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Relying on Feynman-Kac path-integral methodology, we present a new statistical perspective on
wave single-scattering by complex three-dimensional objects. The approach is implemented on three
models - Schiff approximation, Born approximation and rigorous Born series - and familiar inter-
pretative difficulties such as the analysis of moments over scatterer distributions (size, orientation,
shape...) are addressed. In terms of the computational contribution, we show that commonly-
recognized features of the Monte Carlo method with respect to geometric complexity can now be
available when solving electromagnetic scattering.

Whether the question is theoretical or numerical, the
scattering of waves by objects of complex spatial shape
often leads to strong interpretative or computational dif-
ficulties, especially when the scatterers are large relative
to the wavelength and/or with a high scattering poten-
tial [1, 2]. Furthermore, in most application situations
the study of non-spherical scatterers usually requires a
statistical description in terms of size, orientation and
shape distributions, which increases the challenge of ob-
taining reliable quantifications [3–6].

Faced with questions of great complexity in geometri-
cal and phenomenological terms, the choice of alternative
representations based on a statistical reformulation can
lead to a renewed viewpoint and produce surprisingly ef-
ficient numerical solutions [7–9]. In this perspective, the
aim of this paper is to present a novel formulation of the
underlying wave physics in probabilistic terms, with a
direct methodological reference to the work of Feynman-
Kac [10]. This requires producing a path space for each of
the alternative models we present, and thus formulating
the observable as a path integral over this space [11–13].
It is then a question of making explicit the quantities
of interest directly in the form of the expectation of a
stochastic process.

To our knowledge the only prospective work around
these ideas was carried out on the probabilistic refor-
mulation of the electromagnetic model under Schiff ap-
proximation for simple-shaped scatterers [14]. In this
paper we first extend that work to more complex ge-
ometries and then the same approach is applied to other
well-established path integral formulations of the scatter-
ing problem: Born approximation and a rigorous infinite

Born series.
The combination of Schiff and Born approximations

typically allows the estimation of the spectral and angu-
lar light-scattering properties of photosynthetic microor-
ganisms, or any soft particle, to be used as an input for
radiative transfer models around issues in the physical
chemistry of photobioreactive processes [4]. More gener-
ally, our study using the complete Born series reveals the
difficulties that will be encountered when tackling known
acute problems, such as rigorous solutions for large scat-
tering potentials.

Finally, the proposed formulation offers a new com-
putational perspective by naturally bringing to the fore-
front Monte Carlo methods (MC), for which the estima-
tion of the expectation of random variables is the most
basic theoretical issue. We show that combining path
space sampling with the latest computer graphics tools
for intersection calculations is a high-performance solu-
tion to obtain reference calculations for complex scatterer
shapes. In addition, we find the commonly-recognized
characteristics of MC for the simulation of field propaga-
tion in optical systems, as mentioned in [15] : simplicity
of treatment of complex boundary conditions, ease of mo-
ment estimation on random configurations, etc.

The scattering problem is the following: an incident
plane wave Ei with wave number k = 2π

λ and propaga-
tion direction ei interacts with a scattering potential U
defined in a finite region V with complex spatial shape,
embedded in an infinite homogeneous and non-absorbing
medium (see Fig. 1). The resulting field E is the solution
of

∇×∇× E− k2E+ UE= 0 (1)
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which reduces to the Helmoltz equation in case of scalar
waves. Ei is the solution of the above equation when
U = 0 and the scattered field Es, which is non-zero
when U 6= 0, is defined as E = Ei + Es. In electro-
magnetism, scattering potential is classically defined by
the relative refractive index m of the scattering object:
U = k2(1−m2). The solution to this problem is invariant
with respect to contrast 1 − m2 and size-to-wavelength
ratio x.
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FIG. 1. Representation of the path spaces associated with the
three studied models. The scattered field is estimated at loca-
tion r, at distance r, in the direction es ≡ (θs, ϕs). a. Schiff
approximation: paths are straight lines along the incident di-
rection ei. b - dashed black line. Born approximation:
paths are incoming in direction ei, interact at one location r0

inside the scatterer volume and leave in the scattered direc-
tion es. b - plain black line. Born series expansion: paths
go through multiple interaction locations r0, r1, r2... inside
the scatterer.

Path integral formulations for this problem will be
derived from the Volume Integral Equation [2]

Es(r) =

∫
V

dr0 U(r0) ¯̄G(r, r0)E(r0) (2)

where ¯̄G(r, r0) =
[
¯̄I + ∇⊗∇

k2

]
e−ik‖r−r0‖

4π‖r−r0‖ is the free-space

dyadic Green function. The objective of the following
paragraphs is to express the scattered field as an expec-
tation on a stochastic process:

Es(r) = E [WΓ] =

∫
DΓ

dγ pΓ(γ)w(γ) (3)

where E is the expectation operator and WΓ = w(Γ) is
defined as a function of the random variable Γ with prob-
ability density function (pdf) pΓ over DΓ. We will focus
on formulations in which DΓ is a path space and WΓ is
the contribution to Es of the random path Γ. Computa-
tionally speaking, this leads to MC algorithms sampling
N paths γi to finally estimate their average contribution
Es ' 1/N

∑N
i=1w(γi), with a statistical error provided

by the standard deviation of contributions w(γi). The
following paragraphs aim to produce random paths Γ
that can be efficiently sampled whatever the scatterer
geometry, using state-of-the-art computer graphics tools.

Schiff approximation [16] is an eikonal-like approx-
imation based on Eq. 2 that gives the scattered field in

the far-field region for large soft-scatterers (x � 1 and
|m−1| � 1). In [14], it is reformulated as an expectation
which, using the notations of Eq. 3, leads to:

WΓ = P ik
2π

e−ikr

r
eikθs(X0 cosϕs+Y0 sinϕs)

×
[
1− e−ik(m−1)l(R0)

] (4)

where R0 = (X0, Y0) is a random location uniformly dis-
tributed on the scatterer’s projected surface P seen from
a given incident direction ei, and l(R0) is the crossing
length of the straight path starting at R0 in the direc-
tion ei (see a realization in Fig. 1.a). The trial for path
Γ and its contribution WΓ is the following: 1. location
r0 is uniformly sampled over P, 2. path γi is traced from
r0 in direction ei, 3. the path crossing length l(r0) is
retrieved and the contribution is calculated according to
Eq. 4 with R0 = r0.

Born approximation, which is similar to Rayleigh-
Gans-Debye approximation [17], is valid for small soft-
scatterers (x � 1 and |m2 − 1| � 1). For observation
points r in the far-field region, it assumes that the field
inside the scatterer is equal to the incident field, i.e.
E(r0) = Ei(r0) in Eq. 2. Following the methodology
presented in [14], this equation is multiplied and divided
by the pdf pR0(r0) of a random location R0 defined over
the scatterer volume V (at this stage, we do not need to
specify this pdf except for the fact that it is non-zero for
every location r0 ∈ V ; we can take a uniform distribu-
tion, for example):

WΓ =
U(R0) ¯̄G(r,R0)Ei(R0)

pR0
(R0)

(5)

Here the path Γ(r,R0) comes from direction ei, interacts
at location R0 within V and leaves the scatterer in direc-
tion es until it reaches r (see a realization in Fig. 1.b).
The trial corresponding to Eq. 5 is: 1. location r0 ∈ V is
sampled according to pR0

, 2. path γi is traced, 3. its con-
tribution is calculated according to Eq. 5, with R0 = r0.

Born series expansion provides a reference solution.
In comparison with Born approximation, the internal
field E(r0) is no longer approximated, but is obtained
by applying Eq. 2 for locations inside V. In this case,
the strong singularity at r = r0 can be handled with
the Cauchy principal value for spherical exclusion vol-
ume Vδ,r of radius δ centered at r [2]. Eq. 2 becomes

E(r0) = η(r0)Ei(r0) + ( ¯̄L
1
E)(r0) (6)

with η(r) = 3
m2(r)+2 and the integral operator

( ¯̄L
n
f)(r0) = lim

δ→0

∫
V cδ,r0

dr1 · · ·
∫
V cδ,rn−1

drn

n∏
j=1

¯̄A(rj−1, rj)f(rn)

where ¯̄A(rj−1, rj) = U(rj)η(rj−1) ¯̄G(rj−1, rj) and V cδ,r =
V \Vδ,r is the set of locations in the scatterer volume but
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not in the exclusion volume (it is the complement of Vδ(r)
in V ). Numerically, we classically ensure that the value
of δ is small enough (see Fig. 2).

The Born series expansion of the internal field is ob-
tained by the successive substitution of Eq. 6 into itself:

E(r0) =
∑+∞
n=0( ¯̄L

n
η Ei)(r0). This expression is exact

only for values of m and x within the radius of conver-
gence of the series [18]. Reformulation as an expecta-

tion requires two steps: first, the integral operator ¯̄L
n

is
reformulated using n random locations Rj=1,2,...,n with
distribution pRj (rj); then the infinite sum in the Born
series is reformulated by introducing a discrete random
variable N - a random order in the series - with proba-
bility distribution pN (each term in the sum is multiplied
and divided by pN (n), with

∑+∞
n=0 pN (n) = 1). Finally,

the incident field in Eq. 5 is replaced by this expression
of the internal field, to obtain Eq. 3 with:

WΓ =
U(R0) ¯̄G(r,R0)

pR0(R0)

N∏
j=1

¯̄A(Rj−1,Rj)

pRj (Rj)

η(RN )Ei(RN )

pN (N)

(7)
Intermediate steps leading to this result are pro-
vided in the Supplemental Material (SM). Path
Γ(r,R0,R1, · · · ,RN ) comes from direction ei, inter-
acts at several locations R0,R1,R2 · · · within V and
leaves the scatterer in direction es until it reaches r (see
Fig. 1.b). The trial corresponding to Eq. 7 is: 1. location
r0 ∈ V is sampled according to pR0

, 2. the number n
of locations for the current path γi is sampled accord-
ing to pN , 3. γi is traced by successively sampling the n
locations rj=1,2··· ,n according to their respective distri-
butions pRj in V cδ,rj−1

, 4. the contribution is calculated

according to Eq. 7 with N = n and Rj = rj (if n = 0,

the contribution is U(r0) ¯̄G(r, r0)η(r0)Ei(r0)/pR0
(r0)).

Numerical validation concerning the Schiff approxi-
mation has already been presented in [14]; only computa-
tion times for complex geometries will be reported in Ta-
ble I. The results obtained for Born approximation and
Born series expansion are presented in Fig. 2 and cross-
validated with reference analytical solutions for spheres.
However, no simplification related to spherical shapes is
used here. The geometry of the scatterer only affects
path sampling: locations Rj are here sampled within a
sphere; more complex scatterers would merely require a
more complex volume to be sampled, as discussed later.

Note that the Born approximation estimator converges
quickly and no difficulty is recorded (see Fig. 2.a). For
Born series expansion (see Fig. 2.b), by contrast, we
record convergence issues when increasing the refractive
index (compare error bars for crosses and circles) and
the size parameter (compare crosses and squares). This
was expected, since the numerical solution to Maxwell’s
equations is known to be difficult in this case. The usual
deterministic numerical methods are mainly limited by
current computer memory size and/or floating point ac-

curacy [1]. Here, the limitations are totally different.
We only observe convergence issues, which should subse-
quently be addressed using well-established integral re-
formulation approaches such as the zero-variance princi-
ple to optimize sampling distributions pRj (see the cur-
rent pRj choices in SM).
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FIG. 2. Results for Born approximation (a - left panels) and
Born series expansion (b - right panels) in the far field region,
for spheres with different size parameters x and refractive in-
dices m = n− i 0.01. Real part (upper panels) and imaginary
part (lower panels) of the first element in the scattering ma-

trix ¯̄S are plotted as function of the scattering angle θs (see

Fig. 1), using the definition in [17]: Es = eikr

−ikr
¯̄S Ei. An-

alytical reference solutions from [17] are plotted with lines.
MC estimates obtained for 106 paths are plotted with points
and error bars indicating the 99% confidence interval. The
algorithm implemented to produce these results uses an op-
timization consisting in summing, along the same path Γ|M ,
the contributions WΓ|N=0, WΓ|N=1, · · · WΓ|N=M of several
orders N = 1, 2, · · · ,M in the Born series, where M is a ran-
dom truncation order (see details in SM). The first location
R0 is uniformly sampled - the other sampling distributions
are given in SM - and the radius of the exclusion volume is

δ = x2

k
n2−1
n2+2

. Computation time is about 1 s for Born approx-
imation and 3 s for Born series expansion on an Intel Core
i7-3720QM@2.60GHz CPU laptop.

The average cross section σ(es) = r2 Es · E∗s of
an ensemble of scatterers is often a targeted quantity
when solving scattering problems [3–6, 16]. However, in-
jecting Eq. 3 into this expression does not lead to an ex-
pectation, due to Poynting-like nonlinearity with respect
to WΓ: σ(es) = r2 E [WΓ] · E [W ∗

Γ] 6= E
[
r2WΓ ·W ∗

Γ

]
.

Following the methodology presented in [13, 14], σ(es) is
reformulated as the expectation on a stochastic process
in the squared path-space D2

Γ, by using two independent
random path variables Γ1 and Γ2, identically distributed
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as Γ:

σ(es) = E
[
r2WΓ1 ·W ∗

Γ2

]
(8)

Averaging over scatterer distributions is now straightfor-
ward, leading to the following trial: 1. shape, orientation,
size, value of the scattering potential U are sampled, 2.
two paths γ1 and γ2 are sampled (see procedures in the
previous paragraphs) and 3. the contribution rwγ1 ·rw∗γ2

is computed. A direct consequence is that MC calcula-
tion times are weakly sensitive to the refinement of the
geometry statistics, since path space and geometric con-
figuration space are simultaneously covered [19] (see Ta-
ble I).

2. 3.

6. 7.

Geometry N
105 t (s) m (Mo)

1. Monodisperse sphere: 0.9 0.04 22
2. Monodisperse ellipsoid: 4 0.20 87
3. Monodisp. supershape: 8 0.35 92
4. Polydisp. supershape: 15 0.55 93
5. Distributed supershape: 15 18.1 147

6. Monodisperse cylinder: 2 0.15 18
7. Monodisperse helix: 4 0.30 56
8. Polydisperse helix: 6 0.58 56
9. Distributed helix: 6 4.20 88
10. One-ninth mixture of
the above shapes: 11 12.2 193

TABLE I. Computation of total cross-sections (extinction,
scattering, absorption) and differential cross-section at θs =
1◦ using Schiff software [20] (Schiff approximation for soft
particles). Number of samples N , calculation times t and
peak memory usage m required to achieve standard error
< 1% for various shapes, with the same laptop used in Fig. 2.
”Monodisperse” indicates a unique geometry, ”Polydisperse”
a log normal size distribution with ln(σ) = 0.18 and ”Dis-
tributed” a distribution of several parameters in the shape
parametric equation. Orientation is isotropically distributed.
Properties are representative of photosynthetic microorgan-
isms: m = 1.1 − i 5 10−3, λ = 400nm, volume-equivalent
sphere radius req = 6µm, i.e. x =

2πreq
λ
' 94 (on average

when size is distributed) and aspect ratio 1/5 (on average
when shape is distributed). The shapes and the commands
used to produce these results are provided in the SM.

Implementation for complex geometries is com-
monly recognized to be quite simple with MC approaches.
Indeed, by using open access libraries for ray tracing de-
veloped by the computer graphics community under the
solicitation of the cinema industries [21], we are able to
easily implement the path-sampling procedures presented
in this paper for any geometry specified by its bounding
surface. However, sampling the geometric data during
the MC calculation, as required here, is not straightfor-
ward with the available tools, because they are usually
designed to generate images from fixed scenes (and an-
imations are constructed as sequences of such images).
For this reason, most ray-tracing acceleration structures

have been developed for fixed geometric data, and gen-
erating such a structure at each MC sample would be
highly inefficient. We therefore developed a specific ap-
proach in collaboration with computer graphics experts
[20]. The geometry is specified by statistical distributions
of the parameters and, based on [19], several paths are
traced for each sampled shape. We fully implemented
this approach for Schiff’s approximation and the result
is a free and open-source software application whose fea-
tures with respect to geometric complexity are presented
in Table I. An outstanding feature of this programming
approach is the orthogonality between the path-tracking
algorithm and the representation of surface data [22, 23].
As a result, simulating any complex-shaped scatterer is
in practice as simple as simulating a sphere, and calcu-
lation times are only weakly sensitive to shape complex-
ity (compare cases 2, 3, 6 and 7 in Table I). Memory
requirements also remain quite stable, and are low com-
pared to deterministic methods using discretization (e.g.
method-of-moments), since MC has the ability to directly
evaluate targeted quantities without having to generate
a mesh and compute intermediate fields over it. Further-
more, thanks to the work on path-integral formulation
presented above [13, 14, 19], the MC samples required
to solve the scattering problem are also simultaneously
used to cover the geometry statistics. As a result, the
number of samples and the computation time are only
multiplied by 5 when accounting for orientation distri-
bution (compare cases 2 and 6 with case 1), and by 2
when further adding size distribution (compare cases 4
and 8 with 3 and 7, respectively); evaluating the proper-
ties of a mixture of 9 particle types in case 10 is easier
than simulating the most demanding particle type alone
(case 5 here). In our examples, the number of samples
required to simulate size distribution is also sufficient to
cover aspect ratio and shape distribution (N is the same
in cases 4 and 5, and in cases 8 and 9), but the computa-
tion time is increased. This additional time corresponds
to the generation of the geometric data in the case of
distributed objects, while we avoid such geometry sam-
pling in the case of size distribution, thanks to a scaling
of the wavelength that preserves size-to-wavelength ratio
x. Finally, this software also takes advantage of the op-
portunity to estimate several quantities simultaneously
with the same path samples [9, 14]. As a result, evalu-
ating 40 wavelengths to construct a spectrum, as in [4],
only multiplies calculation time by 4 - instead of 40 with
deterministic methods - when compared to the calcula-
tion for one single wavelength in Table I. Overall, we are
now able to produce spectral and angular radiative prop-
erties of helical-shaped microalgae Arthrospira platensis
in 20 minutes, whereas this required several months with
a straight cylinder model using deterministic integration
methods [4].

To conclude, we have presented a new statistical for-
mulation for wave scattering that brings original path-
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integral representations and high-performance numerical
solutions. High-contrast and large scatterers remain chal-
lenging, as with deterministic approaches, and will re-
quire joint efforts in path-integral formulation for hyper-
bolic differential equations, as well as sampling strategies
for the resulting processes. Although our examples have
focused on electromagnetic scattering perspectives, let
us emphasize that the three models illustrated here were
developed in the field of quantum mechanics.

This work was sponsored by grants ANR-10-LABX-
0016 (Labex IMobS3), ANR-16-IDEX-0001 (IDEX-
ISITE CAP 20-25) and ANR-10-LABX-22–01 (Labex
SOLSTICE) [24].
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