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Spatial extremes and stochastic geometry for Gaussian-based

peaks-over-threshold processes

Elena Di Bernardino*, Anne Estrade� and Thomas Opitz�

Abstract

Geometric properties of excursion sets above a given quantile level provide meaningful theoretical
and statistical characterizations for stochastic processes defined on Euclidean domains. Many theo-
retical results have been obtained for excursions of Gaussian processes and include expected values of
the so-called Lipschitz–Killing curvatures (LKCs), such as the area, perimeter and Euler characteristic
in two-dimensional Euclidean space. In this paper, we derive novel results for the expected LKCs of
excursion sets of more general processes whose construction is based on location or scale mixtures of a
Gaussian process, which means that the mean or the standard deviation, respectively, of a stationary
Gaussian process is a random variable. We first present exact formulas for peaks-over-threshold-stable
limit processes (so-called Pareto processes) arising from the use of Gaussian or log-Gaussian spectral
functions in the spectral construction of max-stable processes. These peaks-over-threshold limits are
known to arise for Gaussian location or scale mixtures if the mixing distributions satisfies certain
regular-variation properties. As a second important result, we show that expected LKCs of such
general mixture processes converge to the corresponding expressions of their Pareto process limits.
We further provide exact subasymptotic formulas of expected LKCs for various specific choices of
the distribution of the mixing variable. Finally, we discuss consistent empirical estimation of LKCs
and implement numerical experiments to validate theoretical results and to illustrate the rate of
convergence towards asymptotic expressions.

Key words: Excursion sets, Extremal coefficient, Gaussian Kinematic Formula, Lipschitz–Killing Cur-
vatures, Pareto Process, Regular variation

1 Introduction

Extremes of stochastic processes defined over Euclidean space RN for integer dimension N ≥ 1 (also
called random fields in the following) have been extensively studied from the theoretical and statistical
perspective. The approach of stochastic geometry of random fields focuses on geometric features of such
fields. The study of the excursion sets of the process above some threshold level takes an important
place since their geometric properties, such as the area, perimeter and number of connected components,
provide relevant summaries of the spatial structure of the process. They are particularly relevant to gain
better understanding of the clustering structure and dependence among extreme values by considering
high thresholds.
In this work, we will focus on the exceedance region within a nonempty domain S ⊂ RN of the stochastic
process X = {X(s) : s ∈ S}. We make the assumption that X is almost surely of class C3, i.e., the
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paths of the process are almost surely three times continuously differentiable. Given a real number u,
the exceedance region of X in S above the threshold u (also called excursion set), is given by

A(u,X, S) = {s ∈ S : X(s) ≥ u}. (1)

Many results on the geometrical features of the random set in (1) have been established in the case
of Gaussian processes X, such as the distribution of the maximum over space or the Euler-Poincaré
characteristic describing the topological structure of excursion sets (see, e.g., the monographs of [5] for
an early account and of [6] for a recent overview).

Gaussian processes do not arise naturally as limits for extreme values. In extreme-value theory, point-
process limits with each point defining a random function on RN take a pivotal role, and the well-studied
max-stable processes arise from such point processes by taking locationwise maxima over all points. The
importance of these processes is due to the fact that they are the only possible limits for linearly
rescaled identically distributed (i.i.d.) copies Xi, i = 1, 2, . . . , n of a stochastic process X, where the
linearly rescaled processes (Xi − bn)/an are obtained using two functions an > 0 and bn. A constructive
characterization of the limit point processes with atoms Yi, i ∈ N, is given by the so-called spectral
representation ([25, 59, 26])

{Yi(s), s ∈ RN , i ∈ N} = {Λi Vi(s), s ∈ RN , i ∈ N}, (2)

with the scaling variables Λi = 1/Ui for 0 < U1 < U2 < . . . the points of a unit-rate Poisson process on
[0,∞), and with random functions Vi that are i.i.d. copies of some random function V on RN satisfying
the moment constraint E[V+(s)] = 1, where a+ = max(a, 0), for a ∈ R. Moreover, the series of processes
{Vi} must be independent of {Λi}. Then, the sequence of processes {Yi} forms a Poisson point process
(with points being functions) and consequently, the same holds for the sequence of variables {Yi(s)} for
any fixed s (with points being scalars).
The most widely used statistical extreme-value models for spatial processes (usually for geographic
space R2) are based on choosing V according to certain transformed Gaussian processes ([21, 24]). A
first possibility is to choose V as the power of a centered Gaussian process ([53, 63]), yielding the max-
stable extremal-t processes. A second possibility consists of choosing V as a log-Gaussian process ([41]),
yielding a class of max-stable processes that extend the Brown–Resnick processes, for which V is log
fractional Brownian motion [14]; we refer to this class as processes of Brown–Resnick type. These two
model classes arise as limits when choosing X as certain scale or location mixtures of a Gaussian process:
in a Gaussian location mixture (resp. scale mixture), the mean (resp. the standard deviation) of the
Gaussian process is a random variable. Equation (2) shows that the mixture structure persists in the
construction of the extreme-value limit. Specifically, to obtain the location mixture representation, we
consider log Yi(s) = log Λi + log Vi(s) when using a log-Gaussian process V .
Instead of considering componentwise maxima, we can also study the process X conditional to an
exceedance of its maximum taken over a compact domain S. Then, the existence of the point-process
limit (and of the max-stable limit for maxima) is equivalent to the existence of a so-called Pareto process
arising as the limit for the rescaled conditional process u−1X | maxs∈S X(s) > u as the threshold u tends
to infinity ([35, 29, 63]). Specifically, Pareto process limits arise for Gaussian mixtures when the scale
variable is regularly varying ([39]), or when the exponential of the location variable is regularly varying
([44]).

In general, Gaussian mixture processes possess stronger extremal dependence than Gaussian processes
since joint exceedances above high levels occur more frequently. In contrast to asymptotic independence
in Gaussian processes ([60]), the mixture processes can be asymptotically dependent, meaning that the
conditional probability P(F (X(s1)) > u | F (X(s2)) > u), with F the cumulative distribution function of
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X(s1) and X(s2) for s1 6= s2, has a positive limit as the threshold u tends to one. Extreme-value limit
processes are characterized by asymptotic stability properties, and they possess asymptotic dependence
when using Gaussian or log-Gaussian processes in the max-stable construction, except for the case of
perfect negative Gaussian correlation. This means that a Pareto process conditioned on a threshold
exceedance of its maximum has the same distribution as the original Pareto process up to rescaling. For
cases where these asymptotic stability properties are too restrictive in practice, more general location or
scale mixture constructions have recently been proposed to allow for more flexible statistical modeling
of multivariate and spatial extremes ([54], [39],[44],[32]).

In spatial extreme-value analysis ([23]), approaches based on threshold exceedances have been extensively
studied recently ([40]). However, summary statistics used in practice are typically defined from bivariate
or low-dimensional observation vectors with respect to spatial distance between the locations, such as
the bivariate extremal coefficient function or the tail correlation function ([22, 61]). This restriction
makes sense for the use with observations over irregularly spaced measurement locations (such as fixed
weather stations on the ground). However, over the past decades the availability of datasets defined
over regular and relatively dense spatial grids has strongly increased, and such data can provide an
almost continuous cover of space. Data provided for a grid support arise from remote sensing techniques
and from the output of many physical models (e.g., models for climate processes, fluid mechanics or
population dynamics). In this context of spatial extreme-value analysis of gridded datasets, where often
many temporal replicates are available, it makes sense to more systematically develop and use threshold-
based summary statistics of higher-than-bivariate order, such as by considering properties of excursion
sets. This approach allows characterizing the joint behaviour over the full spatial domain and conveys a
more complete picture of the extreme-value properties.

Here, we will take advantage of results on the stochastic geometry of Gaussian excursion sets and
generalize them to provide novel results for more general Gaussian mixture processes, and for the
corresponding Pareto limit processes with dependence of extremal-t or Brown–Resnick type. Due to
peaks-over-threshold stability, the geometric properties of excursions above level u will not depend on u.
For geometric summaries of the excursion sets in (1) for N -dimensional Euclidean space, we focus on
the so-called Lipschitz–Killing curvatures (LKCs) Lk, k = 0, 1, . . . , N . Loosely speaking, L0 is the
Euler-Poincaré characteristic (i.e., the number of connected components for N = 1, or the difference
between the number of connected components and the number of holes for N = 2), LN−1 is half the
(N −1)-dimensional volume of the boundary (e.g., the perimeter for N = 2, the surface area for N = 3),
and LN is the N -dimensional volume (i.e., the area for N = 2).

The expected values of LKCs of the excursion set have been studied in a wide variety of contexts (see,
e.g., [6, 4, 3] for a focus on the Gaussian kinematic formula and [10] in the case where X is a shot-
noise field). The expected value of L0 was studied by [2] for subGaussian random fields, a special case
of Gaussian scale mixture arising for scale variables defined from stable distributions. Estimators for
LKCs have also been studied and specific asymptotic results have been established. In the Gaussian
framework, [34, 27] studied the Euler-Poincaré characteristic, whereas the area (also called the sojourn
time) is studied in [15, 57]. Central-limit theorems for LKCs were proposed by [43] and [51]. The setting
of a stationary isotropic Gaussian field on R2 with unknown mean and variance was recently studied
in [28]. The previously cited statistical results permit to derive inference procedures (see, for instance,
[45, 12, 28]) and to test for isotropy, Gaussianity, and marginal symmetry of the underlying fields (see,
for instance, [16, 9, 27, 12, 1, 36]). [28] propose a test to determine if two images of excursion sets can
be compared based on consistent estimators of LKCs. Notice that previous inference methods and tests
based on LKCs only require observation of one or two excursion sets, whereas efficient inference about
the covariance function and the marginal distribution of X requires more complete observation of the
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entire field; see [56, 52], for instance.

Our work provides several important contributions. First, we derive closed formulas for the expected
LKCs of Pareto processes with Gaussian or log-Gaussian spectral processes (see Theorem 1). Second,
we also show that expected LKCs of mixture processes in the domain of attraction converge to the
corresponding expressions of their Pareto process limits when the threshold u used to define excursions
in (1) tends to infinity (see Theorem 2). This result is not trivial since no general results exist on the
continuity of the excursions LKCs when we consider them as functionals of the stochastic process X.
Finally, we derive exact formulas for several specific model classes in non-asymptotic settings.

The paper is organized as follows. Section 2 provides background on the stochastic geometry of excursion
sets and presents important assumptions. Formulas for Pareto processes are derived in Section 3 where
we directly work with the limit processes without considering convergence towards such processes. The
domain-of-attraction setting is treated in Section 4 with some closed analytical formulas of expected
LKCs of specific Gaussian mixture constructions and new asymptotic formulas for regularly varying
Gaussian mixture processes. Section 5 numerically illustrates convergence rates towards asymptotic
expressions. A consistent inference approach for empirical estimation of LKCs using data over regular
grids for N = 2 is described in Section 6. We conclude with a discussion and an outlook to follow-up work.
Technical lemmas, certain proofs and auxiliary results are postponed to Appendix A. Supplementary
materials are provided in Appendix B.

2 Fundamental definitions and assumptions

2.1 General Gaussian setting

Throughout the paper, we write W for a Gaussian random field that satisfies the following assumption.

Assumption A0: The process W = {W (s) : s ∈ RN} is a stationary isotropic Gaussian random field
on RN , whose sample paths are almost surely in C3(RN ). The gradient vector of W at the origin 0 ∈ RN
and the Hessian matrix of W at the origin are both non-degenerate multivariate Gaussian variables.
Finally, the variable W (0) has zero mean and unit variance, i.e., W is standard Gaussian.
Given a nonempty compact domain S ⊂ RN , Assumption A0 ensures that excursion sets in (1) associated
to W have positive reach, i.e., that any point outside of S but closer than some fixed positive distance
has a unique nearest point in S. We refer the reader interested in more technical background to [62] and
[12], for instance.

Remark 1. The stationarity, isotropy and differentiability conditions in A0 imply that

Cov(∂iW (0), ∂jW (0)) = λ2 δij , 1 ≤ i, j ≤ N, (3)

where δij stands for the Kronecker symbol, and λ2 is a non-negative constant that is non zero under
A0 due to non-degeneracy condition. In the Gaussian literature, the constant λ2 is called the second
spectral moment of W .

In Appendix B, we discuss two commonly used parametric correlation functions whose associated Gaus-
sian field satisfies the above Assumption A0. The correlation function fully characterizes the distri-
bution of a standard Gaussian process, and in the case of a stationary isotropic field it is such that
Cor(W (h),W (0)) = σ(‖h‖) with σ(0) = 1, i.e. Cor(W (s + h),W (s)) only depends on the spatial
distance ‖h‖, for any s, h in RN .
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2.2 Lipschitz-Killing curvatures

We denote by S a fixed compact domain in RN that we choose either as a cube [0, a]N or as a Eu-
clidean ball BN (0, a) with a > 0, if not stated otherwise. Geometric features of exceedance regions
are summarized in the Lipschitz–Killing curvatures (LKCs), also called intrinsic volumes or Minkowski
functionals in the literature. For any convex compact set D in RN , the LKCs of D, denoted by Lj(D) for
j = 0, 1, . . . , N , are defined through Steiner’s formula (see for instance [6], Section 6.3) that characterizes
the volume of the tube D ⊕ BN (0, ρ) with radius ρ ≥ 0, where D ⊕ BN (0, ρ) = {x + y : x ∈ D, y ∈
BN (0, ρ)} = {x ∈ RN : dist(x,D) ≤ ρ}, and | · | is the Lebesgue measure in the corresponding Euclidean
space. Then, |D⊕BN (0, ρ)| can be expanded as a polynomial function of the radius ρ, whose coefficients
are given as follows:

|D ⊕BN (0, ρ)| =
N∑
j=0

ωN−j Lj(D) ρN−j , (4)

with ωj the volume of the j-dimensional unit Euclidean ball,

ωj = |Bj(0, 1)| = πj/2

Γ(1 + j/2)
.

For more general compact but not necessarily convex sets in RN , such as the exceedance regions
A(u,X, S), one can refer to [6] to get a precise definition of the LKCs. The functional LN is always the
N -dimensional Lebesgue measure, as can be seen by taking ρ = 0 in (4). The functional LN−1 is half
the (N −1)-dimensional Lebesgue measure of the boundary, and L0 is the Euler characteristic of D. For
the specific domains S ⊂ RN given as a hypercube or a hyperball in RN , we have

Lj
(
[0, a]N

)
=

(
N

j

)
aj , Lj(BN (0, a)) =

(
N

j

)
ωN
ωN−j

aj , j = 0, 1, . . . , N.

For convenience, we write these values more explicitly in Table 3 in Appendix B for the cases of N = 2
and N = 3. For most of the results presented in the following, we could allow for a more general domain
S given as any compact stratified submanifold of RN ; see the precise definition in Chapter 8 of [6].
In the remainder of the paper, we use the notation Φ for the standard normal cumulative distribution
function, and Φ = 1− Φ for its survival function.
To conclude this section, we gather the main facts that we need concerning the LKCs of Gaussian
exceedance regions in the following proposition. Its first statement is proved, for instance, in [43] Section
3.1. The second result is known as Gaussian Kinematic Formula and can be found in [6] Theorem
13.2.1 or in [4] Theorem 4.8.1. Denoting by W ′(0) the gradient of W at the origin and by W ′′(0) the
second derivative (i.e., the Hessian matrix) of W at the origin, one can note that (W ′(0),W ′′(0)) is
non degenerate as required in the quoted theorems, since its two components are independent Gaussian
variables which are non degenerate from Assumption A0.

Proposition 1 ([43],[6]). Let W be a Gaussian field on RN satisfying Assumption A0 with positive
second spectral moment λ2 in (3). Then, the following statements hold.

1. There exists a positive constant c such that for any u ∈ R and any k = 0, 1, . . . , N,

E[Lk(A(u,W, S))2] ≤ c |S|2(1+1/N). (5)

2. For any u ∈ R and any k = 0, 1, . . . , N,

E[Lk(A(u,W, S))] =

N−k∑
j=0

[
j + k
j

]
λ
j/2
2 Lj+k(S) ρj(u), (6)
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where

[
j + k
j

]
=

(
j + k

j

)
ωj+k
ωj ωk

, and

ρ0(u) = Φ(u) , ρj+1(u) = −(2π)−1/2 ρ′j(u) for j ≥ 0. (7)

Remark 2. The functions (ρj+1)j≥0 defined in (7) can be written as

ρj+1(u) = (−1)j (2π)−(1+j/2) dj

duj
(e−u

2/2) = (2π)−(1+j/2) e−u
2/2Hj(u),

where (Hj)j≥0 are the Hermite polynomials. For later reference, especially for random fields on the

geographic space with N = 2, we give the explicit expressions ρ1(u) = (2π)−1 e−u
2/2 and ρ2(u) =

(2π)−3/2 ue−u
2/2.

Remark 3. The inequality (5) guarantees finite second moments of LKCs. This is an important result
for statistical applications since it ensures consistent estimation and asymptotic normality for means of
samples from the random variable Lk(A(u,W, S)), thanks to the law of large numbers and the central
limit theorem, respectively (see Section 6). In specific cases, more precise statements than inequality
(5) can be given for the existence of moments of LKCs of excursion sets of a random field. One can
heuristically state that a larger index k in {0, 1, . . . , N} corresponds to the existence of higher moments
for Lk(A(u,W, S)). For instance, for any random field ξ defined on RN , the variable LN (A(u, ξ, S)) is the
N -dimensional volume of the excursion set, such that LN (A(u, ξ, S)) ≤ |S| almost surely. For j = N−1,
we have that LN−1(A(u, ξ, S)) is half the (N−1)-dimensional volume of the level set {x ∈ S : ξ(s) = u},
and it is shown in [7] that E[LN−1(A(u,W, S))m] < ∞ for any m ≥ 0, provided that W is a Gaussian
field with almost surely C∞ sample paths. On the other hand, the assumption of C3 sample paths for a
Gaussian field W implies the finiteness of the second moment of L0(A(u,W, S)), but no general statement
can be made about the finiteness of higher moments. The existence of moments of Lk(A(u,W, S)) is
fundamentally linked with the regularity of W . To the best of our knowledge, so far no general results
are available for a precise assessment of this relationship.

3 Expected LKCs for Pareto processes

In this section, we use the construction of the fundamental point-process limits in functional extreme-
value theory to define the class of Pareto processes that arise as certain peaks-over-threshold limits
of stochastic processes. We derive formulas for their expected LKCs in the general case, and for the
important special cases where Gaussian processes are used in the spectral construction (2) of the cor-
responding point-process limit. The behaviour of expected LKCs in the domain-of-attraction setting,
where we consider the convergence of Gaussian mixtures towards Pareto limit process, will be presented
in more detail in Section 4.

3.1 Point processes, max-stable processes, Pareto processes

The spectral representation (2) defines a class of Poisson point processes and is the fundamental tool
for constructing the different classes of limit processes that can arise for i.i.d. copies of linearly rescaled
stochastic processes X. [25] showed that the spectral construction gives a complete characterization of
all possible limits when the marginal distribution is prescribed, and he used it to construct the class of
simple max-stable processes Z = {Z(s), s ∈ S} (i.e., with unit Fréchet marginal distributions) having
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continuous sample paths in C(S). Any such max-stable process can be represented as the componentwise
maximum of the Poisson process in (2) as follows,

{Z(s), s ∈ S} =

{
∞

max
i=1

Yi(s), s ∈ S
}
. (8)

Recall that {Yi} is a Poisson process whose points Yi are functions on S, and we write M for the
intensity measure of this process on C+(S) \ {0}, the set of nonnegative functions excluding the null
function. The measure M satisfies the homogeneity property t × M(tB) = M(B), for Borel sets B
and t > 0. The tail of the marginal intensity measure of the Poisson process {Yi(s)} (with s fixed)
is Ms[z,∞) = 1/z, z > 0. Moreover, we can state that sample paths of the points Yi are in Ck if the
random function V is in Ck. The full class of possible limit processes is obtained by allowing for marginal
transformations Tµ(s),σ(s),ξ(s)(Yi(s)) = µ(s) +σ(s)(Yi(s)

ξ(s)−1)/ξ(s) with deterministic functions for the
parameters of location µ(s), scale σ(s) > 0 and shape ξ(s), where the case ξ(s) = 0 is defined as the limit
µ(s) + σ(s) log Yi(s). Since the transformation Tµ(s),σ(s),ξ(s) is strictly monotonic, the simple max-stable
process Z(s) is transformed accordingly to obtain the full class of max-stable processes with margins
Tµ(s),σ(s),ξ(s)(Z(s)).
The extremal coefficient of S, an important summary of the extremal dependence strength in S, is given
by the finite positive value

θS(M) = M(Bmax) ∈ [1,∞), where Bmax = {f ∈ C+(S) : max
s∈S

f(s) ≥ 1}.

We will often simply write θS if the structure of M is known from the context. A value of 1 arises for
θS with full spatial dependence in the Vi-processes, and larger values correspond to weaker dependence.
If interest is not in maxima but in threshold exceedances, then generalized Pareto processes are the only
possible limits when conditioning a process X on the exceedance of the process (for at least one location)
above a high threshold function ([35, 29, 63]). A Pareto process Y ? always has marginal Pareto tails
with shape parameter 1 and scale parameter 1/θS , and its generalized version allows for more general
marginal distributions by applying the same marginal transformations Tµ(s),σ(s),ξ(s)(Y

?) as before. The
Pareto process Y ? = {Y ?(s), s ∈ S} associated with the exponent measure M is the stochastic process
with probability distribution

P(Y ? ∈ B) =
M(B ∩Bmax)

θS
=: MP (B) (9)

for Borel sets B ⊂ C+(S) [35]. The scaling of the intensity measure of Bmax by the extremal coefficient
θS in (9) ensures that we obtain a probability measure. Pareto processes exhibit Peaks-Over-Threshold
(POT) stability, which is characterized through the following equality in distribution, valid for any
threshold u ≥ 1:

u−1Y ?(·) | max
s∈S

Y ?(s) > u
d
= Y ?(·).

By construction of the spectral representation (8), any Poisson point Yi falling into Bmax has distribution
according to the Pareto process:

P(Yi ∈ B | Yi ∈ Bmax) = MP (B).

We can therefore use the point-process construction (2) to derive properties of the corresponding Pareto
process.
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3.2 Expected LKCs of Pareto processes

The functional point-process representation (2) offers a convenient way to calculate expected Lipschitz–
Killing curvatures of the exceedance regions of the Pareto process Y ?, provided that such expectations
are known for the random function V . We here assume that V has sample paths in C3(RN ) and is non
negative. A threshold u ≥ 1 for Yi(s) corresponds to a threshold u/Λi for Vi(s). Therefore, we can use a
conditional expectation argument to obtain the expected LKC of Y ? by integrating with respect to the
intensity function y−2 dy of the Poisson points {Λi} in (0,∞), i.e., if E [Lk (A (·, V, S))] is integrable on
R+,

E [Lk(A(u, Y ?, S))] =
1

θS

∫ ∞
0

E [Lk (A (u/y, V, S))] y−2 dy

=
1

u θS

∫ ∞
0

E [Lk (A (y, V, S))] dy, (10)

for k = 0, 1, . . . , N . In the above formula, the leading factor 1/θS stems from the rescaling of the
intensity measure in (9). The second equation follows from a change of variables from u/y to y. We
emphasize that the use of different thresholds corresponds to simple rescalings of the expected LKC. This
reflects the peaks-over-threshold stability of Pareto processes. Therefore, we can conveniently define a
new quantity that does not depend on u:

C?k(Y ?, S) := E [Lk(A(1, Y ?, S)] = uE [Lk(A(u, Y ?, S)] , u ≥ 1.

We call C?k(Y ?, S) the expected conditional LKC of order k since it can be viewed as a LKC conditional
to an exceedance of any threshold u ≥ 1.

3.3 Formulas for Gaussian-based Pareto processes

Several specific models given by (2) with processes V defined as the transformation of a standard
Gaussian process W on C(S) have been studied and used extensively in the extreme-value literature, as
already pointed out in the introduction. Recall that a+ = max(a, 0) for a ∈ R. A first possibility is to
use i.i.d. copies Vi of

V
d
=

Wα
+

E[Wα
+]
, α > 0, (11)

with
E[Wα

+] = 2α/2−1π−1/2Γ((α+ 1)/2) (12)

in (2), leading to the max-stable process Z(s) known as extremal-t process [53]. The corresponding
Pareto processes have been labelled elliptical Pareto processes by [63]. A second possibility is to set

V
d
=

eαW

E[eαW ]
, α > 0, (13)

where E[eαW ] = eα
2/2, leading to a large class of max-stable processes of Brown–Resnick type [41]. In

both cases, we have E[V ] = 1. We note that the classical Brown–Resnick process as defined by [14]
cannot be handled within our framework since it uses nonstationary processes log Vi given by fractional
Brownian motion with nonconstant mean function. In the following, we use notation with superscripts
scal and loc to refer to the constructions based on (11) and (13), respectively. The reason for these
superscripts will become clear in the next section.
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For elliptical Pareto processes, the extremal coefficient has expression [33]

θscalS =
E [maxs∈SW+(s)α]

E
[
Wα

+

] . (14)

For Brown–Resnick Pareto processes, the corresponding expression is

θlocS =
E
[
maxs∈S eαW (s)

]
E [eαW ]

. (15)

Our first important new result states the formulas for expected conditional LKCs of these Gaussian-based
Pareto processes.

Theorem 1 (Expected conditional LKCs of Gaussian-based Pareto processes). Let W be a Gaussian
random field defined on RN that satisfies Assumption A0.
For the Gaussian-based Pareto processes based on spectral functions in (11) or (13), the expected condi-
tional LKCs are given as

C?k((Y ?)type, S) =
ctypek (α, λ2, S)

θtypeS

, k = 0, 1, . . . , N, type ∈ {scal, loc} (16)

with the corresponding extremal coefficients in (14) and (15), and

ctypek (α, λ2, S) =
N−k∑
j=0

[
j + k
j

]
λ
j/2
2 Lj+k(S)Ktype

j (α), (17)

where the constants Ktype
j (α) are given as follows. For the elliptical Pareto process, we have

Kscal
0 (α) = 1, Kscal

j+1 (α) =
απ1/2

Γ((α+ 1)/2)

∑
0≤i≤j

βij 2i/2 Γ((α+ i)/2), (18)

with (βij)0≤i≤j such that ρj+1(u) = e−u
2/2
∑

0≤i≤j β
i
ju
i, for j ≥ 0. For the Pareto process of Brown–

Resnick type, we have for j ≥ 0,

K loc
j (α) = (2π)−j/2 αj . (19)

Proof of Theorem 1. We obtain the formulas by simplifying the general equality (10) after inserting the
specific Gaussian-based forms of the spectral function V . The detailed proof is postponed to Appendix
A.

Remark 4. Unsurprisingly, from Theorem 1 we recover that C?N (Y ?, S) = |S|/θS for both types of
Gaussian-based Pareto processes that we have considered.

Remark 5. Writing out ρ1 and ρ2 in explicit form allows one to get

Kscal
1 (α) = π−1/2 Γ(1 + α/2)

Γ((1 + α)/2)
, Kscal

2 (α) =
α

2π
. (20)
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The closed-form expressions in (19) for K loc
j (α) and in (20) for Kscal

j (α), j = 1, 2, yield the next results
for geographic space with dimension N = 2:

cscal2 (α, λ2, S) = |S|,

cscal1 (α, λ2, S) =
1

2
|∂S|+ 23/2π−1/2 Γ(1 + α/2)

Γ((1 + α)/2)

√
λ2 |S|,

cscal0 (α, λ2, S) = 1 +
1

2
√
π

Γ(1 + α/2)

Γ((1 + α)/2)

√
λ2 |∂S|+

α

2π
λ2 |S|,

cloc2 (α, λ2, S) = |S|,

cloc1 (α, λ2, S) =
1

2
|∂S|+ 2απ−1/2

√
λ2 |S|,

cloc0 (α, λ2, S) = 1 +
α

2
√

2π

√
λ2 |∂S|+

α2

2π
λ2 |S|.

4 Subasymptotic LKCs for Gaussian mixtures

We now turn to the subasymptotic setting with a focus on Gaussian location or scale mixture processes,
which are often used for modeling and simulating in a subaysmptotic framework when the approximation
of extreme-value data by asymptotic models is too coarse [39, 40]. As before, we set a fixed compact
domain S in RN , and assume that it is given as a hypercube or hyperball, if not specified otherwise. We
will study Gaussian mixture processes {X(s) : s ∈ S} that have the following general structure:

X(s) = g(W (s),Λ), s ∈ S, (21)

where Λ is a shape variable with suitable properties, and with a certain link function g such that the
function g(·, λ) is strictly increasing for any λ. This setting allows us to introduce the inverse function
h(·, λ) of g so that we have the following almost sure identity for the exceedance region at level u:

A(u,X, S) = A(h(u,Λ),W, S).

Specifically, location mixtures arise for g(w, λ) = w + λ, whereas scale mixtures are obtained by setting
g(w, λ) = λw. Under univariate regular-variation conditions expressed in terms of the location or scale
variable Λ, the corresponding Gaussian mixture processes converge to the Gaussian-based limit processes
(modulo marginal probability integral transformations) previously discussed in Section 3.
In this section, we first derive the expressions of expected LKCs for general Gaussian location or scale
mixtures. Then, we use these results to characterize the tail behaviour of expected LKCs in the domain-
of-attraction setting based on regular variation, and we show that the obtained expressions converge to
those derived for the limit processes in Theorem 1. This is an important result in itself since there are
no general results on the continuity of LKCs of excursion sets when they are viewed as functionals of
the underlying process, such that we cannot invoke any continuous-mapping argument.

4.1 Expected LKCs for Gaussian mixture processes

In order to extend results from Gaussian fields (see Section 2) to general Gaussian mixtures X = g(W,Λ)
as in (21), the key point is the conditional expectation representation with respect to the shape variable
Λ. It allows us to write, for any function ϕ such that E|ϕ(A(u,X, S))| <∞,

E[ϕ(A(u,X, S))] = E [E [ϕ (A(h(u,Λ),W, S)) | Λ]] . (22)

10



We consider a Gaussian field W satisfying Assumption A0 and a random variable Λ independent of W .
Let X be the Gaussian mixture X = g(W,Λ) introduced in (21). Then, by applying (22) and Proposition
1, there exists a constant c such that, for all u ∈ R and k = 0, 1, . . . , N ,

E[Lk(A(u,X, S))2] ≤ c |S|2(1+1/N),

and

E[Lk(A(u,X, S))] =
N−k∑
j=0

[
j + k
j

]
λ
j/2
2 Lj+k(S)E[ρj(h(u,Λ))]. (23)

We now focus on expected LKCs for Gaussian location or scale mixtures.
We define a Gaussian scale mixture random field by prescribing

X(s) = ΛW (s), s ∈ RN , {W (s)} ⊥ Λ, (24)

where Λ > 0 can be viewed as a random standard deviation parameter embedded in the Gaussian random
field W . Early multivariate distributional characterizations (i.e. for a finite number of locations s) were
given by [42, 17], and an overview is given in [38] for multivariate properties and in [46, 47] for spatial
processes. Constructions with closed-form expressions of multivariate probability densities include the
Student-t fields [58, 48], Laplace fields [54] or slash fields [37, 39], for which the variable Λ2 follows an
inverse gamma, exponential or Pareto distribution, respectively.
Similarly, we define the Gaussian location mixtures:

X(s) = Λ +W (s), s ∈ RN , {W (s)} ⊥ Λ, (25)

with Λ a random shape variable.
Such processes have received considerable attention in the recent spatial statistics literature due to their
ability to account for asymmetric lower and upper tails, and for extremal dependence that is stronger
than in the purely Gaussian case (see e.g., [44]). In spatial extreme-value theory, they lead to extensively
studied limit processes of Brown–Resnick type (see e.g., [41, 64, 30]).

For a Gaussian scale mixture process, Equation (23) applies with function h(u, λ) = u/λ. It is then
possible to get closed analytical formulas for the functions E[ρj(·/Λ)], j = 0, 1, 2, (and associated
E[Lk(A(u,X, S))] via Equation (23)) in the case of specific scale variables (see Table 1). In Ta-
ble 1, γ(a, ·) stands for the lower incomplete Gamma function, i.e., γ(a, x) =

∫ x
0 t

a−1e−tdt, for a >
0, x > 0, Γ(a, ·) stands for the upper-incomplete Gamma function, i.e., Γ(a, x) =

∫∞
x ta−1e−tdt, for

a > 0, x > 0, and Kk is the modified Bessel function of second kind of order k. Note that Γ(k, x) =
(k − 1)! e−x

∑
0≤j≤k−1

1
j!x

j , x > 0, for non-negative integers k. Hence, if Λ2 ∼ Gamma(k, θ), with
k ∈ Z, k ≥ 1, then

E[ρ0(u/Λ)] =
1

2

e−u
√

2/θ

u
√

2/θ

∑
0≤j≤k−1

u2j

j!θj
M
u
√

2/θ
(1− j),

where Mµ(j) stands for the j-th moment of the Inverse Gaussian distribution IG(µ, µ2).

For a Gaussian location mixture process in (25), Equation (23) applies with h(u, λ) = u−λ. By definition
of ρj (see Equation (7)), we get the recursion

E[ρ0(u− Λ)] = E
[
Φ(u− Λ)

]
, E [ρj+1(u− Λ)] = (2π)−1/2 d

du
E[ρj(u− Λ)],

11



Law of Λ2 E[ρi(u/Λ)]

Gamma(k, θ)

1√
2πΓ(k)

∫
R+ e−(z2/2)Γ

(
k, u

2

θz2

)
dz, i = 0

with k > 0, θ > 0 21−k/2uk

Γ(k)θk/2
Kk(
√

2θu), i = 1

−(2π)−1 u d
duE[ρ0(u/Λ)], i = 2

Exp(θ)

1
2 e−
√

2/θu, i = 0

with θ > 0
√

2/θuK1(
√

2/θu), i = 1

1
4π

√
2/θ u e−

√
2/θu, i = 2

Pa(α)
u−2α 2α−1(π)−1/2 γ(α+ 1/2, u2/2) + Φ(u), i = 0

with α > 0 u−2α 2α−1(π)−1 αγ(α, u2/2), i = 1

u−2α 2α−1(π)−3/2 αγ(α+ 1/2, u2/2), i = 2

Table 1: Computations of E[ρj(·/Λ)], j = 0, 1, 2, for specific distributions of the scale variable Λ2.

Law of Λ E[ρ0(u− Λ)]

N (m,σ2) Φ
(

u−m√
1+σ2

)
Gamma(k, θ) 1√

2πΓ(k)

∫
R e−(z2/2)Γ(k, (u− z)+/θ) dz

k > 0 and θ > 0

Exp(θ) e1/(2θ2) e−u/θ Φ(u− 1/θ) + Φ(u)

θ > 0

Table 2: Computations of E[ρ0(u− Λ)] for specific distributions of the location variable Λ.

for j ≥ 0. Hence, closed-form expressions of E[ρj(u − Λ)], j ≥ 1, are available provided that we can
compute E[ρ0(u−Λ)]. In Table 2 we perform such computations for specific distributions of the location
variable Λ.

We continue this section with a focus on extreme values of scale and location mixtures by considering
regularly varying (RV) scale random variables Λ and exponentially regularly varying location random
variable Λ. We refer to Appendix A for definitions and some well known facts on random variables that
are regularly varying, i.e., possessing a distribution with power-law tail.

The following result shows the asymptotic behaviour of the expected LKCs of exceedance regions of
X = ΛW when Λ is regularly varying at infinity with index α > 0, i.e., Λ ∈ RV∞(α) and of X = Λ +W
when eΛ is regularly varying in RV∞(α) with α > 0, i.e., Λ is exponential-tailed with positive rate α.
We use the notation f(u) ∼ g(u) for lim

u→∞
f(u)/g(u) = 1.

Proposition 2. Let W be a Gaussian field defined on RN that satisfies Assumption A0. Let ctypek for
type ∈ {scal, loc}, be the constants defined in Equation (17) in Theorem 1.

(i) Denote by Xscal the Gaussian scale mixture ΛscalW in (24) where Λscal ∈ RV∞(α) with α > 0

12



is a positive random variable, independent of W and with continuous probability density. Then, for
k = 0, 1, . . . , N , the function

u 7→ E[Lk(A(u,Xscal, S))] belongs to RV∞(α).

More precisely, for k = 0, 1, . . . , N , the following asymptotic holds:

E[Lk(A(u,Xscal, S))] ∼
u→∞

u−αLΛ(u)
1

cα
cscalk (α, λ2, S), (26)

where cα := (E
[
Wα

+

]
)−1 and LΛ is the slowly varying function given by LΛ(u) = uα P(Λscal > u).

(ii) Denote by X loc the Gaussian location mixture defined by Λloc + W in Equation (25) where Λloc is
a random variable, independent of W , with continuous probability density such that eΛ ∈ RV∞(α) with
α > 0. Then, for k = 0, 1, . . . , N , the function

u 7→ E[Lk(A(u,X loc, S))] is exponentially regularly varying with index α.

More precisely, for k = 0, 1, . . . , N , the following asymptotic holds:

E[Lk(A(u,X loc, S))] ∼
u→∞

e−αu LΛ(eu) eα
2/2 clock (α, λ2, S), (27)

where LΛ is the SV function given by LΛ(eu) = eαu P(Λ > u).

Notice that the asymptotics in (26) and (27) for k = N can both be derived from the well-known
Breiman’s lemma (see [13, 18] and [55], Lemma 2.1). For the sake of clarity, this classical result is
recalled in Appendix (see Lemma 1).

Remark 6 (Sub-Gaussian random fields). Theorem 2 in [2] is a particular case of our Proposition 2,
obtained by focusing on the Euler-Poincaré characteristic (k = 0) for a Gaussian scale mixture with scale
variable Λ following the α-stable distribution with α ∈ (0, 1) (see last row of Table 4 in Appendix B).
This type of random field represents a simple variant among the stable random fields, called subGaussian
in [2]. In this case, the function LΛ tends to a known constant depending on α, which allows us to recover
the following estimates by applying Proposition 2 (see (4.1) in [2]):

E[L0(A(u,X, S))] ∼
u→∞

u−α
1

Γ(1− α)

N∑
j=0

λ
j/2
2 Lj(S)Kscal

j (α),

with Kscal
j (α) as in Equation (18).

Proof of Proposition 2. In order to get (26) and (27), we use (23) and plug in the respective asymptotics
(36) and (37) that are provided in Lemma 2 in Appendix A.

Based on results summarized in [8] (page 59), in Table 4 in Appendix B we gather a list of examples of
the distribution of Λ for which we can provide explicit expressions of the asymptotic behaviour of the
SV function LΛ.
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4.2 Domain-of-attraction setting for Pareto processes and expected-LKC conver-
gence

We use the previous results to characterize the tail behaviour of expected LKCs in the domain-of-
attraction setting based on regular variation, and we show that the obtained expressions converge to
those derived for the limit processes in Theorem 1. The equality of the expressions of LKCs of limit
processes and limits of LKCs is not trivial since there are no general results about the continuity of
LKCs, such that continuous-mapping arguments cannot be exploited to prove this equality directly.
A natural approach to study peaks-over-threshold limits of a stochastic process X in a compact domain
S is to condition on an exceedance of the spatial maximum as detailed by [35]. If a limit exists then it
is a Pareto process, and such a limit exists if and only if the equivalent limits for point processes and
componentwise maxima exist. Generalized Pareto processes arise as limits when more general marginal
distributions are allowed, but we can always achieve a standard Pareto process limit through marginal
pre-transformations of the original process X. Therefore, to study properties related to the extremal
dependence of X, we consider the normalized process

X?(·) = 1/F (X(·)), where F (u) = P(X(s) > u). (28)

It possesses standard Pareto marginal distributions with P(X?(s) > v) = 1/v, for v ≥ 1, if the marginal
distributions of X are continuous, as assumed in our setting. If the following functional convergence in
distribution is satisfied as u tends to infinity,

u−1X?(·) | max
s∈S

X?(s) > u
d−→ Y ?(·),

then the limit process Y ?(·) is a Pareto process [35]. Its extremal coefficient arises as follows,

θS = lim
u→∞

θS(u), θS(u) = uP(max
s∈S

X?(s) > u). (29)

Elliptical Pareto processes arise as limits for Gaussian scale mixtures X(s) = ΛW (s) with Λ ∈ RV(α),
α > 0, whereas Gaussian location mixtures X(s) = Λ +W (s) with Λ exponential-tailed possessing rate
α > 0 tend to the Pareto limit processes of Brown–Resnick type.

Theorem 2 (Expected conditional LKCs for Gaussian mixture limits). Let W be a Gaussian field
defined on RN that satisfies Assumption A0.

� Denote by Xscal the Gaussian scale mixture X = ΛscalW in (24) where Λscal ∈ RV∞(α) with
α > 0 is a positive random variable, independent of W and with continuous probability density.

� Denote by X loc the Gaussian location mixture defined by X = Λloc + W in Equation (25) where
Λloc is a random variable, independent of W , with continuous probability density, such that eΛ ∈
RV∞(α) with α > 0.

Finally, let (X?)type and (Y ?)type be the corresponding normalized process and Pareto limit process,
respectively. Then, for k = 0, 1, . . . , N and type ∈ {scal, loc},

lim
u→∞

E
[
Lk(A(u, (X?)type, S)) | max

s∈S
(X?)type(s) > u

]
= C?k

(
(Y ?)type, S

)
, (30)

with the conditional LKCs on the right-hand side computed in Theorem 1.
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Proof of Theorem 2. Let us first remark that the conditional expectation in the left-hand side of (30)
can be reduced to the ratio E

[
Lk(A(u, (X?)type, S))

]
/P(maxs∈S(X?)type(s) > u) since the excursion

A(u, (X?)type, S) is empty as soon as maxs∈S(X?)type(s) ≤ u.
To exploit the previously established results, we rewrite E [Lk(A(u,X?, S))] = E [Lk(A(T (u), X, S))],

where T (u) = F
−1

(1/u) tends to infinity as u goes to infinity. We are then in position to use the
asymptotics given in of Proposition 2.
In the scale mixture case, Equation (26) allows us to get that

E [Lk(A(T (u), X, S))] ∼ T (u)−αLΛ(T (u))
1

cα
cscalk (α, λ2, S).

Let us focus on the term T (u)−αLΛ(T (u)) 1
cα

. On the one hand,

P(X(s) > T (u)) = P(W (s) > T (u)/Λ) = E[ρ0(T (u)/Λ)] ∼ T (u)−αLΛ(T (u))
1

cα
,

by using Lemma 2 in Appendix A to get the asymptotics. On the other hand, P(X(s) > T (u)) =
P(X?(s) > u) = 1/u. Hence, T (u)−αLΛ(T (u)) 1

cα
∼ 1/u. Thanks to (29), the equality in (30) is

established in the Gaussian scale mixture case.
In the location mixture case, we can follow a similar procedure to establish the result starting from
(27).

5 Numerical illustrations

In this section we provide graphical illustrations focusing on two-dimensional processes (N = 2). Impor-
tant technical details of the underlying estimation algorithms for the random quantities Lk(A(u,X, S)),
based on observations over a regular square grid on R2, are discussed later in Section 6. We consider
a scale mixture model X = ΛW with a Bergmann-Fock Gaussian random field W with covariance as
in Example 1 in Appendix B with a = (100/m)2, in a domain of size m ×m with m = 210. Sampling
is achieved through Matlab using the approach of circulant embedding matrices. We take two specific
distributions for the scale variable Λ. In the first row of Figure 1, we consider Λ2 to be exponentially
distributed (Λ2 ∼ Exp(1)); in the second row, Λ2 is Pareto distributed with parameter 4 (Λ2 ∼ Pa(4)).
In the second case we have Λ2 ∈ RV(4) (see Section 4).

In the first numerical study, gathered in Figure 1, we illustrate asymptotics in Proposition 2 and the
closed analytical formulas of expected LKCs of Gaussian scale mixtures provided by Table 1.
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Figure 1: Illustration of expected LKCs. Shape variables are given as Λ2 ∼ Exp(1) (first row) and
Λ2 ∼ Pa(4) (second row). Exact theoretical values of E[L0(A(u,X, S))] (left panels), E[L1(A(u,X, S))]
(center panels) and E[L2(A(u,X, S))] (right panels) are displayed in logarithmic scale with blue curves
(see Table 1). Empirical means of estimated Lk(A(u,X, S)) from 500 i.i.d. samples (red stars) are given
for several values of u. In the second row, theoretical values of the asymptotic expected LKCs from
Equation (26) in Proposition 2 are shown as green curves.

Secondly in this section we aim to illustrate the asymptotic behaviour provided by Theorem 2, specifically
Equation (30). We use the same scale mixture model as before but now with different parameters in
the two distributions that we consider for Λ2: Pareto distribution with parameters α = 3/2 (row (a) in
Figures 2 and 3) and α = 1/2 (row (b) in Figures 2 and 3).

In these two particular mixture cases the marginal distributions of X belong to the Slash family with
density functions f(x) = (1−e−x

2/2)(
√

2πx4)−1, for x 6= 0, and f(x) = (3(2−(2+x2)e−x
2/2))(

√
2πx4)−1,

for x 6= 0, respectively. These Slash marginal distributions are used here to build the standardized process
X? (see Equation (28)).

Numerical illustrations of Equation (30) of Theorem 2 are displayed in Figure 2, where the y-axis is
given on logarithmic scale.

16



250 300 350 400 450 500 550 600 650

Levels u

0

2

4

6

8

10

12

20 40 60 80 100 120 140 160

Levels u

0

2

4

6

8

10

12

Λ2 ∼ Pa(3/2) Λ2 ∼ Pa(1/2)

Figure 2: Averaged values (in logarithmic scale) of estimated Lk(A(u,X?, S)) based on 5000 i.i.d. sample
simulations for k = 2 (blue circles), k = 1 (green circles) and k = 0 (red circles) for several large values of
u. We also display the theoretical functions cscalk (α, λ2, S)u−1 with cscalk in (17) for k = 2 (blue curves),
k = 1 (green curves) and k = 0 (red curves).

For a third illustration, we write the extremal coefficient θscalS as in (14) as

θ
(∗)
S :=

E [maxs∈SW+(s)α]

2α/2−1π−1/2Γ((α+ 1)/2)
. (31)

Alternatively, we can estimate it using a large value u by one of the following approximations:

θ
(F)
S (u) := uP(max

s∈S
X?(s) > u), (32)

θ
(k)
S (u) :=

cscalk (α, λ2, S)

E[Lk(A(u,X?, S))]
P(max

s∈S
X?(s) > u), for k = 0, 1, 2. (33)

The estimate in (32) (resp. in (33)) is based on Equation (29) (resp. on a combination of Equations (16)
and (17)). In these numerical studies the parameters α and λ2 in (31)-(33) are supposed to be exactly
known. In Figure 3 (left panels) we provide an illustration of the finite-sample behaviour of the empir-
ically estimated quantities in (31)-(33) based on our simulations using several large values of u. Right
panels of Figure 3 show the behaviour of the empirically estimated P(maxs∈S X

?(s) > u) for the same
simulations and levels u. The mixture models and defining parameters are the same as in Figure 2.

Obviously, the estimation performance of θ
(k)
S for k = 0, 1, 2 in Equation (33) is strongly determined by

the ability to properly estimate Lk from observations over a regular square grid on R2, as investigated
in Section 6 below.
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Figure 3: First row: Λ2 ∼ Pa(3/2). Second row: Λ2 ∼ Pa(1/2). Numerical illustrations related to

extremal coefficients. Left panels: empirical estimation (in logarithmic scale) of θ
(∗)
S in (31) (black

horizontal line), θ
(F)
S (u) in (32) (magenta crosses); θ

(k)
S (u) in (33), for several large values of u and k = 2

(blue crosses), k = 1 (green crosses) k = 0 (red crosses), evaluated using 5000 i.i.d. simulations. Right
panels: empirical estimated P(maxs∈S X

?(s) > u), for the same levels u and the same simulations as in
the corresponding left panels.

6 Empirical estimation of moments of LKCs

Theoretical results derived in previous sections describe expectations of LKCs of exceedance regions of
Gaussian mixtures (see Section 4), especially for extreme quantile levels with exceedance probabilities
tending to zero. We now discuss how such moments can be estimated numerically from datasets with
observations over a regular grid in geographical space R2, i.e., N = 2. In practical applications, we often
are given a discretized representation of the smooth excursion set from a pixelated image.
With Gaussian mixtures X as defined in (24) and (25), the properties related to the shape variable Λ
are statistically identifiable only if we have replicated observations Xi, i = 1, . . . , n, with n > 1, of the
mixture process. If we had only a single observation of X(·) = g(W (·),Λ), we could at most estimate the
realized value of Λ, but not make any useful inferences on the probability distribution of Λ. Therefore, we
suppose that the processes {Xi} are independent and identically distributed according to the marginal
distributions of X. This is exactly the framework of our previous numerical studies (see Figures 1, 2
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and 3).

The estimation issue of Lk: pixel images instead of smooth excursions. Inspired by real-life
applications, we assume that processes {Xi} have been observed over a square regular grid, i.e., we
observe {Xi(j1, j2)}, for (j1, j2) ∈ Gδ := ((δZ) × (δZ)) ∩ S, where S is the observation window – for
example a rectangle – and where δ > 0 is the pixel size. In this pixel setting, for a given threshold u ∈ R,
the associated replicated excursion set is given by binary black-and-white images representing spatially
dependent Bernoulli variables I(Xi(j1, j2) ≥ u) for (j1, j2) ∈ Gδ, where we color in black (resp. white)
pixels for values equal to one (resp. zero).

In the literature, various empirical approaches and related asymptotic results have been proposed to deal
with estimation of Lipschitz–Killing curvatures of excursion sets observed over Gδ. Often, the formulas
for estimators are based on the implicit assumption that the process X is only partially observed at the
centers of the grid cells [δj1, δ(j1 + 1)) × [δj2, δ(j2 + 1)) in Gδ, and it has constant value within each
grid cell. In this pixelated setting, with increasingly fine grids as δ → 0, the area statistics, obtained
by counting relevant pixels in Gδ and multiplying by δ2, tends to its true value, but more specific
adjustments are required to provide the desirable so-called multigrid convergence property (i.e., strong
consistency as the pixel size tends to zero) for statistics involving characteristics such as the perimeter
or the Euler-Poincaré characteristic.

For instance, several local counting algorithms for perimeter calculation (LCAPs) are known to converge
to a biased estimate of the perimeter. Indeed, LCAPs in the Cartesian square grid Gδ converge to the
perimeter rescaled by a dimension-dependent constant. In the isotropic framework, this normalization
factor is 4/π for N = 2, see [50] where also other types of tessellation in dimensions 2 and 3 are
considered and associated biases are evaluated. This pixelization error arising in the perimeter estimation
of excursion sets of random fields, and ways to correct it, have recently been investigated in [11, 20, 19].

A detailed description of estimation approaches for Lk would require a highly technical exposition, for
which we refer to papers discussing the multigrid convergence property of LKCs and increasing-domain
asymptotics when the observation window S increases towards R2 (see, e.g., [1, 11, 31, 27, 20]).

Another issue is that many existing estimators of LKCs may suffer from observation bias due to the
intersection of the excursion set in (1) with the observation window S. This additional bias of estimates
of Lk, for k = 0, 1, can be removed by using an edge correction procedure, see [12], for instance.

Considered Lk estimators. Estimation results shown in this paper (see Figures 1, 2 and 3) have
been obtained with state-of-the-art LKC estimators. To estimate Lk(A(u,Xi, S)) from {Xi(j1, j2)}
with (j1, j2) ∈ Gδ, we use algorithms implemented in the Matlab functions bweuler (for k = 0) and
bwarea (for k = 2). In contrast to the bweuler and bwarea functions, the existing Matlab function for
the perimeter (bwperim) performs poorly because of the pixelisation error. Instead, we implement the
procedure recently proposed by [11] and [1]. Our algorithm is summarized in Algorithm 1 below. We
denote by L̂k(i;u, δ), k = 0, 1, 2, the estimator of the kth LKC obtained by following Algorithm 1 for
the ith replicate Xi observed over a regular square grid Gδ with pixel length δ.
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Algorithm 1 Estimation algorithm for L̂k(i;u, δ), k = 0, 1, 2 (case N = 2)

(Step 1) We implement L̂0 from bweuler, L̂2 from bwarea and L̂1 recently proposed by [11] and [1].
When it is required to specify the connectivity of adjacent pixels, we use the average between the 4-connectivty (“rook”

scheme) and the 8-connectivity (“queen” scheme).

(Step 2) Since L1 is the half perimeter, we divide our L̂1 in Step 1 by two.

(Step 3) Since our setting is isotropic, we correct the estimate perimeter in Step 2 by the normalization
factor 4/π (see Proposition 5 in [11], see [50] and [19]).
Notice that L̂0 and L̂2, estimated on a square lattice, do not need this bias correction.

(Step 4) Finally, we correct the boundary contribution of ∂S in L̂0 (from Step 1) and L̂1 (from Step 3)
by using the edge correction proposed in Proposition 2.5 in [12].
Notice that L̂2 does not need this edge correction.

Law of large numbers for Lk. Here we do not address increasing-domain asymptotics, but we
describe useful asymptotic mechanisms based on the law of large numbers when the number of available
replicates n tends to infinity.

We empirically estimate the mth moment of L̂k(i;u, δ) by

Lmk (n;u, δ)) =
1

n

n∑
i=1

(
L̂k(i;u, δ)

)m
, m = 1, 2, . . .

Consistent estimation is possible if the (m + 1)th moment of Lk(i;u, δ) is finite, see Propositions 1,
Equation (23) and Remark 3, for sufficient conditions. As estimator of the variance of Lk(A(u,X, S)),
we define

σ̂2
k(n;u, δ) = L2

k(n;u, δ))−
(
L1
k(n;u, δ)

)2
.

Finally, we compute the empirical variance of the expectation estimator L1
k(n;u, δ)) by using the formula

σ̂2
k(n;u, δ)/n, and the law of large numbers ensures σ̂2

k(n;u, δ) → 0 as n → ∞. Moreover, if L̂k(i;u, δ)
is a consistent estimator of the true geometric characteristic Lk(A(u,X, S)) as δ → 0 (see the previous
discussion about multigrid convergence), then we obtain consistent estimation of the expectation of
LKCs:

lim
δ→0, n→∞

L1
k(n;u, δ)) = E [Lk(A(u,X, S))] .

Estimation for normalized processes. To estimate LKC properties of the normalized process
X?(s) = 1/(F (X(s))) in (28), we allow for higher flexibility in univariate marginal distributions by as-
suming that the observed process Xobs can have any continuous and not necessarily stationary marginal
distribution Fs. Therefore, we consider the probability integral transform

Xobs(s) = F−1
s (F (X(s))) ,

where the Gaussian mixture process X(s) has marginal distribution F . Then, X?(s) = 1/(F s(Xobs(s))).
To estimate properties of X?, we must either know the marginal distributions Fs for all s, or they must
be estimated. In simulation experiments, it is possible to work with exactly known marginal distributions
Fs, but this is usually not the case with real-world data. For inferences on LKCs for a specific level
u of X? with marginal exceedance probability 1/u (i.e., u is the marginal return period), we have to
estimate only the corresponding quantile Ts(u) = F−1

s (1−1/u) of the observed process. Estimators T̂s(u)
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of Ts(u) must ensure that differentiability properties of sample paths required for estimation of LKC
properties are preserved in the standardized process T−1

s (Xobs(s)). The quantile T̂s(u) (if unknown) can
be estimated using an appropriate quantile estimator [49]. If Ts(u) is estimated consistently, then the
continuous mapping theorem ensures consistent estimation of LKCs of X?. In the special case where Fs
does not depend on s, i.e., where we observe the process with stationary margins, we have the alternative
possibility to fix the level T (u) for the observed process and then empirically estimate the exceedance
probability p̂u = P(Xobs(s) > T (u)) to obtain the normalized threshold û = 1/(1 − p̂u). The law of
large numbers ensures consistent estimation of u by û with convergence of û to the true value u as the
number of replicates n tends to infinity. Note that estimation of pu is equivalent to estimation of the area
expectation E [LN (A(u,X, S))], since both are fully determined by Fobs(u). Thanks to the continuous
mapping theorem, consistent estimation of LKCs is preserved when replacing u by û.

Conclusion

Our results for Pareto limit processes highlight threshold-invariant behaviour of excursion set char-
acteristics conditional to an exceedance due to the property of POT-stability. This property arises
asymptotically and is closely related to regular variation of stochastic processes, i.e., RV-properties that
hold uniformly over the compact domain S. Such behaviour arises for Gaussian mixture processes, such
as location or scale mixtures, and leads to flexibly parametrized limit models. Our theoretical results
on moments of geometric summaries of excursion sets of such processes can be viewed as valuable ex-
ploratory and inferential tools for spatial extreme-value analysis when data are available on dense and
regular spatial grids. They provide a functional perspective on the extremal behaviour of the process,
and can be used to study geometric properties of spatial clusters of extreme values. In particular, the
question whether POT-stability is present in a real-life phenomenon, leading to spatial extents of clus-
ters that are invariant to the overall magnitude of the event as measured through the maximum over a
domain S, can be addressed in a novel way by using information that is only partially captured by the
customary bivariate summaries such as bivariate extremal coefficients.

Whereas expected values of LKCs of excursion sets for Gaussian processes satisfying assumption A0
depend on the spatial dependence structure only through the second spectral moment λ2, the situation
is different for Gaussian mixture processes. For Gaussian-based Pareto processes, the expected LKCs
depend additionally on α, and a wide range of functional forms of LKCs in terms of α and λ2 arises.
Finally, in the subasymptotic setting, an even much larger variety of possible forms of LKCs arises and
becomes difficult to describe exhaustively.
We intend to exploit results presented in this work to build a toolbox of statistical tests and inference
procedures for extremal dependencies in spatial data observed on dense grids. This includes climate data
obtained through remote sensing or as climate model outputs, such as reanalysis data obtained through
conditioning a physical model on observations available from different sources. Another relevant future
extension of our methodology is towards space-time models, for instance by considering a 3-dimensional
domain S equal to [0, a]2 × [0, T ] or B2(0, a) × [0, T ]. In this space-time setting we will remove the
isotropy assumption included in Assumption A0, which is not realistic in that context.
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A Proofs and auxiliary results

Proof of Theorem 1. We start with the assessment concerned with elliptical Pareto processes, i.e., where
the type is scal.

We write (10) introducing the fact that V = cαW
α
+ with cα =

1

E[Wα
+]

,

C?k((Y ?)scal, S) = E
[
Lk(A(1, (Y ?)scal, S))

]
=

1

θscalS

∫ ∞
0

E
[
Lk
(
A
(

(y/cα)1/α,W, S
))]

dy

:=
cscalk (α, λ2, S)

θscalS

.

Using (6), we get that the above numerator is equal to

cscalk (α, λ2, S) =

N−k∑
j=0

[
j + k
j

]
λ
j/2
2 Lj+k(S)Kscal

j (α),

with

Kscal
j (α) =

∫ ∞
0

ρj

(
(y/cα)1/α

)
dy = α cα

∫ ∞
0

ρj(z) z
α−1 dz. (34)

In particular, by applying Fubini Theorem, we get

Kscal
0 (α) = α cα

∫ ∞
0

e−u
2/2

√
2π

(∫ u

0
zα−1 dz

)
du = cα

∫ ∞
0

e−u
2/2

√
2π

uα du = 1.

For j ≥ 0, writing ρj+1(u) = e−u
2/2
∑

0≤i≤j β
i
ju
i, we get

Kscal
j+1 (α) = α cα

∑
0≤i≤j

βij

∫ ∞
0

zi+α−1 e−z
2/2 dz

= α cα
∑

0≤i≤j
βij 2

α+i
2
−1 Γ((α+ i)/2),

which gives the desired formula in (18) by applying (12).

Let us turn now to the assessment concerned with Pareto processes of Brown-Resnick type. Similar
arguments as before yield to

C?k((Y ?)loc, S) =
1

θlocS

∫ ∞
0

E
[
Lk
(
A

(
1

α
ln(y) +

α

2
,W, S

))]
dy

:=
clock (α, λ2, S)

θlocS
,

where the above numerator is equal to

clock (α, λ2, S) =

N−k∑
j=0

[
j + k
j

]
λ
j/2
2 Lj+k(S)K loc

j (α),
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with

K loc
j (α) =

∫ ∞
0

ρj

(
1

α
ln(y) +

α

2

)
dy = α e−α

2/2

∫
R
ρj(z) eαz dz. (35)

In the same manner, applying again Fubini Theorem yields K loc
0 (α) = 1 and for j ≥ 0, writing ρj+1(u) =

−(2π)−1/2 ρ′j(u) (see Equation (7)) and performing an integration by parts, we get

K loc
j+1(α) = α (2π)−1/2K loc

j (α).

A simple induction yields formula in (19).

Definition 1 (Regular variation RV∞(α)). We say that a function G is regularly varying at infinity
with index α ≥ 0 (denoted G ∈ RV∞(α)) if for any x > 0,

G(tx)

G(t)
→ x−α, t→∞.

For a random variable X, we use the shorthand notation X ∈ RV∞(α) if the survival function F of X
is regularly varying at infinity with index α, i.e., F ∈ RV∞(α).

We have F ∈ RV∞(α) if and only if F (x) = L(x)x−α with a slowly varying (SV) function L such that
L(tx)/L(t)→ 1, t→∞ (i.e., L ∈ RV0).

We recall below the well-known Breiman’s lemma (see [13, 18] and [55], Lemma 2.1).

Lemma 1 (Breiman’s lemma). Suppose X and Y are independent random variables. If X ∈ RV∞(α)
with α ≥ 0 and Y ≥ 0 with E(Y α+ε) <∞ for some ε > 0, then

P(XY > x) ∼ E[(Y α)]P(X > x), x→∞.

Lemma 2. Let Λ be a positive random variable with continuous probability density function.

(i) If Λ is in RV∞(α) for some α > 0, i.e. if P(Λ > u) = LΛ(u)u−α, u ∈ (0,∞) with LΛ ∈ SV ∩ C1,
then the following asymptotics holds for u→∞:

E[ρj(u/Λ)] ∼ u−α LΛ(u) (cα)−1Kscale
j (α), j ≥ 0. (36)

(ii) If eΛ ∈ RV∞(α) with α > 0 (i.e., Λ is exponential-tailed with rate α > 0) and if P(Λ > u) =
e−αu LΛ(eu) with LΛ ∈ SV ∩ C1, then the following asymptotics holds for u→∞:

E[ρj(u− Λ)] ∼ e−αu LΛ(eu) eα
2/2K loc

j (α), j ≥ 0. (37)

Proof of Lemma 2. Let us first remark that the desired asymptotics concern E[ρj(h(u,Λ))] where h(u, λ)
equals u/λ in case (i) and respectively equals u− λ in case (ii). We introduce the inverse (decreasing)
function ` such that for all u > 0 and λ > 0,

h(u, λ) = z ⇐⇒ λ = `(u, z), z ∈ D,

23



with D = R+ in case (i) and D = R in case (ii). Denoting by fΛ the probability density function of Λ,
both cases yield

E[ρj(h(u,Λ))] =

∫
R
ρj(h(u, λ)) fΛ(λ) dλ

=

∫
D
ρj(z) fΛ(`(u, z)) |∂`

∂z
(u, z)|dz

=

∫
D
ρj(z)

∂

∂z

(
FΛ(`(u, z))

)
dz

= (−1)

∫
D
ρ′j(z)FΛ(`(u, z)) dz,

where an integration by part has been performed to get the last line. Let us now focus on case (i) and
case (ii) separately.

(i) If Λ ∈ RV∞(α) and if `(u, z) = u/z, then for any fixed z ∈ D = R+,

FΛ(`(u, z)) = P(Λ > u/z) ∼
u→∞

zα u−α LΛ(u).

Hence, applying Lebesgue’s Theorem in the last above integral, we have

E[ρj(h(u,Λ))] ∼
u→∞

u−α LΛ(u) (−1)

∫
R+

ρ′j(z) z
α dz,

where

(−1)

∫
R+

ρ′j(z) z
α dz =

∫
R+

ρj(z)αz
α−1 dz = (cα)−1Kscal

j (α),

thanks to (34).

(ii) If eΛ ∈ RV∞(α) and if `(u, z) = u− z, then for any fixed z ∈ R,

FΛ(`(u, z)) = P(Λ > u− z) ∼
u→∞

eαz e−αu LΛ(eu).

Applying the same arguments as in case (i), we get

E[ρj(h(u,Λ))] ∼
u→∞

e−αu LΛ(eu) (−1)

∫
R
ρ′j(z) eαz dz,

where

(−1)

∫
R
ρ′j(z) eαz dz =

∫
R
ρj(z)αeαz dz = eα

2/2K loc
j (α),

thanks to (35).

B Supplementary materials

Table 3 recalls the formulas of Lipschitz-Killing curvatures of various standard geometric domains in R2

and R3. Table 4 provides information on the tail index and the slowly varying function of a number of
commonly used regularly varying distributions.
Finally, we present below two commonly used parametric correlation functions where the associated
Gaussian field satisfies Assumption A0 in Section 2.
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N = 2 Domain S L2(S) L1(S) L0(S)

Euclidean ball B2(0, a) πa2 πa 1

Rectangle [0, a]× [0, b] ab a+ b 1

N = 3 Domain S L3(S) L2(S) L1(S) L0(S)

Euclidean ball B3(0, a) 4
3πa

3 2πa2 a 1

Rectangle [0, a]× [0, b]× [0, c] abc ab+ ac+ bc a+ b+ c 1

Table 3: Lipschitz-Killing curvatures of domains in R2 and R3.

Distribution FΛ(u), u > 0 LΛ(u)

Pa(α) u−α = 1

GP( 1
α , σ)

(
1 + u

ασ

)−α
= (ασ)α

(
1 + ασ

u

)−α
InvΓ(α, λ)

∫ +∞
u

λα

Γ(α)e−λ/ww−α−1dw = λα

Γ(α+1)e−λ/u(1 + o(1)), u→∞
λ, α > 0

Fréchet(α) 1− e−u
−α

= 1− u−α

2 + o(u−α), u→∞
α > 0

|tα|
∫ +∞
u

2Γ( α+1
2 )√

απΓ( α
2 )

(
1 + w2

α

)−α+1
2

dw =
2Γ( α+1

2 )α
α−1
2

√
απΓ( α

2 )
(1− α2(α+1)

2(α+2) u
−2 + o(u−2))

α > 0 u→∞
Stableα(σα, 1, 0) not analytically expressible, = cos(πα2 ) 2

πΓ(α) sin(πα2 ) + o(1), u→∞

with except for certain parameter with cos(πα2 ) 2
πΓ(α) sin(πα2 ) = 1

Γ(1−α)

σα = (cos(πα2 ))
1
α values as for instance α = 1/2

0 < α < 1 (Lévy distribution)

Table 4: A list of classical RV(α) distributions given by their survival function FΛ with associated SV
function LΛ.

Example 1. The standard Bergmann-Fock Gaussian field W is characterized by its correlation function
σ(‖ h ‖; a) = e−a‖h‖

2
at spatial distance ‖ h ‖ with a parameter a > 0 related to spatial range, whose

inverse 1/a is called the scale parameter; this model is also called the Gaussian correlation function. For
this example, λ2 = 2 a.

Example 2. As second example, we consider the Matérn correlation function given by σ(‖ h ‖; ν, a) =
21−ν

Γ(ν) (a ‖ h ‖)νKν(a ‖ h ‖), where Kν is the modified Bessel function of the second kind of order ν,
and a > 0 is again a parameter related to spatial range. The smoothness parameter ν > 0 defines the
Hausdorff dimension of the graph Gr W = {(s,W (s)) : s ∈ RN} and determines the differentiability of

the sample paths. The associated second spectral moment is given by λ2 = a2

2(ν−1) , and its existence
requires ν > 1. Furthermore, for a positive integer k, the sample paths of a Gaussian Matérn field are k
times continuously differentiable if and only if ν > k. Here we require the stronger assumption that W
is almost surely C3, which implies ν > 3.
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[37] Héctor W Gómez, Fernando A Quintana, and Francisco J Torres. A new family of slash-distributions
with elliptical contours. Statistics & Probability Letters, 77(7):717–725, 2007.

[38] Arjun K Gupta, Tamas Varga, and Taras Bodnar. Elliptically contoured models in statistics and
portfolio theory. Springer, New York, 2013.
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