So we definitely need new ideas.

We also need new ideas even for the case when we try to repre-
sent a measure which is absolutely continuous with respect to the
Lebesgue measure with a Radon-Nikodym derivative which is not
an indicator function. We need these new ideas even if this Radon-
Nikodym derivative is a continuous function.

5 Proof of theorem 10.2 for indicators

Strictly speaking, we have already begun the proof of theorem 10.2
in the previous section, when we proved that at an irrational number
every measure with Jordan measurable Radon-Nikodym derivative
can be represented. Our fixed set up in this section is that we are
given a good “base” set R ⊂ N and an irrational number α. Since the
set R is fixed throughout the section, we suppress the set R from our
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notations, so we write

µβ := µR,β, for every β (16.1)

M := MR (16.2)

When we consider the elements of R arranged in the increasing se-
quence (rn), we identify a subset S of R with the index set { n | rn ∈ S },
and we denote this index set also by S.

The sets we consider in this section have positive mean in R. For
such a set S, the non-normalized averages An∈[N]1S(n)δrn β are easier
to handle than the normalized ones An∈S(N)δrn β. The convergence or
divergence properties of the two averages are equivalent since they
are connected as

lim
N
An∈[N]1S(n)δrn β = M(S) lim

N
An∈S(N)δrn β (16.3)

Since our focus is to widen the class of the Radon-Nikodym
derivatives with respect to the base limit measure µα, the following
definition will simplify our language.

16.1 Definition I Representing a function, a Borel set

Let ρ ∈ L1(T, µα) be unsigned and µα(ρ) > 0.
We say that the good set S ⊂ N represents ρ at α if the weak limit of

the sequence
(
An∈[N]1S(n)δrnα

)
N

is the measure ρµα.
If ρ is the indicator of a Borel measurable set B ⊂ T, we then say
S ⊂ N represents B at α.

In section 4 we proved that if B is µα-Jordan measurable, then it
can be represented by the set SB defined by

SB = { n | rnα ∈ B } (16.4)

and we have the relation

M(SB) = µα(B) (16.5)

We also indicated that this definition of SB may not give a good set
if B is not Jordan measurable. The idea of extending the represen-
tation to any Borel measurable set is via a limit procedure. To ex-
plain what we mean by “a limit procedure”, consider the case when
B is an open set, and write it as a disjoint union of open intervals,
B = ∪j Ij. Defining Bk := ∪j∈[k] Ij for every k ∈ N, each Bk is Jordan
measurable and the sequence (Bk) increases monotonically to B. We
have limk µα(Bk) = µα(B). Denoting Sk := SBk , the sequence (Sk)

also increases to a set S ⊂ N, but M(S) not only may not be equal
limk M(Sk) but M(S) may not even exist. The limit procedure which
is suitable for our purposes is determined by the seminorm ‖ f ‖1.
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Our main tools will be two lemmas. The first one is modeled af-
ter a result of Marcinkiewicz11 on the completeness of Besicovitch 11 Marcinkiewicz 1939.

spaces.

17.1 Lemma I Cauchy sequence of sets is convergent in the seminorm ‖‖1

Let (Sk) be a Cauchy sequence of subsets of N with respect to the
seminorm ‖‖1, so they satisfy

lim
k

sup
l≥k

∥∥1Sl − 1Sk

∥∥
1 = 0 (17.1)

Then there is a set S ⊂ N satisfying

lim
k

∥∥1Sk − 1S
∥∥

1 = 0 (17.2)

Proof. We construct the set S by pasting together finite pieces of the
Sk. More precisely, we recursively define a fast enough increasing
sequence N1 < N2 < . . . of indices, and then we define S to be equal
Sk on the interval (Nk, Nk+1]

1S := ∑
k
1Sk1(Nk ,Nk+1]

(17.3)

For the recursive definition of the (Nk), define first the sequence (εk)

by
εk := 2 sup

l≥k

∥∥1Sl − 1Sk

∥∥
1 (17.4)

We can assume, without loss of generality, that εk > 0 for every k,
since εk = 0 for some k would imply

∥∥1Sl − 1Sk

∥∥
1 = 0 for l ≥ k hence

we could take S = Sk.
In the first step of the recursion, let N1 = 1.
In the second step, let N2 > N1 to be large enough to satisfy

N1

N2
< ε1 (17.5)

A[N]

∣∣1S1 − 1S2

∣∣ < ε1 for every N ≥ N2 (17.6)

and

A[N]

∣∣1S1 − 1S3

∣∣ < ε1 for every N ≥ N2 (17.7)

Complete the second step of the recursion by defining S to be equal
S1 on the interval (N1, N2]. Let k > 2 and assume that we have
defined N1 < N2 < · · · < Nk−1 and S to be equal Sj on the interval
(Nj, Nj+1] for j ∈ [k− 2]. For step k of the recursion let Nk > Nk−1 be
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large enough to satisfy

1
Nk

∑
n∈[Nk−1]

∣∣∣1Sj(n)− 1S(n)
∣∣∣ < εj, for every j ∈ [k− 2] (18.1)

A[N]

∣∣∣1Sj − 1Sk−1

∣∣∣ < εj for every N ≥ Nk, j ∈ [k− 2] (18.2)

and

A[N]

∣∣∣1Sj − 1Sk

∣∣∣ < εj for every N ≥ Nk, j ∈ [k− 2] (18.3)

Complete the kth step of the recursion by defining S to be equal Sk−1

on the interval (Nk−1, Nk].
Let us fix j and let N be large enough so that for some k ≥ j + 2 we

have
Nk ≤ N < Nk+1 (18.4)

We want to show that

A[N]

∣∣∣1Sj − 1S

∣∣∣ < 3εj (18.5)

Let us estimate A[N]

∣∣∣1Sj − 1S

∣∣∣ as,

A[N]

∣∣∣1Sj − 1S

∣∣∣ = 1
N ∑

n∈[Nk−1]

∣∣∣1Sj(n)− 1S(n)
∣∣∣ (18.6)

+
1
N ∑

n∈(Nk−1,Nk ]

∣∣∣1Sj(n)− 1S(n)
∣∣∣ (18.7)

+
1
N ∑

n∈(Nk ,N]

∣∣∣1Sj(n)− 1S(n)
∣∣∣ (18.8)

We can estimate the term in eq. (18.6), using eq. (18.1) and that N ≥
Nk, as

1
N ∑

n∈[Nk−1]

∣∣∣1Sj(n)− 1S(n)
∣∣∣ < εj (18.9)

For the term in eq. (18.7) we have

1
N ∑

n∈(Nk−1,Nk ]

∣∣∣1Sj(n)− 1S(n)
∣∣∣ < εj (18.10)

This follows from eq. (18.2) since S = Sk−1 on the interval (Nk−1, Nk].
For the term in eq. (18.8) we have

1
N ∑

n∈(Nk ,N]

∣∣∣1Sj(n)− 1S(n)
∣∣∣ < εj (18.11)

This follows from eq. (18.3) since S = Sk on the interval (Nk, N].
Putting the estimates in eqs. (18.9) to (18.11) together we obtain

eq. (18.5).
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The second lemma shows that the familyM of sequences with
mean is closed with respect to the seminorm ‖‖M defined in eq. (7.3).

19.1 Lemma IM is closed with respect to the seminorm ‖‖M

Let ( f j) be a sequence fromM. Suppose that ( f j) converges to
f ∈ CN in the seminorm ‖‖M, so

lim
j

∥∥ f j − f
∥∥

M = 0 (19.1)

Then f ∈ M and
M( f ) = lim

j
M( f j) (19.2)

Proof. First note that, as a consequence of eq. (19.2), the sequence ( f j)

is a Cauchy sequence, meaning that for a given ε > 0 there is J so
that ∥∥ f j − f J

∥∥
M < ε for every j ≥ J (19.3)

Since
∣∣M( f j)−M( f J)

∣∣ = ∣∣M( f j − f J)
∣∣ = ∥∥ f j − f J

∥∥
M we see,∣∣M( f j)−M( f J)

∣∣ < ε for every j ≥ J (19.4)

so the sequence M( f j) of means is a Cauchy sequence of numbers.
Denote L := limj M( f j). We want to show that M( f ) = L. For a given
ε > 0, choose a j so that

∣∣M( f j)− L
∣∣ < ε and

∥∥ f − f j
∥∥

M < ε. We then
have, for an arbitrary N,∣∣∣A[N] f − L

∣∣∣ ≤ ∣∣∣A[N]( f − f j)
∣∣∣+ ∣∣∣A[N] f j − L

∣∣∣ (19.5)

Taking lim supN of both sides, we get

lim sup
N

∣∣∣A[N] f − L
∣∣∣ ≤ ∥∥ f − f j

∥∥
M +

∣∣M( f j)− L
∣∣ (19.6)

Since
∥∥ f − f j

∥∥
M < ε and

∣∣M( f j)− L
∣∣ < ε, we get lim supN

∣∣∣A[N] f − L
∣∣∣ <

2ε. Since ε > 0 was arbitrary, we have limN

∣∣∣A[N] f − L
∣∣∣ = 0 which

means M( f ) = L = limj M( f j).

How do we now show that every open set can be represented? Let
B ⊂ T be open with positive µα measure, let B = ∪j Ij be its decom-
position into pairwise disjoint open intervals Ij and set Bk := ∪j∈[k] Ij.
Since µα(B) > 0, we have µα(Bk) > 0 for large enough k. For sim-
plicity, we assume that µα(Bk) > 0 for every k. The sets Bk increase
to B monotonically, hence, in particular, we have limk µα(Bk4B) = 0.
According to proposition 15.1, the set Bk can be represented by the
set Sk defined by

Sk := { n | rnα ∈ Bk } (19.7)
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and we have M(Sk) = µα(Bk). Since for every k, l the set Bk4Bl is
Jordan measurable, we also have

M
∣∣1Sk − 1Sl

∣∣ = M(Sk4Sl) = µα(Bk4Bl) (20.1)

Since (Bk) is a Cauchy sequence, so limk supl≥k µα(Bk4Bl) = 0, the
isometry in eq. (20.1) implies that (Sk) is also a Cauchy sequence, so
we have limk supl≥k M(Sk4Sl) = 0. According to lemma 17.1, there is
a set S to which the (Sk) converges, so limk

∥∥1Sk − 1S
∥∥

1 = 0, and by
lemma 19.1, M(S) = limk M(Sk) > 0. We want to show that the set
S is good and it represents B at α. To this end, let β ∈ T be arbitrary
and define the sequences f β

k and f β by

f β
k (n) := 1Sk (n) e(rnβ) for n ∈ N (20.2)

f β(n) := 1S(n) e(rnβ) for n ∈ N (20.3)

Since each set Sk is good with M(Sk) > 0, we have f β
k ∈ M for every

k, β. The fact that for every β, the sequence ( f β
k ) converges to f β in

the norm ‖‖M follows from the uniform estimate∥∥∥ f β
k − f β

∥∥∥
M
≤
∥∥1Sk − 1S

∥∥
1 for every β (20.4)

By lemma 19.1, f β ∈ M and

M( f β) = lim
k

M( f β
k ) (20.5)

so, in particular, S is good. Let now β = α. Since the sequence (Bk)

converges to B in L1(µα)-norm we have

lim
k

µα

(
ep 1Bk

)
= µα

(
ep 1B

)
for every p ∈ Z (20.6)

Since M( f pα
k ) = µα

(
ep 1Bk

)
and, by eq. (20.5), limk M( f pα

k ) = M( f pα),
eq. (20.6) implies that

M( f pα) = µα

(
ep 1B

)
for every p ∈ Z (20.7)

This is equivalent with saying that S represents B at α.
We record the general idea we used as item 2 in proposition 21.1

below.
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21.1 Proposition I Limit of good sets with positive mean is good
Let (Sk) be a sequence of good subsets of R with mean which
converge to S ⊂ R in ‖‖1-seminorm, that is, limk‖Sk4S‖1 = 0.
Assume that lim supk M(Sk) > 0.
Then we have the following.

1. limk M(Sk) exists and M(S) = limk M(Sk) > 0.

2. S is a good set.

3. The sequence
(
µSk ,β

)
k of limit measures converge to µS,β in

variation distance and uniformly in β,

lim
k

sup
β

∥∥µSk ,β − µS,β
∥∥

V = 0 (21.1)

4. Let ν be a Borel measure on T.

If for some α, µSk ,α is absolutely continuous with respect to ν

with Radon-Nikodym derivative ρk for every k, then µS,α is also
absolutely continuous with respect to ν with Radon-Nikodym
derivative ρ which satisfies

lim
k
‖ρk − ρ‖L1(ν) = 0 (21.2)

Proof. The proof of item 1 follows from the triangle inequality for the
‖‖1-seminorm, since we then have

|M(Sk)−M(S)| = |‖Sk‖1 − ‖S‖1|
≤ ‖Sk4S‖1

and just use the assumption that limk‖Sk4S‖1 = 0.
The argument we gave just before the enunciation of our proposi-

tion proves that S is a good set.
For the proof of item 3 note that in the argument preceding our

proposition we proved that the sequence
(
µSk ,β

)
k of measures con-

verges weakly to µS,β for every β but an estimate similar to eq. (20.4)
enables us to draw the stronger conclusion of eq. (21.1).

The following lemma gives us the estimates we need.
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22.1 Lemma I ‖‖1 dominates ‖‖V and ‖‖L1

Let v1, v2 be good weights on R = (rn). Assume that

max{‖v1‖1, ‖v2‖1} > 0 (22.1)

Then we have the following.

(a)

sup
β

∥∥µv1,β − µv2,β
∥∥

V ≤
2

max{‖v1‖1, ‖v2‖1}
‖v1 − v2‖1 (22.2)

(b) If, for some α, the limit measures µv1,α and µv2,α are abso-
lutely continuous with respect to a Borel measure ν on T with
Radon-Nikodym derivatives ρ1 and ρ2, respectively, then

‖ρ1 − ρ2‖L1(ν) ≤
4

max{‖v1‖1, ‖v2‖1}
‖v1 − v2‖1 (22.3)

Proof. To prove item a, that is, the inequality in eq. (22.2), fix β and
φ ∈ C+, so φ is a continuous T→ C function with 0 ≤ φ ≤ 1. We can
assume without loss of generality that max{‖v1‖1, ‖v2‖1} = ‖v1‖1.
Let (Nl)l be a strictly increasing sequence of indices so that

lim
l
A[Nl ]

v1 = ‖v1‖1 (22.4)

Let us estimate as∣∣∣Av1
n∈[Nl ]

φ(rnβ)−Av2
n∈[Nl ]

φ(rnβ)
∣∣∣

=

∣∣∣∣∣ 1
A[Nl ]

v1
An∈[Nl ]

v1(n)φ(rnβ)− 1
A[Nl ]

v2
An∈[Nl ]

v2(n)φ(rnβ)

∣∣∣∣∣
adding 0 = − 1

A[Nl ]
v1
An∈[Nl ]

v2(n)φ(rnβ) + 1
A[Nl ]

v1
An∈[Nl ]

v2(n)φ(rnβ)

inside the absolute value and using the triangle inequality,

≤ 1
A[Nl ]

v1

∣∣∣An∈[Nl ]
v1(n)φ(rnβ)−An∈[Nl ]

v2(n)φ(rnβ)
∣∣∣

+

∣∣∣∣∣ 1
A[Nl ]

v1
− 1
A[Nl ]

v2

∣∣∣∣∣∣∣∣An∈[Nl ]
v2(n)φ(rnβ)

∣∣∣
≤ 1
A[Nl ]

v1
A[Nl ]

|v1 − v2|+
A[Nl ]

|v1 − v2|
A[Nl ]

v1A[Nl ]
v2
A[Nl ]

v2

=
2

A[Nl ]
v1
A[Nl ]

|v1 − v2|

so we have∣∣∣Av1
n∈[Nl ]

φ(rnβ)−Av2
n∈[Nl ]

φ(rnβ)
∣∣∣ ≤ 2

A[Nl ]
v1
A[Nl ]

|v1 − v2| (22.5)
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Since liml A
vi
n∈[Nl ]

φ(rnβ) = µvi ,β(φ), liml A[Nl ]
v1 = ‖v1‖1 and

lim supl
2

A[Nl ]
v1
A[Nl ]

|v1 − v2| ≤ 2
‖v1‖1
‖v1 − v2‖1, we get

∣∣µv1,β(φ)− µv2,β(φ)
∣∣ ≤ 2
‖v1‖1

‖v1 − v2‖1 (23.1)

which is independent of β and φ ∈ C+, proving eq. (22.2).
To prove item 3 observe that, since µvi ,α = ρiν and ‖ρ1ν− ρ2ν‖V =

1
2‖ρ1 − ρ2‖L1(ν), we have

‖µv1,α − µv2,α‖V =
1
2
‖ρ1 − ρ2‖L1(ν) (23.2)

and then use eq. (22.2).

Now, using eq. (22.2) with v1 = 1Sk and v2 = 1S, we get

sup
β

∥∥µSk ,β − µS,β
∥∥

V ≤
2

max{‖Sk‖1, ‖S‖1}
‖Sk4S‖1 (23.3)

Using the assumption that limk‖Sk4S‖1 = 0 and that, by item 1, we
have limk‖Sk‖1 = limk M(Sk) = M(S) = ‖S‖1 > 0, we get eq. (21.1).

For the proof of item 4, by item 1, we can assume, without loss of
generality that M(Sk) > 0 for every k. Using eq. (22.3) with v1 = Sk

and v2 = Sl we get

‖ρl − ρk‖L1(ν) ≤
4

max{‖Sk‖1, ‖Sl‖1}
‖Sk4Sl‖1 (23.4)

This implies, since the sequence (Sk) is convergent in ‖‖1-seminorm
and hence is Cauchy, that the sequence (ρk) is Cauchy in L1(ν)-norm.
Since L1(ν) is complete and ν(ρk) = 1 for every k, there is a ρ ∈ L1(ν)

with ν(ρ) = 1 so that

lim
k
‖ρk − ρ‖L1(ν) = 0 (23.5)

Since ‖ρk − ρ‖L1(ν) = 2‖ρkν− ρν‖V and ρkν = µSk ,α, we get

lim
k

∥∥µSk ,α − ρν
∥∥

V = 0 (23.6)

But by item 3 we also have limk
∥∥µSk ,α − µS,α

∥∥
V = 0 hence we must

have µS,α = ρν.

We can use proposition 21.1 in an argument similar to the one we
used to show that any open set can be represented at α to prove that
if a Gδ set B has positive µα-measure then it can be represented at α.
Only the initial setup of the proof is different. This time let (Bk) be a
decreasing sequence of open sets which converges to B. Let Sk ⊂ R
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represent Bk at α. We again have the isometry eq. (20.1) from which
everything follows: the existence of a good set S which represents B
at α and M(S) = µα(B).

Since every Borel measurable set differs from a Gδ set on a set
of µα-measure zero, we in fact showed that every Borel set of pos-
itive µα-measure can be represented. So we proved the following
more precise version of theorem 10.2 for the case when the Radon-
Nikodym derivative of a measure with respect to µα is an indicator.

24.1 Proposition I Theorem 10.2 for indicator
Let R ⊂ N be a good set, α be an irrational number, and let B be a
Borel set with µα(B) > 0.
Then B can be represented at α by a set S ⊂ R which satisfies

MR(S) = µα(B) > 0 (24.1)

6 Measures that cannot be represented at every irrational α

For this section, we suspend the proof of theorem 10.2 just to see how
proposition 24.1 can be used to prove theorem 9.1. We will also prove
theorem 9.2.

6.1 Proof of theorem 9.1

In this section we want to prove that if the Borel probability measure
ν has a point-mass at a point γ ∈ T and α is irrational then ν cannot
be represented at α.

The proof is by contradiction: let us assume that for some γ ∈
T, ν({γ}) > 0 and that ν can be represented by the set R at α, so
µR,α = ν. Then the Dirac mass δγ is absolutely continuous with
respect to µR,α with Radon-Nikodym derivative equal 1

ν(γ)
1{γ}. By

proposition 24.1 there is a good set S ⊂ R which represents δγ at α,
so µS,α = δγ. Let us define the function φ : T→ C as

φ(β) := µS,β(e) (24.2)

Then, by the definition of µS,β(e), φ is the limit of the sequence (φN)

of continuous functions defined by φN(β) := An∈[N] e(snβ) where
(sn) is the elements of S arranged in increasing order. Since for every
p ∈ Z we have µS,pα(e) = µS,α(ep) and µS,α(ep) = ep(γ), we have

|φ| = 1 on the dense set { pα | p ∈ Z } (24.3)

By Weyl’s theorem,12 φ = 0 on a set of full Lebesgue measure, so, as 12 Weyl 1916, Satz 21; Kuipers and
Niederreiter 1974, Theorem 4.1.
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a consequence,
φ = 0 on a dense set. (25.1)

By Baire’s theorem,13 eqs. (25.1) and (24.3) together are impossible to 13 Baire 1995, Page 83.

hold simultaneously for the limit of continuous functions.

6.2 Proof of theorem 9.2

So in this section we want to prove that if ν is a Borel probability
measure on T with lim supp→∞

∣∣ν(ep)
∣∣ > 0 then there is an irrational

α where ν cannot be represented. In fact the set of such α’s is of full
Lebesgue measure.

From the assumption that lim supp→∞

∣∣ν(ep)
∣∣ > 0 it follows that

there is an ε > 0 and a infinite sequence p1 < p2 < . . . of indices so
that

|ν epk | > ε for k ∈ N (25.2)

By Weyl’s result,14 the set A ⊂ T defined by 14 Weyl 1916, Satz 21; Kuipers and
Niederreiter 1974, Theorem 4.1.

A := { α | (pkα)k∈N is uniformly distributed (mod 1) } (25.3)

has full λ measure. We want to show that A is a subset of those α’s at
which the measure ν cannot be represented.

Let α ∈ A, and suppose the measure ν can be represented at α,
say, by the set S = (sn), that is, µS,α = ν. Let us define the function
φ : T→ C as

φ(β) := µS,β(e) (25.4)

Then, by the definition of µS,β(e), φ is the limit of the sequence (φN)

of continuous functions defined by φN(β) := An∈[N] e(snβ). Since for
every p ∈ Z we have µS,pα(e) = µS,α(ep) and µS,α(ep) = ν

(
ep
)
, by

eq. (25.2) we have ∣∣µS,pkα(e)
∣∣ > ε for every k ∈ N (25.5)

Since α ∈ A, the sequence (pkα)is uniformly distributed mod 1,
hence dense in T. So we have that

|φ| > ε on the dense set { pkα | k ∈ N }. (25.6)

By Weyl’s theorem,15 φ = 0 on a set of full Lebesgue measure, so, as 15 Weyl 1916, Satz 21; Kuipers and
Niederreiter 1974, Theorem 4.1.a consequence

φ = 0 on a dense set (25.7)

By Baire’s theorem,16 eqs. (25.6) and (25.7) cannot be true together for 16 Baire 1995, Page 83.

the limit of continuous functions.
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7 Representing by weights

In this section, we fix the good set R and the irrational number α, and
we continue in the tradition of section 5 suppressing the set R in our
notation, so µα = µR,α and M = MR.

In trying to extend the class of representable functions ρ from indi-
cators, we first consider an easier problem. Instead of representing by
sets, we represent by weights, that is, unsigned sequences w.

26.1 Definition I Function represented by a weight

Let ρ be an unsigned L1(T, µα) function with µα(ρ) > 0.
We say the weight w represents ρ at α if w is good and we have

lim
N
An∈[N]w(n)δrnα = ρµα (26.1)

Note that in this case we have M(w) = µα(ρ) and w represents the
measure 1

µα(ρ)
ρµα at α.

In section 4 we have already seen that if ρ is an unsigned continu-
ous function with µα(ρ) > 0 then the weight w defined by

w(n) := ρ(rnα) (26.2)

is good, unsigned and it represents ρ at α. Since every unsigned
µα-integrable function can be approximated arbitrary closely by
unsigned continuous functions in L1(T, µα)-norm, the proof of item 1

of theorem 11.3 requires only an approximation argument similar to
what we had in section 5. We restate item 1 of theorem 11.3 in the
following form for the readers convenience.

26.2 Proposition I Any integrable function is representable with weights

Let ρ be an unsigned function from L1(T, µα) with µα(ρ) > 0.
Then there is a weight w which represents ρ at α. In particular, we
have

M(w) = µα(ρ) (26.3)

Furthermore, if ρ is a bounded function then the weight w can be
chosen to be bounded.

The following analog of lemma 17.1 for weights17 is the main 17 Marcinkiewicz 1939.

ingredient for proving proposition 26.2.
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27.1 Lemma I Cauchy sequence of weights is convergent in the seminorm ‖‖1

Let (wk) be a Cauchy sequence of weights with respect to the
seminorm ‖‖1, so they satisfy

lim
k

sup
l≥k
‖wl − wk‖1 = 0 (27.1)

Then there is a weight w satisfying

lim
k
‖wk − w‖1 = 0 (27.2)

Furthermore, if the sequence (wk) is uniformly bounded, so
supk‖wk‖∞ < ∞, then we can also have ‖w‖∞ ≤ supk‖wk‖∞.

The proof of lemma 27.1 is the same as the proof of lemma 17.1:
we recursively define a fast enough increasing sequence N1 < N2 <

. . . of indices, and then we define w to be equal wk on the interval
(Nk, Nk+1]

w := ∑
k

wk1(Nk ,Nk+1]
(27.3)

The details of the proof are safely left for the reader. The form of w in
eq. (27.3) guarantees that w is unsigned, since each wk is an unsigned
sequence, and if the (wk) is uniformly bounded, then w is a bounded
weight.

Lemma 27.1, combined with lemmas 19.1 and 22.1, gives the fol-
lowing analog of proposition 21.1
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28.1 Proposition I Limit of good weights with positive mean is good
Let (wk) be a sequence of good weights with mean which converge
to the weight w in ‖‖1-seminorm, so limN‖wk − w‖1 = 0. Assume
that lim supk M(wk) > 0.
Then we have the following.

1. limk M(wk) exists and limk M(wk) = M(w) > 0.

2. w is a good weight.

3. The sequence
(
µwk ,β

)
k of limit measures converge to µw,β in

variation distance and uniformly in β,

lim
k

sup
β

∥∥µwk ,β − µw,β
∥∥

V = 0 (28.1)

4. Let ν be a Borel measure on T.

If for some α, µwk ,α is absolutely continuous with respect to ν

with Radon-Nikodym derivative ρk for every k then µw,α is also
absolutely continuous with respect to ν with Radon-Nikodym
derivative ρ which satisfies

lim
k
‖ρk − ρ‖L1(ν) = 0 (28.2)

With this proposition, we can complete the proof of proposi-
tion 26.2 exactly as we proved proposition 24.1, using a sequence (ρk)

of unsigned continuous functions that converge to ρ in L1(µα)-norm.
We need to remark only that if ρ is a bounded function, then the se-
quence (ρk) of continuous functions can be chosen to be uniformly
bounded.

8 Proof of theorem 10.2 for bounded ρ

In this section, we still are working with a fixed good set R of posi-
tive integers, an irrational number α, but now we also fix a bounded
Borel measurable, unsigned function ρ with µα(ρ) > 0. We proved in
section 7 that ρ can be represented at α by a good, bounded weight
w. In this section we will show that there is a good set S ⊂ R which
also represents ρ at α, hence proving theorem 10.2 for bounded ρ. It
follows from the definition of representation that if the good weight
w represents ρ then so does the weight cw for every positive constant
c. In particular, we can assume that the weight w representing ρ is
bounded by 1. We will show that then there is a set S ⊂ R so that

lim
N

sup
β

∣∣∣An∈[N]1S(n) e(rnβ)−An∈[N]w(n) e(rnβ)
∣∣∣ = 0 (28.3)
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The “construction” of S satisfying eq. (28.3) is done randomly. Our
random method requires that we limit the growth of the set R; we
need to assume that R is sublacunary.18 18 Jones, Lacey, and Wierdl 1999, Theo-

rem B.

29.1 Definition I Sublacunary set and weight
The set R is sublacunary if its counting function #R(N) satisfies

lim
N

log N
#R(N)

= 0 (29.1)

The weight w supported on the set R is sublacunary if it satisfies

lim
N

log N
w(R(N))

= 0 (29.2)

Our main tool in this section is the following.

29.2 Proposition I There is a set representing the same measures as a bounded weight
Let w = (w(r))r∈R be a bounded, sublacunary weight supported
on R.
Then there is a set S ⊂ R so that

lim
N

max
β∈T

∣∣∣As∈S(N) e(sβ)−Aw
r∈R(N) e(rβ)

∣∣∣ = 0 (29.3)

As a consequence, if the weight w is good then so is the S and we
have

µS,β = µw,β for every β (29.4)

Proof. Since we can always assume that the bound of the weight w is
1, proposition 29.2 follows from the following lemma.

29.3 Lemma I Random selection of a good set
let σ be a weight on R bounded by 1. We assume that for a
constant b > 0 we have

lim inf
N

σ
(

R(N)
)

log N
> b (29.5)

Let (Ω, P) be a probability space and and let (Xr)r∈R be a sequence
of totally independent Ω→ {0, 1} random variables indexed by R
and with distribution P(Xr = 1) = σ(r).
Then we have

P

ω

∣∣∣∣∣∣∣ sup
N

max
β∈T

∣∣∣∑r∈R(N)

(
Xr(ω)− σ(r)

)
e(rβ)

∣∣∣√
(log N)σ

(
R(N)

) < ∞

 = 1 (29.6)
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To see that proposition 29.2 indeed follows from lemma 29.3, let
σ = w

‖w‖∞
, so σ is bounded by 1. Here we make a bit more compli-

cated argument than needed to show that there is a rate of conver-
gence in eq. (29.3).

The sublacunarity assumption on w implies that σ is sublacunary.
We then have, as a consequence of eq. (29.6), that there is an Ω1 with
P(Ω1) = 1 so that for every ω ∈ Ω1 there is a finite positive constant
Cω with

max
β∈T

∣∣∣∣∣∣ 1
σ(R(N)) ∑

r∈R(N)

Xr(ω) e(rβ)− 1
σ(R(N)) ∑

r∈R(N)

σ(r) e(rβ)

∣∣∣∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
)

(30.1)
For β = 0, we then have∣∣∣∣∣∣ 1

σ(R(N)) ∑
r∈R(N)

Xr(ω)− 1

∣∣∣∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
) (30.2)

This implies that if we replace σ(R(N)) by ∑r∈R(N) Xr(ω) in 1
σ(R(N)) ∑r∈R(N) Xr(ω) e(rβ)

we make a O

(√
log N

σ
(

R(N)
)) error, hence eq. (30.1) implies

max
β∈T

∣∣∣∣∣∣ 1
∑r∈R(N) Xr(ω) ∑

r∈R(N)

Xr(ω) e(rβ)− 1
σ(R(N)) ∑

r∈R(N)

σ(r) e(rβ)

∣∣∣∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
)

(30.3)
Defining Sω ⊂ R by

Sω := { r | r ∈ R, Xr(ω) = 1 } (30.4)

we can write eq. (30.3) as

max
β∈T

∣∣∣As∈Sω(N) e(sβ)−Aσ
r∈R(N) e(rβ)

∣∣∣ ≤ Cω

√
log N

σ
(

R(N)
) for every ω ∈ Ω1

(30.5)
Since σ is a constant multiple of w, we can replace σ by w in eq. (30.5),

max
β∈T

∣∣∣As∈Sω(N) e(sβ)−Aw
r∈R(N) e(rβ)

∣∣∣ ≤ Cω

√
‖w‖∞ log N
w
(

R(N)
) for every ω ∈ Ω1

(30.6)
Since limN

‖w‖∞ log N

w
(

R(N)
) = 0, due to the sublacunarity assumption on the

weight w, we get eq. (29.3) if we take S = Sω for any ω ∈ Ω1.

Proof of lemma 29.3. To see clearly what we need to do, denote

ZN(β) := ∑
r∈R(N)

(
Xr(ω)− σ(r)

)
e(rβ)
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and

tN := c ·
√
(log N)σ

(
R(N)

)
where we’ll choose the constant c appropriately later. By the Borel-
Cantelli lemma, it’s enough to prove

∑
N

P
(

max
β∈T
|ZN(β)| ≥ tN

)
< ∞ (31.1)

The first idea in proving eq. (31.1) is that we do not have to take
the maximum over all β ∈ T, but over a finite subset B of T which
contains N3 elements19. Since the degree of the trigonometric poly- 19 In fact, we can take a set B with

as few elements as 10N, but in our
applications, 10N won’t improve
anything over N3.

nomial ZN(β) is at most N, we can readily see that supβ∈T |Z′N(β)| ≤
N2 supβ∈T |ZN(β)|. It follows that if we take BN ⊂ T to be an arith-
metic progression with |BN | = N3 then

max
β∈T
|ZN(β)| ≤ 2 max

β∈BN
|ZN(β)| (31.2)

Hence we have

P
(

max
β∈T
|ZN(β)| ≥ tN

)
≤ P

(
max
β∈BN
|ZN(β)| ≥ tN/2

)
(31.3)

Using the union estimate, we get

P
(

max
β∈BN
|ZN(β)| ≥ tN/2

)
≤ N3 max

β∈BN
P(|ZN(β)| ≥ tN/2) (31.4)

Thus eq. (31.1) follows from

∑
N

N3 max
β∈T

P(|ZN(β)| ≥ tN/2) < ∞ (31.5)

This follows if we prove

P
(
|ZN(β)| ≥ tN/2

)
<

2
N5 for every β ∈ T (31.6)

To prove eq. (31.6), we use Bernstein-Chernoff exponential estimate.20 20 Tao and Vu 2010, Exercise 1.3.4 with
t = λσ.This estimate says that if Yk, k ∈ [K], are totally independent, mean

zero, complex valued random variables with |Yk| ≤ 1, then

P

∣∣∣∣∣∣ ∑
k∈[K]

Yk

∣∣∣∣∣∣ ≥ t

 ≤ 4 max

{
exp

(
− t2/8

∑k∈[K] E|Yk|2

)
, exp(−t/3)

}
for every t > 0.

(31.7)
Take K = #R(N) and Yr(β) := (Xr − σ(r))e(rβ) for r ∈ R(N). Then

|Yr(β)| ≤ 1 so the Yr satisfy the assumption in Bernstein’s inequality,
hence, with t = tN/2, we get the estimate

P
(
|ZN(β)| ≥ tN/2

)
≤ 4 max

{
exp

(
−

t2
N/32

∑r∈R(N) E|Yr|2

)
, exp(−tN/6)

}
(31.8)
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Since E|Yr(β)|2 = σ(r)(1− σ(r)) we have

∑
r∈R(N)

E|Yr(β)|2 ≤ σ
(

R(N)
)

(32.1)

Using that tN = c ·
√
(log N)σ

(
R(N)

)
, we get

t2
N/32

∑r∈R(N) E|Yr(β)|2 =
(c2/32)(log N)σ

(
R(N)

)
∑r∈R(N) E|Yr(β)|2

using the estimate in eq. (32.1)

≥
(c2/32)(log N)σ

(
R(N)

)
σ
(

R(N)
)

= (c2/32)(log N)

hence

exp

(
−

t2
N/32

∑r∈R(N) E|Yr(β)|2

)
≤ e−(c

2/32)(log N) (32.2)

In order to get e−(c
2/32)(log N) ≤ N−5 = e−5 log N , we need to have

c2/32 ≥ 5, so it enough to have, since
√

160 < 13,

c ≥ 13. (32.3)

We also have

tN/6 = (c/6) ·
√
(log N)σ

(
R(N)

)
by the assumption in eq. (29.5) for all large enough N

≥ (c/6)
√

b log N

It follows that

exp(−tN/6) ≤ e−(c/6)
√

b log N (32.4)

We again need to have e−(c/6)
√

b log N ≤ N−5 = e−5 log N which poses
the requirement (c/6)

√
b ≥ 5, that is,

c ≥ 30√
b

(32.5)

Thus choosing the constant c large enough to satisfy both eqs. (32.3)
and (32.5), the estimate in eq. (31.8) implies the one in eq. (31.6).

8.1 Notes to lemma 29.3

The type of method we used in lemma 29.3 to estimate trigonometric
polynomials goes back to Salem-Zygmund.21 Recent developments 21 Salem and Zygmund 1954, Chapter

IV.have been given for example by Weber22 and by Cohen-Cuny.23

22 Weber 2000.
23 Cohen and Cuny 2006.
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9 Absolute continuity and positive mean

The general theme of this section is that if a good set or weight has
positive mean then it can represent only an absolutely continuous
measure. To be specific, we want to prove item 2 of theorems 10.3
and 11.3.

Our standing assumption is that R is a sublacunary good set, and
hence we suppress it in our notation: We write µα instead of µR,α, M
instead of MR and ‖S‖1 instead of ‖S‖1,R. For a given f defined on
R, if we consider R as the strictly increasing sequence of integers (rn)

and define F by F(n) := f (rn) then we actually have MR( f ) = M(F)
and ‖ f ‖1,R = ‖F‖1.

9.1 Proof of Item 2 of theorem 10.3

Item 1 of theorem 10.3 says that if ρ is an unsigned L∞(µα) function
with µα(ρ) > 0 and α is an irrational number then ρ can be repre-
sented at α with a good set S ⊂ R satisfying M(S) = µα(ρ)

‖ρ‖L∞(µα)
. We

have proved this in section 8.
Item 2 of theorem 10.3 says that the converse is also true: if the

good set S ⊂ R satisfies ‖S‖1 > 0 then the limit measure µS,β is
absolutely continuous with respect to µβ with a bounded Radon-
Nikodym derivative ρβ which must satisfy

∥∥ρβ

∥∥
L∞(µβ)

≤ 1
‖S‖1

for every β (33.1)

This is what we intend to prove now. Since β ∈ T is fixed, we sup-
press it in our notation, so for example we write µ for µβ and µS for
µS,β. Let S ⊂ R be such that ‖S‖1 > 0. Let us first show that for every
β, the limit measure µS is absolutely continuous with respect to µ.

This will follow if we show that for every Borel set B we have

µS(B) ≤ 1
‖S‖1

µ(B) (33.2)

To see this, it’s enough to show that for every unsigned, continuous
function φ on T we have

µS(φ) ≤
1
‖S‖1

µ(φ) (33.3)

Let φ be such a function and let N1 < N2 < . . . be a sequence of
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indices for which limkAn∈[Nk ]
1S(n) = ‖S‖1. We can then estimate as

µS(φ) = lim
N
An∈S(N)φ(rnβ)

= lim
k
An∈S(Nk)

φ(rnβ)

= lim
k

1
An∈[Nk ]

1S(n)
An∈[Nk ]

1S(n)φ(rnβ)

≤ lim sup
k

1
An∈[Nk ]

1S(n)
An∈[Nk ]

φ(rnβ)

since limk
1

An∈[Nk ]
1S(n)

= 1
‖S‖1

and limN An∈[N]φ(rnβ) exists,

=
1
‖S‖1

lim
N
An∈[N]φ(rnβ)

=
1
‖S‖1

· µ(φ)

proving eq. (33.3).
Now, inequality µ

(
ρβ1B

)
≤ 1
‖S‖1

µ(B) applied to the Borel set

B =
{

ρβ > 1
‖S‖1

}
readily gives eq. (33.1).

9.2 Proof of item 2 of theorem 11.3

So we need to prove that if the good weight w has positive 1-norm
and it is integrable, that is, it can be approximated arbitrary closely
by bounded, good weights in ‖‖1-seminorm, then for every irrational
β the limit measure µw,β is absolutely continuous with respect to µβ.

Let (wk) be a sequence of good, bounded weights which converges
to w in ‖‖1-seminorm, limk‖wk − w‖1 = 0. Since |‖wk‖1 − ‖w‖1| ≤
‖wk − w‖1, we have limk‖wk‖1 = ‖w‖1 > 0, and hence we can
assume without loss of generality that ‖wk‖1 > 0 for every k. That for
every k the measure µwk ,β is absolutely continuous with respect to µβ

for every β follows from

µwk ,β(B) ≤ ‖wk‖∞
‖wk‖1

µβ(B) for every Borel set B (34.1)

The proof of this inequality is almost identical to the proof of the
inequality in eq. (33.2), hence we omit it.

Now the rest of the proof of theorem 11.3 follows from lemma 22.1.

10 Proof of theorem 10.2 for unbounded ρ

In this section we work with a fixed, sublacunary good set R ⊂ N

which we view as a sequence (rn) arranged in increasing order. As
a consequence, we omit R from our notation, so we write µβ instead
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of µR,β and M(w)instead of MR(w). We also fix an irrational number
α. Let ρ ∈ L1(µα). We want to find a sublacunary good set S ⊂
R which represents ρ at α. According to proposition 26.2 there is
a good weight w on R which represents ρ at α. Since this weight
w has positive relative mean with respect to R, it’s a sublacunary
weight. The problem is that, as per construction, w is not a bounded
weight if ρ is unbounded, hence we cannot use our proposition 29.2
to construct the desired set S.

Our main job in this section hence will be to construct a good
weight v satisfying the following properties

• v is bounded by 1;

• v is sublacunary;

• v represents the same measure at every β as w, so µv,β = µw,β for
every β.

Once we have such a good weight v, we can use proposition 29.2 to
“construct” the desired good set S.

The weight v will be of the form σw where the weight σ is a de-
creasing weight, that is, σ(n) ≥ σ(n + 1) for every n ∈ N. That a
weight v of this form represents the same measures everywhere is a
consequence of the following general but probably familiar result—
our main new tool in this section.

First recall the definition of a dissipative sequence of measures on
N.

35.1 Definition I Dissipative sequence of measures
Let (vN)N∈N be a sequence of finite measures on N.
We say, the sequence (vN)N∈N is dissipative if

lim
N

vN(j)
vN(N)

= 0, for every j ∈ N (35.1)
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36.1 Proposition I Decreasing weights preserve limits
Let w be a weight, (σN)N∈N be a sequence of finite measures on N
and let x = (xn) be a sequence from a normed space (X, ‖‖).
Denoting vN := σN · w, we assume the following

1. Each σN has finite support.

2. The sequence (vN) is dissipative.

3. For each N the measure σN is decreasing, σN(1) ≥ σN(2) ≥ . . . .

4. The sequence
(
Aw

n∈[N]
xn

)
N

converges to some y ∈ X,

lim
N
Aw

n∈[N]xn = y (36.1)

Then, the sequence
(
A

vN
j∈Nxj

)
N

of averages converge to the same
limit as the w-weighted averages,

lim
N
A

vN
j∈Nxj = y (36.2)

At the heart of this result is the following quantitative estimate:

For a given ε > 0, if K is such that
∥∥∥Aw

n∈[j]xn − y
∥∥∥ < ε for j ≥ K

then we have∥∥∥AvN
j∈Nxj − y

∥∥∥ ≤ ε + max
j∈[K]

∥∥∥Aw
n∈[j]xn − y

∥∥∥ · vN([K])
vN(N)

(36.3)

for every N ≥ K.

Note that the estimate in eq. (36.3) indeed implies the conclusion
of the proposition in eq. (36.2). To see this, let N → ∞ in eq. (36.3).
Then, since (vN) is a dissipative sequence so limN

vN([K])
vN(N)

= 0, we

get that lim supN

∥∥∥AvN
j∈Nxj − y

∥∥∥ ≤ ε. Since ε > 0 is arbitrary, we get

limN

∥∥∥AvN
j∈Nxj − y

∥∥∥ = 0.

Proof of proposition 36.1. The main idea of the proof is to write AvN
j∈Nxj

as an average of the w-averages with respect to another measure qN

on N
A

vN
j∈Nxj = A

qN
j∈NA

w
n∈[j]xn for all N (36.4)

These measures qN will also satisfy

qN(N) = vN(N) for every N ∈ N (36.5)

The measure qN appears during performing summation by parts:
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setting σN(0) := 0, w(0) := 0 and x0 := 0, we have

A
vN
j∈Nxj =

1
vN(N) ∑

j∈N
σN(j)w(j)xj

=
1

vN(N) ∑
j∈N

σN(j)

 ∑
n∈[j]

w(n)xn − ∑
n∈[j−1]

w(n)xn


=

1
vN(N) ∑

j∈N

(
σN(j)− σN(j + 1)

)
∑

n∈[j]
w(n)xn

=
1

vN(N) ∑
j∈N

(
σN(j)− σN(j + 1)

)
· w([j]) ·Aw

n∈[j]xn

Thus, defining the measure qN by

qN(j) :=
(

σN(j)− σN(j + 1)
)
· w([j]), for j ∈ N (37.1)

we get the identity in eq. (36.4) once we show that qN really is a
measure satisfying eq. (36.5). That qN(j) is unsigned follows from
the assumption that the sequence (σN(j))j∈N is decreasing for fixed
N. That qN(N) = vN(N) follows by setting xj = 1 for every j in
the summation by parts argument above since then we get exactly
qN(N) = vN(N):

1 = A
vN
j∈N1

=
1

vN(N) ∑
j∈N

(
σN(j)− σN(j + 1)

)
· w([j]) ·Aw

n∈[j]1

=
1

vN(N) ∑
j∈N

qN(j) · 1

=
1

vN(N)
· qN(N)

Using the now obvious identity y = A
qN
j∈Ny together with eq. (36.4),

we can now write AvN
j∈Nxj − y as

A
vN
j∈Nxj − y = A

qN
j∈N

(
Aw

n∈[j]xn − y
)

(37.2)

Let ε > 0. Since we assumed limN A
w
n∈[N]

xn = y, there is an
K = K(ε) so that ∥∥∥Aw

n∈[j]xn − y
∥∥∥ < ε, for j ≥ K (37.3)

Splitting the summation on j in AqN
j∈N

(
Aw

n∈[j]xn − y
)

into two parts at
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K and using the triangle inequality, we get the estimate

∥∥∥AqN
j∈N

(
Aw

n∈[j]xn − y
)∥∥∥ ≤

∥∥∥∥∥∥ 1
qN(N) ∑

j∈[K]
qN(j)

(
Aw

n∈[j]xn − y
)∥∥∥∥∥∥

+

∥∥∥∥∥ 1
qN(N) ∑

j>K
qN(j)

(
Aw

n∈[j]xn − y
)∥∥∥∥∥ (38.1)

We can estimate the first term as∥∥∥∥∥∥ 1
qN(N) ∑

j∈[K]
qN(j)

(
Aw

n∈[j]xn − y
)∥∥∥∥∥∥ ≤ max

j∈[K]

∥∥∥Aw
n∈[j]xn − y

∥∥∥ · qN([K])
qN(N)

(38.2)
Using the definition of qN(j) as given in eq. (37.1), we can estimate
qN([K]) as

qN([K]) = ∑
j∈[K]

(
σN(j)− σN(j + 1)

)
· w([j])

= ∑
j∈[K]

σN(j)
(

w([j])− w([j− 1])
)
− σN(K + 1)w([K])

= ∑
j∈[K]

σN(j)w(j)− σN(K + 1)w([K])

= ∑
j∈[K]

vN(j)− σN(K + 1)w([K])

≤ vN([K])

Using this estimate and that qN(N) = vN(N) in eq. (38.2) we get∥∥∥∥∥∥ 1
qN(N) ∑

j∈[K]
qN(j)

(
Aw

n∈[j]xn − y
)∥∥∥∥∥∥ ≤ max

j∈[K]

∥∥∥Aw
n∈[j]xn − y

∥∥∥ · vN([K])
vN(N)

(38.3)
The second term in eq. (38.1) can be estimated, using eq. (37.3), as∥∥∥∥∥ 1

qN(N) ∑
j>K

qN(j)
(
Aw

n∈[j]xn − y
)∥∥∥∥∥ ≤ ε (38.4)

Putting the estimates in eqs. (38.3) and (38.4) into eq. (38.1) and using
the identity in eq. (37.2) we get eq. (36.2).
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39.1 Corollary I Decreasing weights preserve limit measures of weights
Let w and σ be weights. Denoting v := σ · w, we assume the
following

1. v(N) = ∞.

2. The weight σ is decreasing σ(1) ≥ σ(2) ≥ . . . .

3. The weight w is good.

Then the weight v is good and represents the same measures
everywhere as w,

µv,β = µw,β for every β. (39.1)

Proof. We need to show that for a given β we have

lim
N
Av

n∈[N] e(rnβ) = µw,β(e) (39.2)

to do this, use proposition 36.1 with σN as σ restricted to the set [N],

σN(n) := σ(n)1[N](n) (39.3)

and (xn) defined by
xn := e(rnβ) (39.4)

Let us now go back to our good weight w which represents ρ

at α. Since we assumed that R is sublacunary and M(w) > 0, the
weight w is also sublacunary. Recall that we obtained w as the limit
of a sequence (wk) of bounded good weights. In fact, we pasted w
together from the wk piece by piece in a sense that after choosing
indices N1 < N2 < . . . , we define w to be equal wk on the interval
(Nk, Nk+1]

w := ∑
k

wk1(Nk ,Nk+1]
. (39.5)

In order to obtain a good weight v which is bounded by 1 and would
represent the same measures as w, we could do the following. Define
σ by

σ :=
1

maxj∈[k]
∥∥wj

∥∥
∞

· 1(Nk ,Nk+1]
(39.6)

Then σ is a decreasing and the weight v := σw is bounded by 1. The
remaining issue is that v may not be sublacunary. But in the recursive
process of choosing the indices (Nk) if we choose Nk large enough
compared to Nk−1 we can ensure that v is sublacunary. Here is what
we need to do for this.
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We set F(N) := log(rN). Since the weight w is sublacunary and
have positive mean, we have

lim
N

w([N])

F(N)
= ∞ (40.1)

So now, if we make sure that our weight v, bounded by 1, satisfies

lim
N

v([N])

F(N)
= ∞ (40.2)

then it will be a sublacunary weight.
We want to show that we can choose the indices Nk so that we will

have eq. (40.2).
In the proof of lemma 27.1 (and in lemma 17.1) we can see that,

during the recursive construction of the sequence (Nk) we can choose
Nk arbitrary large compared to Nk−1. For our purposes, we just need
to choose Nk large enough to satisfy the following additional crite-
rion

N
maxj∈[k]

∥∥wj
∥∥

∞

> kF(N) for every N ≥ Nk (40.3)

which is possible since the set R is sublacunary, since eq. (40.3) en-
sures that the weight v = σw is itself sublacunary.

That v represents the same measures as w at every β follows from
corollary 39.1. As in the last step of our proof of theorem 10.2, we use
proposition 29.2 to show the existence of a good set S ⊂ R which
represents the same measures as v at every β, hence at β = α we have
µS,α = ρµα.

11 The limit measure at rational points

In this section we want to prove theorem 12.1. The base set is N
which we suppress in our notation, so we write µβ instead of µN,β.

Given the probability measure ν on Tq and the rational number a
q ,

gcd(a, q) = 1, let us see what properties a good set S would need to
have so that µS,a/q = ν.

Introducing the sets Sj by

Sj := { s | s ∈ S, sa ≡ j (mod q) }, for every 0 ≤ j ≤ q− 1 (40.4)

let us write, using that the Sj are pairwise disjoint,

As∈S(N) =
1

#S(N) ∑
s∈S(N)

δsa/q

=
1

#S(N) ∑
0≤j≤q−1

∑
s∈Sj(N)

δj/q

= ∑
0≤j≤q−1

#Sj(N)

#S(N)
δj/q
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If we make the assumption24 that limN
#Sj(N)

#S(N)
exists for every j then, 24 In fact, the existence of limN

#Sj(N)

#S(N)

follows from S being a good set.letting N → ∞, we get

µS,a/q = ∑
0≤j≤q−1

δj/q lim
N

#Sj(N)

#S(N)
(41.1)

Since µS,a/q is supposed to be equal ν, we get

lim
N

#Sj(N)

#S(N)
= ν(j/q) (41.2)

This gives us the idea how to construct S: we start out from the set Rj

defined by

Rj := { n | na ≡ j (mod q) }, for every 0 ≤ j ≤ q− 1 (41.3)

Note that Rj is a full residue class mod q, namely, if j′ denotes the
unique solution to the congruence j′a ≡ j (mod q), then Rj is the
arithmetic progression { kq + j′ | k ∈ N }. Note that Rj is a good set,
as are all arithmetic progressions. We clearly have

M(Rj) =
1
q

for every 0 ≤ j ≤ q− 1 (41.4)

Now what remains is to find a set Sj ⊂ Rj with relative mean ν
(

j
q

)
and make sure that Sj is a good set. Let γ be an irrational number
and consider

Sj :=
{

r
∣∣∣∣ r ∈ Rj, rγ ∈

[
0, ν

(
j
q

))}
for every 0 ≤ j ≤ q− 1 (41.5)

Using proposition 15.1 with α = γ and R = Rj, we deduce that Sj is a

good set with MRj(Sj) = ν
(

j
q

)
, as desired. We finally define S as

S :=
⋃

0≤j≤q−1

Sj (41.6)

The set S is good since it’s the finite union of pairwise disjoint good
sets with mean. Indeed, we have M(Sj) = 1

q · ν
(

j
q

)
and hence

M(S) = 1
q .

12 Examples

12.1 Two good sets, but their intersection has no mean.

Here we construct randomly two good sets, R, S with M(R) =

M(S) = 1/2 but M(R ∩ S) doesn’t exist.
Let (Xn) be a iid sequence of random variables on the probability

space (Ω, P), modeling fair coin flipping, so with distribution P(Xn =
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1) = P(Xn = 0) = 1/2. Let us also consider another sequence of
random variables (Yn) defined by

Yn =

Xn if n ∈ [2k, 2k+1) for even k

1− Xn if n ∈ [2k, 2k+1) for odd k
(42.1)

The (Yn) is also an iid sequence with the same distribution as the
(Xn). Define the sets Rω, Sω by Rω := { n |Xn(ω) = 1 } and Sω :=
{ n |Yn(ω) = 1 }. By lemma 29.3 both Rω and Sω are good sets al-
most surely with M(Rω) = M(Sω) = 1/2. We claim that M(Rω ∩ Sω)

almost surely doesn’t exists. To see this, denote Tω := Rω ∩ Sω and

observe that if M(Tω) existed then limk
Tω∩[2k ,2k+1)

2k would exist. But,
denoting by O the odd numbers and by E the even numbers, we
almost surely have

lim
k∈O

Tω ∩ [2k, 2k+1)

2k = 0

lim
k∈E

Tω ∩ [2k, 2k+1)

2k =
1
2

12.2 R1 ∪ R2 and R1 ∩ R2 have means but are not good

Here is an example of two good sets R1 and R2 each with mean 2/3,
M(R1 ∩ R2) = 1/2 but R1 ∩ R2 is not good and M(R1 ∪ R2) = 5/6
but R1 ∪ R2 is not good.

Both sets will be defined in blocks of intervals . Partition N into
a sequence of disjoint intervals In so that their lengths go to infinity
but slower than the left endpoints go to infinity. For example, In =

[n2, (n + 1)2) will do.
The first good set R1 will contain all iNtegers from I1, then only

Odd numbers from I2 then Even numbers from I3 then repeat this
pattern for I4, I5, I6 etc:

NOENOE . . . (42.2)

The set R2 is defined similarly, except it will have one pattern in
intervals Jk := [3k, 3k+1) for even k and another for odd k.

EONEON . . . for even k, (42.3)

ONEONE . . . for odd k. (42.4)

Both of these sets are good and they represent the same (uniform)
measure at every β.

The intersection R1 ∩ R2 has the patterns

EOEEOE . . . for even k, (42.5)
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OOEOOE . . . for odd k, (43.1)

Clearly M(R1 ∩ R2) = 1/2 but the average of e(n/2) is different
on Jk for even k from those on odd k: for even k the average will go to
1/3 while for odd k it goes to −1/3.

As for the union R1 ∪ R2, it has the patterns

NONNON . . . for even k, (43.2)

NNENNE . . . for odd k, (43.3)

Clearly M(R1 ∪ R2) = 5/6 but the average of e(n/2) is different on
Jk for even k from those on odd k: for even k the average will go to
−1/3 while for odd k it goes to 1/3.

12.3 Open set U with visit set { n | nα ∈ U } not good

Let α be an irrational number in the torus R/Z. We show that there
exists an open subset U of the torus such that the sequence

(
An∈[N]1U(nα)

)
N

does not converge when N goes to infinity. The construction does not use at all
the group structure or the dimensional
properties of the torus. This can be
extended in a general context of a
sequence in a compact metric space
with a non purely atomic asymptotic
distribution.

We want to construct an open subset U of the torus and an in-
creasing sequence of positive integers (Nk)k≥0 such that the averages
An∈[N2k ]

1U(nα), k = 0, 1, 2, . . . , with even indices are large whereas
the averages An∈[N2k+1]

1U(nα), k = 0, 1, 2, . . . with odd indices are
small.

The sequence (Nk) will be constructed by induction and each Nk

will be associated to εk := 1/(2k+4Nk). In this induction process, we
construct also a sequence of open subsets (Uk)k≥0.

We start with N0 > 1 fixed and we define

U0 :=
⋃

n∈[N0]

(nα− ε0, nα + ε0)

We have of course

An∈[N0]1U0(nα) = 1 and 0 < λ(U0) ≤ 2N0ε0

This is the initial step of our construction. In order to be under-
standable, let us describe the two next steps.

By the uniform distribution of the sequence (nα)n in the torus,
there exists a number N1 > N0 such that

An∈[N0]1U0
(nα) ≤ 2λ(U0)N1 ≤ 4(N0ε0)N1

We fix such a N1. To any n ∈ [N1] ∩U0
c we associate a real δn that

0 < δn ≤ ε1 and (nα− δn, nα + δn) ∩U0 = ∅.
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We define
U1 :=

⋃
n∈[N1]∩U0

c
(nα− δn, nα + δn)

We have

An∈[N1]
1U1(nα) ≥ 1− 4N0ε0 and 0 < λ(U1) ≤ 2N1ε1

Note also that by construction U0 ∩U1 = ∅.
By the uniform distribution of the sequence (nα)n in the torus,

there exists a number N2 > N1 such that

An∈[N2]1U1
(nα) ≤ 2λ(U1)N2 ≤ 4(N1ε1)N2

We fix such a N2. To any n ∈ [N2] ∩U1
c we associate a real δn that

0 < δn ≤ ε2 and (nα− δn, nα + δn) ∩U1 = ∅

Note that the values of the δn’s are
reinitialized.We define

U2 := U0 ∪
⋃

n∈[N2]∩U1
c
(nα− δn, nα + δn)

We have

An∈[N2]1U2(nα) ≥ 1− 4N1ε1 and λ(U2) ≤ 2N0ε0 + 2N2ε2

Note also that by construction U2 ∩U1 = ∅ and U0 ⊂ U2.
Let us state now our induction hypothesis. Suppose that, for a

fixed integer k > 0 we have already constructed two sequences

(U`)0≤`≤k and N0 < N1 < N2 < . . . < Nk

such that

• U0 ⊂ U2 ⊂ U4 ⊂ . . . and U1 ⊂ U3 ⊂ U5 ⊂ . . .,

• If ` is even and `′ is odd, then U` and U`′ are disjoint,

• Each U` is a finite union of open intervals,

• If 0 ≤ 2` ≤ k, then

λ(U2`) ≤ 2(N0ε0 + N2ε2 + . . . + N2`ε2`)

and

An∈[N2` ]
1U2`(nα) ≥ 1− 4(N1ε1 + N3ε3 + . . . + N2`−1ε2`−1)
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• If 1 ≤ 2`+ 1 ≤ k, then

λ(U2`+1) ≤ 2(N1ε1 + N3ε3 + . . . + N2`+1ε2`+1)

and

An∈[N2`+1]
1U2`+1(nα) ≥ 1− 4(N0ε0 + N2ε2 + . . . + N2`ε2`)

Here begins the induction process. By the uniform distribution of
the sequence (nα)n in the torus, there exists a number Nk+1 > Nk

such that

An∈[Nk+1]
1Uk

(nα) ≤ 2λ(Uk)Nk+1

We fix such a Nk+1. To any n ∈ [Nk+1] ∩Uk
c we associate a real δn

that

0 < δn ≤ εk+1 and (nα− δn, nα + δn) ∩Uk = ∅

We define Note that the values of δn’s are reinitial-
ized at each induction step.

Uk+1 := Uk−1 ∪
⋃

n∈[Nk+1]∩Uk
c
(nα− δn, nα + δn)

The items of the induction hypothesis are now satisfied by the
sequences (U`)0≤`≤k+1 and (N`)0≤`≤k+1.

We can consider these sequences as infinite, and we define U :=⋃
k≥0 U2k.
Recalling our choice Nkεk = 2−k−4, we obtain

An∈[N2k ]
1U(nα) ≥ An∈[N2k ]

1U2k (nα)

≥ 1− 4 ∑
`

N2`+1ε2`+1

= 5/6

and

An∈[N2k+1]
1U(nα) ≤ An∈[N2k+1]

1U2k+1
c(nα)

≤ 4 ∑
`

N2` e2`

= 1/3
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