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Relying on Feynman–Kac path-integral methodology, we
present a new statistical perspective on wave single-
scattering by complex three-dimensional objects. The
approach is implemented on three models—Schiff approxi-
mation, Born approximation, and rigorous Born series—and
familiar interpretative difficulties such as the analysis of
moments over scatterer distributions (size, orientation,
shape, etc.) are addressed. In terms of the computational
contribution, we show that commonly recognized features
of the Monte Carlo method with respect to geometric com-
plexity can now be available when solving electromagnetic
scattering. © 2023 Optica Publishing Group

https://doi.org/10.1364/OL.500487

Whether the question is theoretical or numerical, the scattering
of waves by objects of complex spatial shape often leads to strong
interpretative or computational difficulties, especially when the
scatterers are large relative to the wavelength and/or with a
high scattering potential [1,2]. Furthermore, in most application
situations the study of non-spherical scatterers usually requires
a statistical description in terms of size, orientation, and shape
distributions, which increases the challenge of obtaining reliable
quantifications [3–5].

Faced with questions of great complexity in geometrical
and phenomenological terms, the choice of alternative repre-
sentations based on a statistical reformulation can lead to a
renewed viewpoint and produce surprisingly efficient numeri-
cal solutions [6,7]. In this perspective, the aim of this paper
is to present a novel formulation of the underlying wave
physics in probabilistic terms, with a direct methodological
reference to the general framework initiated by Feynman–Kac
theory [8–10]. This requires producing a path space for
each of the models we present, and thus formulating the
observable as a path integral over this space [10–12]. It is

then a question of making explicit the quantities of inter-
est directly in the form of the expectation of a stochastic
process.

To our knowledge the only prospective work around these
ideas was carried out on the probabilistic reformulation of the
electromagnetic model under Schiff approximation for simple-
shaped scatterers [13]. In this paper we extend that work to
complex geometries and apply the same approach to other well-
established path integral formulations of the scattering problem:
Born approximation and a rigorous infinite Born series.

The combination of Schiff approximation (for large scatter-
ers) and Born series (for small scatterers) typically allows the
estimation of the light-scattering properties of any soft particle
(low dielectric contrasts), for example biological samples. In the
case of microalgae, such radiative properties are then used as an
input for radiative transfer models around issues in the physical
chemistry of photobioreactive processes [4]. Here we do not
address the problem of media involving high dielectric contrast.

Finally, the proposed formulation offers a new computational
perspective by naturally bringing to the forefront Monte Carlo
methods (MC), for which the estimation of the expectation of
random variables is the most basic theoretical issue. We show
that combining path space sampling with the latest computer
graphics tools for intersection calculations is a high-performance
solution to obtain reference calculations for complex scatterer
shapes. We find the commonly recognized characteristics of MC
for the simulation of field propagation in optical systems [14]:
simplicity of treatment of complex boundary conditions; ease
of moment estimation on random configurations; etc.

Scattering problem. An incident plane wave Ei with wave
number k = 2π

λ
and propagation direction ei interacts with a

scattering potential U defined in a finite region V with complex
spatial shape, embedded in an infinite homogeneous and non-
absorbing medium (see Fig. 1). The resulting field E obeys

∇ × ∇ × E − k2E+ UE = 0, (1)
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Fig. 1. Path spaces associated with the three studied models. The
scattered field is estimated at location r, at distance r, in the direction
es ≡ (θs, φs). (a) Schiff approximation: paths are straight lines along
the incident direction ei. (b) Born approximation (dashed black
line): paths are incoming in direction ei, interact at one location
r0 inside the scatterer volume and leave in the scattered direction
es. (b) Born series expansion (plain black line): paths go through
multiple interaction locations r0, r1, r2, . . . inside the scatterer.

which reduces to the Helmholtz equation in case of scalar waves.
Here Ei is the solution of the above equation when U = 0 and the
scattered field Es, which is non-zero when U ≠ 0, is defined as
E = Ei+ Es. In electromagnetism, scattering potential is classi-
cally defined by the relative refractive index m of the scattering
object: U = k2(1 − m2). The solution to this problem is invariant
with respect to contrast 1 − m2 and size-to-wavelength ratio x.

Path integral formulation. The scattered field is expressed
as an expectation of a stochastic process, i.e.,

Es(r) =E[WΓ] =
∫
DΓ

dγ pΓ(γ)w(γ), (2)

where E is the expectation operator and WΓ= w(Γ) is defined
as a function of the random variableΓ with probability density
function (p.d.f.) pΓ over DΓ. Here DΓ is a path space and WΓ

is the contribution to Es of the random pathΓ. Computationally
speaking, this leads to MC algorithms sampling N paths γi to
finally estimate their average contribution Es ≃ 1/N ∑︁N

i=1 w(γi),
with a statistical error provided by the standard deviation of con-
tributions w(γi). Equation (2) is the general framework at the root
of our study which aims to produce random pathsΓ that can be
efficiently sampled whatever the scatterer geometry, using state-
of-the-art computer graphics tools. We do this for three alterna-
tive models derived from the volume integral equation [2],

Es(r) =
∫

V
dr0 U(r0) ¯̄G(r, r0)E(r0), (3)

where ¯̄G(r, r0) =
[︂
¯̄I+∇⊗∇

k2

]︂
e−ik∥r−r0 ∥
4π ∥r−r0 ∥ is the free-space dyadic

Green function.
Schiff approximation [15]. It is an eikonal-like approxi-

mation based on Eq. (3) that gives the scattered field in the
far-field region for large soft-scatterers (x ≫ 1 and |m − 1| ≪ 1).
In Ref. [13], it is reformulated as an expectation which, using
the notations of Eq. (2), leads to

WΓ= P ik
2π

e−ikr

r
eikθs(X0 cos ϕs+Y0 sin ϕs) [︁1 − e−ik(m−1)l(R0)

]︁
, (4)

where R0 = (X0, Y0) is a random location uniformly distributed
on the scatterer’s projected surface P seen from a given incident
direction ei, and l(R0) is the crossing length of the straight path
starting at R0 in the direction ei [see Fig. 1(a)]. Equation (4)
corresponds to a straight transmission (see the bracketed term)
and subsequent diffraction according to Huygens’ principle, as
for the anomalous diffraction approximation [3]. The trial for
path Γ and its contribution WΓ is the following: (i) location r0

is uniformly sampled over P; (ii) path γi is traced from r0 in
direction ei; (iii) the path crossing length l(r0) is retrieved and
the contribution is calculated according to Eq. (4) with R0 = r0.

Born approximation. It is similar to the Rayleigh–Gans–De-
bye approximation [3] and valid for small soft-scatterers (x ≪
1 and |m2 − 1| ≪ 1). For observation points r in the far-field
region, it assumes that the field inside the scatterer is equal to
the incident field, i.e., E(r0) = Ei(r0) in Eq. (3). Following the
methodology presented in Ref. [13], this equation is multiplied
and divided by the p.d.f. pR0 (r0) of a random location R0 defined
over the scatterer volume V (we can take a uniform distribution,
for example),

WΓ=
U(R0) ¯̄G(r, R0)Ei(R0)

pR0 (R0) . (5)

Here the pathΓ ≡Γ(r, R0) comes from direction ei, interacts at
location R0 within V , and leaves the scatterer in direction es until
it reaches r [see a realization in Fig. 1(b)]. The trial correspond-
ing to Eq. (5) is: (i) location r0 ∈ V is sampled according to pR0 ;
(ii) pathγi is traced; (iii) its contribution is calculated according
to Eq. (5), with R0 = r0.

Born series expansion. It provides a reference solution: in
comparison with Born approximation, the internal field E(r0) is
no longer approximated, but is obtained by applying Eq. (3) for
locations inside V . In this case, the strong singularity at r = r0

can be handled with the Cauchy principal value for spherical
exclusion volume Vδ ,r of radius δ centered at r [2], leading to

E(r0) = η(r0)Ei(r0)+ ( ¯̄L1
E)(r0), (6)

with η(r) = 3
m2(r)+2 and the integral operator

( ¯̄Ln
f )(r0) = lim

δ→0

∫
Vc
δ ,r0

dr1 · · ·
∫

Vc
δ ,rn−1

drn

n∏︂
j=1

¯̄A(rj−1, rj) f (rn), (7)

where ¯̄A(rj−1, rj) = U(rj)η(rj−1) ¯̄G(rj−1, rj) and Vc
δ ,r = V \ Vδ ,r is

the set of locations in the scatterer volume but not in the exclu-
sion volume (it is the complement of Vδ ,r in V). Numerically, we
recommend spherical volumes Vδ ,r with radius δ = x2

k
ℜ(m)2−1
ℜ(m)2+2

.
The Born series expansion of the internal field is obtained

by the successive substitution of Eq. (6) into itself: E(r0) =∑︁+∞
n=0( ¯̄Ln

ηEi)(r0). This expression is exact only for values of m
and x within the radius of convergence of the series [16]. Refor-
mulation as an expectation requires two steps: first, the integral
operator ¯̄Ln

is reformulated using n random locations Rj=1,2,. . .,n

with distribution pRj (rj); then the infinite sum in the Born series
is reformulated by introducing a discrete random variable N—a
random order in the series—with probability distribution pN

[each term in the sum is multiplied and divided by pN(n), with∑︁+∞
n=0 pN(n) = 1]. Finally, the incident field in Eq. (5) is replaced
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by this expression of the internal field, to obtain Eq. (2) with

WΓ=
U(R0) ¯̄G(r, R0)

pR0 (R0)
N∏︂

j=1

¯̄A(Rj−1, Rj)
pRj (Rj)

η(RN)Ei(RN)
pN(N) . (8)

Intermediate steps leading to this result are provided in the
Supplement 1. PathΓ ≡Γ(r, R0, R1, . . . , RN) comes from direc-
tion ei, interacts at several locations R0, R1, R2, . . . within V and
leaves the scatterer in direction es until it reaches r [see Fig. 1(b)].
The trial corresponding to Eq. (8) is: (i) location r0 ∈ V is sam-
pled according to pR0 ; (ii) the number n of locations for the
current path γi is sampled according to pN ; (iii) γi is traced by
successively sampling the n locations rj=1,2··· ,n according to their
respective distributions pRj in Vc

δ ,rj−1
; (iv) the contribution is cal-

culated according to Eq. (8) with N = n and Rj = rj. The infinite
sum is statistically estimated, without truncation, by sampling
series orders n according to pN . Numerically, we recommend
pN(n) = 3 (ℜ(m)2−1)n

(ℜ(m)2+2)n+1, which follows the trend of ¯̄A ∝
(︂

m2−1
m2+2

)︂
, and

a uniform distribution pR0 =
1
V for r0. Then, for rj>0, we recom-

mend to uniformly sample a direction and a distance from rj−1,
in between δ and the scatterer bounding surface, to follow the
trend of ¯̄G ∝ 1

4π ∥rj−rj−1 ∥ (see the Supplement 1).
Poynting quadratic nonlinearity. The average cross sec-

tion σ(es) = r2 Es · E∗
s of an ensemble of scatterers is often a

targeted quantity when solving scattering problems [3–5,15].
However, injecting Eq. (2) into this expression does not lead to
an expectation, due to nonlinearity with respect to WΓ: σ(es) =
r2E[WΓ] ·E

[︁
W∗
Γ

]︁
≠E

[︁
r2 WΓ· W∗

Γ

]︁
. Following the methodol-

ogy presented in Refs. [12,13], σ(es) is reformulated as the
expectation on a stochastic process in the squared path-space
D 2
Γ, by using two independent random path variablesΓ1 andΓ2,

identically distributed asΓ,

σ(es) =E
[︁
r2WΓ1 · W∗

Γ2

]︁
. (9)

Averaging over scatterer distributions is now straightforward,
leading to the following trial: (i) shape, orientation, size are
sampled; (ii) two paths γ1 and γ2 are sampled (see proce-
dures in the previous paragraphs); and (iii) the contribution
r wγ1 · r w∗

γ2
is computed. A direct consequence is that the dou-

ble randomization feature of MC is now available: convergence
rate is independent of the dimension d of the integration domain
[12] while grid-based methods require a number of quadrature
nodes exponentially increasing with d. Here d ≥ 7 since integra-
tion is performed over scatterer orientation (three Euler angles),
size req, shape (elongation, etc.), and path space D 2

Γ.
Implementation for complex geometries. Using open

access libraries for ray tracing developed by the computer graph-
ics community under the solicitation of the cinema industries
[17], we are able to easily implement the path-sampling proce-
dures presented in this paper for any geometry specified by its
bounding surface. However, sampling the geometric data during
the MC calculation, as required here, is not straightforward with
the available tools, because they are usually designed to gener-
ate images from fixed scenes (and animations are constructed
as sequences of such images). For this reason, most ray-tracing
acceleration structures have been developed for fixed geometric
data, and generating such a structure at each MC sample would
be highly inefficient. We therefore developed a specific approach
in collaboration with computer graphics experts [18]: the geome-
try is specified by statistical distributions of the parameters and,

Fig. 2. Calculation time using Schiff software [18] for an increas-
ing number of (a) fins in a shape described by 106 facets (zero fins for
a sphere) and (b) facets describing the shape with 16 fins. Loading
time required to generate and copy the geometry in the RAM mem-
ory as well as to build the acceleration grid; solving time required
to sample 15 × 105 random paths using one thread on an Intel Core
i7-3720QM@2.60 GHz CPU laptop. Size, wavelength, and refrac-
tive index are provided in the caption of Table 1. The commands
used to produce these results are provided in the Supplement 1.

based on Ref. [19], several paths are traced for each sampled
shape. An outstanding feature of this programming approach is
that no volume mesh is required [20].

Validation. For Born approximation and rigorous Born series
expansion see Supplement 1. Validation concerning the Schiff
approximation has been presented in Ref. [13] and is here
extended to larger size parameters and more complex shapes
thanks to the discrete dipole approximation (DDA) for the
geometries 1, 2, 3, 7, and 8 in Table 1: we recorded relative
differences below 3% for the scattering cross section and below
5% for the extinction cross section (see detailed results in the
Supplement 1). Schiff approximation is also solved by determin-
istic method (DM) in Table 1 (Schiff-DM), providing the same
results as with MC.

Results. We fully implemented this probabilistic approach for
Schiff’s approximation in a free and open-source software appli-
cation [18] whose features with respect to geometric complexity
are presented hereafter. First, we benefit from well identified
features of path-tracking tools developed by computer graph-
ics research [17,20]: calculation time is only multiplied by two
when the number of facets describing a geometry is multiplied
by 103 [Fig. 2(b)]. This enables us to solve Schiff approximation
with calculation times that are quasi-insensitive to geometric
complexity [see Fig. 2(a) and compare cases 4, 5, 9, and 10 in
Table 1]. Furthermore, thanks to double randomization, addi-
tional calculation time for averaging over scatterer orientation,
size, and shape distributions is negligible [19], while determin-
istic methods require us to solve the scattering problem for
each quadrature node corresponding to one shape, one orien-
tation, and one size. As a result, the number of samples and
the computation time are only multiplied by two when account-
ing for orientation distribution (compare cases 2 versus 3, and
7 versus 8), and by two when further adding size distribution
(compare cases 3 versus 4, with 8 versus 9). In comparison,
with deterministic methods, averaging over orientations using
Romberg integration with 17 and 4 nodes for the two rele-
vant Euler angles leads to a computation time multiplied by
17 × 4 = 68 in the case of DDA, and ∼ 15 using Gauss quadra-
ture in the case of Schiff-DM (compare case 2 versus 3, and
7 versus 8). Further averaging over size distribution increases
calculation times even more drastically because the larger the
size parameter x, the longer the computation time for both DDA
and Schiff-DM (Cases 4 and 9 use a 16 nodes Gaussian quadra-
ture from x = 60 to x = 150 for DDA and an adaptative Lobatto
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Table 1. Computation of Total Cross Sections (Extinc-
tion, Scattering, Absorption) and Differential Cross Sec-
tion at θs = 1◦a

aComparison between Schiff software [18] (Schiff-MC); adaptative recur-
sive mesh provided by Newton–Cotes rule (Schiff-DM), both on a laptop
Intel Core i7-3720QM@2.60 GHz; and ADDA software [21] (discrete dipole
approximation reference solution) using 64 processors Intel Xeon Gold
6154@3.00 GHz. Number of MC samples N and wall clock calculation time
t required to achieve standard error<1% for various shapes. “Monodisperse”
indicates a unique geometry; “Polydisperse” a lognormal size distribution
with ln(σ) = 0.18; and “Distributed” a distribution of several parameters in
the shape parametric equation. Orientation is isotropically distributed, except
for 2 and 7, where ⊥ indicates normal incidence. Properties are represen-
tative of photosynthetic microorganisms: m = 1.1 − i 5 × 10−3,λ = 400 nm,
volume-equivalent sphere radius req = 6µm, i.e., x = 2πreq

λ
≃ 94 (on aver-

age when size is distributed) and aspect ratio 1/5 (on average when shape is
distributed). The shapes and the commands used to produce these results,
as well as the memory requirements (RAM), are provided in the Supple-
ment 1. ADDA was not implemented when RAM was exceeding 64 GB.
Schiff-DM uses analytical expressions that are only available for ellipsoids
and cylinders.

quadrature for Schiff-DM). Eventually, evaluating with MC the
properties of a mixture of nine particle types in case 12 is eas-
ier than simulating the most demanding particle type alone (the
case 6), whereas for a deterministic method this would require
a whole computation for each geometry: the total computation
time would be the sum

∑︁
ti of the time ti required per geometry

i. In our examples, the number of samples required to simulate
size distribution is also sufficient to cover aspect ratio and shape
distribution (N is the same in cases 5 and 6, and in cases 10 and
11; see also Figs. S5 and S6 in the Supplement 1). However,
the computation time t is increased because the loading time is
higher for distributed objects [see Fig. 2(b)], while in the case
of size distribution we load just one geometry and rather use a
scaling of the wavelength that preserves x. Despite this, simu-
lating distributed helixes with Schiff-MC (case 11) is 50 times
faster than straight cylinders of fixed elongation using Schiff-
DM (case 9). Finally, our software also takes advantage of the
well-identified capability of MC to estimate several quantities
simultaneously with the same path samples [7,13]. For exam-
ple, wavelength only affects the contribution of a path, but not
the path sampling itself. Hence, each time a path is sampled we

may compute Nλ contributions corresponding to Nλ wavelength.
As a result, evaluating a 40 wavelengths spectrum with Schiff
software, as in Ref. [4], only multiplies calculation time by four
when a deterministic method would require to solve the scatte-
ring problem one time per wavelength. Overall, we are now able
to produce spectral and angular radiative properties of helical-
shaped microalgae Arthrospira platensis in 20 min, whereas this
required several months with a straight cylinder model using
Schiff-DM [4].

Conclusion. We have presented a new statistical formulation
for soft particle scattering that brings original path-integral rep-
resentations and high-performance numerical solutions. Using
MC features for high-dimensional integration and meshless
computation, calculation times are quasi-insensitive to the scat-
terers’ geometric complexity. High contrasts remain challenging
and will require joint efforts in path-integral formulation for
hyperbolic differential equations, as well as sampling strategies
for the resulting processes.
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1. BORN APPROXIMATION

Born approximation is

Es(r) =
∫

V
dr0 U(r0)

¯̄G(r, r0)Ei(r0)

In order to reformulate the scattered field as an expectation compatible with Monte Carlo estima-
tion, this equation is multiplied and divided by the pdf pR0 (r0) of a random location R0 defined
over the scatterer’s volume V:

Es(r) =
∫

V
dr0 pR0 (r0)

U(r0)
¯̄G(r, r0)

pR0 (r0)
Ei(r0)

= E [WΓ]

where

WΓ =
U(R0)

¯̄G(r, R0)Ei(R0)

pR0 (R0)
(S1)

which is the equation 5 in the article (and the corresponding algorithm is also provided in the
article).



2. BORN SERIES EXPANSION

Equation 6 in the article gives the following expression for the internal field:

E(r0) = η(r0)Ei(r0) + lim
δ→0

∫
Vc

δ,r0

dr1
¯̄A(r0, r1)E(r1) (S2)

The substitution of Eq. S2 into itself to express E(r1) leads to

E(r0) = η(r0)Ei(r0) + lim
δ→0

∫
Vc

δ,r0

dr1
¯̄A(r0, r1)η(r1)Ei(r1) (S3)

+ lim
δ→0

∫
Vc

δ,r0

dr1

∫
Vc

δ,r1

dr2
¯̄A(r0, r1)

¯̄A(r1, r2)E(r2) (S4)

And the successive substitution to express E(r2)... gives

E(r0) = η(r0)Ei(r0) + lim
δ→0

∫
Vc

δ,r0

dr1
¯̄A(r0, r1)η(r1)Ei(r1) (S5)

+ lim
δ→0

∫
Vc

δ,r0

dr1

∫
Vc

δ,r1

dr2
¯̄A(r0, r1)

¯̄A(r1, r2)η(r2)Ei(r2)

+ lim
δ→0

∫
Vc

δ,r0

dr1

∫
Vc

δ,r1

dr2

∫
Vc

δ,r2

dr3
¯̄A(r0, r1)

¯̄A(r1, r2)
¯̄A(r2, r3)η(r3)Ei(r3)

+ · · ·
With the integral operator ¯̄Ln

defined in the article

( ¯̄L0
ηEi)(r0) = η(r0)Ei(r0)

( ¯̄L1
ηEi)(r0) = lim

δ→0

∫
Vc

δ,r0

dr1
¯̄A(r0, r1)η(r1)Ei(r1)

( ¯̄L2
ηEi)(r0) = lim

δ→0

∫
Vc

δ,r0

dr1

∫
Vc

δ,r1

dr2
¯̄A(r0, r1)

¯̄A(r1, r2)η(r2)Ei(r2)

( ¯̄L3
ηEi)(r0) = lim

δ→0

∫
Vc

δ,r0

dr1

∫
Vc

δ,r1

dr2

∫
Vc

δ,r2

dr3
¯̄A(r0, r1)

¯̄A(r1, r2)
¯̄A(r2, r3)η(r3)Ei(r3)

· · ·

( ¯̄Ln
ηEi)(r0) = lim

δ→0

∫
Vc

δ,r0

dr1 · · ·
∫

Vc
δ,rn−1

drn

n

∏
j=1

¯̄A(rj−1, rj) η(rn)Ei(rn)

we obtain the formulation of the Born series expansion that is written in the article:

E(r0) =
+∞

∑
n=0

( ¯̄Ln
η Ei)(r0) (S6)

A. Statistical reformulation of the integral operator

The integral operator ¯̄Ln
is reformulated as an expectation using n random locations1 Rj=1,2,...,n

in Vc
δ,Rj−1

with probability density function (pdf) pRj (rj). To do so, the integrand in the definition

of ¯̄Ln
is simply multiplied and divided by the pdfs:

( ¯̄L0
ηEi)(r0) = η(r0)Ei(r0)

( ¯̄L1
ηEi)(r0) = lim

δ→0

∫
Vc

δ,r0

dr1 pR1 (r1)
¯̄A(r0, r1)

pR1 (r1)
η(r1)Ei(r1) = E

[
¯̄A(r0, R1)

pR1 (R1)
η(R1)Ei(R1)

]

( ¯̄L2
ηEi)(r0) = lim

δ→0

∫
Vc

δ,r0

dr1

∫
Vc

δ,r1

dr2

¯̄A(r0, r1)

pR1 (r1)

¯̄A(r1, r2)

pR2 (r2)
η(r2)Ei(r2) = E

[
¯̄A(r0, R1)

pR1 (R1)

¯̄A(R1, R2)

pR2 (R2)
η(R2)Ei(R2)

]
· · ·

( ¯̄Ln
ηEi)(r0) = E

 ¯̄A(r0, R1)

pR1 (R1)

n

∏
j=2

¯̄A(Rj−1, Rj)

pRj (Rj)
η(Rn)Ei(Rn)

 (S7)

1Due to the exclusion volume, the random variable Rj−1 is conditioned on Rj−1. Indeed, the domain of Rj is the set of
locations in the scatterer volume but not in the exclusion volume that is centered on Rj−1. Therefore we should note Rj |Rj−1

and pRj (rj |rj−1) for its pdf. Nevertheless, we avoid conditional notation here for the sake of simplicity.
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Paths. Substituting the above expression of ¯̄Ln
in the Born series expansion Eq. S6 leads to

E(r0) =
+∞

∑
n=0

E
[
W ′

Γ(r0)|(N=n)

]
(S8)

where

W ′
Γ(r0)|(N=n) =

¯̄A(r0, R1)

pR1 (R1)

n

∏
j=2

¯̄A(Rj−1, Rj)

pRj (Rj)
η(Rn)Ei(Rn) , n > 1 (S9)

W ′
Γ(r0)|(N=1) =

¯̄A(r0, R1)

pR1 (R1)
η(R1)Ei(R1)

W ′
Γ(r0)|(N=0) = η(r0)Ei(r0)

is the contribution of a path Γ(r0)|(N = n) starting from r0 that interacts at n locations Rj inside
the scatterer volume. The path random variable Γ(r0)|(N = n) simply gathers the successive
locations r0, R1, R2, · · · , Rn: Γ(r0)|(N = n) = (r0, R1, R2, · · · , Rn). This way, the n-th order in
the Born series expansion can be interpreted as the contribution of all paths including n interaction

locations: ( ¯̄Ln
ηEi)(r0) = E

[
W ′

Γ(r0)|(N=n)

]
.

B. Statistical reformulation of the infinite sum
The path random variable (RV) Γ(r0)|(N = n) that we have introduced above is conditioned on
the value n of the number-of-locations RV N, that is also the order RV in the Born series expansion.
Here we introduce a probability distribution for N and define a more general path RV that
includes a random number of locations.

To do so, we define the probability set function pN(n), such that ∑+∞
n=1 pN(n) = 1, for the

discrete RV N that takes the value 0 with probability pN(0), the value 1 with probability pN(1)...
The sum in Eq. S8 can know be reformulated as an expectation:

E(r0) =
+∞

∑
n=0

pN(n)E
[

1
pN(n)

W ′
Γ(r0)|(N=n)

]
= E

[
E

[
1

pN(N)
W ′

Γ(r0)|N

]]
= E

[
W ′′

Γ(r0)

]
(S10)

where (see Eq. S9)

W ′′
Γ(r0)

=
1

pN(N)
W ′

Γ(r0)|N =
¯̄A(r0, R1)

pR1 (R1)

N

∏
j=2

¯̄A(Rj−1, Rj)

pRj (Rj)

η(RN)Ei(RN)

pN(N)
(S11)

is the contribution of a path Γ(r0) = (r0, R1, R2, · · · , RN) starting from r0 that interacts at a
random number of locations Rj inside the scatterer volume. A statistical experiment leading to
the sampling of W ′′

Γ(r0)
is:

• Step 1: sample a realization n of N according to the distribution pN

• Step 2: sample a path γ(r0)|(N = n) by sampling n locations r1, r2... in Vc
δ,rj−1

according to
pRj (rj)

• Step 3: compute the realization w′′
Γ(r0)

according to Eq. S11:

w′′
γ(r0)

=
¯̄A(r0, r1)

pR1 (r1)

n

∏
j=2

¯̄A(rj−1, rj)

pRj (rj)

η(Rn)Ei(Rn)

pN(n)

3



C. Scattered field outside the scatterer
The expression of the scattered field outside the scatterer is obtained by substituting Eq. S10 into
the Volume Integral Equation (Eq. 2 in the article):

Es(r) =
∫

V
dr0 U(r0)

¯̄G(r, r0)E
[
W ′′

Γ(r0)

]
(S12)

where the integration domain is here the entire volume V of the scatterer, since there is no
singularity to deal with as the observation location r is outside V.

Exactly as for Born approximation, this equation is multiplied and divided by the pdf pR0 (r0)
of a random location R0 defined over the scatterer’s volume V, leading to the expectation
formulation given in the article:

Es(r) =
∫

V
dr0 pR0 (r0)

U(r0)
¯̄G(r, r0)

pR0 (r0)
E
[
W ′′

Γ(r0)

]
= E

[
U(R0)

¯̄G(r, R0)

pR0 (R0)
E
[
W ′′

Γ(R0)

]]

= E

[
U(R0)

¯̄G(r, R0)

pR0 (R0)
W ′′

Γ(R0)

]
= E [WΓ] (S13)

where (see Eq. S11)

WΓ =
U(R0)

¯̄G(r, R0)

pR0 (R0)

N

∏
j=1

¯̄A(Rj−1, Rj)

pRj (Rj)

η(RN)Ei(RN)

pN(N)
(S14)

which is the equation 7 in the article (and the corresponding algorithm is also provided in the
article). Note that for a realization n = 0 of N, WΓ is simply

WΓ|N=0 =
U(R0)

¯̄G(r, R0)

pR0 (R0)

η(R0)Ei(R0)

pN(0)
(S15)

In comparison with the path RV Γ(r0) in Eq. S11, the location R0 is no more fixed here; it is
a RV. The path Γ(r0) in Eq. S11 can be read as Γ conditioned on its first interaction location:
Γ(r0) = Γ|(R0 = r0).

D. Optimized estimator summing the contribution of several orders in the Born series along
the same path

The algorithm implemented to produce the results in the figure S4 uses an optimization consisting
in evaluating the contribution of several orders in the Born series from the same path sample.
Based on the estimator presented above, once the path Γ(r0) is sampled, it is possible to compute
not only its contribution to the electric field, but also the contribution of every paths sharing
the same locations (with less than N locations). This is the strategy that we retained for our
algorithm because it leads to a better convergence. Figure S1 illustrates an example where, from
two locations r1 and r2 one can easily sum:

1. the contribution WΓ|N=0 of the 0-th order path directly interacting with the scattering
potential at r0, from the incident direction ei,

2. the contribution WΓ|N=1 of the first-order path interacting at r1 before to reach r0,

3. the contribution WΓ|N=2 of the second-order path interacting at r2, then at r1, before to
reach r0.

In practice we will sum the contributions WΓ|N=0, WΓ|N=1, ... until WΓ|N=M along a path
including a random number M of locations. The RV M is different from N in previous paragraphs;
it is a series-order RV. Note that the RV M will be constructed to ensure that the new estimator is
unbiased: the infinite Born series expansion is estimated, without truncation.

4



ei

ei

ei

r0

es

r

r2

r1

Fig. S1. Illustration of the summed contribution of paths sharing the same 3 locations r0, r1, r2.

Internal field. Starting from Eq. S8, we write

E(r0) = E

[
+∞

∑
n=0

W ′
Γ(r0)|(N=n)

]

= E

[
W ′

Γ(r0)|(N=0) +
+∞

∑
n=1

W ′
Γ(r0)|(N=n)

]

= E

[
(1− p0)W ′

Γ(r0)|(N=0) + p0

(
W ′

Γ(r0)|(N=0) +
+∞

∑
n=1

W ′
Γ(r0)|(N=n)

p0

)]
= E

[
(1− p0)W ′

Γ(r0)|(N=0) + p0 T1

]
where 0 < p0 < 1 and the RV

T1 = W ′
Γ(r0)|(N=0) +

+∞

∑
n=1

W ′
Γ(r0)|(N=n)

p0

= W ′
Γ(r0)|(N=0) +

W ′
Γ(r0)|(N=1)

p0
+

+∞

∑
n=2

W ′
Γ(r0)|(N=n)

p0

= (1− p1)

(
W ′

Γ(r0)|(N=0) +
W ′

Γ(r0)|(N=1)

p0

)
+ p1

(
W ′

Γ(r0)|(N=0) +
W ′

Γ(r0)|(N=1)

p0
+

+∞

∑
n=2

W ′
Γ(r0)|(N=n)

p0 p1

)

= (1− p1)

(
W ′

Γ(r0)|(N=0) +
W ′

Γ(r0)|(N=1)

p0

)
+ p1 T2

with 0 < p1 < 1 and the RV

T2 = W ′
Γ(r0)|(N=0) +

W ′
Γ(r0)|(N=1)

p0
+

+∞

∑
n=2

W ′
Γ(r0)|(N=n)

p0 p1

= (1− p1)

(
W ′

Γ(r0)|(N=0) +
W ′

Γ(r0)|(N=1)

p0
+

W ′
Γ(r0)|(N=2)

p0 p1

)

+ p1

(
W ′

Γ(r0)|(N=0) +
W ′

Γ(r0)|(N=1)

p0
+

W ′
Γ(r0)|(N=2)

p0 p1
+

+∞

∑
n=3

W ′
Γ(r0)|(N=n)

p0 p1 p2

)
and so on. Finally, it leads to

E(r0) = E [T0(r0)] (S16)

where the RV T0 is recursively defined as

Tn(r0) = (1− pn)
n

∑
q=0

W ′
Γ(r0)|(N=q)

∏
q
j=1 pj−1

+ pn Tn+1(r0) (S17)

with 0 < pn < 1 and ∏0
j=1 pj−1 = 1.
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In order to construct a random interruption for this recursion, independent Bernoulli RV
Bn taking value 1 with probability pn and 0 with probability 1− pn are introduced, that are
independent of W ′: E [Bn] = pn and

E(r0) = E
[
T̃0(r0)

]
(S18)

where

T̃n(r0) = (1− Bn)
n

∑
q=0

W ′
Γ(r0)|(N=q)

∏
q
j=1 pj−1

+ Bn T̃n+1(r0) (S19)

A statistical experiment leading to the sampling of T̃0(r0) is:

• Step 1 (initialization): n← 0

• Step 2 (Bernoulli test): a realization bn of the Bernoulli RV Bn is sampled according to the
probability pn

– Step 2.1 (recursion): if bn = 1 then a location rn+1 is sampled in Vc
δ,rn

according to
pRn+1 (rn+1), n is incremented (n← n + 1) and the algorithm loops to Step 2

– Step 2.2 (recursion is stopped): if bn = 0 then the successive sampling of locations is
stopped and the algorithm goes to Step 3

• Step 3: the sampled value t0(r0) is computed according to Eq. S19:

t̃0(r0) =
n

∑
q=0

w′
γ(r0,r1,...rq)

∏
q
j=1 pj−1

Scattered field outside the scatterer. Following the exact same reformulation steps as in Section C,
we obtain

Es(r) = E
[
T̂0(r)

]
(S20)

where

T̂n(r) = (1− Bn)
U(R0)

¯̄G(r, R0)

pR0 (R0)

n

∑
q=0

W ′
Γ(R0)|(N=q)

∏
q
j=1 pj−1

+ Bn T̂n+1(r) (S21)

Substituting the definition of W ′ (see Eq. S9) in the above equation leads to

T̂n(r) = (1− Bn)
U(R0)

¯̄G(r, R0)

pR0 (R0)

n

∑
q=0

q

∏
j=1

¯̄A(Rj−1, Rj)

pRj (Rj) pj−1
η(Rq)Ei(Rq) + Bn T̂n+1(r) (S22)

We choose Ŵ = T̂0(r) as estimator, which can be reformulated as

Ŵ = T̂0(r) =
U(R0)

¯̄G(r, R0)

pR0 (R0)

M

∑
q=0

q

∏
j=1

¯̄A(Rj−1, Rj)

pRj (Rj) pj−1
η(Rq)Ei(Rq) (S23)

with the series-order RV M

M =
+∞

∑
n=1

n Bn

n−1

∏
j=0

(1− Bj) (S24)

A statistical experiment leading to the sampling of M is:

• Step 1 (initialization): n← 0

• Step 2 (Bernoulli test): a realization bn of the Bernoulli RV Bn is sampled according to the
probability pn

– Step 2.1 (recursion): if bn = 1 then n is incremented (n ← n + 1) and the algorithm
loops to Step 2

– Step 2.2 (recursion is stopped): if bn = 0 then the recursion is stopped and the
algorithm goes to Step 3

• Step 3: the realization m of M is m = n

6



E. Estimation of the scattering matrix
The sampling procedure implemented to produce the results in Figure S4 is the following:

• Step 1 (sampling of the first location): a first location r0 is sampled in V according to
pR0 (R0)

• Step 2 (initialization): n← 0

• Step 3 (Bernoulli test): ξn is uniformly sampled on the unit interval

– Step 3.1 (recursion): if ξn < pn then a location rn+1 is sampled in Vc
δ,rn

according to
pRn+1 (rn+1), n is incremented (n← n + 1) and the algorithm loops to Step 3

– Step 3.2 (recursion is stopped): if ξn > pn then the successive sampling of locations is
stopped and the algorithm goes to Step 4

• Step 4: the realization w of W is computed according to Eq. S23:

ŵγ =
U(r0)

¯̄G(r, r0)

pR0 (r0)

n

∑
q=0

q

∏
j=1

¯̄A(rj−1, rj)

pRj (rj) pj−1
η(rq)Ei(rq)

The above algorithm evaluates the scattered field Es outside the particle, whereas the Figure S4
displays the scattering matrix ¯̄S defined as:

EBs
s (r) =

e−ikr

−ir
¯̄S E

Bi
i,0

where E
Bs
s (r) is the scattered field in the far field region represented in the orthonormal basis

Bs (see Figure S2) and the incident wave is a plane wave Ei(r0) = e−ikei ·r0 Ei,0, the exponent Bi
meaning that Ei,0 is represented in the orthonormal basis Bi (see Figure S2). More precisely, the
standard definition of the scattering matrix assumes that the component of EBs

s along es and the
component of E

Bi
i,0 along ei are zero. Therefore, ¯̄S is traditionally defined as a 2× 2 matrix: Eθ

s (⃗r)

E
φ
s (⃗r)


Bs

=
e−ikr

−ir

 S11 S12

S21 S22

 Eθ
i,0

E
φ
i,0


Bi

(S25)

where the exponents θ and φ denote the components along eθ and eφ respectively, in the basis Bs
and Bi.

To compute the scattering matrix one can either post-process the results obtained for the
scattering field, or design a specific Monte Carlo algorithm. To produce Figure S4, we used the
second option. Figure S4 is produced using the same Monte Carlo algorithm as above, but with a
different weight function at Step 4 that leads to the direct estimation of ¯̄S. This weight function is
established from the RV in Eq. S23, by implementing the following modifications:

• since the scattering matrix definition implies that the location r is in the far field region,
the dyadic Green’s function ¯̄G(r, r0) in Eq. S23 is replaced by its expression in the far field
region :

¯̄GFF(r, r0) =

[
¯̄I − es ⊗ es

k2

]
e−ikr

4πr
eikes ·r0

,

• according to the prefactor e−ikr

−ir in the scattering matrix definition, Eq. S23 is multiplied by
−ir eikr,

• since the scattering matrix includes a change of basis (Bs → Bi), the incident plane wave
Ei(rq) in Eq. S23 is replaced by e−ikei ·rq PBi

Bs
, where PBi

Bs
is the change-of-basis matrix. With

the notations in Figure S2

PBi
Bs

=

 cos θs cos θi cos(φs − φi) + sin θs sin θi cos θs sin(φs − φi)

− cos θi sin(φs − φi) cos(φs − φi)


7
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Fig. S2. Orthonormal basis Bi = (ei, eθi , eφi ) (in green) and Bs = (es, eθs , eφs ) (in red) used in
the definition of the scattering matrix ¯̄S. In the Figure S4, we have used θi = 0 since we study a
sphere and therefore, particle orientation is meaningless. In this case ei · es = cos(θs).

Altogether, the algorithm used to estimate the scattering matrix is the same as the one above,
except that the realization at step 4 is computed according to:

ŵ
¯̄S
γ = − i eikes ·r0

4π

U(r0)

pR0 (r0)

n

∑
q=0

q

∏
j=1

¯̄ABs (rj−1, rj)

pRj (rj) pj−1
η(rq)e−ikei ·rq PBi

Bs

where the the dyadics ¯̄A is represented in the basis Bs. To establish this expression, the far field
dyadic Green’s function ¯̄GFF has also been represented in the basis Bs and considering only the 4
elements involved in the scattering matrix, it leads to ¯̄GFF,Bs = ¯̄I e−ikr

4πr eikes ·r0 .

F. Choices for the sampling distributions
Implementation of the above algorithm requires to choose sampling distributions pRj (rj) for
the locations Rj and pj for the order in Born series expansion (any distribution can be chosen
at this stage). These choices only influence the variance of the estimator, but do not modify
its expectation. In other words, those sampling distributions impact the number of samples
required to achieve a given statistical error, but the estimated value remains unchanged. Several
approaches are available in order to construct optimized sampling strategies, such as importance
sampling, zero-variance, etc. They usually build up on this: a distribution that better matches
the integrand lowers the variance of its estimator. Full implementation of such approaches is
reported to a dedicated work and we only present hereafter the first choices that were made to
validate our algorithm in the Figure S4.

Probability density functions pRj (rj) for the locations Rj. The first location R0 is uniformly sampled
over the scatterer volume V:

pR0 (r0) =
1
V

Then successive locations R1, R2... are sampled to construct a path within the scatterer volume.
The locations Rj|Rj−1 are sampled within Vc

δ,Rj−1
, that is the set of locations in V but not in the

spherical exclusion volume Vδ,Rj−1 with radius δ, centered at the previous location Rj−1 (we
already emphasized in a footnote that Rj is conditioned on Rj−1 due the the exclusion volume).
To do so, we choose to sample Rj from the previously sampled location Rj−1, that is to say that
we sample the random vector

Dj = Rj − Rj−1

and construct Rj as
Rj = Rj−1 + Dj

8



Moreover, the realizations of Dj are constructed by sampling first a random unit direction

Ωj =
Dj

||Dj || over the unit sphere and then, a random distance Pj = ||Dj|| between the two

successive locations (see Figure S3):

Rj = Rj−1 + Ωj Pj (S26)

There are three reasons for this choice:

1. dealing with the spherical exclusion volume centered at Rj−1 only requires to restrict the
domain of Pj to [δ, ρmax(Rj−1, Ωj)] in order to exclude Vδ,Rj−1 . In the previous domain,
ρmax(Rj−1, Ωj) is the distance between Rj−1 and the scatterer’s bounding surface in direc-
tion Ωj (see Figure S3). Since the domain of Pj depends on Ωj, we might write Pj|Ωj in the
following.

2. Today’s libraries for ray tracing include advanced acceleration strategies that are optimized
to compute line-surface intersections in highly complex geometry. Therefore, our choice is
compatible with the implementation of our algorithms for complex shaped scatterers, since
tools ensuring highly efficient computation of ρmax(Rj−1, Ωj) are available.

3. The free-space dyadic Green’s function is only a function of the distance Pj: ¯̄G(Rj, Rj−1) ≡
¯̄G(Pj). Moreover, when performing the change of variables in Eq. S26, the volume elements
in the integrals of section A become drj = ρ2

j dρj dωj. We can then take advantage of the

term ρ2
j to cancel the term 1

ρ2
j

in the dyadic Green’s function and reduce the variance of the

estimator.

Formally, this change of variables in the equations of Section A writes:∫
Vc

δ,rj−1

drj pRj (rj) f (rj) =
∫

4π
dωj

∫ ρmax(rj−1,ωj)

δ
dρj ρ2

j pRj (rj) f (rj−1 + ωj ρj)

=
∫

4π
dωj pΩj (ωj)

∫ ρmax(rj−1,ωj)

δ
dρj pPj |Ωj

(ρj|ωj)
ρ2

j pRj (rj)

pΩj (ωj) pPj |Ωj
(ρj|ωj)

f (rj−1 + ωj ρj)

where

• we note the unit sphere 4π,

• pΩj (ωj) is the probability density function for Ωj,

• pPj |Ωj
(ρj|ωj) is the probability density function for Pj.

To preserve the formulations established earlier with pRj (rj) (in particular when computing the
realization of the algorithms), let us define

pRj (rj) =
pΩj (ωj) pPj |Ωj

(ρj|ωj)

ρ2
j

(S27)

such that

E
[

f (Rj|Rj−1 = rj−1)
]

=
∫

Vc
δ,rj−1

drj pRj (rj) f (rj)

=
∫

4π
dωj pΩj (ωj)

∫ ρmax(rj−1,ωj)

δ
dρj pPj |Ωj

(ρj|ωj) f (rj−1 + ωj ρj)

= E
[

f (rj−1 + Ωj Pj)
]

The distributions pΩj (ωj) and pPj |Ωj
(ρj|ωj) that have been use to produce the Figure S4 are

the following:

• directions Ωj are isotropically sampled:

pΩj (ωj) =
1

4π
(S28)
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Fig. S3. Sampling of a location Rj>0.

• distances Pj are uniformly sampled:

pPj |Ωj
(ρj|ωj) =

1
ρmax(rj−1, ωj)− δ

(S29)

Therefore, according to Eq. S27, pRj (rj) must be replaced by the following expression in the
results of previous sections (in particular in the algorithm of Section E):

pRj (rj) =
1

4π(ρmax(rj−1, ωj)− δ)ρ2
j

(S30)

In summary, the sampling procedure of the locations Rj>0 is the following:

• Inputs: radius δ of the exclusion volume; previous location sampled rj−1

• Step 1: the direction ωj is isotropically sampled on the unit sphere

• Step 2: the distance ρmax between rj−1 and the scatterer’s bounding surface in direction ωj
is computed with ray tracing tools

• Step 3: a distance ρj is uniformly sampled on [δ, ρmax]

• Step 4: the realization rj of Rj is:

rj = rj−1 + ωj ρj

This sampling procedure is used in Step 3.1 of the algorithm in Section E.

Probabilities pj for the series order (Bernoulli test). Let us consider a uniform refractive index m for
the scatterer as in the figure S4. In this case,

( ¯̄Ln
η Ei)(r0) ∝

(
m2 − 1
m2 + 2

)n

Therefore, we base our choice for pj on the factor m2−1
m2+2 . Nevertheless, this term is complex and

we rather choose

pj =
ℜ(m)2 − 1

ℜ(m)2 + 2
(S31)

where ℜ(m) > 1 is the real part of the refractive index. The lower ℜ(m), the lower is the
probability to sample high orders in the Born series expansion. Conversely, the higher is the
refractive index ℜ(m), the higher is the probability to sample high orders terms thanks to paths
including an increasing number of interaction locations.
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3. VALIDATIONS

A. Born approximation and Born series expansion
The results obtained with the algorithm in Section E are presented in Fig. S4 and cross-validated
with reference analytical solutions for spheres. However, no simplification related to spherical
shapes is used here. The geometry of the scatterer only affects path sampling: locations Rj are
here sampled within a sphere; more complex scatterers would merely require a more complex
volume to be sampled, as discussed later.

The Born approximation estimator converges quickly and no difficulty is recorded (see Fig. S4.a).
For Born series expansion (see Fig. S4.b), by contrast, we record convergence issues when in-
creasing the refractive index (compare error bars for crosses and circles) and the size parameter
(compare crosses and squares). This was expected, since the numerical solution to Maxwell’s
equations is known to be difficult in this case. The usual deterministic numerical methods are
mainly limited by current computer memory size and/or floating point accuracy [? ]. Here, the
limitations are totally different. We only observe convergence issues, which should subsequently
be addressed using well-established integral reformulation approaches such as the zero-variance
principle to optimize sampling distributions pRj (see Section F).

-0.6

-0.4

-0.2

0

0.2
a: Born approximation b: Born series expansion

-2

-1.5

-1

-0.5

0

0.5

0 45 90 135 180 0 45 90 135 180

<
(S

1
1
)

x = 2, n = 1.1
x = 2, n = 1.2
x = 3, n = 1.1

=
(S

1
1
)

θs θs

Fig. S4. Results for Born approximation (a - left panels) and Born series expansion (b - right
panels) in the far field region, for spheres with different size parameters x and refractive in-
dices m = n − i 0.01. Real part (upper panels) and imaginary part (lower panels) of the first
element in the scattering matrix ¯̄S are plotted as function of the scattering angle θs (see Fig. 1
in the paper). Analytical reference solutions from C. Bohren and D. Huffman, Absorption and
Scattering of Light by Small Particles, (Wiley-Interscience, New York, 1983) are plotted with lines.
MC estimates obtained for 106 paths are plotted with points and error bars indicating the 99%
confidence interval. The algorithm implemented to produce these results are presented in pre-
vious sections. Computation time is about 1 s for Born approximation and 3 s for Born series
expansion on an Intel Core i7-3720QM@2.60GHz CPU laptop.
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B. Schiff approximation
Validation concerning the Schiff approximation has already been presented in J. Charon et al.,
J. Quant. Spectrosc. Radiat. Transf. 172, 3 (2016) and is here extended to larger size parameters
thanks to the Discrete Dipole Approximation (DDA) for the geometries 1., 2., 3., 7. and 8. in
Table 1 of the paper. Results are presented in Table S1.

Table S1. Validation of the results for Schiff approximation obtained with Schiff software. Com-
parison with the results provided by ADDA software. The configurations are described in the
Table 1 of the paper and in the section below. Values of the extinction cross-section σext and
scattering cross-section σs are given in µm2.

Schiff MC DDA Relative difference

Geometry σext σs σext σs σext σs

1. Monodisperse sphere 227 150 237 149 4% 0.7%

2. Monodisp. ellipsoid ⊥ 434 336 449 342 3% 2%

3. Monodisperse ellipsoid 324 237 337 240 4% 1%

7. Monodisp. cylinder ⊥ 458 360 480 372 5% 3%

8. Monodisperse cylinder 361 272 378 279 4% 3%

C. Command lines used to produce the results in Table 1 with ADDA software
The ADDA command lines used to produce the results in Tab. S1 and Table 1 of the paper are the
following:

• 1. Monodisperse sphere:

mpiexec -n 64 ./adda_mpi -m 1.1 0.005 -shape sphere -eq_rad 6 -lambda 0.4

• 2. Monodisp. ellipsoid ⊥:

mpiexec -n 64 ./adda_mpi -m 1.1 0.005 -shape ellipsoid 1 5 -orient 0 90 0 -eq_rad 6 -lambda
0.4

• 3. Monodisperse ellipsoid:

mpiexec -n 64 ./adda_mpi -m 1.1 0.005 -shape ellipsoid 1 5 -orient avg -eq_rad 6 -lambda
0.4

• 7. Monodisp. cylinder ⊥:

mpiexec -n 64 ./adda_mpi -m 1.1 0.005 -shape cylinder 5 -orient 0 90 0 -eq_rad 6 -lambda
0.4

• 8. Monodisperse cylinder:

mpiexec -n 64 ./adda_mpi -m 1.1 0.005 -shape cylinder 5 -orient avg -eq_rad 6 -lambda 0.4

4. TABLE 1 OF THE MANUSCRIPT INCLUDING MEMORY REQUIREMENTS

Memory requirements of Schiff-MC remain quite stable and low compared to deterministic
methods using volume discretization (e.g. DDA in Table S2). This is a known property of
meshless Monte Carlo computations.
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Table S2. Computation of total cross-sections (extinction, scattering, absorption) and differ-
ential cross-section at θs=1◦ using Schiff software (Schiff approximation for soft particles) on
a laptop Intel Core i7-3720QM@2.60GHz and ADDA software (Discrete Dipole Approxima-
tion reference solution) using 64 processors Intel Xeon Gold 6154@3.00GHz on a computation
server. Number of MC samples N, wall clock calculation time t and peak memory usage M
required to achieve standard error < 1% for various shapes. "Monodisperse" indicates a unique
geometry, "Polydisperse" a log normal size distribution with ln(σ) = 0.18 and "Distributed" a
distribution of several parameters in the shape parametric equation. Orientation is isotropically
distributed, except for 2. and 7., where ⊥ indicates normal incidence. Properties are represen-
tative of photosynthetic microorganisms: m = 1.1− i 5.10−3, λ = 400 nm, volume-equivalent
sphere radius req = 6 µm, i.e. x =

2πreq
λ ≃ 94 (on average when size is distributed) and aspect

ratio 1/5 (on average when shape is distributed). The shapes and the commands used to pro-
duce these results are provided in the SD. ADDA simulations where not conducted when M
was exceeding 64 GB (see Figure 1 in ADDA user manual for estimations of t and M).

Schiff MC DDA
Geometry N

105 t (s) M (Mo) t (s) M (Mo)

1. Monodisperse sphere: 0.9 0.04 22 2.103 2.104

2. Monodisp. ellipsoid ⊥: 2 0.09 87 5.103 2.104

3. Monodisperse ellipsoid: 4 0.17 87 3.105 2.104

4. Polydisperse ellipsoid: 7 0.27 87 ≃107 7.104

5. Polydisp. supershape: 15 0.55 93 - -
6. Distributed supershape: 15 18.1 147 - -
7. Monodisp. cylinder ⊥: 1 0.04 18 3.103 2.104

8. Monodisperse cylinder: 2 0.07 18 2.105 2.104

9. Polydisperse cylinder: 4 0.12 18 ≃107 7.104

10. Polydisperse helix: 6 0.58 56 - -
11. Distributed helix: 6 4.20 88 - -
12. One-ninth mixture of
1, 3, 4, 5, 6, 8, 9, 10, 11: 8 5.7 147 ∑ ti -

2.

7.

5.

10.

2. 5. 7. 10.
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5. COMMAND LINES AND GEOMETRIES USED TO PRODUCE THE RESULTS IN TA-
BLE 1 WITH SCHIFF SOFTWARE

A. Command lines
The command lines corresponding to the cases in Table 1 of the paper are listed below:

Case 1: schiff -i case1.yaml -g 10000 -d 9 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 3: schiff -i case3.yaml -g 10000 -d 39 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 4: schiff -i case4.yaml -g 10000 -d 70 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 5: schiff -i case5.yaml -g 10000 -d 145 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 6: schiff -i case6.yaml -g 10000 -d 145 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 8: schiff -i case8.yaml -g 10000 -d 20 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 9: schiff -i case9.yaml -g 10000 -d 40 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 10: schiff -i case10.yaml -g 10000 -d 63 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 11: schiff -i case11.yaml -g 10000 -d 60 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Case 12: schiff -i case12.yaml -g 10000 -d 80 -D -l 150 -a 181 -A 181 -w 0.4 -o results.txt index.txt

Cases 2 and 7 (fixed orientation) have been obtained by modifying the source code in order to
remove the integration over orientation.

Computation time and peak memory usage provided in Table 1 have been obtained using the
command
command time -v.

The number of samples N provided in Table 1 corresponds to the argument after option -g
multiplied by the argument after option -d. The number of samples have been adjusted to
achieve standard error < 1% for the total cross-sections (extinction, scattering, absorption) and
the differential cross-section at θs = 1◦.

The file index.txt containing the refractive index is the following :

index.txt

0 . 3 1 . 1 5 . 0 e −03 1 . 0
0 . 4 1 . 1 5 . 0 e −03 1 . 0
0 . 5 1 . 1 5 . 0 e −03 1 . 0

The files caseX.yaml defining the geometry are provided in the following section.
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B. Geometries
Overview of the geometries. The figures below provide renders of the geometries used to produce
the results in Table 1.

Case 1 Cases 2 & 3 Case 5 Case 7 & 8 Case 10

F
ro

nt
 v

ie
w

B
ot

to
m

 v
ie

w

Fig. S5. Renders of the geometries for fixed shapes used to produce the results in
Table 1. The obj files used for rendering have been obtained with the command
schiff -i caseX.yaml -G 1 -o caseX.obj. Files caseX.yaml are provided below.
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a b

Fig. S6. Render of 35 samplings of the geometry corresponding to case 6 in Table 1. a. front
view; b. bottom view. The obj files used for rendering have been obtained with the command
schiff -i case6.yaml -G 35 -o temp_output && csplit temp_output -z /^g\ / {*} -f particle -b %d.obj.
File case6.yaml is provided below.
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a b

Fig. S7. Render of 35 samplings of the geometry corresponding to case 11 in Table 1. a. front
view; b. bottom view. The obj files used for rendering have been obtained with the command
schiff -i case11.yaml -G 35 -o temp_output && csplit temp_output -z /^g\ / {*} -f particle -b %d.obj.
File case11.yaml is provided below.

Geometric parameters. The yaml files specifying the geometry of each case in Table 1 are listed
below, with respect to the parametric equations and probability distribution functions definition
provided in Section C (see SCHIFF-GEOMETRY):

case1.yaml

sphere :
radius : 6

case3.yaml

e l l i p s o i d :
a : 1
c : 5
radius_sphere : 6
s l i c e s : 256

case4.yaml

e l l i p s o i d :
a : 1
c : 5
radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
s l i c e s : 256
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case5.yaml

supershape :
formula0 :

A: 0 . 6
B : 1
M: 8
N0 : 4
N1 : 4
N2 : 4

formula1 :
A: 1
B : 5
M: 4
N0 : 1 . 2
N1 : 1 . 2
N2 : 1 . 2

radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
s l i c e s : 256

case6.yaml

supershape :
formula0 :

A: { gaussian : { mu: 0 . 6 , sigma : 0 . 0 6 } }
B : 1
M: 8
N0 : 4
N1 : 4
N2 : 4

formula1 :
A: { lognormal : { mu: 4 . 6 , sigma : 1 . 1 } }
B : 23
M: 4
N0 : { gaussian : { mu: 1 . 2 , sigma : 0 . 0 6 } }
N1 : { gaussian : { mu: 1 . 2 , sigma : 0 . 0 6 } }
N2 : { gaussian : { mu: 1 . 2 , sigma : 0 . 0 6 } }

s l i c e s : 256

case8.yaml

c y l i n d e r :
height : 3 0 . 6
radius : 3 . 0 6

case9.yaml

c y l i n d e r :
height : 3 0 . 6
radius : 3 . 0 6
radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
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case10.yaml

h e l i c a l _ p i p e :
p i t c h : 3 . 0 6
height : 3 0 . 6
r a d i u s _ h e l i c o i d : 3 . 0 6
r a d i u s _ c i r c l e : 1 . 2 2
radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
s l i c e s _ h e l i c o i d : 256

case11.yaml

h e l i c a l _ p i p e :
p i t c h :

histogram :
lower : 3
upper : 9
p r o b a b i l i t i e s :

− 1
− 1

height : { lognormal : { mu: 3 0 . 6 , sigma : 1 . 2 } }
r a d i u s _ h e l i c o i d : { gaussian : { mu: 3 . 0 6 , sigma : 0 . 3 } }
r a d i u s _ c i r c l e : { gaussian : { mu: 1 . 2 2 , sigma : 0 . 1 2 } }
s l i c e s _ h e l i c o i d : 256

case12.yaml

− sphere :
radius : 6
proba : 1

− e l l i p s o i d :
a : 1
c : 5
radius_sphere : 6
s l i c e s : 256
proba : 1

− e l l i p s o i d :
a : 1
c : 5
radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
s l i c e s : 256
proba : 1

− supershape :
formula0 :

A: 0 . 6
B : 1
M: 8
N0 : 4
N1 : 4
N2 : 4

formula1 :
A: 1
B : 5
M: 4
N0 : 1 . 2
N1 : 1 . 2
N2 : 1 . 2

radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
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s l i c e s : 256
proba : 1

− supershape :
formula0 :

A: { gaussian : { mu: 0 . 6 , sigma : 0 . 0 6 } }
B : 1
M: 8
N0 : 4
N1 : 4
N2 : 4

formula1 :
A: { lognormal : { mu: 4 . 6 , sigma : 1 . 1 } }
B : 23
M: 4
N0 : { gaussian : { mu: 1 . 2 , sigma : 0 . 0 6 } }
N1 : { gaussian : { mu: 1 . 2 , sigma : 0 . 0 6 } }
N2 : { gaussian : { mu: 1 . 2 , sigma : 0 . 0 6 } }

s l i c e s : 256
proba : 1

− c y l i n d e r :
height : 3 0 . 6
radius : 3 . 0 6
proba : 1

− c y l i n d e r :
height : 3 0 . 6
radius : 3 . 0 6
radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
proba : 1

− h e l i c a l _ p i p e :
p i t c h : 3 . 0 6
height : 3 0 . 6
r a d i u s _ h e l i c o i d : 3 . 0 6
r a d i u s _ c i r c l e : 1 . 2 2
radius_sphere : { lognormal : { mu: 6 , sigma : 1 . 2 } }
s l i c e s _ h e l i c o i d : 256
proba : 1

− h e l i c a l _ p i p e :
p i t c h :

histogram :
lower : 3
upper : 9
p r o b a b i l i t i e s :

− 1
− 1

height : { lognormal : { mu: 3 0 . 6 , sigma : 1 . 2 } }
r a d i u s _ h e l i c o i d : { gaussian : { mu: 3 . 0 6 , sigma : 0 . 3 } }
r a d i u s _ c i r c l e : { gaussian : { mu: 1 . 2 2 , sigma : 0 . 1 2 } }
s l i c e s _ h e l i c o i d : 256
proba : 1

C. Manual for schiff software
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SCHIFF(1) General Commands Manual SCHIFF(1)

NAME
schiff − estimate radiative properties of soft particles

SYNOPSIS
schiff [OPTIONS]... [FILE]

DESCRIPTION
schiff computes the radiative properties of soft particles with an "Approximation Method for Short Wav e-
length or High Energy Scattering" [1]. The implemented model is detailed in [2]. It relies on the
Monte−Carlo method to solve Maxwell’s equations within Schiff’s approximation; it estimates total cross
sections (extinction, absorption and scattering cross-sections) in addition of the inverse cumulative phase
function.

The shapes of the soft particles are controlled by the schiff-geometry(5) file submitted by the −i option.
The per wav elength optical properties of the soft particles are stored in FILE where each line is formatted
as "W N K Ne" whith "W" is the wav elength in vacuum expressed in micron, "N" and "K" are the real and
imaginary parts, respectively, of the refractive index, and "Ne" the refractive index of the medium. With no
FILE, the optical properties are read from standard input.

The estimated results follows the schiff-output(5) format and are written to the OUTPUT file or to standard
ouptut whether the −o OUTPUT option is defined or not, respectively.

OPTIONS
−a NUM_ANGLES

number of phase function scattering angles to estimate. These angles are uniformaly distributed in
[0, PI], i.e. the value of the iˆth angle, i in [0, NUM_ANGLES-1], is i*PI/(NUM_ANGLES-1). De-
fault is 1000.

−A NUM_ANGLES

number of scattering angles computed from the inverse cumulative phase function. The value of
the iˆth angle, i in [0, NUM_ANGLES-1], is CDFˆ-1(i/(NUM_ANGLES-1). Default is 2000.

−d NUM_INNER_SAMPLES

number of conditioned integration variable sampling (incident direction, volume, ray(s)) for each
sampled particle-shape. Default is 100. Calculation of optimal value is presented in [3].

−D discard computations of the [[inverse] cumulative] phase functions for large scattering angles. See
the −l option for the definition of large scattering angles.

−g NUM_PARTICLES

number of sampled particle-shapes. This is actually the number of realizations of the Monte Carlo
algorithm. Default is 10000.

−G COUNT

sample COUNT soft particles with respect to the defined distribution, dump their geometric data
and exit. The data are written to OUTPUT or the standard output whether the -o OUTPUT option
is defined or not, respectively. The outputted data followed the Alias Wav efront obj file format.

−h display short help and exit.

−i DISTRIBUTION

define the schiff-geometry(5) file that controls the geometry distribution of the soft particles.

−l LENGTH

characteristic length in micron of the soft particles. Used for the definition of the angle that sets
the limit between small and large scattering angles (see equation. 7 in [2]).

−n NUM_THREADS

hint on the number of threads to use during the integration. By default use as many threads as CPU
cores.

1



SCHIFF(1) General Commands Manual SCHIFF(1)

−o OUTPUT

write results to OUTPUT with respect to the schiff-output(5) format. If not defined, write results
to standard output.

−q do not print the helper message when no FILE is submitted.

−w W0[:W1]...
list of wav elengths in vacuum (expressed in micron) to integrate.

−−version

display version information and exit.

EXAMPLES
Estimate the radiative properties of soft particles whose shape is described in the geometry.yaml file and its
optical properties in the properties file. The characteristic length of the soft particle shapes is 2.3 microns
and the estimations is performed for the wav elengths 0.45 and 0.6 microns. The results are written to the
standard output:

$ schiff -i geometry.yaml -l 2.3 -w 0.45:0.6 properties

The soft particles have a characteristic length of 1 and their shape is controlled by the my_geom.yaml file.
Their optical properties are read from the standard input. The estimated wav elelength is 0.66 microns and
the results are written to the my_result file:

$ schiff -w 0.66 -l 1.0 -i my_geom.yaml -o my_result

Sample 10 soft particles whose shape is defined by the geometry.yaml file and write their triangulated geo-
metric data to the temp_output file. Use the csplit(1) Unix command to split the temp_output file in 10
files named particle<NUM>.obj, with NUM in [0, 9], each storing the geometric data of a sampled soft par-
ticle:

$ schiff -i geometry.yaml -G 10 -o temp_output
$ csplit temp_output -z /ˆg\ / {*} -f particle -b %d.obj

NOTES
[1] L. I. Schiff, 1956. Approximation Method for Short Wav elength or High−Energy Scattering. Phys. Rev.
104 − 1481−1485.

[2] J. Charon, S. Blanco, J. F. Cornet, J. Dauchet, M. El Hafi, R. Fournier, M. Kaissar Abboud, S. Weitz,
2015. Monte Carlo Implementation of Schiff’s Approximation for Estimating Radiative Properties of Ho-
mogeneous, Simple−Shaped and Optically Soft Particles: Application to Photosynthetic Micro-Organisms.
Journal of Quantitative Spectroscopy and Radiative Transfer 172 − 3−23.

[3] S. Weitz, S. Blanco, J. Charon, J. Dauchet, M. El Hafi, V. Eymet, O. Farges, R. Fournier, and J. Gau-
trais, 2016. Monte Carlo efficiency improvement by multiple sampling of conditioned integration variables.
Journal of Computational Physics 326 − 30−34.

COPYRIGHT
Copyright © 2015, 2016 CNRS. Copyright © 2019 |Meso|Star>. License GPLv3+: GNU GPL version 3 or
later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
csplit(1), schiff-geometry(5), schiff-output(5)
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NAME
schiff-geometry − control the shape of soft particles

DESCRIPTION
schiff-geometry is a YAML file [1] that controls the geometry distribution of soft particles. The schiff(1)
program relies on this description to generate the shape of the sampled soft particles.

A geometry is defined by a type and a set of parameters whose value is controlled by a distribution. Several
geometries with their own probability can be declared in the same schiff-geometry file to define a discrete
random variate of geometries. This allow to finely tune the shapes of the soft particles with a collection of
geometries, each representing a specific sub-set of shapes of the soft particles to handle.

GRAMMAR
This section describes the schiff−geometry grammar based on the YAML human readable data format [1].
The YAML format provides several ways to define a mapping or a sequence of data. The following gram-
mar always uses the more verbose form but any alternative YAML formatting can be used instead. Refer to
the example section for illustrations of such alternatives.

When the radius_sphere optional parameter is defined, the relative shape of the geometry must be fixed,
i.e. all other parameters must be constants. In this situation, only the volume of the geometry is variable; it
is equal to the volume of an equivalent sphere whose radius is controlled by the distribution of the ra-

dius_sphere parameter.

The slices optional attribute controls the discretization of the geometries in triangular meshes, i.e. the num-
ber of discrete steps around 2PI. When not defined it is assumed to be 64. Note that the helical_pipe ge-
ometry exposes 2 discretization parameters: slices_circle and slices_helicoid. The former controls the dis-
cretization of the meridian around 2PI while the later defines the total number of discrete steps along the
helicoid curve. When not defined slices_circle and slices_helicoid are set to 64 and 128, respectively.

All the geometries have the proba optional attribute that defines the unnormalized probability to sample the
geometry. If it is not defined, it is assumed to be equal to 1.

<schiff−geometry> ::= <geometry> | <geometry−list>

<geometry−list> ::= − <geometry>
[ − <geometry> ]

<geometry> ::= <cylinder−geometry>
| <ellipsoid−geometry>
| <helical−pipe−geometry>
| <sphere−geometry>
| <supershape−geometry>

<cylinder−geometry> ::= cylinder:
radius: <distribution>
height: <distribution>

[ radius_sphere: <distribution> ]
[ slices: INTEGER ]
[ proba: REAL ]

<ellipsoid−geometry> ::= ellipsoid:
a: <distribution>
c: <distribution>

[ radius_sphere: <distribution> ]
[ slices: INTEGER ]
[ proba: REAL ]

<helical−pipe−geometry> ::= helical_pipe:
pitch: <distribution>

1



SCHIFF-GEOMETRY(5) File Formats Manual SCHIFF-GEOMETRY(5)

height: <distribution>
radius_helicoid: <distribution>
radius_circle: <distribution>

[ radius_sphere: <distribution> ]
[ slices_helicoid: INTEGER ]
[ slices_circle: INTEGER ]

<sphere−geometry> ::= sphere:
radius: <distribution>

[ slices: INTEGER ]
[ proba: REAL ]

<supershape−geometry> ::= supershape:
formula0: <superformula>
formula1: <superformula>

[ radius_sphere: <distribution> ]
[ slices: INTEGER ]
[ proba: REAL ]

<superformula> ::= A: <distribution>
B: <Idistribution>
M: <distribution>
N0: <distribution>
N1: <distribution>
N2: <distribution>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<distribution> ::= <constant>
| <gaussian>
| <histogram>
| <lognormal>

<constant> ::= REAL

<lognormal> ::= lognormal:
mu: REAL
sigma: REAL

<gaussian> ::= gaussian:
mu: REAL
sigma: REAL

<histogram> ::= histogram:
lower: REAL
upper: REAL
probabilities:
<probabilities−list>

<probabilities−list> ::= − REAL
[ − <probabilities−list> ]

GEOMETRY TYPES
cylinder

A cylinder is simply defined by its height and a its radius.

2
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NAME
schiff−output − format of schiff(1) results.

DESCRIPTION
The output result of the schiff(1) program is a collection of ASCII floating point data. Each set of floating

point values are separated by an empty line. The first set is a list of per wav elength cross−sections. Each

line stores the estimated cross−section for a wav elength submitted by the −w option of schiff(1). It is for-

matted as "W E e A a S s P p" with "W" the wav elength in vacuum (expressed in microns), "E", "A" and

"S" the estimation of the extinction, absorption and scattering cross−sections, respectively, in square mi-

crons per particle, and "P" the estimated average projected area of the soft particles expressed in square mi-

crons per particle. The "e", "a", "s" and "p" values are the standard error of the aforementioned estimations.

Following the list of cross−sections comes the list of phase function descriptors. Each descriptor is a line

that gives informations on the [[inverse] cumulative] phase functions. It is formatted as "W theta-l Ws Ws-

SE Wc Wc-SE n nangles nangles−inv" with "W" the wav elength in vacuum (expressed in microns) of the

inverse cumulative phase function, "theta-l" the scattering angle in radians from which the phase function

was analytically computed, "Ws" and "Wc" the values of the differential cross−section and its cumulative at

"theta-l", "n" the parameter of the model used to analytically evaluate the phase function for large scattering

angles (i.e. angles greater than "theta-l"), "nangles" the number of scattering angles (−a option of schiff(1))

and "nangles−inv" the number of inverse cumulative phase function values (−A option of schiff(1)). The

"Ws-SE" and "Wc-SE" values are the standard error of the "Ws" and "Wc" estimations, respectively.

Then there is the list of phase functions, each stored as a list of lines formatted as "A E SE" where "E" is

the expected value of the phase function for the input scattering angle "A" in radians, and "SE" its standard

error. The number of scattering angles is controlled by the −a option of schiff(1).

After the phase functions come the cumulative phase functions that follow the format of the phase func-

tions, i.e. each cumulative phase function is a list a lines − one per scattering angle − that defines the input

scattering angle in radians, followed by the expected value and the standard error of its cumulative phase

function.

Finally, there is the inverse cumulative phase functions. Each of these functions lists a set of N probabilities

in [0, 1] and its corresponding scattering angles in [0, PI]. The number of entries of the inverse cumulative

phase functions is controlled by the −A option of schiff(1). Assuming a set of N angles, the iˆth angle (i in

[0, N−1]) is the angle whose probability is i/(N−1).

Note that the cross sections, the phase function descriptors, the phase functions, their cumulative and their

inverse cumulative are all sorted in ascending order with respect to their associated wav elength.

GRAMMAR
The following grammar formally describes the schiff(1) output format. The output values are ASCII data

formatted line by line. By convention, in the following grammar the line data are listed between quote

marks. The grammar may use new lines for formatting constraints, but data are actually on the same line

while a closed quote mark is not defined.

<schiff−output> ::= <cross−sections>

EMPTY−LINE

<phase−function−descriptor>

EMPTY−LINE

<phase−functions>

EMPTY-LINE

<cumulative−phase−functions>

EMPTY−LINE

<inverse−cumulative−phase−functions>

EMPTY−LINE

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<cross−sections> ::= "WAVELENGTH <extinction> <absorption>

1
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<scattering> <area>"

[ <cross−sections> ]

<extinction> ::= ESTIMATION STANDARD−ERROR

<absorption> ::= ESTIMATION STANDARD−ERROR

<scattering> ::= ESTIMATION STANDARD−ERROR

<area> ::= ESTIMATION STANDARD−ERROR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<phase−functions−descriptors>

::= "WAVELENGTH THETA <PF(THETA)> <CDF(THETA)>

N #ANGLES #INVCUM"

[ <phase−functions−descriptors> ]

<CDF(THETA)> ::= ESTIMATION STANDARD−ERROR

<PF(THETA)> ::= ESTIMATION STANDARD−ERROR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<phase−functions> ::= <function−entries>

[ EMPTY-LINE

<phase−functions> ]

<cumulative−phase−functions>

::= <function−entries>

[ EMPTY-LINE

<cumulative−phase−functions> ]

<function−entries> ::= ANGLE ESTIMATION STANDARD-ERROR

[ <phase−function−entries> ]

<inverse−cumulative−phase−functions>

::= <inverse−function−entries>

[ EMPTY-LINE

<inverse−cumulative−phase−functions> ]

<inverse−function−entries>

::= PROBABILITY ANGLE

[ <inverse−function−entries> ]

EXAMPLE
The following output is emitted by the schiff(1) program invoked on the wav elengths 0.3 and 0.6 micron.

Note that actually, schiff(1) does not write comments, i.e. text preceeded by the "#" character. Howev er

comments are added in order to help in understanding the data layout.

0.3 10.61 0.20 9.51e-3 2.37e-4 10.6 0.20 5.25 0.10 # X−sections

0.6 11.15 0.25 4.76e-3 1.19e-4 11.1 0.25 5.25 0.10 # X−sections

0.3 0.18 1.37 17.6 7.74 0.73 0.80 1000 2000 # descriptor

0.6 0.26 9.81 5.26 7.65 0.48 2.90 1000 2000 # descriptor

0 520.23 64.2971 # Phase function (0.3 micron)

0.00314474 474.315 50.6471

...

3.13845 0.0196258 0

3.14159 0.0196259 0
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