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Abstract

We present a quantum dynamics method based on the propagation of interacting quan-

tum trajectories to describe both adiabatic and nonadiabatic processes within the same

formalism. The idea originates from the work of Poirier [Chem. Phys. 370 4–14 (2010)]

and Schiff and Poirier [J. Chem. Phys. 136 031102 (2012)] on quantum dynamics with-

out wavefunctions. It consists in determining the quantum force arising in the Bohmian

hydrodynamic formulation of quantum dynamics using only information about quan-

tum trajectories. The particular time-dependent propagation scheme proposed here

results in very stable dynamics. Its performance is discussed by applying the method

to analytical potentials in the adiabatic regime, and by combining it with the exact

factorization method in the nonadiabatic regime.
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1 Introduction

The predictive power of molecular dynamics simulations crucially relies on the accuracy

of trajectory-based representations of molecular systems to determine their structural and

dynamical properties at a reasonable computational cost. A most common use of trajectory-

based methods is to mimic the evolution of the nuclei by driving them with classical, quasi-

classical, semiclassical, or quantum forces that represent the effect of the electrons, either in

the ground state (i.e., for adiabatic dynamics), or including the effect of the excited states

(i.e., for nonadiabatic dynamics). On the least computationally demanding end, purely clas-

sical trajectory simulations offer access to complex systems consisting of hundreds of atoms.

The primary limitation of the classical approximation is, however, also clear: inherently

quantum effects such as delocalization, zero-point energy, tunnelling, and/or interferences,

are completely missed.

Even for large systems, there are plenty of situations where quantum dynamical effects

are known to be important—and therein lies the challenge. For example, the study of hydro-

gen transfer in proteins is important for understanding the multitude of biological functions

supported by this fundamental reaction—which in some cases even requires consideration

of deep proton tunneling.1 Similarly, hydrogen tunneling dynamics was experimentally re-

vealed in phenol-ammonia clusters activated by UV-photon absorption.2 Other aromatic

biomolecules (e.g., indole and pyrole3 in the presence of water and ammonia solvents) man-

ifest a behavior that attests to quantum nuclear effects governing the dynamics in excited

electronic states. These examples serve to highlight the importance of considering nuclear

quantum effects, combined with multiple electronic states when necessary, that cannot be

taken into account using only classical trajectories.

There is, however, no longer a need to restrict oneself to purely classical simulations. In

the last decades, progress has been made towards pushing the limits imposed by the compu-

tational cost of exact or nearly exact quantum mechanical approaches (like time-dependent
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wavepacket methods, e.g., the multiconfiguration time-dependent Hartree,4–6 and even exact

spectroscopic methods7). Less expensive but more approximate computational methods are

also available, such as semiclassical initial value representation,8 approximated path-integral

methods,9 nonadiabatic ring-polymer molecular dynamics10–13 and nonadiabatic quantum

instanton theory14,15—all of which have been applied to nonadiabatic processes.

An alternative route towards completely recovering nuclear quantum effects, while still

maintaining a trajectory-based representation of nuclear dynamics, is provided by the so-

called quantum trajectory methods (QTMs). In past years, such QTMs have been used to

describe the quantum nuclear behaviour of different model16–24 and molecular systems.25–28

In this work, our aim is to focus on the theoretical and numerical aspects of one particular

quantum trajectory formalism, and its application to adiabatic and nonadiabatic problems.

Therefore, we introduce here the theories that will be illustrated in the remainder of the

paper as well as their position with respect to the state of the art.

Numerical QTMs that are referred to as synthetic are those that propagate the wavefunc-

tion’s hydrodynamic fields (density and phase) along the quantum trajectories, and deduce

trajectory dynamics at each time step from those field values. We refer the reader to the

book of Wyatt16 for an excellent review. A major numerical benefit of such a trajectory-

based representation in a Lagrangian frame is the fact that one essentially ends up with a

moving grid (i.e., the trajectories themselves) that follows the probability flow. Using the

moving grid to “sample” the nuclear configuration space in this manner thus allows one to

substantially reduce the number of grid points needed to accurately describe, for instance,

scattering processes. In many practical instances, use of QTMs rather than wavefunction-

based methods17 may be reasonably expected to provide better-than-exponential scaling with

system dimensionality—whereas fixed-grid methods, in contrast, are always characterized by

exponential scaling.

However, there are also severe numerical challenges introduced by the QTM approach.

The main challenge resides in the accurate and numerically stable computation of the quan-
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tum force that guides the quantum trajectory evolution—which is typically defined accord-

ing to the Bohmian prescription.29,30 This is a non-linear quantity involving third-order

derivatives, which in a QTM context, must be computed on an unstructured moving grid.

Moreover, since the “quantum potential” (whose gradient is the negative quantum force)

has an inverse dependence on density, the numerical derivatives become unstable in the

vicinity of wavefunction nodes, leading to a breakdown of the simulation—the so-called

“node problem.”16 Various treatments for these numerical issues have been proposed in the

literature—e.g., the moving least squares (MLS) approach,19 finite differences for constrained

trajectories in an arbitrary Lagrangian-Eulerian (ALE) moving frame,20 artificial viscosity

forces,20 “bipolar” decompositions of the wavefunction,18,25,31–33 and semiclassical treatments

based on linearized quantum forces.21,26,34,35

More recently, a fundamentally different QTM-type approach has been developed, based

on a complete reformulation of quantum theory in terms of trajectories.36–38 In this approach

one still works with the same ensemble of quantum trajectories as in the original Bohmian

QTM formulation described above. However, instead of using those trajectories to propagate

the wavefunction-based hydrodynamic fields, the quantum force is computed directly from

the trajectories themselves—without making any reference to the wavefunction itself. That

this is even possible is no trivial development. In any event, from a numerical standpoint, the

spatial variable x is replaced with a “trajectory-labelling coordinate” (usually denoted C),

in terms of which the numerical grid becomes structured and stationary. This, in turn, leads

to enormous numerical advantages in terms of evaluating the derivatives needed to compute

the quantum force. Indeed, the trajectory-based form of the quantum force is generally

found to overcome the node problem, although in the time-dependent case under-sampling

of trajectories in areas of low density impacts the accuracy of finite differences schemes. This

is discussed in more details below.

The aforementioned trajectory-based reformulation can be derived either from the sta-

tionary or from the time-dependent Schrödinger equation, resulting in differing properties
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for the trajectories and numerical considerations. In a previous work, some of the authors

applied the stationary formulation to the study of quantum scattering processes on a chem-

ical abstraction reaction model22 as well as in an adiabatic quantum capture model of cold

and ultra-cold chemistry,27 in both cases within the Born-Oppenheimer (adiabatic) approxi-

mation. In such contexts, the numerical propagation is extremely stable, essentially because

the trajectories are solutions of an ordinary differential equation (ODE).

In contrast, time-dependent applications necessarily involve a partial differential equation

(PDE). Since, as mentioned, x(C, t) (e.g., for the one-dimensional case) is the sought-for PDE

solution, it is in principle necessary to impose both initial conditions and boundary conditions

[i.e., x(t) at both C-grid edges] in order to solve the requisite PDE. The problem is that the

boundary conditions are not known a priori. Here, we find a noteworthy disadvantage, in

comparison with wave-based PDE solutions for which zero Dirichlet boundary conditions may

almost always be presumed. In practice, we find that trajectory dynamics in the interior are

not sensitively dependent on the choice of boundary conditions, provided the grid interval

is sufficiently large, as might be expected. On the other hand, the quantum trajectory

dynamics can in many cases become numerically unstable, if there is a scattering potential

present. This tends to manifest as errors propagating in from the grid edges, however, rather

than originating from nodes—i.e., this is not the node problem.

Various techniques have been developed that provide some improvement to the numerical

stability in the time-dependent case,38–40 without the need to invoke additional, sometimes

costly, computational smoothing procedures such as those mentioned above, nor supplemen-

tary approximations for the quantum potential and for the quantum force. Rather, the

“tricks” used here are in the vein of a judicious choice of boundary conditions and finite

difference discretizations, and are therefore numerically exact. Curiously, the particular

choices made here can be interpreted as determining the precise form of the “interworld

potential”—according to the “discrete” many-interacting-worlds (MIW) interpretation of

quantum mechanics that has sprung up from the trajectory-based reformulation.39 In the
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original, “continuous” MIW interpretation, however,36,38 these are merely choices for the

numerical discretization.

In any event, in the present work, we reexamine the time-dependent QTM framework for

the trajectory-based reformulation, and build upon previous successes in two important ways.

First, in addition to exploiting the numerical techniques described above, we also introduce

new methods that appear to greatly improve the numerical stability of the time-dependent

QTM calculations. This is an extremely important development from the perspective of

practical, widespread adoption of the approach as a generic robust computational tool. Sec-

ond, we aim to extend the time-dependent formalism to nonadiabatic processes in the same

manner as for adiabatic processes. However, in a “standard” formulation of nonadiabatic

dynamics, the effect of several electronic states is accounted for via the inclusion of multiple

potential energy surfaces (PESs), and couplings among them;41 this picture is fundamentally

different from adiabatic dynamics, where a single electronic state, and thus a single PES,

contributes to the “classical force” guiding nuclear dynamics (in addition to the quantum

force already discussed). Note that wavefunction-based nonadiabatic quantum trajectory

dynamics have certainly been considered in the past.18,42–46 However, these were done in a

standard Born-Huang (or related) representation of nonadiabatic dynamics involving multi-

ple PES components—which, for technical reasons, poses a source of fundamental difficulties

in the interacting trajectory-based context. Accordingly, in this work, we instead invoke the

exact factorization formalism in combination with the interacting quantum trajectories ap-

proach presented above [36,38]. The exact factorization yields nuclear dynamics under the

effect of a single time-dependent classical force accounting for the electronic excited states,

thereby avoiding the aforementioned technical difficulty.

Note that some of the present authors have already attempted to combine the standard

time-dependent Bohmian QTM formulation with exact factorization to include quantum

nuclear effects within a trajectory description of coupled electron-nuclear dynamics.23,24

Nonetheless, numerical issues associated with that study prevented the authors from en-
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visioning extensions to actual practical applications. Accordingly, we now present in this

paper—for the first time—a proof-of-principle illustrative study that demonstrates the po-

tential of the new scheme, and in particular, the value of combining the time-dependent

interacting-trajectory-based QTM approach with exact factorization. Although only one-

dimensional examples are considered here, we note further that the “continuous” MIW the-

ory adopted here (unlike the “discrete” version) readily generalizes for many-dimensional

applications as well.38

The paper is organized as follows. Section 2 provides a brief description of the employed

methodology for our quantum dynamics calculations, starting with the exact factorization

formalism in Section 2.1 and continuing with the interacting quantum trajectories formalism

in Section 2.2. In Section 3 we present our numerical results for various types of scattering

potentials, focusing on the adiabatic case in Section 3.1 and on the nonadiabatic case in

Section 3.2. We present our conclusions and perspectives in Section 4.

2 Theoretical methods

2.1 Exact factorization of the electron-nuclear wavefunction

The non-relativistic molecular Hamiltonian

Ĥ(q,x) =
3Nn∑
ν=1

−h̄2∂2ν
2Mν

+ Ĥel(q,x) (1)

describes a system of interacting electrons and nuclei, whose positions are collectively indi-

cated as q and x, respectively. The nuclear kinetic energy operator is expressed in Cartesian

coordinates and contains a sum over the 3Nn nuclear degrees of freedom, each labeled with

the index ν, with spatial derivatives ∂ν with respect to nuclear positions; Mν are the nuclear

masses. The electronic Hamiltonian Ĥel(q,x) is the sum of the electronic kinetic energy

and of all interactions. The time evolution of the electron-nuclear system is dictated by the
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molecular time-dependent Schrödinger equation (TDSE)

ih̄∂tΨ(q,x, t) = Ĥ(q,x)Ψ(q,x, t) (2)

whose solution yields to the time-dependent molecular wavefunction Ψ(q,x, t).

In the exact factorization theory,47,48 the molecular wavefunction is written as a product

of two time-dependent functions:

Ψ(q,x, t) = ψ(x, t)ϕ(q, t;x) (3)

where the nuclear wavefunction ψ(x, t) evolves according to the nuclear TDSE

ih̄∂tψ(x, t) =

[
3Nn∑
ν=1

[−ih̄∂ν + Aν(x, t)]
2

2Mν

+ ε(x, t)

]
ψ(x, t) (4)

and the electronic conditional factor ϕ(q, t;x), that depends parametrically on x, evolves

according to the electronic equation

ih̄∂tϕ(q, t;x) =
[
Ĥel(q,x) + Ûen[ϕ, ψ]− ε(x, t)

]
ϕ(q, t;x) (5)

Both evolution equations (4) and (5) contain the time-dependent vector potential (TDVP)

Aν(x, t) and the time-dependent potential energy surface (TDPES) ε(x, t) defined as

Aν(x, t) = ⟨ϕ(t;x)| − ih̄∂ν ϕ(t;x)⟩q (6)

ε(x, t) = ⟨ϕ(t;x)| Ĥel(x) + Ûen[ϕ, ψ]− ih̄∂t |ϕ(t;x)⟩q (7)

The symbol ⟨·⟩q stands for an integration over the electronic degrees of freedom, and

we removed all dependencies on q within ⟨·⟩q to imply that this variable is integrated out.

The TDVP and the TDPES are electronic quantities that evolve in time as effect of elec-

tronic dynamics, which is coupled to the nuclear dynamics in nonadiabatic conditions, and
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completely determine the nuclear evolution via the nuclear TDSE (4).

The electronic equation (5) contains the electron-nuclear coupling operator

Ûen[ϕ, ψ] =
3Nn∑
ν=1

1

Mν

[
[−ih̄∂ν − Aν(x, t)]

2

2
+

(
−ih̄∂νψ(x, t)

ψ(x, t)
+ Aν(x, t)

)
(−ih̄∂ν − Aν(x, t))

]
(8)

which depends explicitly on the nuclear wavefunction, implicitly on the electronic wavefunc-

tion via the presence of the TDVP, and acts on the parametric dependence of ϕ(q, t;x) as a

spatial derivative.

The ambiguity of the product form of the molecular wavefunction in Eq. (3) is partially

removed by imposing the normalization condition
∫
|ϕ(q, t;x)|2dq = 1 ∀x, t, which allows us

to identify |ϕ(q, t;x)|2 as a conditional probability density and |ψ(x, t)|2 =
∫
|Ψ(q,x, t)|2dq

as a marginal probability density that yields the nuclear density from the full wavefunction.

Equation (3) is thus unique up to a gauge encoded in a phase factor e(i/h̄)θ(x,t) (with θ(x, t)

a real function): multiplying the nuclear wavefunction by this factor and the electronic term

by its complex conjugate, Eq. (3) remains unaffected and the time-dependent potentials

transform as standard gauge potentials. Therefore, this ambiguity has to be eliminated by

imposing a choice of gauge.

In Section 2.2 we will work in a gauge where the TDVP is identically zero, which is

a possible choice of gauge only for one-dimensional problems (in nuclear space), as those

presented in Section 3. Another possible choice of gauge in high-dimensional situations, is

to put to zero the TDVP along a “selected” direction in nuclear configuration space. Then,

one could combine a classical and a quantum trajectory-based representation of nuclear dy-

namics, adopting the refined quantum description only along the “selected” direction. An

alternative strategy is to reformulate Section 2.2 including the effect of the TDVP, along

with the TDPES. Note that quantum trajectories’ velocity field is a gauge-invariant quan-

tity, thus they are the same for any choice of gauge. We are aware that one-dimensional
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models may not fully unravel the variety of quantum effects associated with nonadiabatic

dynamics processes, for example, related to conical intersections in the Born-Huang pic-

ture. However, we do not expect fundamental or numerical complications in moving towards

higher-dimensional problems, in particular from the perspective of the exact factorization.

Specifically, as shown in previous work,49–51 the time-dependent potentials arising in the

exact factorization are capable of capturing effects related to conical intersections, with the

advantage of not manifesting singularities, as is instead the case, for instance, of the nona-

diabatic coupling vectors arising in the Born-Huang picture. In any case, it is clear that

many interesting routes, currently under investigation, can be undertaken to combine the

interacting quantum trajectories formalism with exact factorization.

2.2 One-dimensional quantum trajectories method

In this preliminary study, we apply the interacting quantum trajectories approach36,38 for

a single nuclear degree of freedom in the exact factorization framework; thus the vectorial

notation x reduces to the single nuclear coordinate x. As stated in Section 2.1, we choose to

work in the gauge where only the TDPES affects nuclear dynamics. With this gauge choice,

the nuclear current density reduces to

J(x, t) =
h̄

M
Im
{
ψ∗(x, t)

∂ψ(x, t)

∂x

}
(9)

which becomes

J(x, t) = ρ(x, t)
1

M

∂S(x, t)

∂x
(10)

when considering the polar form ψ(x, t) =
√
ρ(x, t)eiS(x,t)/h̄, with ρ(x, t) the nuclear proba-

bility density and S(x, t) the phase of the nuclear wavefunction.

From the above, we identify Mẋ = ∂S(x, t)/∂x as the velocity field for the quantum

trajectories (since we deal with one nuclear degree of freedom we remove all dependencies on

the index ν). Inserting the polar form of the nuclear wavefunction in the nuclear TDSE (4),

10



and separating real and imaginary parts, one obtains quantum hydrodynamic equations for

the fields ρ(x, t) and S(x, t) in an Eulerian frame of reference,

∂ρ(x, t)

∂t
= −∂J(x, t)

∂x
(11)

−∂S(x, t)
∂t

=
1

2M

(
∂S(x, t)

∂x

)2

+ ε(x, t) +Qψ(x, t) (12)

where the quantum potential Qψ(x, t) is defined as

Qψ(x, t) = − h̄2

4M

[
1

ρ(x, t)

∂2ρ(x, t)

∂x2
− 1

2

(
1

ρ(x, t)

∂ρ(x, t)

∂x

)2
]

(13)

Switching to a Lagrangian frame by using the relation

d

dt
=

∂

∂t
+ ẋ

∂

∂x
(14)

and the definition of the velocity field, the coupled evolution equations along the quantum

trajectories are then found to be as follows:

ρ̇(x, t) = − ρ(x, t)
∂

∂x

[
ẋ
]

(15)

Ṡ(x, t) =
1

2M

(
∂S(x, t)

∂x

)2

− ε(x, t)−Qψ(x, t) (16)

Note that in Eq. (15) the spatial derivative with respect to x acts on the nuclear velocity field

in square brackets. Finally, taking the x-derivative of the phase equation above, one finds

that the local shape of the quantum hydrodynamic fields drives the quantum trajectories via

the sum of both classical and quantum potentials as follows:

Mẍ = −∂ε(x, t)
∂x

− ∂QΨ(x, t)

∂x
(17)

The same basic equations apply in the trajectory-based formulation, except that as stated,
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the quantum potential is not computed from Eq. (13). To understand how Q is defined,

it is first necessary to discuss the trajectory labelling coordinate C, in terms of which the

PDE solution for the quantum trajectory ensemble is expressed as x(C, t). In principle, there

is complete freedom in terms of how C is defined. One of the simplest choices is to take

C to be the initial value of a given trajectory at time t = 0—i.e., C = x0 = x(t = 0).36

Through probability conservation [i.e., Eq. (15)], one then obtains the following relation for

the density at any time t:

ρ(x, t) =
ρ0(x0)

x′(x0, t)
, (18)

where ρ0(x0) = ρ(x0, t = 0), x = (x0, t), and x
′(x0, t) =

∂x(x0, t)

∂x0
|t. Note that the “spatial”

derivative of x is taken with respect to the labelling coordinate C, which in this case is just

the initial value x0. The dimensionless quantity x′ thus becomes a measure of the relative

spacing of nearby trajectories over time, as compared to the initial spacing at t = 0.16

Inserting the expressions for ρ(x, t) [from Eq. (18)] and for x′(x0, t) into the above

wavefunction-based quantum hydrodynamic equations, all reference to the time-evolved

wavefunction are now entirely removed. The resultant trajectory-based dynamical PDE

[used to solve for x(x0, t)] then becomes

Mẍ = −∂ε(x, t)
∂x

− 1

x′
∂Q(x′, x′′, x′′′, x0)

∂x0
, (19)

where the trajectory-based form of the quantum potential Q is now given as follows:

Q(x′, x′′, x′′′, x0) =− h̄2

2Mx′2ρ1/20 (x0)

∂2

∂x20

[
ρ0(x0)

1/2
]
+

h̄2

Mρ0(x0)1/2
x′′

x′3
∂

∂x0

[
ρ0(x0)

1/2
]

+
h̄2

4M

(
x′′′

x′3
− 5

2

x′′2

x′4

)
(20)

The trajectory ensemble dynamical PDE of Eq. (19) is fourth-order in “space” (i.e., x0)

and second order in time. Note that all trajectory interactions (which arise from the x0

derivatives) are due to quantum forces; otherwise, the trajectories would not interact, and
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Newton’s classical ODE would result.

We note that Eq. (19) is written out explicitly in a form that depends only on x(x0, t),

constants, and the initial density ρ0(x0). The presence of the latter quantity is simply

an artifact associated with the coordinate choice C = x0. Indeed, the ρ0 dependence can

be easily removed by transforming to a “uniformizing” choice for C, in terms of which

ρ0(C, t = 0) = ρ(C, t) = 1.38 The explicit transformation from x0 to the uniformizing C can

be defined as follows:

C(x0) =

∫ x0

−∞
ρ0(x

′)dx′ (21)

Note that any two suitable labelling coordinates must be related to via a bijective func-

tion (i.e., monotonic, in the one-dimensional case). In addition, we stress that the labelling

coordinate (which could also be termed the “Lagrangian coordinate”) is necessarily time-

independent along a given trajectory: C(x(x0, t)) = C(x(x0, 0)) ∀t. Finally, for each trajec-

tory in the ensemble, we have

x = x(C, t) (22)

As discussed, the uniformizing C of Eq. (21) implies trajectories x(C, t) that all bear the

same probability density, in contrast to the x(x0, t) ensemble. From Eq. (18), however, the

shape of the density profile ρ(x, t) can be retrieved at any time t as follows:

x′ =
∂x

∂C
=

1

ρ(x, t)
(23)

This leads to a simplified trajectory-based dynamical PDE that depends only on x(C, t):

Mẍ = Fε(x, t) + FQ(x
′, x′′, x′′′, x′′′′), (24)

with classical force

Fε(x, t) = −∂ε(x, t)
∂x

, (25)

13



and quantum force

FQ(x
′, x′′, x′′′, x′′′′) = − h̄2

4M

[
x′′′′

x′4
− 8

x′′′x′′

x′5
+ 10

x′′3

x′6

]
. (26)

The classical force is indicated as the spatial (x) derivative of the TDPES of Eq. (7), which

reduces to the adiabatic potential if the Born-Oppenheimer approximation is valid, as was

shown in Ref. [ 52]. An explicit uniformizing-C expression for Q is straightforwardly derived

by inserting Eq. (23) into Eq. (13), and making use of the chain rule:

Q(x′, x′′, x′′′) =
h̄2

4M

(
x′′′

x′3
− 5

2

x′′2

x′4

)
(27)

Finally, we note that a more rigorous derivation of the above quantum trajectory expres-

sions is also possible, based on a Lagrangian/action extremization procedure.36–38 In this

approach, the Lagrangian is equal to the usual classical one, with the addition of a quantum

contribution—i.e., L = T − V − LQ, where T is the kinetic energy. It is important to note

that a gauge freedom exists in the definition of LQ. Thus in general, LQ need not be Q—

although this particular choice is allowed, and has the advantage that the resultant action,

obtained by integrating the Lagrangian over time, or equivalently

Ṡ(x, t) = L(x, ẋ, x′, x′′, x′′′, t) =
1

2
Mẋ2 − ε(x, t)−Q(x′, x′′, x′′′) (28)

yields the phase of the wavefunction. In this manner [i.e., together also with Eq. (23)], the

wavefunction can be recovered at any time from the positions and actions of the quantum

trajectories—although the ensemble of trajectories alone is sufficient to completely predict

the dynamical evolution of any quantum system.
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2.2.1 Numerical evaluation of the quantum force

In any numerical implementation, the continuous trajectory labelling coordinate C must

be discretized—with specific, discrete values Ci corresponding to the individual discrete

quantum trajectories used in the calculation. Note that these values do not change over

time—the Ci grid is thus fixed, rather than moving. It can therefore also be structured—

usually such that the grid-point spacing, (Ci+1 − Ci) = ∆C, is uniform across the grid,

1 ≤ i ≤ n. If, in addition, the uniformizing choice of C is presumed (as will be the case

throughout the rest of this article), then each of the n discrete quantum trajectories carries

the same probability, 1/n.

Having defined the discrete quantum trajectories, xi = x(Ci, t), some kind of finite-

difference scheme is needed to evaluate C derivatives numerically, in order to compute the

quantum forces FQi
, acting on each xi trajectory. In previous numerical applications of

this method,38–40 the following expression for the quantum force was used, which can yield

a reasonably stable numerical propagation (especially for free particles), and also accounts

correctly for quantum effects:

FQi
≃ h̄2

4M

[
1

(xi+1 − xi)2

(
1

xi+2 − xi+1

− 2

xi+1 − xi
+

1

xi − xi−1

)
− 1

(xi − xi−1)2

(
1

xi+1 − xi
− 2

xi − xi−1

+
1

xi−1 − xi−2

)]
(29)

Interestingly, Eq. (29) does not depend at all on ∆C—a consequence of the scaling laws that

apply in the trajectory-based formulation.53

Because the dynamical PDE is fourth-order in C, evaluation of the quantum force re-

quires interaction between a given trajectory and its four nearest symmetrical neighbors.

Equation (29) is easily derived by expressing the quantum force as the C-derivative of a field

quantity P , rather than as the x-derivative of Q, i.e.

FQ(x
′, x′′, x′′′, x′′′′) =

∂

∂C

[
P (x′, x′′, x′′′)

]
(30)
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with

P (x′, x′′, x′′′) =
1

x′2
∂2

∂C2

(
1

x′

)
(31)

Using central finite differences to re-express C-derivatives, along with the approximation

x′i ≃ (xi+1/2 − xi−1/2)/∆C, Eq. (29) is recovered.

A numerical issue arises with the (two) first and (two) last trajectories at the edges of

the discrete Ci-grid ensemble, since these lack a sufficient number of neighbors to evaluate

spatial derivatives using the finite-difference scheme. In reality, this is nothing but the

aforementioned boundary condition difficulty. This problem is mitigated by introducing

additional fixed virtual trajectories x0 and x−1 set at −∞, and xn+1 and xn+2 at +∞. Note

that (x0 − x−1) = (xn+2 − xn+1) = +∞ is also presumed. With these choices, reasonable

(i.e., non-singular) values for FQ are obtained using Eq. (29)—although as discussed, errors

can still propagate in from the edges, particularly if there is a scattering PES present.

To improve numerical stability still further, some additional measures are also imple-

mented here. Consider, as an example, a Gaussian wavepacket, for which the quantum

force is linear in x. Clearly, Eq. (29) yields more accurate FQ values in the interior of the

wavepacket than in the periphery, since the trajectories are less densely distributed in regions

of low density. Numerical errors near the edges do not necessarily lead to a significant dete-

rioration of the overall propagation, however—again, because probabilities are small in the

periphery. If the edge errors are stable at least (even if somewhat large) then as discussed,

comparatively large errors at the periphery have little effect in the interior. In any event,

errors tend to manifest as trajectories that oscillate around their true course. Numerical

instability is signalled by oscillations that grow in magnitude over time, and/or propagate

into the interior region.

One very simple strategy that we now use to mitigate the onset of unstable numerical

oscillations is to perform the calculation using an extremely small integration time step (in

the present study, such small integration step is of the order 10−4 fs for an ensemble of 400

coupled trajectories). Though surprisingly effective, this approach is not a panacea, and in
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any event rather expensive to implement. We therefore also introduce an initial grid-point

relaxation procedure, prior to the numerical propagation, which operates as follows. To

begin with, for every calculation performed here, the initial wavepacket is Gaussian, and

therefore the initial quantum force is known analytically everywhere. As discussed, grid

points are distributed uniformly in C, and remain uniform over time. However, even for

a Gaussian wavepacket, such a distribution does not lead to numerically exact FQi
values

via Eq. (29). The purpose of the relaxation procedure, therefore, is to shift the trajectories

starting positions slightly (especially in the periphery) such that the numerically computed

FQi
errors are minimized.

More specifically, the initial relaxation step is performed by using Newton’s algorithm54

to displace the initial positions xi(t = 0) in order to find the root of the n functions,

fi(xi−2, xi−1, xi, xi+1, xi+2) = FQi
(xi−2, xi−1, xi, xi+1, xi+2)− F exact

Q (xi), (32)

representing the differences between exact and numerical initial quantum forces. Since the

extremal virtual trajectories are fixed, the n functions f1≤i≤n depend only on the n positions

x1≤j≤n, and so the inverse of the Jacobian matrix Jij =
∂fi
∂xj

used in the Newton iterative root

search is well defined. Note that the exact quantum force values, F exact
Q (xi) can be obtained

analytically from the known Gaussian initial density through Eq. (13). In particular, the

Gaussian form

ρ0(x) =
e−(x−xc)2/(2γ20)

√
2πγ0

, (33)

where γ0 and xc are the Gaussian width and center, respectively, leads to the following linear

quantum force expression:

F exact
Q (x) =

h̄2

4mγ40

(
x− xc

)
(34)

Following the relaxation procedure described above, the trajectories’ displacements are

small enough that their representation of the initial density is not significantly deteriorated.

Yet, initial quantum force errors are substantially diminished, to the extent that subsequent
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numerical propagation in general becomes much more stable. The initial grid-point relax-

ation procedure thus strikes a nice balance between dynamical fidelity with (nearly) uniform

wavefunction representation. In any event, how we recover the density from the trajectory

distribution is detailed below.

2.2.2 Density synthesis

In the trajectory-based approach, the relation between x and C is known at a given time only

through the discrete values, xi(Ci, t). Hence, interpolation is needed to estimate the density

at arbitrary x. Our interpolation procedure is as follows: we first generate a monotonic

interpolation of C(x, t) by the means of a monotone quintic splines interpolation algorithm.55

Then, taking the derivative of the resulting interpolating function yields the density at

arbitrary points, thanks to the definition of C as ρ(x, t) = ∂C/∂x. The resulting density

synthesis strictly obeys norm conservation, which is implicitly guaranteed by the definition

of quantum trajectories and use of the trajectory labelling coordinate C. This method is

favored over using finite differences to estimate the density from the spacing of trajectories

[i.e., taking ρ(xi, t) ≈ 2∆C/(xi+1−xi−1), then interpolating ln [ρ(x, t)] using cubic splines] as

that procedure might violate the conservation law because of spline oscillations or “ringing”.

3 Numerical results

3.1 Adiabatic case: Dynamics on time-independent PESs

The method presented in Section 2 is illustrated here by applying it to the scattering of

an initially Gaussian wavepacket through one-dimensional time-independent PES profiles.

Assuming an initial Gaussian density of the form of Eq. (33), the initial phase is given by

S(x, t = 0) = p0(x − xc), where xc < 0, and p0 > 0 is the initial momentum, so that the

wavepacket is incident from the left side of the PES barrier. Unless explicitly stated, we use

atomic units henceforth.
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The numerical procedure based on the propagation of quantum trajectories will be hence-

forth referred to as the “time dependent quantum trajectories” (TDQT) approach. Given

that the trajectories are discretized and coupled through the quantum force as evaluated in

Eq. (29), the dynamical PDE (24) can be thought of as having been replaced by the following

set of coupled ODEs in terms of positions {xi} and momenta {pi = Mẋi} for the discrete

ensemble of trajectories:

ẋi = pi/M

ṗi = FQi
(xi−2, xi−1, xi, xi+1, xi+2) + Fε(x, t)

(35)

This set of coupled equations may thus be propagated using an ODE integrator. The time

integration is performed using the well-known adaptive time-step Bulirsch-Stoer scheme54

with error tolerance set to 10−9. Moreover, an upper bound is set on the integration step

so that no neighboring trajectories spacing should decrease by a factor above 40% from one

time step to the next. For comparison, we also performed a wavefunction-based calculation

of the time evolution of the corresponding TDSE, using the Crank-Nicholson algorithm.

Table 1 lists the parameters used for this calculation, which were sufficient to converge the

results to an accuracy substantially beyond that obtained using TDQT. The TDSE results

will therefore serve as benchmark data.

We are interested in determining the transmission probability over time, which is obtained

by integrating the density in the product region defined as [xP ; +∞], for some sufficiently

large xP . For the TDQT calculation, this is straightforward, as every trajectory carries the

same probability of 1/n. Accordingly, at any given time t, one need only count the number

of trajectories, ntrans(t), for which x(Ci, t) > xP , and compare with n. Note that for this

reason, the dynamical simulation cannot be expected to provide a transmission probability

resolution finer than 1/n. Indeed, the exact result is only bound to be between ntrans(t)/n

and (ntrans(t) + 1)/n. Hence, a sensible estimate of the transmission probability is obtained
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as

PT (t) =
ntrans(t) + 1/2

n
(36)

with an uncertainty of
1

2n
.

In this section, three PES profiles are considered:

1. The asymmetric Eckart potential:

V (x) = V0

(
1− α

1 + e−2ax
+

(
1 +

√
α

2 cosh(ax)

)2
)

(37)

with parameters chosen to mimic the H + PH3 → H2 + PH2 energy profile along the

minimum energy path (see Table 1, second column).

2. The potential ramp:

V (x) =
λ

1 + e−b (x−d)
(38)

with parameters given in Table 1 (first column).

3. The symmetric Eckart potential:

V (x) =
V0

cosh(αx)
(39)

parameterized to reproduce the one-dimensional hydrogen exchange reaction H+H2 →

H2 +H (see Table 1, third column).

For the symmetric and asymmetric Eckart potentials, several calculations were performed

by increasing the initial kinetic energy as indicated in Fig. 1; for the potential ramp, four

calculations were performed by increasing the value of λ as indicated in Fig. 1 with an initial

kinetic energy of E0 = 3.42× 10−2 EH . In all cases, the value xP = 0 was used to compute

the transmission probability.
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Figure 1: Left panels: PES profiles for the symmetric (a) and asymmetric (b) Eckart barriers,
and the uphill ramp (c). Right panels: Transmission probability as function of time (in fs)
through the symmetric (a) and asymmetric (b) Eckart barriers, and the uphill ramp (c),
indicating TDQT results in red and Crank-Nicholson results in blue.
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Table 1: List of parameters defining: the initial nuclear wavepacket, via γ0 and xc; the
system and the potentials, via the mass m and a, α, V0 for the Eckart barriers or b, d for the
ramp; the numerical procedure for the TDQT propagation, via the ODE error tolerance and
the number of trajectories; the numerical procedure for the Crank-Nicholson integration via
the grid boundaries, the spacing dx and the time step dt. All quantities are given in atomic
units.

Parameters Asymmetric Eckart Potential ramp Symmetric Eckart
γ0 0.07 1/6 0.07
xc -3 -5 -6
M 1783.31376308 2000 1060
a 1.5 - 0.734
α 7.3 - 7.3
V0 0.00551239856 - 1.56193× 10−2

b - 1.5 -
d - -4 -

ODE error tolerance 10−9 10−9 10−9

Number of trajectories 400 300 400
Grid boundaries [−40 : 60] [−50 : 50] [−50 : 50]

dx 0.01 0.01 0.01
dt 1 1 1

In Fig. 1 the panels on the left indicate the PES profiles, whereas the panels on the right

present a comparison between the TDQT and benchmark Crank-Nicholson TDSE results.

Near perfect agreement is achieved in every case. In particular, absolute differences between

the two calculations—which yield an estimate of the TDQT error—is always found to be

less than the maximum expected value of ∆Pmax
T = 1/n. For the Eckart PES problems, this

value is ∆Pmax
T = 2.5× 10−3; for the potential ramp problem, it is 3.3× 10−3.

In Fig. 2 we study the robustness of TDQT results with respect to the number of trajec-

tories. This is done by calculating the transmission probabilities as functions of time using

n = 100, 200 and 300 trajectories (they are shown as violet, green and blue curves, respec-

tively, in the figure) and by comparing them to previous results (red curves in the figure)

using an ensemble of size n = 400. Only results for the asymmetric Eckart barrier are shown,

as the behavior in all systems is similar. Figure 2 shows an excellent agreement among all

calculations. As the number of trajectories decreases, the curves representing the trans-
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Figure 2: Transmission probability through the asymmetric Eckart barrier obtained by prop-
agating n = 100, 200 and 300 trajectories (represented as violet, green and blue curves, re-
spectively) and compared to the previous results using 400 trajectories (red curves).

mission probabilities become less smooth, since this quantity is estimated by counting the

number of transmitted trajectories [see Eq. (36)], owing to their 1/n sampling capability. We

conclude, then, that small ensembles of trajectories remain very accurate, under-sampling

being the only (arguably mild) limiting factor to their accuracy.

Table 2: CPU execution time for propagating a wavepacket through the asymetrical Eckart
barrier with initial kinetic energy E = V0/10. The Crank-Nicolson (C-N) method (results
shown in Fig. 1) is compared to TDQT propagations varying number of trajectories (results
in Fig. 2).

Method C-N TDQT

# Grid points, trajectories 10000 400 300 200 100

Execution time [s] 8160 8530 3305 807 130

23



Concerning the computational cost of the method, its execution time is similar to the

Crank-Nicolson scheme for the numerical parameters of Table 1. In terms of memory use,

storing information on a few hundreds of trajectories is preferable to storing the values of the

complex wavefunction values on ten thousand grid points together with the evolution matrix.

In addition, the numerical results of Fig. 2 show that 400 trajectories is a reasonable number

of trajectories to obtain accurate results. For a quantitative comparison between the Crank-

Nicolson algorithm and TDQT, Table 2 compares their execution times in the case of the

scattering through the asymmetric Eckart barrier with E = V0/10. The numerical cost of the

TDQT approach does not evolve linearly with the number of trajectories, as the typical time

step decreases with the minimal nearest neighbor spacing. The execution time goes from the

order of two hours to two minutes when the number of trajectories decreases from 400 to

100, but we have to emphasize that the current implementation of the TDQT scheme is not

completely optimised, and our Crank-Nicolson scheme is in its simplest form. Hence, there

is more value in their relative efficiency than in absolute CPU time. These results clearly

illustrate the advantage of a trajectory-based quantum dynamical propagation scheme over

one using a fixed grid, and in particular the combined efficiency and accuracy of the TDQT

method.

3.2 Nonadiabatic case: Dynamics on time-dependent PESs

As an illustrative study of the combination of the TDQT approach with exact factorization

for nonadiabatic dynamics using the TDPES (7), we simulate the well-known Tully models.56

These are one-dimensional models in nuclear space (as are those discussed in Section 3.1),

and include two coupled electronic states: Tully model 1 presents a singled avoided crossing

between the potential energy curves; Tully model 2 is a dual avoided crossing model; Tully

model 3 shows an extended coupling region and manifests possible reflections of the incoming

wavepacket. In this work we use the original models,56 whose electronic Hamiltonian Ĥel is

given in the diabatic basis representation.
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The numerical calculation of the TDPES has been carried out as follows: (1) exact vi-

bronic wavepacket dynamics calculations have been performed with the ElVibRot program57

on the Tully models; (2) the output of ElVibRot has been analyzed by the Exact Factoriza-

tion Analysis Code (EFAC)58 to produce the TDPES. The TDPES can be easily expressed

in terms of “standard” (a)diabatic nuclear amplitudes (and their spatial and time deriva-

tives) arising from the Born-Huang representation of the molecular wavefunction. We refer

the interested reader to Refs. [ 49–51] for a detailed discussion on those expressions. In any

case, ElVibRot outputs the necessary information in the diabatic representation at various

time steps throughout the propagation, and EFAC reads this information as input in order

to reconstruct the TDPES. Additionally, EFAC imposes the gauge condition, which in the

present case is simply taken to be A(x, t) = 0 ∀ t. Following from its definition given in

Eq. (6), and expressing the electronic wavefunction as the ratio of the molecular and nuclear

wavefunctions, from Eq. (3), the TDVP reads

A(x, t) =
h̄ Im[⟨Ψ(x, t)|∂xΨ(x, t)⟩q]

|ψ(x, t)|2 − ∂xS(x, t) (40)

with S(x, t) the phase of the nuclear wavefunction. It is easy to see that imposing the gauge

condition A(x, t) = 0 yields an integral equation that defines S(x, t) in terms of the nuclear

momentum field59—i.e., the first term on the right-hand side of Eq. (40).

ElVibRot calculations have been performed in the diabatic basis by initializing a Gaus-

sian wavepacket in the lowest-energy electronic state in the negative x region. The Gaussian

is centered at xc = −8.0 a0, and we considered three different values of the initial momentum

p0 = h̄k0, defined by the values k0 = 10, 15, 20 a−1
0 , with an initial width γ0 = 10/k0. Exact

propagation has been carried out with the Chebychev scheme for which the evolution oper-

ator is expanded on Chebychev polynomials60 with a time step 0.1 fs. The Hamiltonian has

been normalized in order to ensure its spectral range lies in the interval [-1, 1]. The grid size

and the number of grid points have been carefully optimized for each Tully model depending
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on the value of the initial momentum k0, in order to avoid reflections at the boundaries and

to accurately capture the fine features of the nuclear wavepacket everywhere in space, even in

very delocalized situations. The computational parameters for each calculation are listed in

Table 3. ElVibRot provides as output the nuclear wavepackets in the diabatic basis, as well

as their spatial and time derivatives. This information is required by EFAC to reconstruct

the TDPES (7) in the gauge where the TDVP is zero.

Table 3: Grid parameters used in the exact quantum vibronic wavepacket propagations.

k0 (a−1
0 ) # Grid points Grid boundaries (a0)

Tully 1
10 1024 [-15 : 30]
15 2048 [-15 : 100]
20 2048 [-15 : 100]

Tully 2
10 2048 [-15 : 40]
15 1024 [-15 : 30]
20 1024 [-15 : 50]

Tully 3
10 1024 [-20 : 40]
15 1024 [-25 : 40]
20 1500 [-25 : 40]

In the remainder of this section, we show results obtained using the TDQT method, where

the classical force is obtained as (minus) the gradient of the numerical TDPES. In addition to

benchmarking the performance of TDQT against quantum wavepacket propagations, we also

compare TDQT against a time-dependent classical trajectory (TDCT) approach, using only

the classical force in the integration procedure. Note that our TDQT formalism does not

involve any theoretical approximation, thus our “benchmarking” against exact wavepacket

simulations only concerns the accuracy of the proposed numerical scheme, e.g., the numerical

evaluation of the quantum force. On the other hand, TDCT are inherently approximate

as they completely neglect the nuclear quantum potential and force. The purpose of the

“benchmark” based on the comparison between TDQT and TDCT is, thus, to quantify the

increase in accuracy that a quantum treatment of nuclear motion by the means of TDQT

can provide. For each calculation, 5000 TDCT classical trajectories have been propagated

using the same initial condition parameters used for the exact vibronic calculations, sampling

the positions and momenta according to the Wigner distribution. Concerning the TDQT
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simulations, 400 trajectories were used in all cases presented in this section, with an ODE

error tolerance of 10−9. Supplementary calculations were realized for models 1 and 3 to assess

the robustness of TDQT results by varying the number of trajectories used. As quantum

trajectory propagation is performed using an adaptive time step method, it was necessary to

access the TDPES and associated forces at arbitrary times. A time interpolation procedure

was therefore introduced, assuming linear evolution of the TDPES between two adjacent

Chebychev time steps. Similarly, a linear spatial interpolation was performed to obtain the

TDPES-derived force at arbitrary positions between grid points.

As observed in the Introduction, the results presented in this section are intended as

a proof-of-principle illustration of the possibility to combine the exact factorization with

a TDQT method. We find this illustration a crucial step towards the development of a

trajectory-based nonadiabatic simulation scheme accounting for nuclear quantum effects.

Previous attempts have been made in this direction by some of the authors;23,24 however,

the outcome of those studies were not extremely promising for general applications, as already

discussed in the Introduction. In contrast—and despite some small residual errors related to

numerics, that will be documented below—the nonadiabatic dynamics produced by TDQT,

and presented here as illustration, appears to be a promising route for further investigation.

We analyze in detail below the three models using k0 = 10 a−1
0 . An overall assessment

of the performance of TDQT for k0 = 10, 15, 20 a−1
0 is provided at the end of the section.

In addition to that, we present as Supporting Information the movies for the three models

and for the three values of k0 representing the full dynamics and qualitatively comparing the

vibronic wavepacket evolution with the TDQT. In all movies, we report: in the upper panel,

the adiabatic, or Born-Oppenheimer (BO), PESs along with the TDPES at the positions of

the trajectories; in the middle panel, the exact nuclear density and its estimate using TDQT;

in the lower panel, the phase of the nuclear wavefunction given by TDQT. Note that in some

cases, the TDPES appears rigidly shifted along the y-axis and is not superimposed to any

of the BOPESs. This feature has been already observed in previous work61–64 and does not
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affect in anyway the nuclear dynamics with TDQT, which depends only on the gradient of

the TDPES.
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Figure 3: Snapshots at times t = 40 fs (left panels) and 120 fs (right panels) for the single
avoided crossing model with k0 = 10 a−1

0 . Upper panels: BOPES (black) and TDPES (gold).
Lower panels: Nuclear densities from exact calculations (black), TDCT (dashed blue) and
TDQT (red).

In Fig. 3 we present some results for the single avoided crossing model where the initial

momentum of the incoming wavepacket is k0 = 10 a−1
0 . Two snapshots are shown in the

figure, at t = 40 fs (left panels) and at t = 120 fs (right panels): in the upper panels the

(static) adiabatic, BOPESs are reported in black, together with the TDPES in gold at the two

snapshots; in the lower panels the exact nuclear density is shown in black, and is compared

to the density reconstructed from TDQT (red) and from TDCT (blue). The evolution of the

TDPES manifests the nonadiabatic event by forming a pronounced peak between 0 and 2 a0
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that deforms the Gaussian shape of the nuclear density at t = 40 fs, and also by developing

a small bump between 10 a0 and 15 a0 that splits the nuclear density into two portions.

In particular, the right most portion of the nuclear density is associated with the lower

electronic states, whereas the left portion is what has been “transferred” to the upper state

at the avoided crossing. For this simple model, TDQT is in extremely good agreement with

the benchmark calculations, even though the TDPES is known only numerically on a spatial

grid. For instance, evaluating the integrated density beyond x = 12 a0 at t = 120 fs, one

gets a transmitted probability value of 0.84625 using TDQT, which is very close to the exact

value of 0.84518 (TDCT yields 0.88584).

It is worth mentioning that the TDCT density is produced based on the classical distribu-

tion of trajectories evolved on the TDPES. A histogram is generated from such distribution,

and by centering Gaussians on each trajectory at each time step, the smooth function shown

in the lower panels of Fig. 3 is reconstructed.

0.0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4 5 10 15 20

×2D
en

si
ty

Position [a0]

n =400
n =300
n =200
n =100
Exact

Position [a0]

t = 40 fs t = 120 fs

Figure 4: Snapshots at times t = 40 fs (left panel) and 120 fs (right panel) for the single
avoided crossing model with k0 = 10 a−1

0 . The exact density recovered from the reference
wavepacket propagation (black curve) is compared to TDQT results using 400 (red dots),
300 (blue dots), 200 (green dots) and 100 (violet dots) trajectories.

In order to show the stability of TDQT results when decreasing the number of trajectories,
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Fig. 4 reports the comparison at the same two time steps as in Fig. 3 of the exact density

with the ones recovered from TDQT propagation. The agreement is excellent in all cases.
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Figure 5: Same as in Fig. 3, for the dual avoided crossing at t = 40 fs (left) and 120 fs (right)
with k0 = 10 a−1

0 .

The dual avoided crossing model, with initial wavepacket launched towards the avoided

crossings with initial momentum of k0 = 10 a−1
0 , presents very quantum-mechanical behavior.

Specifically, after the first crossing, where the nuclear density branches into a ground-state

and an excited-state portion, the nuclear wavepackets meet again at the second avoided

crossing and interfere. As shown in Fig. 5, at short time, TDQT is capable of reproducing

the recombination of the two portions of the nuclear wavepacket (t = 40 fs). Furthermore,

TDQT captures quite well the portion of density that remains localized in the lower-state

well at around 0, even though the fine details manifesting interferences are missed. On the
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other hand, TDCT nearly completely misses this part of the density, and already at t = 40 fs

we observe some deviations from the reference. In general, we observed that for this model

the numerical TDPES is quite noisy, which is the most likely reason for deviations of TDQT

results from the quantum density at t = 120 fs. Note that in all nonadiabatic calculations,

the TDPES is used directly as provided by EFAC and no smoothing procedure is applied

to cope with the numerical inaccuracies which are due to the lack of resolution in time and

space. In addition, it is important to underline, that errors arising from grid periphery are

essentially made negligible by suitable choices of the grid boundaries.

In this case, we do not compare calculations performed using different number of TDQT

trajectories because, as the density trapping phenomenon at around 0 involves only a tiny

fraction of the probability/trajectories, we expect that decreasing the number of trajectories

does not yield accurate resolution of the density in this region.

Figure 6 shows numerical results for the Tully model with extended coupling region

and reflection, using k0 = 10 a−1
0 as the initial momentum. When the nuclear wavepacket

travelling in the lower state passes through the coupling region, it transfers population to the

upper state, before reaching the branching portions of the BOPESs. Afterwards, for such

a low-energy, the lower-state wavepacket is transmitted towards positive values of x, and

decoheres from the upper-state wavepacket. Furthermore, the latter is reflected and crosses

the coupling region again: the oscillations appearing in the TDPES and in the nuclear density

at t = 35 fs attest to the recoherence of this portion of the wavepacket. These subtle quantum

effects are all captured well by TDQT, which is in extremely good agreement with the exact

benchmark results, whereas TDCT misses completely the quantum oscillations. Later in

time, at t = 60 fs, we observe that the TDQT results deviate from the benchmark (as does

TDCT), which is probably due to the fact that the TDPES shows numerical instabilities

before developing smooth behavior, as evident at t = 60 fs. Pseudo-nodes become severe

and cannot be resolved with the number of trajectories employed. The distribution becomes

noisy, but still maintains qualitative agreement with exact results.
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Figure 6: Same as in Fig. 3, for the extended coupling region with reflection model at
t = 35 fs (left) and 60 fs (right) with k0 = 10 a−1

0 .

It is worth noting that when using exact factorization and the TDPES, it is not possible

to recover information related to individual electronic states—neither in the adiabatic nor

in the diabatic basis representations. A single PES produces the evolution of the nuclear

wavepacket, which is not resolved according to its adiabatic components. Therefore, infor-

mation about the occupation of the electronic states is not accessible. However, in order to

present a more in-depth analysis of the models and to circumvent this feature of exact fac-

torization, we show in Fig. 7 the transmission probability through a dividing surface placed

at xd = 2 a0, for the third model discussed in this section. This observable provides indirect

information about the occupation of the electronic states, because the transmitted density,

at the low initial momenta used here, is only found in the lower electronic state. The results
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shown in Fig. 7 attest to the importance of nuclear quantum effects to recover the correct

dynamics, as TDCT (short-dashed lines) does not reproduce exact results (continuous lines).

On the other hand, TDQT (long-dashed lines) reproduces very well the benchmark calcu-

lations, despite the numerical instabilities described above. The step observed in TDCT

results on the transmission probability for the case k0 = 10 a−1
0 (between 40 and 50 fs) could

be a sign of late crossing of the dynamical barrier by unphysically accelerated trajectories.

This speed-boosting is explained by large TDPES gradient’s values before the barrier. Sharp

interference patterns appearing in the exact density around t = 40 fs (see supplementary

material) hence constitute a plausible origin.
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Results of exact benchmark calculations are shown as continuous lines, of TDCT as short-
dashed lines, and of TDQT as long-dashed lines. The different colors indicate different initial
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0 , blue for k0 = 15 a−1
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and green for k0 = 20 a−1
0 .

In Fig. 8, we analyze the stability of TDQT results in reproducing the transmission prob-
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ability for the model of extended coupling region with reflection at k0 = 10 a−1
0 . Deviation

from the exact dynamics is observed when using 100 trajectories, a deviation that is larger

than what we observed above in Section 3.1. Nonetheless, results converge rapidly when

the number of trajectories is increased, and are already reasonable for an ensemble of 200

trajectories.
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0 using different numbers of trajectories in TDQT: n = 100 in violet,
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shown in black.

Finally, we evaluate the errors in reproducing the whole quantum dynamics using the

TDQT and TDCT methods, by defining and calculating a distance between the exact nuclear

density and the density reconstructed using the trajectory-based methods, namely

ϵ(t) =

∫ ∞

−∞
|ρtraj(x, t)− ρexact(x, t)| dx (41)
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Figure 9 presents ϵ(t) as function of time, where the time axis is scaled to the final times tf

of the simulations, as given in Table 4.

Table 4: Time rescaling tf in fs for each calculation presented on figure 9.

k0 [a
−1
0 ] Tully 1 Tully 2 Tully 3

10 120 140 80
15 250 100 70
20 200 100 65

Continuous lines represent TDQT results (using 400 trajectories), and in all cases along

the dynamics they remain smaller than the dotted lines, representing TDCT results. The

figure attests to the improvement in numerical accuracy that TDQT can provide over TDCT,

even insofar as reproducing wavepacket dynamics is concerned. It should also be remembered

that the TDCT calculations were performed using more than one order of magnitude more

trajectories than the TDQT calculations. While decreasing the number of classical trajec-

tories does not affect the qualitative behavior of the ensemble, we observed that n = 5000

is the minimum number of TDCT trajectories allowing us to reproduce a smooth nuclear

density.

4 Conclusion

The TDQT approach presented in this work for propagating quantum trajectories in both

adiabatic and nonadiabatic conditions shines by its very simplicity, at least in the one-

dimensional test studies proposed in this work. In particular, no fitting procedure is needed

to recover the quantum force (e.g., via moving weighted least squares), nor is any modifi-

cation of the trajectory ensemble itself required during the ensemble propagation (as would

be necessary, e.g., in the ALE approach). These and other complicated refinements of con-

ventional QTM (as described in the Introduction) can provide modest benefit, but often

only at the expense of substantial and highly problem-dependent “parameter-tweaking”. At

heart, these are all means of addressing the inherent limitations associated with the node
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problem—and especially, with numerical errors caused by the use of moving, unstructured

grids in x space.

In contrast, the simplicity and accuracy of the TDQT approach stems from its use of fixed,

structured grids in C space, that never change over time. This fortuitous state of affairs is

ultimately due to the trajectory-based reformulation, and its replacement of x with C as the

requisite “spatial” coordinate—a change that also allows for much more natural comparison

and integration with classical theories. As a result, the node problem does not lead to a

breakdown of the simulation, quasi-nodes inducing a much milder under-sampling problem

in our case, rather than a fatal numerical blow up of errors as in standard QTM approaches.

Differentiation errors are greatly reduced and can be evaluated without much fanfare. While

this promise was recognized early on in the development of the TDQT theory,36,38 other

numerical issues have prevented the approach from reaching its fullest potential. Until now,

that is—at least according to what the present results seem to suggest.

In keeping with our theme of simplicity, integration of the TDQT approach with exact

factorization, as a means of addressing the nonadiabatic regime, also appears to provide

the “perfect marriage” of methodologies. In particular, the collection of multiple BOPES

surfaces (and their couplings) that characterize the standard approach, is replaced with just

a single TDPES (ignoring the TDVP for now)—that is treated in TDQT in exactly the

same manner as a single-PES adiabatic calculation. This is key, because it appears to be

extremely difficult to extend TDQT theory to multiple components. Conversely, within

the exact factorization framework, TDQT appears to offer a much cleaner and more effec-

tive quantum trajectory methodology than do conventional wavefunction-based QTMs. In

particular, the behavior of the TDQT trajectory ensemble evolution—even when computed

from a numerically-determined, and thus noisy, TDPES—demonstrates its stability without

introducing ad hoc smoothing procedures (as for example, in the form of viscosity forces also

used by more traditional QTMs).

The interacting trajectory-based reformulation, and ensuing TDQT methodology, hence
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allow one to recover key nuclear quantum effects necessary to describe the correct quantum

dynamics of both adiabatic and nonadiabatic processes. In future, we envisage several clear

developments of TDQT, to extend calculations to higher dimensions (for which the theoreti-

cal equations have already been derived), and to combine it with TDCT (which is straightfor-

ward using trajectory-Lagrangian-based action extremization). Treatment of nonadiabatic

processes with several nuclear degrees of freedom will only allow for setting the TDVP to

zero by gauge choice along a single dimension, but this does not undermine in any way the

relevance of what is presented here as quantum trajectories are gauge-invariant. In addition,

the possibility of combining the TDQT approach with CT-MQC, the coupled-trajectory

mixed quantum-classical algorithm derived from the exact factorization, is currently being

explored.

Supporting Information Available

The following files are provided as Supporting Information: tully1k10.mp4, tully1k15.mp4,

tully1k20.mp4, tully2k10.mp4, tully2k15.mp4, tully3k20.mp4, tully3k10.mp4, tully3k15.mp4,

tully3k20.mp4. The movies for the three Tully models and for the three values k0 =

10, 15, 20 a−1
0 represent the full dynamics and qualitatively compare the vibronic wavepacket

evolution with the TDQT.

Acknowledgments

This work has been supported by the Agence Nationale de la Recherche (ANR-HYTRAJ),

Contract No. ANR-19-CE30-0039-01. Y.S. and L.D. thank support from the High Perfor-

mance Computing Platform MESO@LR at the University of Montpellier. BP acknowledges

the Robert A. Welch Foundation for support through grant D-1523. Finally, all authors

would like to dedicate this submission to the memory of Christoph Meier—a true devotee of

QTM, particularly of the interacting-trajectory-based variety.

38



39



References

(1) Benabbas, A.; Salna, B.; Sage, J. T.; Champion, P. M. Deep proton tunneling in the

electronically adiabatic and non-adiabatic limits: Comparison of the quantum and

classical treatment of donor-acceptor motion in a protein environment. J. Chem. Phys.

2015, 142, 114101.
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