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Abstract

We consider reinforcement learning in a discrete, undiscounted, infinite-horizon
Markov Decision Problem (MDP) under the average reward criterion, and focus on
the minimization of the regret with respect to an optimal policy, when the learner
does not know the rewards nor the transitions of the MDP. In light of their success
at regret minimization in multi-armed bandits, popular bandit strategies, such as
the optimistic UCB, KL-UCB or the Bayesian Thompson sampling strategy, have
been extended to the MDP setup. Despite some key successes, existing strategies
for solving this problem either fail to be provably asymptotically optimal, or suffer
from prohibitive burn-in phase and computational complexity when implemented
in practice. In this work, we shed a novel light on regret minimization strategies,
by extending to reinforcement learning the computationally appealing Indexed
Minimum Empirical Divergence (IMED) bandit algorithm. Traditional asymptotic
problem-dependent lower bounds on the regret are known under the assumption
that the MDP is ergodic. Under this assumption, we introduce IMED-RL and prove
that its regret upper bound asymptotically matches the regret lower bound. We
discuss both the case when the supports of transitions are unknown, and the more
informative but a priori harder-to-exploit-optimally case when they are known.
Rewards are assumed light-tailed, semi-bounded from above. Last, we provide
numerical illustrations on classical tabular MDPs, ergodic and communicating only,
showing the competitiveness of IMED-RL in finite-time against state-of-the-art
algorithms. IMED-RL also benefits from a light complexity.

1 Introduction

We study Reinforcement Learning (RL) with an unknown finite Markov Decision Problem (MDP)
under the average-reward criterion in which a learning algorithm interacts sequentially with the
dynamical system, without any reset, in a single and infinite sequence of observations, actions, and
rewards while trying to maximize its total accumulated rewards over time. Formally, we consider a
finite MDP M = (S, A, p,r) where S is the finite set of states, A = (Ajy)scs specifies the set of
actions available in each state and we introduce the set of pairs Xnr = {(s,a) : s € S, a € A} for
convenience. Furthef} p : X — P(S) is the transition distribution function and r : Xy — P(R)
the reward distribution function, with corresponding mean reward function denoted by m : A\ — R.
An agent interacts with the MDP at discrete time steps ¢t € N* and yields a random sequence
(st, at, )¢ of states, actions, and rewards in the following way. At each time step ¢, the agent observes
the current state s; and decides the action a; to take based on s; and possibly past information, i.e.
previous elements of the sequence. After playing a., it observes a reward r; ~ r (¢, a; ), the current
state of the MDP changes to s;1+1 ~ p (-|s¢, a;) and the agent proceeds sequentially. In the average-

'Given a set I, P (E) denotes the set of probability distributions on F.
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reward setting, one is interested in maximizing the limit, % ZtT:l r¢, when T' — oo, providing it
exists. This setting is a popular framework for studying sequential decision making problems; it can
be traced back to seminal papers such as those of |Graves and Lai|[1997] and |Burnetas and Katehakis
[1997]] This theoretical framework allows to study the exploration-exploitation trade-off that arises
from the sequential optimization problem a learner is trying to solve while being uncertain about the
very problem it is optimizing.

In this paper, one is interested in developing a sampling strategy that is optimal amongst strategies
that aim at maximizing the average-reward, i.e. balancing exploration and exploitation in an optimal
way. To assert optimality, we define the notion of regret and state a regret lower bound with the
purpose of defining a theoretically sound notion of optimality that is problem-dependent. While
regret defines the discrepancy to optimality of a learning strategy, a problem-dependent regret lower
bound will formally assess the minimal regret that any learning algorithm must incur on a given
MDP problem by computing a minimal rate of exploration. Because this minimal rate of exploration
depends on the problem, it is said to be problem-dependent, as opposed to worst case regret study
that can exist in the MDP literature (e.g. Jaksch et al.|[2010]]). Regret lower bounds currently exist in
the literature when the MDP M is assumed to be ergodi Hence we hereafter make this assumption,
in order to be able to compare the regret of our algorithm to an optimal bound. Similarly, to ensure
fast enough convergence of the empirical estimate of the reward to the true mean, an assumption
controlling the rate of convergence to the mean is necessary.

Assumption 1 (Light-tail rewards). For all x € X, the moment generating function of the reward
exists in a neighborhood of 0: 3N, > Q VA € R such that || < Ay, Eger(z)[exp(AR)] < o0

Policy Regret and ergodicity are defined using properties of the set of stationary deterministic poli-
cies II(M) on M. On M, each stationary deterministic policy 7 : S — A, defines a Markov
reward process, i.e. a Markov chain on S with kernel p, : s € S — p(-s,7(s)) € P(S)
together with rewards r, : s € S +— r(s,m(s)) € P(R) and associated mean rewards
m, : s €S+ m(s,m(s)) €R. The t-steps transition kernel of 7 on M is denoted p’. We

T
denote p,, = Th_r)r}>o 7 > pit: & — P(S) the Cesaro-average of pr. A learning agent is executing a
t=1

sequence of policies 7; € II(M), ¢ > 1, where 7; depends on past information (s, az/, 7¢), . With
a slight abuse of notation, a sequence of identical decision rules, 7, = 7 for all ¢, is also denoted 7.

Gain The cumulative reward (value) at time 7', starting from an initial state s; of policy m = (),
is formally given by

T T

T t—1
VoM, m,T) = Exvr,s, [Z n] =ErM.s, [; m(s;, at)} = > (T Promn, )(s)- (0

t=1 t=1 t'=1

For m € II(M), the average-reward +V;, (M, 7, T) tends to (p,m) (s1) as T — oo. The gain of
policy € TI(M), when starting from state s, is defined by g, (s1) = (P, m)(s1) and the optimal
gain is defined as g*(s1) = max crv) 8r(51). Os(M) = {7 € II : g (s) = g*(s)} is the set of
policies achieving maximal gain on M starting from state s.

Definition 1 (Regret). The regret at time T of a learning policy m = (m;); starting at state s on an
MDP M is defined with respect to any 7 € O (M), as

Rw,s (M7 T; 71—*) = ‘/;(Mv ﬂ—*v T) - VVS(Mv , T) . 2

In this paper, we aim to find a learning algorithm with asymptotic minimal regret. The Lemma [I]
will prove that for all optimal policies, 7*, regrets are the same up to a bounded term that therefore
does not count in asymptotic analysis. Some authors such as Bourel et al.|[2020] define the regret
as TgM(s) — Vi(M, 7, T) which is equal to the one we defined up to a bounded term (again by
Lemmal(I)). No stationary policy can be optimal at all time and the important fact is that all those
notions of regret induce the same asymptotic lower bound.

In the considered setting, the learning agent interacts with the MDP without any reset. The minimal
assumption would be to allow the agent to come back with positive probability from any initial

*We prefer the term ergodic over the more accurate one, irreducible as it is a standard abuse of terminology
in the MDP community. Mathematically, an MDP is ergodic if both irreducible, aperiodic and positive recurrent.



mistake in finite time, so that the agent is not stuck in a sub-optimal area of the system. This is
assuming that the MDP is communicating, that is Vs, s’, 3m,t € N : pt (s|s) > 0. However, in the
literature, lower bounds on the regret are stated for MDPs satisfying a stronger assumption, ergodicity.
Since one is interested in crafting an algorithm matching a lower bound, we consider this stronger
assumption.

Assumption 2 (Ergodic MDP). The MDP M is ergodic, that is Vs, s',Ym,3t € N : pL (s'|s) > 0.

Intuitively, this means that for all policies and all couples of states, there exists a finite trajectory of
positive probability between the states. Interestingly, the ergodic property can be assumed on the
MBDP or on the set of policies in which we seek an optimal one. For instance, in any communicating
MDP all e-soft policiesﬂ are ergodic; more in the Experiment section |5|and Appendix

Related work Had the MDP only one state, it would be a bandit problem. Lower bound on the
bandit regret and algorithms matching this lower bound, sometimes up to a constant factor, are
well studied in the bandit literature. Therefore, bandit sampling strategies with known theoretical
guarantees have inspired RL algorithms. The KL-UCB algorithm (Burnetas and Katehakis| [[1996]],
Maillard et al.|[2011])), has inspired the strategy of the seminal paper of[Burnetas and Katehakis|[[1997],
as well the more recent KL-UCRL strategy (Filippi et al.|[2010] |Talebi and Maillard|[2018]]). Inspired
by the UCB algorithm (Agrawall [1995]], |Auer et al.| [2002]]), a number of strategies implementing
the optimism principle have emerged such as UCRL (Auer and Ortner| [2006]]), UCRL2 (Jaksch et al.
[2010]]) and UCRL3 (Bourel et al.|[2020] (and beyond, |Azar et al.| [2017]], Dann et al.|[2017]] for the
related episodic setup). The strategy PSRL (Osband et al.|[2013])) is inspired by Thompson sampling
(Thompson! [[1933])).

Outline and contribution In this work, we build on the IMED strategy (Honda and Takemura
[2015])), a bandit algorithm that benefits from practical and optimal guarantees but has never been
used by the RL community. We fill this gap by proposing the IMED-RL algorithm which we prove
to be asymptotically optimal for the average-reward criterion. We revisit the notion of skeleton
(Equation[T2) introduced in the seminal work of Burnetas and Katehakis| [1997], with a subtle but key
modification that prevents a prohibitive burn-in phase (see Appendix |G]for further details). Further,
this novel notion of skeleton enables IMED-RL to remove any tracking or hyperparameter and mimic
a stochastic-policy-iteration-like algorithm. E] Further, this skeleton scales naturally with the studied
MDP as it does not explicitly refer to absolute quantities such as the time. We prove that our proposed
IMED-RL is asymptotically optimal and show its numerical competitivity.

Building on IMED, we make an additional assumption on the reward that is less restrictive than the
common bounded reward hypothesis made in the RL community.

Assumption 3 (Semi-bounded rewards). Forall x € X, r(x) belongs to a subset F,, C P (R) known
to the learner| There exists a known quantity Mmyax(z) € R such that for all x € X, the support
Supp(r(x)) of the reward distribution is semi-bounded from above, Supp(r(zx)) C] —00, Mmaz ()],
and its mean satisfies m(x) < Mpyax ().

Ergodic assumption While many recent works focused on worst-case regret bounds only (e.g.
Domingues et al.|[2021]], Zanette and Brunskill|[2019],Jin et al.|[2018]|] and citations therein), studying
problem-dependent optimal regret bounds has been somewhat overlooked. Being more general is
always more appealing but the restriction from communicating MDPs to ergodic MDPs allows us to
target exact asymptotic optimality ; not just bound, not just worst-case bound. Ergodic MDPs is the
only case in which explicit problem-dependent lower bounds are known and hence can be directly
used to build a strategy. Indeed, the main challenge towards problem-dependent optimality is that
existing lower bounds for exploration problems in MDPs are usually written in terms of non-convex
optimization problems. This implicit form makes it hard to understand the actual complexity of
the setting and, thus, to design optimal algorithms. Existing proof strategies for state-of-the-art
algorithms (UCRL, PSRL, etc) ensure a regret for communicating MDPs but fail to provide optimality
guarantees even in the ergodic case. We believe that deriving a sharp result in the ergodic case

3A policy 7 : S — P(As) is e-soft if 7(a|s) > £/|.As| for all s and a.

*The skeleton in|Burnetas and Katehakis|[[1997] is sometimes empty at some states, when ¢ is too small, this
causes the strategy to work well only after ¢ is large enough to ensure that the skeleton contains at least one
action in each state.

Se. g. Bernoulli, multinomial with unknown support, beta, truncated Gaussians, a mixture of those, efc.



might prove to be insightful to pave the way towards the communicating case. From a theoretical
standpoint, related to UCRL type strategy, modern analysis of KL-UCRL by Taleb1 and Maillard|[2018]
also makes the ergodic assumption. This hypothesis has also been used in the theoretical work of
Tewari and Bartlett [2007]] and the work of |Ok et al.|[2018]] that concerns structured MDPs. Related
to this assumption are works that are interested in identification and sample complexity. [Wang| [2017]]
introduced a primal-dual method to compute an e-optimal policy and bound the number of sample
transitions to reach this goal. [Jin and Sidford [2020] relaxed the ergodic hypothesis by using a mixing
hypothesis that implies the uniqueness of recurrent class for each policy. In this setting, the authors
also derive a bound on the number of samples to compute an e-optimal policy.

2 Regret lower bound

In this section, we recall the regret lower bound for ergodic MDPs and provide a few insights about it.

Characterizing optimal policies Relying on classical results that can be found in the books of
Puterman| [1994]] and |[Hernandez-Lerma and Lasserre|[1996], we give a useful characterization of
optimal policies that is used to derive a regret lower bound. Under the ergodic Assumption 2]of MDP
M, for all policy 7 € II(M), the gain is independent from the initial state, i.e. g (s) = g (s') for all
states s and s’, and we denote it g,.. Similarly, the set of optimal policies O(M) is state-independent
since O5(M) = Oy (M). Any policy 7 satisfy the following fixed point property

(Poisson equation) gr +br(s) =mg(s) + (p=bx)(s), 3)
where b, : § — Ris called the bias function and is defined up to an additive constant by b, (s) =

( S (pit - ﬁw)m,r> (s). We highlight that bias plays a role similar to the value function in the
=
discounted reward setting in which the gain is always zero and Equation [3|reduces to the Bellman
equation, giving a direction in which extend our results to this other RL setting. Interestingly, for any

communicating and a fortiori ergodic MDP, the span S(b,;) = max b.(s) — mig b, (s) of the bias
s€ sE
function of any policy is bounded, which allows to decompose the regret in the useful following way.

Lemma 1 (Regret decomposition). Under the ergodic assumption Sor all optimal policy x € O(M),
the regret of any policy m = (), can be decomposed as

Rﬂ',Sl MT* Z Eﬂ'sl HC } JC(M)+<

TEXM

T
IIp-~ - pi} b*> (s1), @)
t=1

<S(by)

where N; o(T) = Zthl 1{s; = s,a; = a} counts the number of time the state-action pair (s, a)
has been sampled and A, , (M) is the sub-optimality gap of the state-action pair (s, a) in M,

As,a (M) =m (37 a) + pab*(S) - m*(S) - p*b*(s) =m (57 a) + pab*(s) — 8x — b*(s) (5)

with p, = p(+|$, a) by a slight abuse of notation. Action a € Ay is optimal if and only if A , (M) =
0, otherwise, it is said sub-optimal.

This result can be found in [Puterman| [1994]] and is rederived in Appendix [C]

Under the ergodic Assumption[2Jof MDP M, all optimal policies satisfy a Poisson equation while some
are also being characterized by the optimal Poisson equation (see |Hernandez-Lerma and Lasserre
[1996]]), used to compute the optimal gain and a bias function associated to an optimal policy,

g™+ bM(s) = max{ m(s,a) + Z (s'|s,a)b s’)} : (6)

aEA; oS

Lower bound To assess the minimal sampling complexity of a sub-optimal state action pair, one
must compute how far a sub-optimal state-action pair is from being optimal from an information
point-of-view. A sub-optimal state-action pair (s,a) € X is said to be critical if it can be made
optimal by changing reward r(s, a) and transition p (+|s, a) while respecting the assumptions on the
rewards and transitions. Formally, let opg : P (R x S) — R,

oM (v ® q) = Egou[R] + ¢b™ 7



denotes the potential function of ¥ ® ¢ in M, where v ® ¢ is the product measure of v and ¢q. A pair
(s,a) € X is critical if it is sub-optimal and there exists v € F , and ¢ € P (S) such that

def
oM (v ® q) > 75(M)  where 7,(M) = g™+ bM(s). ®)
Note that v5(M) = max oM (r(s,a) ® p(s,a)) by the optimal Poisson equation ().
acAs

Definition 2 (Sub-optimality cost). The sub-optimality cost of a sub-optimal state-action pair

(s,a) € X is defined as K, , (M) K (M, vs(M)) where

Ks,a (M77) = Veirjl__f {KL (I’(S, a) ® p('|8, a)? v Q) L PM (V ® Q) > '7} ’ (9)
qEP(g)
and KL denotes the Kullback-Leibler divergence between distributions.

A lower bound on the regret may now be stated for a certain class of learner, the set of uniformly
consistent learning algorithm, i.e. those policies m = () such that E; nv (N o(T)) = o (T) for
all sub-optimal state-action pair (s,a) and 0 < « < 1 (see|Agrawal et al.|[1989]).
Theorem 1 (Regret lower bound [Burnetas and Katehakis [1997]). Let M = (S, A, p,r) be an MDP
satisfying Assumptions[I) 2} 3] For all uniformly consistent learning algorithm ,

Exm [Ns,o(T)) < 1

lim inf > 1
Thoe T logT K., (M) 1o
with the convention that 1 /oo = 0. The regret lower bound is
R (M, T Asa (M
lim inf R (M, T) > > Asa (M) (1)

T—oo  logT (M)

K,
(s;a)ec(M) ¢
where C (M) = {(s,a) : 0 <K, , (M) < oo} is called the set of critical state-action pairs. Those
are the state-action pairs (s, a) that could be confused for an optimal one if we were to change their
associated rewards and transitions distributions at the displacement cost of K , (M).

3 The IMED-RL Algorithm

In this section we introduce and detail the IMED-RL algorithm, whose regret matches this fundamental
lower bound and extends the IMED strategy from Honda and Takemura| [2015] to ergodic MDPs.
Indeed, for a single-state MDP, that is a multi-armed bandit, IMED-RL simply reduces to IMED.

Empirical quantities IMED-RL is a model-based algorithm that keeps empirical estimates of the
transitions p and rewards r as opposed to model-free algorithm such as Q-learning. We denote by
ri(s,a) = r(s,a; N5 o(t)) and P¢(s,a) = p(s,a; Ns o(t)) the empirical reward distributions and
transition vectors after ¢ time steps, i.e. using N, ,(¢) samples from the distribution r(s, a). Initially,
p(s, a;0) is the uniform probability over the state space and p(s, a; k) = (1 — 1/k)p(s,a;k — 1) +
(1/k)sk, where sy, is a vector of zeros except for a one at index sy, the k" samples drawn from
p(-|s, a). This defines at each time step ¢ an empirical MDP M, = (S, A, P¢, +). On this empirical
MDP, for each state, some actions have been sampled more than others and their empirical quantities
are therefore better estimated. We call skelefon at time ¢ the subset of state-action pairs that can be
considered sampled enough at time ¢; it is defined by restricting A, to A, (t) for all state s € S, with

A (t) = {a €As 1 Noolt) = log? <1/n€z§< Nsa/(t)) } . (12)

Since x> log? x, A4 (t) # 0, hence A(t) = (A4(t))s contains at least one deterministic policy. We

note that the MDP M (A(t)) ef (S, A(t), p,r) defined by restricting the set of actions to A(¢) C A

is an ergodic MDP. The restricted empirical MDP M, (A1) et (S, A(t), pt, T¢) also is ergodic
thanks to the ergodic initialization of the estimate p. Inspired by IMED, we define the IMED-RL index.
def

Definition 3 (IMED-RL index). For all state-action pairs (s,a) € X, let us define K o(t) =
K., (Mt(A(t)),’ys(t)) with empirical threshold 4s(t) ef IAX ONr, (4 (1)) (t(s,a) ®P(s,a))
; a€A,
Then, the IMED-RL index of (s, a) at time t, Hy ,(t), is defined as
Hoo(t) = Noa(t)Ksa(t)+1log Noa(t). (13)

Note that 4, (£) # ~s(M;(A(t))) as the maximum is taken over all a € A, an not just a € A,(t).



Known support of transitions Were the support of transition known, the infimum in
sub-optimality cost K, , defined by Equation E] would be redefined as one over the set

{g€P (S) : Supp(q) = Supp (p (‘|s, a))}, modifying both the lower bound and IMED-RL index.

IMED-RL algorithm The IMED-RL algorithm consists in playing at each time step ¢, an action a; of
minimal IMED-RL index at the current state s;. The intuition behind the IMED-RL index is similar
to the one of the IMED index for bandits and stems from an information theoretic point-of-view of

the lower bound. At a given time ¢, the frequency of play ]\JIV“(S) of action a € A, in state s € S,

should be larger than or equal to its posterior probability of being the optimal action in that state,

exp (— Ny, (t)Ks,q (t)), that is to say ]\]]f,"(g) > exp (—Ns,q(t)Ks o (t)). Taking the logarithm and

rearranging the terms, this condition rewrites H, ,,(t) > log N, (t) at each time step ¢. The action that
is the closest to violate this condition or that violates this condition the most is the one of minimal
IMED-RL index, arg min, H; ,(¢), the one IMED-RL decides to play.

Algorithm 1 IMED-RL: Indexed Minimum Empirical Divergence for Reinforcement Learning

Require: State-Action space Xg of MDP M, Assumptions
Require: Initial state s1

fort > 1do
Sample a; € arg min H; ,(?)
aC€As,
end for

Intuitions of the IMED-RL algorithm root to the control theory of MDPs and optimal bandit theory;
IMED-RL intertwines the two and the regret proof exactly follows from the following intuitions.

Control In control theory, we assume that both the expected rewards and transitions probabilities
of an MDP M are known. Policy iteration (see |Puterman| [[1994], Bertsekas and Shreve| [[1978]]) is an
algorithm that computes a sequence (7, ),, of deterministic policies that are increasingly strictly better
until an optimal policy is reached. In the average-reward setting and under the ergodic assumption,
a policy 7 is strictly better than another policy 7’ if g, (M) > g, (M). The policy iteration
algorithm computes the sequence of policies recursively in the following way. Initially, an arbitrary
deterministic policy 7o is chosen. At step n + 1 € N*, it computes m, and b, then swipes
through the states s € S in an arbitrary order until it reaches one state s such that there exists
a € A(s) withm(s,a) + p(:|s,a)br, > mg (s) + px(s)bs,. If such an s does not exist, then it
returns , as an optimal policy. Otherwise, 7,1 is defined as 7, 41(s") = 7, (s') for all s # s’
and 7,41 (s) € argmax {m(s,a) + p(-|s,a)bx, }. Such a step is called a policy improvement step.
Policy iteration is guaranteed to finish in a finite number as the cardinal of II(M) is finite. At each
step n € N*, ©np(r,,) is a local function that takes into account the whole dynamic of the MDP and
allows to compute, via an argmax, an optimal choice of improvement (or optimal action) based on
local information; @ng(x,,)(r(s, a) ® p(-|s,a)) = m(s,a) + p(s,a)b,,. IMED-RL uses PRE(A®)
and improves the skeleton similarly to policy iteration as it can be seen in the analysis [

Bandit control A degenerate case of MDP would be one where there is only one state s with
©M(y) (r(s,a)) = m(s, a) by choosing the bias function to be zer(ﬂ Playing optimally consists in
playing an action with largest expected reward at each time step ¢, a; € arg maxqe 4, m(s, a).

Bandit Learning occurs when rewards are unknown; this is the bandit problem. In that case, a
lower bound on the regret similar to|l|exists. Under some assumptions on the reward distributions,
optimal algorithms whose regret upper bounds asymptotically match the lower bound can derived.
IMED Honda and Takemural [2015]], KL-UCB |[Maillard et al.| [2011]], |Cappé et al.| [2013] are two
such examples that use indexes, i.e. computes a number I ,(¢) at each time step and play a; €
arg min I, ,(t). Such indexes are crafted to correctly handle the exploration-exploitation trade-off.

RL in Ergodic MDPs The delayed rewards caused by the dynamic of the system is the main source
of difficulty arising from having more than one state. IMED-RL combines control and bandit theory

Srecall that the bias function is defined up to an additive constant



in the following way. At each time step ¢, a restricted MDP M, (A(t)) is built from the empirical one
M.,. If the condition to belong to the skeleton is selective enough, then the potentials on the restricted

empirical MDP M, (A(t)) may become close to those of the restricted true MDP M (A(t)), that is

Htpﬁt(A(t)) — ©M(A(t)) |l oo is small. We want to make policy improvements by finding, at each state

s an action @’ € arg max png(a()) (r(s, a) @ p(+|s, a)), play it enough that it belongs to the skeleton
which will modify ¢ and repeat until ong(a(r)) = ¢m. Using o, the global dynamic is reduced to a
local function so that at each state, the agent is presented a bandit problem. This bandit problem is
well estimated if ngi/l\f( A(r) ~ PMAD) |loo is small. As opposed to the control setting, the learning

agent cannot choose the state in which to make the policy improvement step and it may be possible
that no policy improvement step is possible at state s;. However, thanks to the ergodic assumption 2]
the agent is guaranteed to visit such a state in finite time, if it exists. There is a trade-off between the
adptativity of the skeleton, i.e. how quickly one can add an improving action to define a new ¢, and
concentration of statistical quantities defined on the restricted MDP.

Related work Our notion of skeleton is built on the work of [Burnetas and Katehakis| [[1997]]. We
improve on their original notion of skeleton by correcting some troubles happening in the small
sample regime. In particular, this forces the authors to introduce some forcing mechanism. The issues
of the original definition and improvement induced by ours are listed in Appendix |G} One key point
of our definition is that the skeleton is defined using only empirical quantities, the number of samples,
and does not depends on some arbitrary reference, such as the absolute time.

4 Regret of IMED-RL

In this section we state the main theoretical result of this paper, which consists in the IMED-RL regret
upper bound. We then sketch a few key ingredients of the proof.

Theorem 2 ie ret upper bound for Ergodic MDPs). Let M = (S, A, p,r) be an MDP satisfying
s 3

assumptions 3l Lert0<e<f min  min {|A,, (M(w)’) |Ag.q (M(7))| > 0}. The

7ell(M) (s,a)EXMm
regret of IMED-RL is upper bounded,

Ay o (M)
(M) —eI's (M)

Rwgp-re (M, T) < Z log7T' 4+ O(1), (14)

Ks a
(s,a)eC(M) — =

where I's (M) is constant that depends on the MDP M and state s; it is made explicit in the proof
detailed in Appendix|[D} A Taylor expansion allows to write the regret upper bound as

A, (M
Rmep-e (M, T) < Z Asa (M) logT + O ((logT)lo/H) ) (15)
(S,Q)EC(M) =Ss,a (M)

Were the semi-bounded reward assumption changed to a bounded reward one with known upper and
lower bound, the O ((log T)IO/H) could be made a O(1) as explained in Appendix@

Theorem 3 (Asymptotic Optimality). IMED-RL is asymptotically optimal, that is,

RIMED-HL (Ma T) AS a (M)
< Z L i

o) (16)

lim
T—+4o00 logT (s,a)eC(M) Ks’a

The proof of Theorem 3]is immediate from Theorem [2|by first dividing Equation[I4]by log T', then
by taking the limit 7" — oo, and finally taking the limit e — 0.

Remark While the regret lower bound, Theorem ] is asymptotic by nature, our main Theorem
states a finite time upper bound on the regret of IMED-RL. Indeed, both Equations|[I4]and T3] are valid
for all time T'. The term O(1) appearing in Equation does not depend on time 7" and is a constant
that depends on both the MDP M and ¢. This dependency is hard to be made explicit as this term is

computed as limits of convergent series that are derived in the proof, see Appendix [D] In Equation [T4}

the constant } -, ,yecvn #% in front of logT" does not exactly match the asymptotic



upper bound Z(S, a)ec(M) gzi% because of the e-term in the denominators. Equation [15states

that using a bounded reward hypothesis, instead of semi-bounded, allows the constant in front of the
leading log T term to exactly match the asymptotic one, even in the finite time regret upper bound. In
both cases, Theorem [3] states that asymptotic optimality is achieved.

This Theorem proves the optimality of IMED-RL since the upper bound on the regret matches the
lower bound of Theorem[I] Such a bound was asymptotically matched by the algorithm proposed by
Burnetas and Katehakis| [1997] and we recall that this algorithm and its problems are discussed in
Appendix|G| On the other hand, the current state-of-the-art algorithms UCRL3 and PSRL, while having
some theoretical guarantees, have not been proved to match the regret lower bound. On the practical
side, Q-learning is often used without much theoretical guarantee because of its usually strong
practical performances. In the experiments, we will compare IMED-RL to those three algorithms.

Related work Theorems[2]and 3] prove that IMED-RL is achieving the optimal rate of exploration
(in the exploitation-exploration tradeoff sense) for ergodic MDPs. Its theoretical guarantees are
problem-dependent rather than worst-case/min-max. Comparing to the log 7" bound derived for

UCRL in Theorem 4 of Jaksch et al.|[2010], less known than the ﬁ bound, shows the benefit of our
analysis for each instance, as we improve the constant factors in the leading terms: their dependency
is 34D2S% A/ A, where A is a sub-optimality gap and D the diameter of the MDP.

Sketch of proof Though a full proof is given in Appendix [D] we sketch here the main proof ideas
that follow directly from the intuitions behind the IMED-RL conception. The regret is decomposed into
two terms, the bandit term when the local bandit problems defined by PV (A1) is well estimated,

and the skeleton improvement term that controls the probability that the local bandit problem is not
well estimated. This second term is managed by controlling the number of policy improvement steps
and using concentration properties of empirical quantities defined on the skeleton.

The main Theorem [2] follows from the following proposition that is proved in Appendix [D} Recall

from Lemmathat for all state-action pair z € X, Ny (T) = Zthl 1{(s¢, at) = x} counts the
number of time the state-action pair = has been sampled.

Proposition 1. For all state-action pair x € X, for all € > 0,
Na(t) < Bo(T) + S(T), (a7
where we introduced the bandit term, B,,(T), and the skeleton improvement term, S(T),

T —~
B.(T) = Y1 {xt 2,0 (ﬁt (A(t))) C O (M), |[BMA®) _pM | < g}, (18)

t=1

!

S = 3o 1{0 (M (A(0)) €O M), [0 — bM< (19)
t=1
Furthermore, E (S(T)) = O(1), E (B,(T)) = O(1) for a non-critical state-action pair, while for a
critical state-action pair x,
Ay (M)

E (B (T)) < log7T' 4+ O(1)

5 Numerical experiments

In this section, we discuss the practical implementation and numerical aspects of IMED-RL and extend
the discussion in Appendix @ Source code is available on githulﬂ

Computing IMED-RL index At each time step, we run the value iteration algorithm on M, (A1)
to compute the optimal bias and the associated potential function PV (A1) This task is standard.

Once done, one must compute the value of the optimization problem K ,, () which belongs to the
category of convex optimization problem with linear constraint. Such problems have been studied

"Plain text URL is https://github.com/fabienpesquerel/IMED-RL
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under the name of partially-finite convex optimization, e.g. in|Borwein and Lewis| [1991]]. It is
possible to compute K , (t) by considering the Legendre-Fenchel dual and one does not need to
compute the optimal distribution to know the value of the optimization problem.

Proposition 2 (Index computation, Honda and Takemura| [2015]] Theorem 2). Let (s, a) be in X,
M = mpaz(s,a) + H}gg{bM(s), and v > om(r(s,a) @ p(-|s,a)), then

max, E o [log (1= (R+DM(S) =7)2)] M >y
K., (M, y) =9 0Se<y=5  S~p(|s.a) . (20
: 400 otherwise

If’}/ < @M(r(s,a) ® p(-|s,a)), then Ks,a (M,v) =0.

In particular, this Proposition 2| sometimes allows to write K , (¢) almost in close form, e.g. when
Fs,q defined in Asumptions [3[is a set of multinomials with unknown support (and only the upper
bound my;,q, s known). In Appendix E we discuss this numerical computation further.

Computational complexity In terms of state and actions spaces sizes, the complexity of IMED-RL
at each time step scales as O(S?A), the complexity of value iteration. Indeed, at each time step,
IMED-RL runs value iteration using actions available in the skeleton, then computes the indexes of the
available actions at the current state, and finally pick an argmin. The complexity of value iteration
is O(S?A), the complexity of computing the A necessary indexes is O(SA), and the complexity of
picking an argmin amongst those A indexes is O(A). Therefore, the per-time-step complexity of
IMED-RL scales as O(S?A). However, this scaling is mainly an upper-bound as value iteration is run
with actions that are within the skeleton. By design of the skeleton, we experimentally observe that,
after some time, the skeleton contains one action per state (the optimal one). We provide more details
in Appendix [F} Lazy update paragraph.

Practical comparison In practice, most of the complexity of IMED-RL is in the analysis rather
than in the algorithm: compared to PSRL and UCRL3, IMED-RL does not take a confidence parameter
nor any hyperparameter. Also, IMED-RL uses value iteration as a routine, which is faster than the
extended value iteration used in UCRL3. Q-learning technically takes an exploration parameter
(e-greedy exploration) or exploration scheme when it is slowly decreased with time.

Environments In different environments, we illustrate in Figure 2] and Figure [3|the performance
of IMED-RL against the strategies UCRL3 [Bourel et al.| [2020], PSRL |Osband et al.| [2013]] and Q-
learning (run with discount v = 0.99 and optimistic initialization). As stated during the introduction,
any finite communicating MDP can be turned into an ergodic one, since on such MDPs, any
stochastic policy 7 : & — P (As) with full support Supp (7(s)) = Ay is ergodic. Hence by
mixing its transition p with that obtained from playing a uniform policy, formally p.(-|s,a) =
(I—¢e)p(-|s,a) +e > p(s,a’)/|Asl, for an arbitrarily small € > 0 one obtain an ergodic MDP.
a’€EAg

In the experiments, we consider an ergodic version of the classical n-state river-swim environment,
2-room and 4-room with £ = 1072, and classical communicating versions (¢ = 0).

0.6
0.6 (r = 0.999)

Figure 1: The ergodic n-state RiverSwim MDP. In each of the n states, there are two actions RIGHT
and LEFT. The left action is represented with a dashed line and the RIGHT with plain line. Rewards
are located at the extremities of the MDP.

n-states RiverSwim environment As illustrated by Figure [2] the performances of IMED-RL are
particularly good and the regret of IMED-RL is below the regrets of all its competitors, even when the
MDP is communicating only. This numerical performance grounds numerically the previous theoret-
ical analysis. While using IMED-RL in communicating MDPs is not endorsed by our theoretically
analysis, it is interesting to see how much this hypothesis amounts in the numerical performances of
IMED-RL. We therefore ran an experiment on another classical environment, 2-rooms.
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Figure 2: Average regret and quantiles (0.1 and 0.9) curves of algorithms on a standard communicating
6-states RiverSwim (left) and an ergodic 6-states RiverSwim (right).
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Figure 3: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) corresponding to
learning on a 4-room (left) grid-world environment, with 20 states: the starting state is shown in red,
and the rewarding state is shown in yellow. From the yellow state, all actions bring the learner to the
red state. Other transitions are noisy as in a frozen-lake environment.

n-rooms environment  As illustrated by Figure[3] the performances of IMED-RL are particularly
good, even surprisingly good, in this communicating only environment. Those experiments are a
clue that the IMED-RL strategy may still be reasonable, although not necessarily optimal in some
communicating MDPs. All experiments take less than an hour to run on a standard CPU.

Future work Although not intended for non-ergodic MDPs, IMED-RL exhibits state-of-the-art
numerical performances in communicating only MDPs (see Appendix [F.2]for additional experiments).
Hence, IMED-RL might prove to be insightful to pave the way towards the communicating case
as it seems possible to get a controlled regret also in the case of communicating MDPs. Both the
problem-dependent and worst-case regret bounds are interesting in this regard. Another direction we
intend to explore is the adaptation of IMED-RL main ideas to function approximation frameworks,
such as neural networks and kernel methods.

Conclusion

In this paper, we introduced IMED-RL, a numerically efficient algorithm to solve the average-reward
criterion problem under the ergodic assumption for which we derive an upper bound on the regret
matching the known regret lower bound. Further, its surprisingly good numerical performances in
communicating only MDPs open the path to future work in MDPs that are communicating only.
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B Notations

Notations of exact quantities

M= (S, A,p,r}, aMDP

S, state space,

A = (As),cg> action space

v = {(s,a) : s € S,a € A}, state-action space

p: Xv — P (S), transition distribution

r: Xy — P (R), reward distribution

m(s,a) = E,;(s,q) [r], mean reward function
II(M)={r:seS—n(s)€ A}, stationary deterministic policy space

Vo € IIM), pr : s € S = p(-s,n(s)) = p(s,7(s)) € P(S),rr : s € S —
r(s,m(s)) € P(R),m; : s € S — m(s,n(s)) € R, MDP related quantities defined by a
policy 7

M(D) = (S, D, p,r), MDP M with action space restricted to D

b : s €S+ br(s) € R, bias function as defined in Poisson Equation 3]

g, = gM, optimal gain on MDP M

b™, optimal bias function as defined in the optimal Poisson Equation@

Aso (M) =m(s,a) + p(s,a)bM — gM — bM(s), sub-optimality gap

vs (M) = gM + bM(s), optimality threshold

om(v ® q) = Eg,[R] + gb™, potential function

Os (M) ={a € A, : om (r(s,a) @ p(s,a) = s (M))}, optimal action in state s

K, .M, y) =infoer, , {KL(r(s,a) @ p(-[s;a),r @q) : om (v @q) >},
sub-optimality costqfeoﬁ(gl)reshold v

K., (M) =K, , (M, (M)), sub-optimality cost

C(M) = {(s7 a):0<K,,(M)< oo}, set of critical state-action pairs

CoaM (Fsa @P(S)) = {v®q € Fsu @P(S) : om (¥ ® q) > vs (M)}, set of critical
distributions

Csa,M (-/.'.s,a ® P(‘S)75) = {V & q S -Fea, ® P(S) L PM (V & Q) > Vs (M) - 6}
Notations of empirical quantities

N o(T) = Zthl 1{s; = s,a; = a}, counting random variable for state-action pair (s, a)
N(T) = Zthl 1 {s; = s}, counting random variable for state s

Aq(t) = {a € As i Ny oft) 2 log? (maxgre A, N o (t))} skeleton at state s at time ¢ (this
is a random variable)

A(t) & MaX Gyr, 4y (£(s,a) ® p(s, a)), empirical optimality threshold
K;.(t) Lt K., (ﬁt (A1), As (t)) , empirical sub-optimality cost

H; o(t) = Nsa(t)K, ,(t) +log Ny 4 (t), IMED-RL index

Ray (ML, T) = Yy Ern [Na(T)] Ay (M) + ({172, P, — PL] M) (51), regret
of a policy 7 (with x € O(M), expression proved in Lemma I}
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Useful notations in the proofs

I1 = |TI(M)|, cardinal of policy space
ot =t+1,0f =of" — | gy forallv € {1,--- 11} and o) = 1, boarders of a
M-adapted sub-division (see Definition [5)

Iy ={k:oy <k <oy*"}, sub-interval v
NY(t) = > 1{s: = s}, number of visits state at s during sub-interval I}
kely

0<"<ﬁ

0 < 8 < Bm, where By is defined in Proposition 2]

V¥ = N {NY(t) = kpt}, an event controlling the number of visit in sub-interval v
sES

i
Vi = [\ V{, an event controlling the number of visits in each sub-interval

v=0
SY0) = Muers NMecrnaagy, {I9°(@) = P@)] < 6.l (@) = m(@)] < 5}, an event
controlling the precision on the empirically restricted MDP during interval v

Sy (0) = ﬂ}}:l Sy, an event controlling the precision in each sub-interval but the first
I(s,M,7) ={a € A : pm (r(s,a) @ p(s,a)) > 7}
:E:%M = arg max E Rer(s,a) [log (B — (R +bM(S) — 74 (M)) ac)]

M
O0STS 3=, S~p(]s,a)

where B = myq2(S,a) + max bM(s)
s’'e

A
Asa,M,e = sup {)\ ER:E rur(s,a) (%) > 1}, where B = Mynaz(8,a) +
S~p(-|s,a)

max b™(s) and ps.0 = o (r(s,a) © p(s,))
s'e

A%, (@) = supy § AMpts,a — ) — 108 E Rer(s,a) [exp (A(R +bM(9)))] } ,
S~p(-|s,a)

where Hs,a = M (I’(S, a) ® p(s, a))

A:a,M(m) = Sup, {)‘x - IOgE R~r(s,a) [(1 - (R + bM(S) — Vs (M)) x:,a)k] }

S~p(-|s,a)
def . N N
K2 o(t) inf ez, , {KL (F1(s,a) ® Pu(s,a),v @ q) : o (v@q) > 75 (M) — ¢}
qeP(S)
Ko int e x, , {KL (#(s,a,n) @ Pi(s,a,n),v ©q) : om (v ©q) > 75 (M) — e}
qeP(S)
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C Technical results

In this section we state a few lemmas and define a few objects that are useful for the regret analysis
of IMED-RL. More precisely,

Lemma is about expressing the regret with respect to the number of pulls N, (¢) of sub-optimal
state-action pairs € X and show that A, (M) indeed is roughly the cost an agent suffer each time
it plays it. Thanks to this Lemma, controlling the regret is equivalent to controlling N, (T") for each
sub-optimal state-action pair 2 € X, which we do in Appendix D}

Definition ] introduces notations used for expressing concentration results of events studied in the
main proof (see Appendix D). Those are inspired from Honda and Takemural [2015]] and lies on the
assumptions made in this paper.

Lemma 2] states that under the ergodic Assumption [2} any learning agent is guaranteed to visit every
states sufficiently often with a large enough probability. This lemma is proved in Proposition 2 of
Burnetas and Katehakis| [[1997].

Definition [5] introduces the notion of M-adapted sub-division that split interval [0, ¢] into IT + 1
sub-intervals. This notion follows from the developed intuition about Policy Improvement and we
will prove that with high probability, a policy improvement occurs (if possible) in-between each
sub-interval.

Lemma 3|uses the previous lemma to derive a stronger result by proving that a linear number of visits
in each state and in each linear sub-interval of a M-adapted subdivision can be obtained with high
probability. It is useful to derive improvement of the skeleton between the beginning and end of a
sub-interval.

Lemma [ states that, by definition of the skeleton, by Lemma 3] and by the reward Assumptions|T} [3]
empirical quantities defined on the MDP restricted by the skeleton are well approximated.

Lemmaexpresses how well the gain g, and bias b, of every policy 7 € II(M) can be estimated
given a precision on the mean rewards and transitions of the original MDP.

Lemma E] expresses how well the optimal gain g™ and optimal bias bM defined by the optimal
Poisson Equation [6] can be estimated given a precision on the mean rewards and transitions of the
original MDP.

Lemma expresses how well the optimal gain gM(A(Y) and optimal bias bM (A1) defined by the
optimal Poisson Equation [6]can be estimated given a precision on the mean rewards and transitions
of the MDP M (.A(t)) prescribed by a good event.

Lemma(Regret decomposition). Under the ergodic assumption Sor all optimal policy x € O(M),
the regret of any policy m = (), can be decomposed as

Res M Ti%) = 3 oy INL(T)] A, <M>+(

TEXM

[Ip~ - pi] b*> (s). (@
t=1

<S(by)

Proof of Lemmall] 1t holds by the Poisson equation that m, = g. + (I — p)b.. Hence, the
cumulative reward of a strategy playing policy ; at time ¢ until time 7" and starting from state s is
given by

T
V;‘l (M,’]T,T) - Z (
= XT: ( Pwt, (gm + (I — pm)bm))(sl) .
t=1 t'=1
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Under the ergodic Assumption for all optimal policy %, g, (s1) takes the same value g, for all state
s1. In this case, (prg+)(s1) = g, for all 7, s1. Using this property it comes

Ress (MT, %) =V, (M *T)—Vy, M, m,T)
= z ( H Pr, (9 — 8r) + (I = P, )(bs = br, )] ) (1)
t=1 =1 ATy
+> ( —-pl - H pr, — | [ pwt,]b*) (s1)
t=1 t'=1 t'=1
T -1 T
= (X (T pe)an )0+ ([TLpn ot o0
At this point, we note that
Ar(s) = g« —8n(s)+ (I —px)(bs —br)(s) = m.(s) — mg(s) + ([Px — Px]bs)(s)
= Y [m(s) —m(s,a) + (P« — Pa)b) (s)]7(als) = Ex[A(s,a)].
a€A,
To conclude, we note that
T
> [PrPrs - Pr  Ag](s1) = ZZEm (5,0)1{S, = s, 4, = a}]
t=1 s,a t=1

> AL(ME[NL(T)].

O

Definition 4. Letr M be an MDP satisfying Assumption[2|and whose reward distribution r satisfy
Assumptions I and I then the following quantttlesﬁp are well defined,

Tiom=arg  max  Epoa [log (B - (R+bM(S)— v (M) )],

0Sz<yr=,y  S~p('|s,a)

B—R—-bM(5)\"
)\sa,M,a = sup )\ € R:E RNI‘(s.a) (()) 2 1 ’
Smp(-lsa) \ B = Hsa t€

Ao (@) = sup {A(usa — ) —10gE porsa) [exp (MR +DM(S)))] } :
S~p(:]s,a)

() = Sl)l\p {)\x —108E Rer(s,a) [(1 — (R + bM(S) — v (M)) x:a)A} } 7
S~p(-|s,a)

where B = myq.(8,a) + max bM(s) and j1.4 = om (r(s,a) @ p(s,a)). By Sections 6 and 7 of
s’'c

Honda and Takemural [2015]], %, \p exists uniquely when oy (r(s, a) ® p(s,a)) < vs (M) and
Asae > Lfore > 0. In Section@] we drop the explicit mention to M as we are referring to the
original MDP and because it makes the equations easier to read.

Lemma 2 (Proposition 2 of |Burnetas and Katehakis| [1997]]). Let M be an MDP satisfying the
ergodic Assumption 2| There exists By > 0 and Pa such that for all all > 0, for all s € S,
t > |S| and policy ™ = (7k)o<k<t,

PrM,so (Ns(t) < Bt) < Bmexp (— (Bm — B)t) . 2D

In particular, for B < B, the probability that any given state has been visited less than a linear
amount of time is exponentially small. Such a B that satisfies this proposition controls the rate at
which all states are visited.

8see Equations 4, 5, and 6 of [ Honda and Takemura| [2015]
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Definition 5 (M-adapted sub-division). Let M be an MDP and denote by 11 = |11 (M) | the number
of deterministic policies IT1 (M) on M. Lett > 11+ 2, and I; = {1, -- - , t} the discrete time steps
from1tot. Forallv € {0,--- [ II}, let

Iy ={k:of <k<o/T'}, (22)

withoy T =t+1, 07 = oyt — lig ) forallv € {1,--- 11} and let 0} = 1. The sub-division
U, I of I induced by (o), is called an M-adapted sub-division at time t.

It follows immediately from the definition that

o) =1, (24)
and
v __ t P
HE LH+1J Yve{l,---  II+1}, (25)
o _ 4 t - t
1l =1 HL'H—IJ/ n+1] (26)

Lemma 3 (Linear visit in each interval of a M-adapted sub-division). Let M be an MDP and denote
by II = [II (M) | the number of deterministic policies II (M) on M. Let t > 11+ 2, and (I} ,0}),,
be an M-adapted sub-division of M at time t, i.e. a sub-division of I, = {1,--- ,t}. Letm = (m},),
be a policy.

Let NY(t) = > 1{s; = s} be the number of time the agent visit state s during the sub-interval I} .
kely
Let k be such th(;t 0< k< ﬁ and let 0 < 8 < By with By as in Lemma
Let VY = (| {NY(t) > Bt} the event that all states are visited more than k[t times during interval
seES .
v. Finally, denote V;, = (| V}¥ the event that all states are visited more than k3t times during each
sub-interval of the sub—j;lpsion.

Then,
Bwm

B — e (— (Bm—B))

T
> 1{Vi} @7)
t=1

<(H+2)+(H+1)\S|1

Proof. By applying Proposition [2] and using a union bound on all states and sub-intervals, the
Lemma 3l follows. O

Lemma 4 (Uniform concentration on the skeleton). Let M be an MDP and denote by T1 = |11 (M) |
the number of deterministic policies IL (M) on M. Lett > 11+ 2, and (I} ,0}), be an M-adapted
sub-division of M at time t, i.e. a sub-division of Iy = {1,--- ,t}. Let K, 5, V' and V; be as in
Lemmal3]

Let § > 0 be a positive number representing a precision on the skeleton, let

S @) =1 () @) - p@)]o <, ti(z) - m(x)] < 5}, (28)

}CEI{' "L'EXM(.A(k:))

be the event of uniform §-good approximation on the skeleton for sub-interval v and let

IT
Sy (6) = () 8¢
=t (29)

N N k) - p@)lw <& lu(e) - m() < 5)

k>0l 2€XM(A(k))
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be the event of uniform §-good approximation on the skeleton for all time steps after the first
sub-interval.

Then, for all policy m = (7y,),,, it holds that

T
E Z]l{vtﬂst (5)}] < Swm (9) (30)
t=1
where Sy (0) is decomposed as
> Swm(d), (31)
(s,a)EXMm
with
d 9 (VK[
Seort®) = 32 (e ey e (4 00 (7))

t=1
For all state-action pair (s, a), Ssq M is expressed as the limit of a convergent series.

Proof. First, we remark that V; N .S; (§) = Ull}zl V2 N SY (6) so that, by a simple union bound, we

only need to control the probability of the event V; N SY (4). We then remark that, since for all state

s and for all action a € A,(k), Nyo(k) > log? max Nor (k) and max Ny, (k) = N (k) /| As|, we
a’€As

have N, (k) > log® (N(k)/|As]). Combining with V;, for all k € I7, (s,a) € XM(A(k))» the
number of samples of (s, a) is lower bounded by

¢
N, (k 2102(”“5)
(k) g N

The event V; N S} (§) therefore satisfies the following inclusion,

S max ([|px(s,a) — P(s,a)l|c, [y (s,a) —m(s,a)[) >
vinsroc U U { Noa () > log? (Mgt) .
(s,a)€X\ kETY

[As|

Again, by a union bound on state-action pairs, we are interested in controlling the event,
max ([[B(s; @, Nsa(k)) = P(s,@)|oo; [102(s, @, Nsa(K)) — m(s, a)|) > &
U Naa (k) > log? (”W) )
kely

[As |
that is to say, the probability of

of+l
U Um0 = plsal o) =missa)) >0) . G2
VST nmtog? (2521)

Using the light-tail Assumption [l{and the fact that p(s, a) is a multinomial (hence light-tailed too),
we get from Equations (2.2.12) and (2.2.13) of Dembo and Zeitouni/[[1998]],

P (max (|[p(s, a,n) — p(s, a) o, [M(s,a,n) —m(s, a)[) > ) < 2exp (—nAg, (6))  (33)
from which we deduce that the probability of Equation 32]is upper bounded by

2t 2 UK/Bt
exp | =A%, (6)1o ( )) : (34)
T+ 1) (1 —exp (A%, (0))) ( () oe { T4
which is the term of a convergent series (in ). Denoting S, m the limit of the series
T
2t vkt
Ssa, 0) = exp <_A:a d 10g2 ()) ) (35)
M) =2 e (A, O7) (0)log™ | T

and then combining all the union bound, we deduce that

Zﬂ{mmw}]< > Swm(d): (36)
(

t=1 s,a)EXMm

E
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Lemma 5 (Sensibility of the Poisson equation, Lemma 7 (i) Burnetas and Katehakis|[1997]]). Let
€ > 0 a real positive number. Let M = (S, A, p,r) be an MDP and My = (S, A, ps, rs) be another
MDP such that for all x € Xy = X, max (||p(x) — ps(@)||, jm(z) — mgs(x)|) < d. There exits
M (€) such that for all § < om (g), for all policy m € II (M),

g — gM| < 37)

[bX — b || < = (38)

€
2 b)
€
2
The proof of this fact is given by [Burnetas and Katehakis| [[1997|] (Lemma 7 (i)) and a more modern

proof to this result is given in Section 1, Chapter 4 of the book |Cao| [2007]] under the name of
perturbation analysis.

Lemma 6 (Sensibility of the optimal Poisson equation, Lemma 8 (ii) Burnetas and Katehakis|[[1997]).
Let € > 0 a real positive number. Let M = (S, A, p,r) be an MDP and M5 = (S, A, ps,rs) be
another MDP such that for all x € Xy = Xwm,, max (||p(z) — ps(z) ||, jm(z) — ms(z)]) < 6.
There exits dn (€) such that for all § < én (€),

g™ —g™| < % (39)
[BM — bM< . (40)
It follows immediately that forall v ® q € P(R) ® P(S)) (with v having an expected value),

lom (v @ q) — oM, VR @) | <e
Furthermore, for € such that 0 < ¢ < ey, O (M) C O (M), where

1 .
€M:§mln{|g71\r/l_g7l1\'/’l|:7T77T,€H(M)ag71>/[#g71}'//[}'

Proof. The first part is proved in Lemma 8 (ii) of Burnetas and Katehakis|[1997]] and we prove the
last claim for the sake of introducing .

Leteny = 3 min {|gM — gM|: 7w, 7/ € IT(M),gM # g™} and € be such that 0 < & < ep. Let

§ < 0w (€) where dyp is defined in Lemmal[5] Let x € O (M), then * also is optimal in MDP M.
Indeed, for all 7’ € I (M),

M 6

gx >g*5_§
Ms €
>gﬂ-/b_§
>gM—¢
>gM — 2

which implies that g™ > g™ by definition of ¢ < ep which separates policies by at least 3ep.

Therefore, O (M;s) C O (M). O

Lemma 7. _Let o/, and S;(0) be defined as in Lemmal| let § < dni(g) with dn and & < e defined
in Lemma@ then, under S;(8), for all k > o},

o (ﬁk (A(k))) C M (A(k)

), (41)
| . £
|[pMr(AR)) _ pMAMR)|| < 5 (42)

Proof. This Lemma is a direct consequence of Lemma@ and definition of S;(J) in Lemma O
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D Proof of Theorem (REGRET)

In this appendix, we prove our main Theorem [2] that asses the optimality of the IMED-RL algorithm.

Theorem (Reet upper bound for Ergodic MDPs). Let M = (S, A, p,r) be an MDP satisfying

A tions|I||2}|3l Let0 < e < mi i Ag o (M s A (M >0}. Th
ssumptions e 3773111(11{4)(57{;)%1;{M{| a(M(m)) | ¢ |Asa (M(m)) | > 0}. The

regret of IMED-RL is upper bounded as

Asq (M)
<
Rouss- (M, T) < . H)ZEC(M) K., (M) e, v | 87 oW LE

where T's (M) is constant that depends on the MDP M and state s; it is made explicit in the proof
below. A Taylor expansion allows to write the regret upper bound as

Asa M
Rwep-n M, T) < Z # logT 4+ O ((logT)lo/u) . (T3
(Sya)EC(M) =Ss,a (M)

Were the semi-bounded reward assumption changed to a bounded reward one with known upper and
lower bound, and the O ((log T)10/11> could be made a O(1) as explained in Appendix@y

Outline The proof combines the concentration results obtained by Honda and Takemura [2015]]
for the family of rewards we study and the skeleton improvement idea from Burnetas and Katehakis
[1997]. Because we define a new notion of skeleton and that IMED-RL does not require forced
exploration, we specifically derive the Lemma (9] that is at the heart of the proof that ¢nr(4(s))
converges fast enough to ¢, thus allowing to optimally leverage the IMED algorithm in the MDP
setting.

Proposition 3. For all state-action pair © € Xy, for all e > 0,

No(®) < S 1 {m = 2,0 (M (A@®)) €O M), BYAD - bM<}

+£7,1{0 (M (40) € 0 () o 40 bM< e} )
where xy = (¢, a).
Proof. The proof is immediate by decomposing the event {x; = z} on
{0(M. (A®)) O M), MO — bM< e
1{z, =z} =1 {xt =2,0 (ﬁt (A(t))) C O (M), |[BMA®) _pM| < g}
+1 {mt =2,0 (ﬁt (A(t))) C O (M), [[bM:(A®) — M| < e}
<1 {w = 2,0 (M, (A®)) €O M), [BMAD M| <}
+1 {o (ﬁt (A(t))) C O (M), [bMi(A®) — M| < 5} :
0

21



D.1 Bandit term

Let us recall the definition of the quantity we called the "bandit term".

T
Bo(T) = > 1 {m = 2,0 (M (A®)) € O M), [BMHAOD M| < @4y
t=1
In order to control this quantity, we first make the following useful observation.

Lemma 8. Whenever the inequality ||bﬁt(A(t)) — bM|| < € holds true, it implies that for all v, q,
‘(PM (V & q) - Soﬁt(.A(t)) (V ® q)’ <e

Proof. Let us assume that ||bﬁf(“4(t)) —bM|| < e Recall that o (¥ ® q) = Eg,[R] + gb™.
Then, for all v, g

‘(pM (v®q) — PRI, (A1) (v® q)‘ = ‘]ERN,,[R] + ¢bM — Ep, [R] + gbMt(A®)
_ ‘q (bM _ bﬁtut(t)))‘

<D a(s)[pM = bMWD

S
<e.
O

In order to control (44)), we further split the considered event depending on whether the threshold
appearing in the complexity term is (subsection [D.1.2) or not (subsection[D.1.T) underestimated.

D.1.1 The threshold is not underestimated

In this subsection, we assume that the threshold is not underestimated, that is to say,
Ys(t) = vs (M) — 2e.
Non-critical state-action pair First, we study the case where the state-action pair (s, a) is not
critical, that is to say Csq M (Fsa @ P(S)) def vRqeFsa @P(S): om (v ® q) > vs (M)} = 0.
Proposition 4. For all non-critical state-action pair,
St =S,at =a
O (M, (A(1)) € O (M)
DM (A®) — bM< ¢
Ys(t) = s (M) — 2¢

1 =0. (45)

Proof. Let Coqn (Fea @ P(S),6) € {1 ® q € Fou @ P(S) : o (v @ q) > 75 (M) — }. There

exists 0, small enough such that Cs v (Fsq ® P(S), 0s4) = 0. Let € be strictly smaller than d,/3
(which is the case for ¢ defined as in the statement of Theorem @)
PM (A1) veq <pm(v®q) +e

<gM+bM(s) — s +

<gM4+bM(s) -2

=7s (M) —2¢

< As(t)
Therefore, for all distributions in o @ P(S), ¢y, (A®) (v ® q) < 45(t) meaning that the empirical
set of critical distributions is empty, C_ 5z, (A®) (Fsa ® P(S)) = 0. Remembering that we define

inf ) = 400 by convention, it implies that K_ , () = 400 and therefore, H, ,(t) = +oc. A
state-action pair with infinite index can never be sampled since at least one action at that state, the
current empirical best one, has a finite, therefore strictly smaller, index. O
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Proposition 5. Following immediately from Proposition )| for all sub-optimal state-action pair
(s,a) € X that are not critical, it holds
St =S, at =a
i L) o(Mw)) com
[BMLA) — bM< -
Ys(t) = s (M) — 2¢

=0 (46)
t=1

Critical state-action pair We now study the case were (s, a) is critical, i.e. it can be made optimal
under the distributions assumptions, formally Cs, v (Fsq @ P(S)) # 0.

Proposition 6 (Number of pulls of critical state-action pair in the bandit term). For all sub-optimal
state-action pair (s, a) € X that are critical, it holds

St = 8,4t = a

. i ) o(Miaw) com _ log T
— Hbﬁf,(A(t)) —bM|| < = K., (M) — el (M)
As(t) = vs (M) — 2¢
1
+ . :
1 — exp (—Aba (K, ., (M) — 5T, (M)))

_ Mmax (s,a)+bM (s)
where T's, (M) = e (e M (=5 (M)

Proof. Forallv ® q € Fsu @ P(S),
PM, (A1) (v®q) > 3s(t) = PN, (At)) (v @q) > 75 (M) —2¢
= em (v ®q) >y (M) —¢

therefore, C_ 5z, 4(sy) (Fsa @ P(S)) C Csam (Fsa @ P(S), ). Because the infimum over a larger
set is smaller than the infimum over a smaller (for the inclusion order),

K at) < Kaa(t), (48)
where
Kio®) ™ inf {KL(fi(s.0) @ Pi(s.0). v ©0) - pm(v@q) > (M) =} (49)
qeP($)

We recall that ry(s, a) @ Pi(s,a) = r4(s, a, Ns,o(t)) @ Di(s, a, N o(t)) and we denote

Ko inf (KL (#(s,a,n) @ Pi(s,a,n),v @ q) : pm (V@ q) > (M) =g} (50)

the random variable associated to n samples of state-action pair (s, a). Because (s¢,a:) = (s, a),
under the the studied event,

Noo(t)Ks o (t)

H, ,(t)
max log N/ (t)

a

Noa(KS,(8)

NN N

logt
1

NN

ogT
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Therefore, for a critical state action pair,
St =8,at = a
T o T T S+ = S.a
O (M ¢ ) comMm t =5,
yi) oM conn | _shghy i
[Me(A®) — pM|| < e <
ﬂ/s (t) 2 Vs (M) — 2

t=1

T
“Eris ol 0 )
t=1

n=1

T
<> 1{nksn < logT)

n=1

It remains to control the expected value of the term
T

> 1{nk:y <logT}, (51)

n=1
that is to say, control

inf {KL (£(s,a,n) @ pi(s,a,n),r @q) : om v ®q) > s (M) — ¢},

a quantity that has attracted a lot of attention from the theoretical Bandit community. In particular,
under the Assumption [3|(semi-bounded) and Assumption [I] (light-tail), one can apply Lemma 7 of
Honda and Takemural[2015] (as in their Theorem 3) to deduce that,

d log T 1
E|> 1{nKii}| < + -
2 S S R T ) e (i (1 (M) 31 )
(52)
_ Mmax ( 5 )+bM ( )
where I'y, (M) = mm,a,m(s,a)isM(s)—':s(M)' O

D.1.2 The threshold is underestimated

In this subsection, we now turn to the case when the threshold is underestimated, that is to say,
Fs(t) < s (M) — 2e.

In particular, it means that the gain is underestimated since v, (M) = g™ + b™(5s) and that for
the studied bandit term, the bias is e-well estimated and the empirical set of optimal state-action
pairs is included in the true one. Because all empirically optimal actions belong to the skeleton,
those are bound to have been sampled enough. Further using the ergodic Assumption[2] we get the
concentration we need to bound the expected value of

St = 8,0y = a
ZT: L) o(MiAw)) com
[BM(A®) — bM< ¢
As(t) < 7vs (M) — 2¢

Proposition 7. For all sub-optimal state-action pair,

t=1

St = S,a¢r = a
T

g|yoa CGLAm)conn L (53)

et ||bMt(A(t)) _ bM”oo <e *€0 (M)
&s(t) <Vs (M) — 2

where
6e

(1-55) (t-ew (- (1-2) 4s))
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Csx (5) =




Proof. Let x € O4(M) be an optimal action in state s, and denote H}(¢) = min H,, (¢) the value
of the minimal index. We note that H(¢) > log Ny, (t) = log Ns,(t) since z; = (s, a) under the
current studied event. In particular, H, , (t) > log N; 4(%).

Forall v ® ¢ € Fs, ® P(S),
em(r®@q) > (M) —e = PM. (A1) (v®q)+e>ys(M)—¢
= PN, (AM) (v®q)>vs (M) —2¢
- PM, (A1) (v ®q) > As(t).
This implies that Csa,m (Fsa @ P(S),€) € C,, 51, (a(ry) (Fsa ® P(S)) and, using notation K,
introduced Equation 9] proves that K, (t) < K5, (¢), i.e., combining with a previous inequality,
log Ns,a(t) < Hy w(t) < Ny w ()5, (1) + log Ny i (2). (54)
Furthermore, because §;(t) < s (M) — 2, we have that
on (8(5,%) © P(s5,%)) < Ot agey (85 %) @ B, #)) + 2
<As(t) +¢
<vs (M) —2e+¢
= oM (r(s,%) @p(s,%)) —¢.

This implies that
St = S8,a¢+ = a

O (M, (A1) € O (M)

1 N
[BMA®) _pM|| < e
Fs(t) < s (M) — 2¢
is smaller than or equal to
Sf =S8,a¢r = a
11{ log Ny a(t) < New(KS, (1) +log N, . (1) } (55)
oM (E(s,%) @ P(s, *)) < om (r(s, %) @ p(s, ) — ¢

Recalling that, by definition, pn (r(s, *) ® p(s,«)) is an expected value, this quantity is controlled
by Lemma 14 of Honda and Takemural [2015] with
a
) + log N . (t) }) < Gox (€) (56)
(s,%) ® ( ) —¢€

T S =8,
E Zn{ log Ny a(f) < s<>
om (
Ge

Lt

\??@

)
=1 B(5,%) © P(s,%)) < om (
with

Csx (€) = 3 (57)
(1 5) (e (- (1 55) 1.0)))
Finally, taking the minimum over all optimal arm x, we get the result of the proposition,
St = S8,a¢+ = a
T —
O (M, (At)) cOM
— HbMt(A(t)) _ bMHoo <e *€O04 (M)
’S/s (t) < Vs (M) — 2
O

D.1.3 Bandit term: upper bound
Proposition 8 (Upper bound for bandit term). Wrapping up, Propositions|6and[7} if (s, a) is a
critical state-action pair,
logT
(M) — el'sq (M)
1

U exp (“un (K, (M) — 5T, (MD))

+ *ergl?M) Cox (€),

E[Bsa(T)] <

K

s,a

+

(58)
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and by Propositions@ and |Z if (s, a) is not a critical state-action pair,

E[Bs(T)] < *er(gsi?M) Cox (€) - (59)
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D.2 Skeleton improvement term

In this part of the main proof, we aim at controlling the expected value of the sum

T

s(r) =301 {0 (Wi (4w) com bR b <o) 60

t=1

and prove that E (S(T')) = O(1). For readability, we denote

wite) ™ {0 (M (4(0) € 0 (M), b0 — b <

in the rest of proof.
Proposition 9. Ler V; and S, (6) as in Lemma3] then
T

<E Zl{Wt Vi, Se (6 )}]

Bm
1 —exp (= (Bm — B))

Proof. Recall that we denote (¢, I}) the M-adapted sub-division of I; = {1,--- ,t} used in V; and
S¢(6) as in Definition[5] 0 < 8 < B as in Proposition 2] and V; and S; (9) are the events defined in

Lemma We first decompose {W; ()} on V2 N S (§) and V; N Sy (§) by the law of total probability,
and deduce the inequality

+(II42)+ (II+1)[S] + Sm (6)

1{Wi(e)} < L{Wy(e), Vi, S (0)}

+1{V}+1{VinS@)} ©1)
By Lemma[3]
T o B
ELZ;M%} < (+2) 4 (T4 D)8 o
and by Lemma 4}
lZ“{VmSt } < Sm (9), &10)
therefore, ~
Zﬂ{Wt Vi S (8 >}]
Bwm
+ U+ 2+ M+ VISl — =gy T
O

Outline - Intuition The intuition for controlling the remaining term,

Zﬂ{wt Vi S0 (8))

)

is the following. There are IT + 1 sub-intervals and II policies. At the end of the first sub-interval, all
states have been visited linear amount of time and from that point, the gain and bias are well estimated
on the skeleton, i.e., the bandit problem defined by o (A(k)) for all k > o/ Because we play a
bandit strategy, sub-optimal actions for the current bandit problem are guaranteed to be played a
logarithmic amount of time while at least one improving action will be played a linear amount of time
until it belongs to the skeleton, defining a new well-estimated bandit problem. Because the condition
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to belong to the skeleton is in log” which is greatly sub-linear, an improving action will quickly
makes its way to the skeleton. Each interval lasting a linear amount of time, the probability that a
skeleton improvement, if one is possible, occurred between the beginning and end of the sub-interval
is high. Since there are II policies and IT sub-intervals after the first one, by the pigeonhole principle,
the probability that the skeleton contains an optimal policy by the end of the last sub-interval is large.
The two main propositions for controlling this term are Propositions [[0]and [IT]

Lemma 9 (Skeleton coherence). Under the event Vi N Sy (8) with § < dm (em), for all k > o},

gMAK+D) 5 oM(A(K)) (62)

Proof. Ttis sufficient to show that A(k+1)NO ﬁk A(k (0, i.e. to prove that no empiricall
f. P p y

optimal policy at time & disappear from the skeleton after the action taken at that time. We distinguish
between two cases.

* If the sampled action aj, ¢ Aj, (k), i.e. the chosen action does not belong to the current
skeleton, then the skeleton at s;, can only grow in size, as ay, ¢ arg max, max, N, q(k),

A (k+1) C A, (k) U{ax},
and therefore, in that case, gM(A(k“)) > gM(A(k)).

* If the sampled action aj, € A, (k), i.e. the chosen action belongs to the current skeleton,
then the size of the skeleton may decrease if aj, ¢ arg max, max, N, .(k). We distinguish
again between two cases.

~ If the sampled action aj, € argmaxa, ¥z 4k (% (sk,a) @ p* (sk,q)), ie. the

chosen action is empirically optimal and belongs to O (ﬁk (A(k)) ), then this action
will belong to the skeleton at time k + 1 (whether aj, ¢ arg max, max, N, o(k) or
not). By Lemma o (ﬁk (A(k:))) C O (M (A(k))) and therefore, the true gain on
the skeleton will remain the same.

— If the sampled action aj, ¢ argmax, PN (A(K)) (fk(3k7 a) ® p* (s, a)), then we
show that it cannot belong to arg max, max, Ns,,(k) and thus that the skeleton
remains the same between times k and k£ + 1. We show this fact by contradiction. If
a’ is an action that is not empirically optimal and belongs to arg max, max, N, (k),
then H;, o (k) > log max, Ns,o(k). On the other hand, for all empirically optimal
action x, Hy, , (k) = log Ny, » < log max, N, o(k). Therefore, H, o (k) > Hs, « (k)
and action a’ cannot be sampled.

Therefore, in that case, gM(A(E+1) — gM(A(K))

We proved that under the event V; N S (§) with § < v (enm), for all k > o,

gM(A(/H—l)) > gM(A(k)).

where strict improvement can only occur when the sampled action a;, does not belong to the skeleton.
If the action a; belongs to the current skeleton, the gain on the skeleton can only remains the
same. O

An immediate consequence of Lemma @ is that under the event V; N .S; (4), gM(A(”: ™) >
gM(A(@)) " The aim is to prove that the inequality is strict unless the optimal gain has already
been reached, i.e. an optimal policy belongs to the skeleton. Another consequence is that if the
skeleton contains an optimal policy at some time k, then this policy will remain in the skeleton for all
subsequent step (under the event V; N S; (§)).

Forallv € {1,--- ,II — 1}, let

av = {gM(A(J;H)) - gM(A(a;))} U {gM(A(U;H)) — gMA@Y) = gM}7 (63)
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and let
-1
Gi=[)Gy (64)
v=1

where G is an event in which there is a still skeleton improvement between each interval until
optimality is reached.

Proposition 10.

T
D 1{Wi(e), Vi, Si(6),Gi} =10 (65)
t=1

Proof. One one hand, there are II policies, therefore the pigeonholes principle implies that under
G}, by the end of the last sub-interval, O (M (A(t))) € O (M). Furthermore, under V; N S; (§), by

Lemma , O (ﬁt (.A(t))> C O(M(A(t))). Thus, O (ﬁt (A(t))) C O (M). Furthermore, under
the event S; (9), by Lemma [bMi (A1) — pMAWD) | < 5 and since O (M (A(t))) € O (M), it
follows that bM(A(®) = bM by the optimal Poisson equation and therefore, ||bM¢(A®) —pM|| < £,
Therefore, event {V;, S; (0) , G+ } implies W5 (¢).

Thus, {W; (), W, St (6), G¢} = 0, the indicator of such an event is always 0 and the sum equally.

O
The last proposition lets us to study, for all v € {1,--- ;11 — 1},
T T
> 1{Wi(e), Vi, 8 (6), GV} < > 1{V;, 8 (8),G7},
t=1 t=1
because G; = Ug;ll Git” (union bound).
Lemma 10. The equality,
JE— v+1 v
{VirS1(8), G} = {Vi, 81 (6), gM(A(F)) = gMaletd) < g1 (66)

is true.

v+1

Proof. Under V; N S; (9), Lemma@implies that, gM(A("t ) > gMA@) G implies that
v+1 v v+1 v
gM(A(”‘ ) < gM(A@)) or gM(A(”‘ ) = gM(A(@))) <« gM_ Therefore the result. O

In the last part of the proof, we aim to control the probability that, under good event V; N S; (4), no
improvement occurs during sub-interval v. Denote by I (s, M, ) the set of improving actions over a
threshold ~,

I(s,M,y)={a€ As:pom(r(s,a)@p(s,a)) >}, (67)
and I (s, M, ) the set of maximally improving actions over a threshold (it may be empty),
It (s,M,~) = argmax {¢m (r(s,a) @ p(s,a)) :a € I (s,M,7)}. (68)

Lemma 11. On the event,
{w S, (8), gM(A(™)) = gMA@) < gM}

we have that for all k € I} U {0}/’“}

gM(.A(k)) _ gM(A(JZ’))’ (69)
pMAR) — pMA})) (70)
PM(A(k)) = PM(A(¥))s 7D
(72)
and forall s € S,
I (s, M (A(k)), yvawy) =1 (5 M (A7), ynacaer))) - (73)
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Proof. The first three equations result from the, definition of the event, the unicity of the optimal
Poisson equation (see Equation 5.2.18, Chapter 5, Hernandez-Lerma and Lasserre|[1996]) and the
definition of o

The set of improving actions cannot change during I} U {Uf H} because if it were, it would mean
that an improving action now belong to the skeleton. This would lead to a strict increase of the gain
during I}, which is in contradiction with the studied event. O

Proposition 11 (Expected time before policy improvement). Under the event V; N S¢(9), the expected
time during interval v without skeleton improvement is bounded, i.e.,

T
Y1 {Vt, S, (5), gMATT) = gM(Aw) o gM}

t=1

where C (¢) is defined by Equation 7(M) is defined in Equationand A = max, |Agl.

E <A (5 (€) + T(M)) . a4

Outline of the proof We aim to control the number of pulls within the improving set during interval
v. The threshold to belong to the skeleton will be at most log® o7 and I? is of linear length.
Furthermore, the applied bandit strategy on the well estimated problem given by ong(a(or)) Will
sample roughly a linear number of times an optimal action for that problem, i.e. an action in the
improving set. This will imply that such an action belong to the skeleton by the end of the interval,
contradicting the non-increasing gain assumed by the studied event. We will have to control the
probability that no optimal action is sampled more than log? (Jt” +1) during interval v, which is very
unlikely.

Proof. First, we remark that there exits a state s € S such that I (s, M (A(07)) , ym(A(ov))) is ot
empty because the gain g™M(A(?+)) < gM and an improving action is bound to exist by the policy
improvement theorem. Let s be such a state.

We denote by P/(s) = >, 1 {sk = s,ar, € As(k)} the number of times the pulled action
belongs to the skeleton at state s, while an improving action outside of it exists. We have,

PY(s)= Y 1{sk = s,ar € As(k), 75 (k) > 75 (k) — 2} (75)
kerf

+ > 1 {sk = s,ax € As(k),4s(k) < 75 (k) — 2¢} (76)
kerf

The sum corresponding to Equation is equal to 0 because under V; N S; (§), for all action
a € As(k),

N N 13
M) (F(s,a) ® p¥(s,a)) + -

P8, (A (7 (5,0) @DM(s,0)) <o 2
< OmAk) (r(s,a) @ p(s,a)) + €
<7s (k) —3e+e
="s (k) — 2¢
< As (k).

By definition of s, no empirically optimal action * in state s belong to the skeleton and 4, (k) is
realized by an action x ¢ A, (k). Let x be such an action, the its IMED-RL index is log N, (k) <
log max, Ngq (k). Further, for all action a € A,(k), its IMED-RL index is strictly larger than
log Nso (k) > logmaxy Ngo (k). Therefore, aj cannot belong to A, (k) if 45(k) > s (k) — 2¢
under the favorable event V; N S, (J). Thus,

PY(s)= > 1{sk=s,ar € As(k),7s(k) < 75 (k) — 2¢} .
kerf

“While the bias is defined up to a constant, all choices are made by comparing ©OM(A(t)) On empirical
distributions, which cancels out the global constant. All equality results are stated modulo this global additive
constant.
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For all a € I (s, M, (k)), em(am)) (r(s,a) ® p(s,a)) = 7, (k) and is an optimal choice of
action for the bandit problem defined by oni(a(k)) = PMm(Aa(or))- While this fact is not used, we still
note that any action a € I (s, M, ~, (k)) that is sampled enough will make the gain increase.

Foralla € It (s,M, 75 (k)), enma)) (r(s,a) ® p(s,a)) = s (k), and therefore

M) (B(s,a) @ B¥(s,a)) < ogg, (apny) (B (s.0) @ B (s.0)) +¢
<As(k) +¢
<vs(k)—e
= omAw) (r(s,a) ®p(s,a)) —
By a union bound, for all x € I'" (5,75 (aV)),
Sk =Ss,ar =a

P (s) < > D14 log Nyo(t) < Ny (K)KS, (k) +log N, . (k)
ag I+ (s,ys(o¥)) kETL OM(Aor)) (B(8,%) @ P(s,%)) < 75 (M (A(0y))) — ¢

a quantity that is similar to the one controlled in Equation [55] In particular, this quantity is similarly
controlled by Lemma 14 of [Honda and Takemural[2015]] with

T S = S8,a = a
Z 1{ logNs.(t) < Ny, (k)K

2x (k) +log Ny (k) <C(e) a1
=1 OM(Aor)) (8, %) @ P(s, %)) <75 (M (A(0y))) — ¢
where
- 6e
¢(e) = max max

Tell(M SES*I+8M * 3"
€I(M) eIt ( ) ( As*,ll\/lﬂ-,i) <1 — exp (— (1 — /\5*,11\/1,,,5) As*,MW(E)))

This proves that E [P (s)] < AC(e) where A = max, |As|, i.e., P¥(s) is a positive random variable
with finite expected value. This implies that, P (P} (s) > at) = o (1/t) for all & > 0.

To end the proof, we decompose,

1{V;, 5, (9),gMALTT)) = gMAC) < g} (78)
as the sum
1 {Vt S, (5), gM(A(™)) = gM(A@)) < gM pr(g) < ij} (79)
1{Vi,50 () MO - gD < g Py > SR so)
We control the term This term is upper bounded by 1 {Pt”(s) > ij }, and because
P(Pr(s) > £52) 2P (Pr(s) > | £ ),
T
y K3t |AS|" 5 [ A" -
E 1<4P > < 81
> {rreo AS|}] o< [ 5] o o

by using again the fact that E (P/(s)) = >, .y P (PY(s) = n).

Finally, we control the term The event {Pt”(s) < fA—Bt‘} implies that the number of times the
sampled action belong to the skeleton during I} is only a fraction of that sub-interval. The remaining
sample must therefore not belong to the skeleton. Sub-optimal actions outside the skeleton at time o
will be sampled at most log a”H times and there are at most A such actions. Therefore, there are at
most | A | + Alog® (vf3t) samples that are not in the improving set I(s, s (¢7)). The improving set
is at most of size A and therefore, at least one action in that set is sampled more than

i (o0 (0 v aveet wn ) )
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times. This quantity is linear and for ¢ larger than a constant that depends on &, 3, A, |As| and v, we
have that,

1 K,Bt v
1 (ﬂt — (|AS| + Alog? (m))) > log? (a7). (82)
We denote by 7 (M), the maximum on s € S and v of these constants. Therefore,
L +1 K[t
E|> 1 {Vt,St (5), gMA(T™)) — gMAE) < oM pr(g) < ¥ }] <7(M).  (83)
t=1 s
O
D.2.1 Skeleton improvement: upper bound
Proposition 12. By combining Propositions[9and|[I1] then
E[S(T)] < 14 ({(e) + (M)
(T4 2) 4+ (14 1) 18] S (9) o
+ (I 42) + (T +1 -
I—exp(-(Bu—-8)

D.3 Regret upper bound

Finally, one can express the full regret upper bound on the regret of IMED-RL by combining the
decomposition of Proposition the result of Proposition [§]and the one of Proposition

Theorem 4 (Reet upper bound for Ergodic MDPs). Let M = (S, A, p,r) be an MDP satisfying
2

Assumptions|I||2|3l Let0 < e < § min  min {|A,, (M D As e (M > 0}. The
r 3 Tell(M) (s,a)EXMm {| > ( (ﬂ-)) | | 5 ( (ﬂ—)) ‘ }

regret of IMED-RL is upper bounded as

Asa (M)
(M> - EFS (M)

Rwep-rr (M, T) < Z logT + O(1), (T4)

KS a
(s;a)EC(M) =

where I's (M) is constant that depends on the MDP M and state s; it is made explicit in the proof
below. A Taylor expansion allows to write the regret upper bound as

Asa M
Rnep-rr (M, T) < Z # logT + O ((IOgT)lo/ll) . ™
(S,a)EC(M) ——Ss,a (M)

The Taylor expansion is a direct application of Equation 7, Corollary 4 of Honda and Takemura
[2015]).

32



E Assumptions

In this section, we discussion a variant of the considered setup when the support of transitions is
considered known, and then a possible relaxation of the ergodic assumption.

Known support of transitions As quickly explained in the main article, when the support of
transition is known, the infimum in sub-optimality cost K, , defined by equation|J]is redefined as
one over the set {¢ € P (S) : Supp(q) = Supp (p (+|s, a)) }, modifying the lower bound. Without
the knowledge of the support,

K, .(M,y) =  inf {KL (r(s,a) ® p(-|s,a), v ® q) : oM (¥ ®@q) >},
4EP(S)

and with the knowledge of the support,

K., (M) = Jinf (KL (x(s,0) © p([s.a),v @) + om (v @) > 7}
9€P(S):Supp(q)=Supp(p(-|s.a))

Hence, two similar but different lower bounds can be derived depending on whether or not, one

assumes to know the support Supp(p) of the transitions. In both cases, it can be written

Re(MLT) g~ (M)
L)

where C (M) = {(s,a) : 0 <K, , (M) < oo}, the set of critical state-action pairs, depends on the
made hypothesis. Since the lower bound obtained with the knowledge of the support is smaller than
without this knowledge, it is a priori not trivial that an algorithm originally designed for the case when
support is unknown can indeed exploit this knowledge. Fortunately, due to form of the IMED-RL,
it is enough to use the same restriction on the set {g € P (S) : Supp(q) = Supp (p (:|s,a))} in the
definition of the index to leverage this knowledge. The resulting algorithm slightly differs from
IMED-RL and it can be checked easily that the regret analysis for this modified version can be done
similarly to IMED-RL, and leads to algorithm matching the asymptotic lower bound knowing the
support of transitions. Please refer to Subsection [F.I] to see how the hereafter term denoted B is
modified by the knowledge of the support.

lim inf
Thoe logT K.,
(s,a)ec(M) —

Bounded support Similarly, one can modify the Assumption[3|to be one with a bounded reward
assumption. In this case, Theorem 5 of Honda and Takemura| [2015]] shows that the Taylor expansion
made in the regret upper bound has the aforementioned form in Theorem 2}

Communicating MDPs and -soft policies The ergodic assumption can be limiting in practice,
since most common MDPs are not ergodic but only communicating. Interestingly, in a commu-
nicating MDP, every stochastic policy 7 : s € § — m(:|s) € P(As), with full-support (that is
Supp (7 (+|s)) = A, for each s € S) is ergodic. In particular, the uniform policy is ergodic. Also,
e-soft policies, that satisfy 7 (a|s) > ¢ for all s, a, are ergodic. When restricting to the class of e-soft
policies in a communicating MDPs, it seems that modifying IMED-RL to be also e-soft should lead to
a strategy competitive with an optimal e-soft policy. For ¢ < 1/|.4;|, the modification is to sample
the chosen action with probability 1 — (|.A5| — 1)e and any other action with probability €. Now,
a precise analysis of this modification is postponed to further work, and going beyond this case to
handle the full-blown communicating assumption seem to require other ideas, especially since the
lower bound for non-ergodic MDPs is expected to be much different from that of ergodic MDPs.
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F Numerical Experiments

In this section, we first discuss a few implementation details of the IMED-RL index, then present
additional numerical experiments as well as some extensions.

F.1 Solving the optimization problem K ,

Although the IMED index involves only a single optimization problem (unlike KL-UCB that requires
two), computing the Kullback-Leibler projection is not obvious in general. The same remark holds
for IMED-RL. Luckily, inspired from the work of Honda and Takemural[2015]], the IMED-RL index
can be computed easily when restricting to some families of distributions.

In particular, when the set F, of reward distributions is a set of multinomial distributions over a
finite set with largest element < 1,4, then the computation of K, , can be done easily, owing to
the rewriting Theorem 3 from [Honda and Takemura| [2012].

Lemma 12. Let M be an MDP satisfying Assumptions B = my,,,(s,a) + maxyes bM(s) with
My,ax (S, a) as in Assumption |3|and rewards satisfying Assumption|l| Then,

K,,(M,y) = max Z p(s'ls, a)Py(s,q)(r) log (1 — (r +bM(s) — fy) :c)

OSa<p= s'es
resupp(r(s,a))

which is a finite convex optimisation problem in x € R.

For the computation of K ,(t), we use the empirical support of r(s, a) computed with the gath-
ered samples. Theoretical guarantees comes from the finitness of the support of the original
distribution but most importantly, from the fact that is upper bounded by known constant. If

ER~r(s,a),5~p(s,a) (ﬁ_g{v{(s)) < 1, then this optimisation problem even has a closed form

formula and the maximum of the right-hand-side is obtained for x = %ﬂ.

In a run of IMED-RL, we compute the solution of the empirical problem the same way,

K. ()= max > B (5], 0)Pre ey (1) 1og (1= (r+BMAO () —4,(1) ) )

US =TT
resupp(#'(s,a))
with B; = myax(s, a) + max pM(A®)
s'e

In the general case, the problem given in Proposition [2]is still convex and can be numerically solved
as long as one can correctly approximate an expected value, i.e. an integral.

Known support of transition We follow the discussion started in Appendix |E} If the support of
the transition is known, then the cost is computed as

Ks,a (Mv’Y) = ma'Xl Z p<8/|87 a’>Pr(S,a) (T) log (1 - (T + bM(S/) - ’7) Jf)
OSTSBea= o esupp(p(-1s,0))
r€Supp(r(s,a))

s'€supp(p(+]s,a))
IMED-RL takes the knowledge of the support of the transition into account. Of course, this problem is
still a finite convex optimisation problem in z € R.

where Bs, = My ax(s,a) + max bM(s) replacing the initial B in Lemma thus making

Lazy updates Numerically, IMED-RL benefits from this fast computation and the fact that it employs
a Value Iteration in lieu of an Extended Value Iteration for instance used in UCRL3. On the other
hand, IMED-RL updates its policy at each time step, unlike UCRL3 that proceeds into episodes. On
our numerical experiments, the overall running time of IMED-RL is only about 5 times that of UCRL3,
despite updating its policy at each time step. Interestingly, it may be possible to further reduce the
numerical complexity of IMED-RL by performing lazy computation of the indexes after some time.
Indeed, by design, with high probability, the potential function yg; (A(t)) is not destined to change

nor to be much different from the true ng once an optimal policy belongs to A(%). As the number of
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samples increase, the magnitude of the updates decreases and o3 (A®) roughly remains the same,

thus allowing the practitioner to perform value iteration every once in a while, when at least one
estimate shifted by more than a fraction of the minimal sub-optimality gap for instance. Of course
this modification requires to update the regret analysis accordingly.

F.2 Additional experiments

In this section, we detail a few more experiments. In all experiments, we used environments with
maximal reward 0.99 and bound m,,,, = 1 given to the learner. The code of the experiments is
available on the github repositoryEy] of this paper. Experiments are conducted using 256 replications
(independent run), with horizon specified in case.

River-swim We consider one experimentation with a river-swim with 25 states. River-swim
environments are sometimes considered hard instances for strategies such as PSRL, as the reward
signal is sparse. We observe in Figure [] that indeed PSRL struggles in such an environment. The
three other strategies work well, with some advantage for IMED-RL on the long run.

x103 RiverSwim-S25-v0 x103 ErgodicRiverSwim-S25-v0

-~ IMED-RL -~ |IMED-RL

8 PSRL 8 PSRL

—# UCRL3 —# UCRL3
Q-learning Q-learning

o

Regret Tg*-sum_t r_t
£

Regret Tg*-sum_t r_t
- o

N)
N
L

e iy 5y Sy 2 1= St e e o e S Sl bt e
'_t-%_'_:_: < i T T e SO S R O S e rf-‘—o—c—-,—{» b ke = S TED R R X
0L . . . . . 0L . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps x10* Time steps x10*

Figure 4: Average regret and quantiles (0.1 and 0.9) curves of algorithms on a standard communicating
25-states RiverSwim (left), and in its ergodic version (right).

For the sake of completeness, we present the average runtime for completing a trajectory of the tested
algorithms on both ergodic and non-ergodic RiverSwim.

Table 1: Average runtime (second) on 25-states RiverSwim

IMED-RL PSRL UCRL3 Q-learning
non-ergodic 5.56 0.15 0.42 0.02
ergodic 1.45 0.04 0.23 0.02

Apart from Q-learning, all algorithms seem to benefit a numerical boost from the ergodicity of the
environment.

Two-room grid-world The two-room environment we consider in this experiment consists of
a9 x 11 grid and 4 actions, and is actually a larger state-action space than the four-room MDP
considered in the main text, Section[5] Also, it contains a bottleneck state, which is sometimes
considered as a hard instance. Note that since the considered grid-worlds are slippery (frozen-
lake style, with 0.1 probability of visiting executing nearby actions), this also means that from the
bottleneck state, it is actually possible to enter the bottom room not only with action down, but also
left and right. Hence, this MDP does not contain a bottleneck state-action pair. In such environments,
although not being ergodic, we expect the IMED-RL strategy to work reasonably well, which is
confirmed by the experiment in Figure[3]

19Plain text URL is https://github.com/fabienpesquerel/IMED-RL
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Figure 5: A two room environment with size 9 x 11 and 4 actions (left), and average regret and
quantiles (0.1 and 0.9) curves of algorithms (right).

Another grid-world We further provide below complementary experiments in Figure[6]and Figure/[7]
with other randomly generated frozen-lake grid-worlds with a unique goal state. The learner jumps to
a random initial state each time the goal is reached. The frozen lake part is implemented as slippery
actions, where for instance choosing action up has some small probability to move the learner also
left or right, or action left has some probability to move the learner up or down, as long as there
is no wall (note also that they are coded as toric environments). Although these environments are
not ergodic but only communicating. we can observe the striking performance of IMED-RL against
the state-of-the-art UCRL3 or related PSRL and Q-learning strategies. Note that these other strategies
eventually learn as well, but for larger time horizon. In Figure[7} we did not report UCRL3 and PSRL
as their computation time were prohibitive compare to IMED-RL and Q-learning in this setup.
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Figure 6: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) in a randomly
generated grid-world (8x8 grid, 4 actions) with reward 0.99 in white state (right).

We present again the average runtime for completing a trajectory of the tested algorithms on such a
grid-world environment.

Table 2: Average runtime (second) on 8 x 8 grid-world

IMED-RL PSRL UCRL3 Q-learning
1.82 0.75  6.36 0.03

We can see that the performances of IMED-RL and UCRL3 were exchanged. Generally, our experiments
tends to show that the performances of IMED-RL are quite good on grid-worlds, both from a regret
minimization viewpoint and a numerical complexity viewpoint.
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Figure 7: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) in a randomly
generated grid-world (16x16 grid, 4 actions) with reward 0.99 in white state (right).

A reward-rich environment While the previous examples were considering environments with
a sparse reward signal, it is interesting to test the behavior of the algorithm in other types of
environments. In the following experiment, we consider a reward-rich environment, where about
80% of state-action pairs generate a reward of at least 0.4 (and the maximal reward is 0.99). Such
environments are known to favor the PSRL strategy as well as optimistically initialized strategies, that
benefit from a reduced burn-in phase thanks to their prior. In Figure [8] we observe that IMED-RL
outperforms the UCRL3 strategy, but is indeed beaten by PSRL (while PSRL had poor regret in
reward-scarce environments, see Figure [), as well as the Q-learning algorithm initialized with
~ = 0.99 and initial value 1/(1 — ) in each state. When the MDP is modified to have minimal pass
p(s’ls,a) = 0.01 for each s, a, ', the performance of IMED-RL improves and becomes more stable
(as well as that of other strategies), as seen in Figure [8}right.
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rich environment (10 states, 4 actions) where 80% of state-action pairs give reward of at least 0.4.
Right: regret in the ergodic version of the MDP.

A nasty case In order to better understand the limitation of the IMED-RL algorithm, we tried (but
did not succeed) to craft an environment that would make the IMED-RL algorithm fail. The analysis
reveals that we should consider a non-ergodic MDP for this purpose. Importantly, the index for
pair (s, a) is based on building a modified MDP with unmodified reward and transitions for pairs
different than (s, a), which is a feature coming from the ergodic property. However, in a non-ergodic
MDP, an optimal policy and a policy playing a in state s may have different recurrent classes, say
class x and «,. It is not difficult to show that when all paths from a state in % to a state in x, must
contain (s, a), that is (s, a) is a bottleneck pair, then changing the MDP only in pair (s, a) to build
a "confusing instance" isn’t sound anymore, hence the construction of the IMED-RL index is no
longer justified in such cases. Inspired from this intuition, we build in Figure[9]a specific nasty MDP
with such a bottleneck state-action pair, separating two cycles with close value. We further remark
that this structure, two promising cycles at two ends of a chain with less rewards in between, may
induce an "oscillation" of a learning agent between the two cycles, paying the cost of the travel along
the chain each time it "decides" to change cycle. We observe that the quantile tube of IMED-RL is
larger than before and indeed indicates more struggles but not enough that the IMED-RL fails the
task. Still, we remark a small advantage of PSRL over IMED-RL in this environment. Note that the
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environment is reward rich with rewards close to 1, which also favors PSRL and Q-learning with
optimistic initialization.
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Figure 9: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) in a nasty environment
with two cycles separated by a bottleneck action.

Conclusion The numerical experiments presented in the main paper and this section show that the
IMED-RL algorithm seems to deliver the promise of the premise. On ergodic environment, its regret
is empirically very low and often the smallest in tested environment. As explained in this section,
it is pleasing to see that its numerical guarantees seems to go beyond the ergodic assumption with
particularly good performances in grid-world. In order to better understand the role of the made
assumptions, we specifically designed a "nasty case" built to make IMED-RL fail. This case paves the
way for future work.
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G A note on the seminal paper of Burnetas and Katehakis [1997]

In this last appendix, we discuss the subtle but key modification that we made to the notion of skeleton
introduced in the seminal paper of | Burnetas and Katehakis| [1997]] and defined, for each state s and
time ¢, by,

ABE(t) = {a € Ayt Ny o(t) > log? (N,(1))} (85)

In contrast, the skeleton used in IMED-RL is defined replacing the sum N (t) = >_  c 4 Nsa' ()
with a maximum as follows
Ag(t) = {a € Ay N, o) > log? max (Ngar (t))} .

Correctness The restricted MDP defined by IMED-RL, M 4(;), is well defined in the sense that
at least one action is available in each state, that is for all ¢, for all s, As(t) # (. On the other
hand, especially at the beginning, AZX (¢) could very well be empty. Without saying anything about
their algorithm, we just highlight tha@( it must explore all actions in each state at least once before
proceeding with non-trivial allocation (this is because the index is —oo when an arm has not been
pulled). Suppose that there are 4 actions in a state s. After the first 3 visits in s, whatever the current
time ¢, N,(t) = 3, Ngo(t) < 1 (as it is O for the only unsampled action or 1 for the three others).
Because log2 3 ~ 1.2 > 1, the skeleton at state s is hence empty and therefore, no action belong to
the skeleton. Note that this situation does not happen when using the definition of skeleton used by
IMED-RL, since x > 1n2(x) for all z > 0.5 and at least one action must be sampled (N, () > 1).
In this case, the behaviour of the algorithm presented in the paper of |[Burnetas and Katehakis| [[1997]]
is undefined as it is not specified how to compute the bias and gain on the lacking restricted MDP.
Now, in and MDP with a larger number of actions, say 100, the same argument shows that between
the 3¢ and 100*" visit of state s, the skeleton at s is empty and the behaviour undefined. This means
that if there are only 20 states in the MDP, the behaviour of the algorithm is undefined for at least
about |S| x (A — log®(A)) = 2000 steps (and possibly much more, since one would need all states
to be visited about A — logQ(A) time and it is unlikely that all states are visited equally often).

Incoherence The skeleton as defined in (83)) is "incoherent" in the sense that actions may be
removed from it for no "justified" reason. In the worst case, all actions may be removed in one
step. Assume a state s with 2 actions, one having been sampled 3 times and the other 2 times,
i.e. Ng(t) = 5. Because 2 < log? 5 ~ 2.6 < 3, one action belongs to the skeleton and the other
does not. Assume that the action that have been sampled 2 times is now sampled at time k£ > {.
Then both actions have been sampled 3 times, N, (k) = 6 and the skeleton at s is now empty since
log? 6 ~ 3.2 > 3. While this kind of behaviour disappear for large number of samples, it is not
desirable in finite time and introduces incoherence that makes the algorithm undefined and the
learning less efficient if we were to resolve undefined behaviour by random choices.

Forced exploration Because of their definition of skeleton, forced exploration is necessary in the
analysis of Burnetas and Katehakis| [1997] meaning that their algorithm is not purely based on a
computed index. While forced exploration and tracking is not inherently an unwanted feature, we
think that it should be avoided when possible, hence leaning towards our IMED-RL skeleton.

Measuring accuracy The skeleton is used to build a restricted MDP on which the gain and bias
can be controlled. This control is due to the fact that, on the skeleton, state-action pairs have been
sampled enough. In each state, we are interested in actions with the largest number of pulls amongst
all available actions. The most sampled action in each state should therefore obviously belong to the
skeleton. Furthermore, it seems natural that the skeleton at a state does not change if the maximal
precision in that state, given by the action that has been sampled the most in that state, does not
change. This is mainly the rationale behind our subtle but key modification of the notion of skeleton.

as it is the case for all learning algorithm without prior information
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