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ABSTRACT

Ocean wave climate has a significant impact on near-shore and off-shore human activities, and its
characterisation can help in the design of ocean structures such as wave energy converters and sea
dikes. Therefore, engineers need long time series of ocean wave parameters. Numerical models are a
valuable source of ocean wave data; however, they are computationally expensive. Consequently,
statistical and data-driven approaches have gained increasing interest in recent decades. This work
investigates the spatio-temporal relationship between North Atlantic wind and significant wave height
(Hs) at an off-shore location in the Bay of Biscay, using a two-stage deep learning model. The first
step uses convolutional neural networks (CNNs) to extract the spatial features that contribute to Hs.
Then, long short-term memory (LSTM) is used to learn the long-term temporal dependencies between
wind and waves.

1 Introduction

Characterisation of wave climate is required for many marine applications, such as the design of coastal and offshore
structures and the planning of ship operations. Wind waves are generated by the surface wind, with local wind creating
the wind sea and wind from distant areas creating waves that propagate and form swells ([Young, Ian R.(1999)]). Waves
in the Bay of Biscay depend on both local and large-scale wind conditions in the North Atlantic ([Charles et al. (2012)])
; however, swells generally dominate the sea state. Swells travel large distances and take up to five days to cross the
Atlantic from Cape Hatteras to the Bay of Biscay ([Ardhuin et al. (2018)]). Consequently, waves observed at a given
location depend on wind conditions over the North Atlantic in a time window of several days, and it is challenging to
reproduce this complex spatio-temporal relationship using machine learning. The goal of this work is to propose a deep
learning approach that learns this relationship.

The advantage of deep learning methods ([Ian Goodfellow et al. (2016)]) lies in their ability to build hierarchical
representations of predictors. In particular, in the case of spatial data, convolutional neural networks (CNNs) allow
to learn complex spatial features from the data ([Jiuxiang Gu et al.(2018)]). Moreover, long short memory (LSTMs)
([Hochreiter et al.(1997)]) have proven to be very successful in predicting time series and sequence data. In this work,
we propose a non-expensive data-driven approach that learns the underlying spatio-temporal structure of the relationship
between wind and waves using a two-stage model based on CNNs and LSTM.

This paper is organised as follows. Section 2 presents the problem of downscaling of ocean waves and related works.
Section 3 describes the data used in this work. Section 4 presents the proposed two-stage model, the architecture, and
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the training process. Section 5 discusses the results of this work. Finally, Section 6 presents the conclusions and future
work directions.

2 Problem statement and related work

The problem of improving the spatial resolution of climate variables is known under the name of downscaling
([Maraun et al.(2010)]). Downscaling approaches attempt to construct a link, either numerical or statistical, between
large-scale and local-scale variables. The advantage of statistical downscaling (SD) over numerical models is primarily
in terms of computational efficiency. A rigorous comparison of the two approaches can be found in ([Wang et al.(2010),
Laugel et al.(2014)]).

In the case of ocean waves, wind ([Obakrim et al.(2022)]) or sea level pressure (SLP) ([Camus et al.(2014)]) are
commonly used to downscale ocean wave parameters. However, in order to establish a link function between the
wind (or SLP) and the local ocean wave parameters, it is necessary to consider a large spatial and temporal coverage
and, consequently, a large number of potential explanatory variables that are highly correlated. Some methods
determine the wave generation area for any ocean location worldwide. For example, ESTELA ([Pérez et al.(2014)])
is a numerical model that uses the spectral information to select the fraction of energy that travels to the target point
from selected source points. The ESTELA method can be used to design statistical downscaling methods. For instance,
[Camus et al.(2014)] and [Hegermiller et al.(2017)] used the ESTELA method to define the predictors used in their SD
model.

[Obakrim et al.(2022)] proposed a data-driven approach that determines the wave generation area by estimating the
travel time of waves, generated in each considered sources point, that reach the target point. Then, the predictors were
defined based on the wave generation area and finally a SD model based on weather types was built.

As far as we know, the existing methods for SD of ocean wave parameters define a priori the spatio-temporal structure
of the predictors, and then the SD model is built using these predictors. The aim of this study is to propose a deep
learning approach that automatically learns the spatio-temporal relationship between wind and waves.

3 Data preparation

The Climate Forecast System Reanalysis (CFSR) ([Saha et al.(2010)]) hourly wind data is considered in this study
as a predictor. CFSR is a global reanalysis developed by the National Centers for Environmental Prediction (NCEP)
that covers the period from 1979 to the present with an hourly time step and a spatial resolution of 0.5°by 0.5°. The
historical Hs data is extracted from the hindcast database HOMERE ([Boudière et al.(2013)]) at the target location
with spatial coordinates (45.2°N, 1.6°W) located in the Bay of Biscay. The temporal resolution of both wind and Hs

data is up-scaled to 3-hourly data. The period from 1994 to 2016 is considered in this study, leading to a dataset with
n = 67208 observations.

Instead of using both zonal and meridional components as a predictor, we use the projected wind
([Obakrim et al.(2022)]) defined, at each location j and time t, as

Wj(t) = Uj(t) cos
2

(
1

2
(bj − θj(t))

)
(1)

where Wj(t) is the projected wind, Uj(t) the wind speed, θj(t) the wind direction and bj is the great circle bearing
from the source point j to the target point. Under the assumption that waves travel in great circle paths, grid points
whose paths are blocked by land are neglected (Figure 1). Therefore, we define the global predictor at time t as

X(g)(t) = (W 2
1 (t), ...,W

2
p (t)) (2)

where p = 5651 is total number of grid points.

Following ([Obakrim et al.(2022)]), in order to capture the wind sea, we also define the local predictor as

X(`)(t) = {U(t), U2(t), U3(t), U2(t)F (t), U(t− 1), U2(t− 1), U3(t− 1), U2(t− 1)F (t− 1)} (3)

where U(t) is the wind speed at the target point and F (t) is the fetch length at time t, calculated as the minimum of
the distance from the target point to shore in the direction from which the wind is blowing and 500km. The fetch has
an important effect on wind sea characteristics ([Ardhuin et al. (2018)]); therefore, it is commonly used to construct
empirical wind wave models.
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Figure 1: The projected wind defined in (2) in 1994-01-01 00h:00. The black point represents the target point

4 Proposed methodology

As mentioned in the last section, state of the art statistical methods for downscaling wave parameters usually use a
pre-processing step to create features that take into account the wave generation area. In this study, we propose a deep
learning approach that automatically extracts these features. Since waves may take several days to reach the target point,
the history and current wind can be used to predict Hs. An example of this type of model could have the following form

Hs(t) = f(X(g)(t− tmax), ..., X(g)(t)) (4)

where, tmax can be interpreted as the maximum travel time of the waves and will be referred to as such in the following.
However, this approach can be computationally challenging given the dimension of the predictor (5651 in our case).
Instead, in this study we propose to use current wind conditions to estimate current and future Hs.

In order to describe the complex spatio-temporal relationship between wind andHs, we propose the following two-stage
model

1st stage: [Hs(t|X(g)(t)), ...,Hs(t+ tmax|X(g)(t))] = f(X(g)(t)) + ε(t), f : Rp → Rtmax

2nd stage: Hs(t) = g(X(g)(t), f(X(g)(t− tmax)), ..., f(X(g)(t))) + ε′(t), g : Rtmax∗tmax+8 → R
(5)

where the notation Hs(t1|X(g)(t2)) represents the contribution of wind conditions at time t2 in Hs at time t1. ε and ε′
are the errors of the 1st stage and 2nd stage, respectively. The 1st stage estimates the current and future Hs using current
wind conditions. The 2nd stage estimates Hs using the past predictions obtained from the 1st stage. Along with the local
predictor X(g), the input for the 2nd stage is a tmax ∗ tmax matrix of the formĤs(t− tmax|X(g)(t− tmax)) . . . Ĥs(t|X(g)(t− tmax))

...
. . .

...
Ĥs(t|X(g)(t)) . . . Ĥs(t+ tmax|X(g)(t))

 (6)

where Ĥs(t1|X(g)(t2)) represents the prediction, obtained from the 1st stage, of the contribution of wind conditions
at time t2 in the Hs at time t1. When t1 = t2, this prediction represents the wind sea (first column of the matrix in
equation (6)); for t1 > t2, on the other hand, the prediction represents the Hs caused by swells.

The general structure of the model is shown in Figure 2. The 1st stage consists of a series of 3*3 convolutions followed
by the ReLU activation function, 2*2 max pooling layer, Batch Normalisation, then a flatten followed by a dense
layer. The 2nd stage starts with an LSTM layer that learns the long-term dependencies of the (t− tmax, ..., t) outputs
of the 1st stage. The output of the LSTM layer is then concatenated with the local predictor X l and fed into two fully
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Figure 2: Architecture of the two-stage model in equation (5)

connected layers. The dropout layer is used in both stages to prevent the network from overfitting. The loss function
choosed in this study is the mean squared error (MSE) which is expressed as

MSE(1st stage) =
1

tmax

tmax∑
i=0

1

n− tmax − 1

n−tmax∑
t=1

(Hs(t+ i)− Ĥs(t+ i|X(g)(t)))2

MSE(2nd stage) =
1

n

n∑
t=1

(Hs(t)− Ĥs(t))
2

(7)

Where n is the total number of observations and Ĥs is the prediction of Hs. The Keras framework with Tensorflow
backend ([Chollet et al.(2015)]) is used in this work to train the model, on a Nvidia K80s GPU using the Adam optimiser
([Diederik et al.(2017)]) and mini batches of 64.

5 Results

The period from 1994 to 2011 is used to train the two-stage model and the period from 2012 to 2014 serves as the
validation period. The measures chosen in this paper to validate the analysis are the correlation coefficient (r), the
root mean square error (RMSE) and the bias. Different values for the maximum travel time of waves tmax are tested,
and the results of k-fold cross-validation (with k = 5) are shown in Figure 3. The RMSE stabilises approximately at
tmax = 30× 3h, which corresponds to about 3.3 days, and the gain is substantial compared to using tmax = 5. This
means that wind conditions over a time window of at least 3.3 days must be considered to characterise the wave climate
at the target location. In the following, the value of tmax is chosen equal to 30.

Figure 4 shows the scatter plot of observed versus predicted values of Hs using the two-stage model (5). The RMSE in
the validation period is equal to 0.21m for an Hs of mean 1.9m and standard deviation 1.1m. The model performs
well in predicting Hs and accounts for both wind and swell. The validation measures in the calibration and validation
periods are almost the same. This means that the model does not overfit the training data and generalises well the
relationship between wind and waves. Furthermore, the seasonality of Hs is well captured by the two-stage model, as
can be seen in Figure 5.

A comparison of the two-stage model with two other statistical approaches is done in Table 1. The first approach,
described in ([Obakrim et al.(2022)]), is based on weather types ([Maraun et al.(2010)]). As for the present work, the
local and global predictors were considered. However, in order to reduce the dimension of the predictor a single
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Figure 3: Results of cross-validation using different values of tmax. The blue line represents the mean of RMSE and
the red interval represents the minimum and maximum RMSE

Figure 4: Observed versus predicted Hs in the validation period (left panel) and calibration period (right panel)

Method r RMSE(m) bias(m)
two-stage model 0.98 0.21 -0.006

weather types 0.97 0.27 -0.03
H-CNN 0.97 0.27 -0.04

Table 1: Comparison of the two-stage model, weather types and H-CNN methods.
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Figure 5: Time series of observed (blue line) and predicted (red line) Hs in 2016

predictor is extracted at each spatial location j to predict Hs at time t. It is defined a priori as

X
(g)
j (t; tj , αj) =

1
2αj+1

∑t−tj+αj

i=t−tj−αj
W 2
j (i), (8)

tj + αj + 1 ≤ t ≤ tj − αj + n

where tj is the travel time of waves, αj controls the length of the time window, and Wj is the projected wind at location
j. The parameters tj and αj were estimated using the maximum correlation between hs and the global predictor. The
second method ([Michel et al.(2022)]) uses CNNs to predictHs using the same predictors as in ([Obakrim et al.(2022)]).
Thus, the main difference with the approach proposed in this work is that the temporal dimension of the global predictor
is reduced a priori using the preprocessing step based on maximum correlation described above. The numerical results
in Table 1 indicate that the two-stage model significantly outperforms the other two methods in term of the validation
measures.

6 Conclusion

In this study, a two-stage model based on deep learning is proposed to predict Hs using wind conditions. The model is
capable of learning automatically the underlying spatio-temporal structure of the relationship between wind and waves.
The model does well in predicting Hs and is computationally inexpensive (about 5min using a computer of 30GB RAM,
2 cores CPU, and a 16GB GPU). The proposed methodology is based on two stages which are trained separately. A
natural question that arises for future work, is whether we can estimate the parameters jointly using back-propagation
and eventually speed up the training process and improving the results. Future work also includes using the method to
predict other sea state parameters, such as wave direction and period.

The proposed method can be used for climate and weather studies at any ocean location worldwide. For nearby locations,
one can train only the 2nd stage at each location, using the weights of one location as initialisation for the others and
leaving the 1st stage the same. The model can also learn from buoy data instead of hindcast data and eventually fill in
the gaps and complete historical data.

Data Availability Statement The hindcast data Homere is available in their website: https://marc.ifremer.
fr/produits/rejeu_d_etats_de_mer_homere. The wind data is available from the CFSR website: https://
climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr.

Author Contributions Conceptualization: S.O; V.M; N.R; P.A. Methodology: S.O; V.M; N.R; P.A. Data curation:
S.O; N.R. Data visualisation: S.O. Software: S.O. Supervision: V.M; N.R; P.A. Writing original draft: S.O; V.M; N.R;
P.A. All authors approved the final submitted draft.

Supplementary Material For reasons of reproducibility, Python code and the processed data are available at https:
//github.com/SaidObakrim/Two-stage-CNN-LSTM-.
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