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Foucaud et al. [Discrete Appl. Math. 319 (2022), [424][425][426][427][428][429][430][431][432][433][434][435][436][437][438] recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) = d G-e (x, y). For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. The distance-edge-monitoring number of a graph G, denoted by dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. The vertices of M represent distance probes in a network modeled by G; when the edge e fails, the distance from x to y increases, and thus we are able to detect the failure. It turns out that not only we can detect it, but we can even correctly locate the failing edge. In this paper, we continue the study of distanceedge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds are characterized. We also characterize the graphs with dem(G) = 3.

Introduction

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] recently introduced a new concept of network monitoring using distance probes, called distance-edge-monitoring. Networks are naturally modeled by finite undirected simple connected graphs, whose vertices represent computers and whose edges represent connections between them. We wish to be able to monitor the network in the sense that when a connection (an edge) fails, we can detect this failure. We will select a (hopefully) small set of vertices of the network, that will be called probes. At any given moment, a probe of the network can measure its graph distance to any other vertex of the network. The goal is that, whenever some edge of the network fails, one of the measured distances changes, and thus the probes are able to detect the failure of any edge. Probes that measure distances in graphs are present in real-life networks, for instance this is useful in the fundamental task of routing [START_REF] Dall'asta | Exploring networks with traceroute-like probes: Theory and simulations[END_REF][START_REF] Govindan | Heuristics for Internet map discovery[END_REF]. They are also frequently used for problems concerning network verification [START_REF] Bampas | Network verification via routing table queries[END_REF][START_REF] Beerliova | Network discovery and verification[END_REF][START_REF] Bilò | Discovery of network properties with allshortest-paths queries[END_REF].

We will now present the formal definition of the concept of distance-edge-monitoring sets, as introduced by Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF]. Graphs considered are finite, undirected and simple. Let G = (V, E) be a graph with vertex set V and edge set E, respectively. We denote by d G (x, y) the distance between two vertices x and y in a graph G. For an edge e of G, we denote by G -e the graph obtained by deleting e from G.

Definition 1. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) = d G-e (x, y). In other words, e belongs to all shortest paths between x and y in G.

Definition 2. For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e), that is EM (x) = {e | e ∈ E(G) and ∃v ∈ V (G) such that d G (x, v) = d G-e (x, v)}, or EM (x) = {e | e ∈ E(G)and P ({x}, e) = ∅}. If e ∈ EM (x), we say that e is monitored by x. Definition 3. A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. Equivalently,

x∈M EM (x) = E(G).
One may wonder about the existence of such an edge detection set M . The answer is affirmative. If we take M = V (G), then

E(G) ⊆ x∈V (G) N (x) ⊆ x∈V (G) EM (x).
Therefore, we consider the smallest cardinality of M and give the following parameter.

Definition 4. The distance-edge-monitoring number dem(G) of a graph G is defined as the smallest size of a distance-edge-monitoring set of G, that is

dem(G) = min |M | x∈M EM (x) = E(G) .
The vertices of M represent distance probes in a network modeled by G, distance-edge-monitoring sets are very effective in network fault tolerance testing. For example, a distance-edge-monitoring set can detect a failing edge, and it can correctly locate the failing edge by distance from x to y, because the distance from x to y will increases when the edge e fails. Concepts related to distanceedge-monitoring sets have been considered e.g. in [START_REF] Bampas | Network verification via routing table queries[END_REF][START_REF] Baste | On the parameterized complexity of the edge monitoring problem[END_REF][START_REF] Beerliova | Network discovery and verification[END_REF][START_REF] Bejerano | Robust monitoring of link delays and faults in IP networks[END_REF][START_REF] Harary | On the metric dimension of a graph[END_REF][START_REF] Kelenc | Mixed metric dimension of graphs[END_REF][START_REF] Kelenc | Uniquely identifying the edges of a graph: The edge metric dimension[END_REF][START_REF] Manuel | Strong edge geodetic problem in networks[END_REF][START_REF] Oellermann | The strong metric dimension of graphs and digraphs[END_REF][START_REF] Sebő | On metric generators of graphs[END_REF][START_REF] Slater | Leaves of trees[END_REF]. A detailed discussion of these concepts can be found in [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF].

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] introduced and initiated the study of distance-edge-monitoring sets. They showed that for a nontrivial connected graph G of order n, 1 ≤ dem(G) ≤ n -1 with dem(G) = 1 if and only if G is a tree, and dem(G) = n -1 if and only if it is a complete graph. They derived the exact value of dem for grids, hypercubes, and complete bipartite graphs. Then, they related dem to other standard graph parameters. They showed that dem(G) is lower-bounded by the arboricity of the graph, and upper-bounded by its vertex cover number. It is also upper-bounded by twice its feedback edge set number. Moreover, they characterized connected graphs G with dem(G) = 2. Then, they showed that determining dem(G) for an input graph G is an NP-complete problem, even for apex graphs. There exists a polynomial-time logarithmic-factor approximation algorithm, however it is NP-hard to compute an asymptotically better approximation, even for bipartite graphs of small diameter and for bipartite subcubic graphs. For such instances, the problem is also unlikely to be fixed parameter tractable when parameterized by the solution size.

In this paper, we continue the study of distance-edge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds are characterized. We also characterize the graphs with dem(G) = 3.

Preliminaries

Graphs considered are finite, undirected and simple. Let G = (V, E) be a graph with vertex set V and edge set E, respectively. The

neighborhood set of a vertex v ∈ V (G) is N G (v) = {u ∈ V (G) | uv ∈ E(G)}. Let N G [v] = N G (v) ∪ {v}. The degree of a vertex v in G is denoted by d(v) = |N G (v)|. δ(G), ∆(G) is the minimum, maximum degree of the graph G, respectively. For a vertex subset S ⊆ V (G), the subgraph induced by S in G is denoted by G[S] and similarly G[V \ S] for G \ S or G -S. v k+ is a vertex v whose degree is at least k. In a graph G, a vertex is a core vertex if it is v 3+ . A path
with all internal vertices of degree 2 and whose end-vertices are core vertices is called a core path (note that we allow the two end-vertices to be equal, but all other vertices must be distinct). A core path that is a cycle (that is, both end-vertices are equal) is a core cycle. The base graph G b of a graph G is the graph obtained from G by iteratively removing vertices of degree 1. Clearly, dem(G) = dem(G b ).

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] showed that 1 ≤ dem(G) ≤ n -1 for any G with order n, and characterized graphs with dem(G) = 1, 2, n -1.

Theorem 2.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with at least one edge. Then dem(G) = 1 if and only if G is a tree.

For two vertices u, v of a graph G and two non-negative integers i, j, we denote by B i,j (u, v) the set of vertices at distance i from u and distance j from v in G.

Theorem 2.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with at least one cycle, and let G b be the base graph of G. Then, dem(G) = 2 if and only if there are two vertices u, v in G b such that all of the following conditions (1)-( 4) hold in G b :

(1)

for all i, j ∈ {0, 1, 2, • • • }, B i,j (u, v) is an independent set. (2) for all i, j ∈ {0, 1, 2, • • • }, every vertex x in B i,j (u, v) has at most one neighbor in each of the four sets B i-1,j (u, v) ∪ B i-1,j-1 (u, v), B i-1,j (u, v) ∪ B i-1,j+1 (u, v), B i,j-1 (u, v)∪ B i-1,j-1 (u, v) and B i,j-1 (u, v) ∪ B i+1,j-1 (u, v). ( 3 
) for all i, j ∈ {1, 2, • • • }, there is no 4-vertex path zxyz with z ∈ B i-1,a (u, v), z ∈ B a ,j (u, v), x ∈ B i,j (u, v), y ∈ B i-1,j+1 (u, v), a ∈ {j -1, j + 1}, a ∈ {i -2, i}. (4) for all i, j ∈ {1, 2, • • • }, x ∈ B i,j (u, v) has neighbors in at most two sets among B i-1,j+1 (u, v), B i-1,j-1 (u, v), B i+1,j-1 (u, v). Theorem 2.3. [8] dem(G) = n -1 if and only if G is the complete graph of order n.
3 Results for P (M, e)

For the parameter P (M, e), we have the following monotonicity property. Proposition 3.1. For two vertex sets M 1 , M 2 and an edge e of a graph G, if M 1 ⊂ M 2 , then P (M 1 , e) ⊂ P (M 2 , e).

Proof. For any (x, y) ∈ P (M 1 , e) with x ∈ M 1 and y ∈ V (G), we have d G (x, y) = d G-e (x, y). Since M 1 ⊂ M 2 , it follows that x ∈ M 2 . Since d G (x, y) = d G-e (x, y), we have (x, y) ∈ P (M 2 , e), and so P (M 1 , e) ⊂ P (M 2 , e).

From Proposition 3.1, one may think

P (M 1 , e) P (M 2 , e) if M 1 M 2 .
Proposition 3.2. For two vertex sets M 1 , M 2 and an edge e of a graph G, if

P (M 1 ∩ M 2 , e) = ∅, then M 1 ∩ M 2 = ∅ if and only if P (M 1 , e) ∩ P (M 2 , e) = ∅.
Proof. If M 1 ∩ M 2 = ∅, then it follows from the definition of P (M, e) that P (M 1 , e) ∩ P (M 2 , e) = ∅. Conversely, we suppose that

P (M 1 , e) ∩ P (M 2 , e) = ∅. Assume that M 1 ∩ M 2 = ∅. Let M 1 ∩ M 2 = M .
Clearly, M ⊂ M 1 and M ⊂ M 2 . From Proposition 3.1, we have P (M, e) ⊂ P (M 1 , e) and P (M, e) ⊂ P (M 2 , e), and hence P (M, e) ⊆ P (M 1 , e) ∩ P (M 2 , e). Obviously, P (M 1 , e) ∩ P (M 2 , e) ⊆ P (M, e) and hence P (M 1 , e) ∩ P (M 2 , e) = P (M, e). Since P (M, e) = ∅, it follows that P (M 1 , e) ∩ P (M 2 , e) = ∅, a contradiction. So, we have M 1 ∩ M 2 = ∅.

Upper and lower bounds

The following observation is immediate. Observation 3.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let M be a distance-edge-monitoring set of a graph G. Then, for any two distinct edges e 1 and e 2 in G, we have P (M, e 1 ) = P (M, e 2 ).

For any graph G with order n, if |M | = 1, then we have the following observation. Observation 3.2. Let G be a graph with order n, and v ∈ V (G). Then

0 ≤ |P ({v}, uw)| ≤ n -1.
Moreover, the bounds are sharp.

In terms of order of a graph G, we can derive the following upper and lower bounds. The double star S(n, m) for integers n ≥ m ≥ 0 is the graph obtained from the union of two stars K 1,n and K 1,m by adding the edge e between their centers. Proposition 3.4. Let G be a graph of order n with a cut edge e. For any vertex set M , we have

2(n -1) ≤ |P (M, e)| ≤ 2 n/2 n/2 .
Moreover, the bounds are sharp.

Proof. Let G 1 , G 2 be the two components of G \ e, and let 

|V (G 1 )| = n 1 and |V (G 2 )| = n 2 . For any x ∈ V (G 1 ) and y ∈ V (G 2 ), since e is cut edge, it follows that d G (x, y) = d G-e (x, y). If M = V (G), then P (M, e) = {(x, y), (y, x)|x ∈ V (G 1 ) and y ∈ V (G 2 )}, and hence |P (M, e)| = 2|V (G 1 )||V (G 2 )| = 2n 1 n 2 = 2n 1 (n -n 1 ) ≤ 2 n 2 n 2 , and so |P (M, e)| ≤ 2 n 2 n 2 . Since |P (M, e)| = 2n 1 (n -n 1 ) ≥ 2(n -1), it follows that |P (M, e)| ≥ 2(n -1). Example 2. Let G be the double star S( n/2 -1, n/2 -1). If M = V (G), then d G (x, y) = d G-e (x, y) for any x ∈ V (K 1, n/2 -1 ) and y ∈ V (K 1, n/2 -1 ). Then (x, y), (y, x) ∈ P (M, e),
(i) M = ∅; (ii) d G (x, u) = d G (x, v) for any x ∈ M . (iii) for any x ∈ M and d G (x, u) = d G (x, v) + 1, we have d G-uv (x, u) = d G (x, u). Proof. Suppose that |P (M, uv)| = 0. Since P (M, uv) = {(x, y)|d G (x, y) = d G-uv (x, y), x ∈ M, y ∈ V (G)} = ∅,
it follows that M = ∅ or there exists a vertex set M ∈ V (G) and an edge uv ∈ E(G) such that d G (x, y) = d G-uv (x, y) for any x ∈ M and y ∈ V (G). For the fixed x, if y = u and y = v, then we only need to consider the path from x to y through uv, and hence

d G (x, u) = d G-uv (x, u) and d G (x, v) = d G-uv (x, v). Clearly, we have |d G (x, v) -d G (x, u)| ≤ 1. Without loss of generality, let d G (x, u) ≥ d G (x, v). For any x ∈ M , if d G (x, u) = d G (x, v), then (ii) is true. Claim 1. If d G (x, u) = d G (x, v) + 1, then d G-uv (x, u) = d G (x, u). Proof. Assume, to the contrary, that d G-uv (x, u) > d G (x, u). For u ∈ V (G), we have d G-uv (x, u) = d G (x, u), and hence (x, u) ∈ P (M, uv) = ∅, a contradiction. Conversely, if M = ∅, then |P (M, uv)| = 0. For any x ∈ M , suppose that d G (x, u) = d G (x, v), then d G (x, y) = d G-uv (x, y) for any y ∈ V (G), and hence (x, y) / ∈ P (M, uv). For any x ∈ M , if d G (x, u) = d G (x, v) + 1 then d G-uv (x, u) = d G (x, u) and hence d G (x, y) = d G-uv (x, y) for any y ∈ V (G). It follows that (x, y) / ∈ P (M, uv).
From the definition of P (M, e), we have P (M, e) = ∅, and hence |P (M, e)| = 0.

In fact, we can characterize the graphs attaining the upper bounds in Proposition 3.4.

Proposition 3.6. Let G be a graph with a cut edge v 1 v 2 ∈ E(G) and M = V (G). Then |P (M, v 1 v 2 )| = 2 n 2 n 2 if and only if there are two vertex disjoint subgraphs G 1 and G 2 with V (G) = V (G 1 ) ∪ V (G 2 ) and ||V (G 1 )| -|V (G 2 )|| ≤ 1, where v i ∈ V (G i ), i = 1, 2. In addition, G 1 and G 2 is connected by a bridge edge v 1 v 2 . Proof. Suppose that |P (M, v 1 v 2 )| = 2 n 2 n 2 . Since M = V (G), it follows that there are two induced subgraphs G 1 and G 2 with V (G) = V (G 1 ) ∪ V (G 2 ), where v i ∈ V (G i ), i = 1, 2. Note that v 1 v 2 is a cut edge of G. Claim 2. If x, y ∈ V (G i ), then (x, y) /
∈ P (M, e) and (y, x) / ∈ P (M, e), where i = 1, 2.

Proof. Assume, to the contrary, that x, y ∈ V (G i ) and (x, y) ∈ P (M, e), where i = 1, 2. Then there exists a shortest path from x to y such that

d G (x, y) = d G-v 1 v 2 (x, y), where v i ∈ V (G i ), i = 1, 2. Since v 1 v 2 is a cut edge, it follows that d G (x, y) = d G-v 1 v 2 (
x, y), and hence (x, y) / ∈ P (M, e), a contradiction.

By Claim 2, we only consider that x ∈ V (G i ) and 

y ∈ V (G) -V (G i ) (i = 1, 2). Since v 1 v 2 is a cut edge, it follows that d G (x, y) = d G-v 1 v 2 (x,
G 2 with V (G) = V (G 1 ) ∪ V (G 2 ) and ||V (G 1 )| -|V (G 2 )|| ≤ 1, where v i ∈ V (G i ), i = 1, 2.
Then G 1 and G 2 are connected by a bridge edge, and hence

|P (M, e)| = |P (V (G), e)| = 2|V (G 1 )||V (G 2 )| = 2 n/2 n/2 , as desired.
For |P (M, e)|, we give some results for some special graphs. Lemma 3.1. Let K n be a complete graph, and let M ⊆ V (K n ). Then

P (M, uv) =                {(u, v), (v, u)} if u, v ∈ M, {(u, v)} if u ∈ M and v / ∈ M, {(v, u)} if v ∈ M and u / ∈ M, ∅, if u, v / ∈ M, where uv ∈ E(K n ). Proof. Let V (K n ) = {v 1 , v 2 , • • • , v n }. For any edge uv, if u ∈ M and v / ∈ M , then P (M, uv) = {(x, y)|x ∈ M, y ∈ V (G) and d G (x, y) = d G-uv (x, y)}. Since d Kn (u, v) = 1 and d Kn-uv (u, v) = 2, we have (u, v) ∈ P (M, xy). The result follows for u ∈ M and v / ∈ M . Similarly, if u, v ∈ M , then P (M, e) = {(u, v), (v, u)}. Suppose that u /
∈ M and v / ∈ M . Let P x,y be the shortest path from x ∈ M to y ∈ V (G), and hence there is no the shortest path P x,y such that uv / ∈ E(P x,y ), and hence

P (M, uv) = ∅.
The following corollary is immediate. Proposition 3.7. Let K n be a complete graph, and let 

M ⊆ V (K n ). Then 0 ≤ |P G (M, uv)| ≤ 2, where uv ∈ E(K n ). Furthermore, |P G (M, uv)| = 0 if and only if u, v / ∈ M ; |P G (M, uv)| = 2 if and only if u, v ∈ M ; |P G (M, uv)| = 1 for otherwise. Proof. For any uv ∈ E(G) and M ∈ V (G), if u, v / ∈ M , then it follows from Lemma 3.1 that P G (M, uv) = ∅, and hence |P G (M, uv)| = 0. If u, v ∈ M , then it follows from Lemma 3.1 that P G (M, uv) = {(u, v), (v, u)},

Results for EM (x)

For EM (x), we can observe some basic properties of distance-edge-monitoring sets. Obviously, for any bridge edge e ∈ E(G), the edge e ∈ EM (x), which is given by Foucaud et al. in [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF], see Theorem 4.1.

Theorem 4.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph and let e be a bridge edge of G. For any vertex x of G, we have e ∈ EM (x).

The following corollary is immediate. Corollary 4.2. For a vertex v of a tree T , we have EM (v) = E(T ).

Proof. For a vertex v of a tree T , we have EM (v) ⊂ E(T ). Since any edge e ∈ E(T ) is a bridge edge of T , it follows from Theorem 4.1 that e ∈ EM (v) for any vertex v ∈ V (T ), and hence E(T ) ⊂ EM (v). Theorem 4.3. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with a vertex x of G. The following two conditions are equivalent:

(1) EM (x) is the set of edges incident with x.

(

) For y ∈ V (G) -N G [x] 2 
, there exist two shortest paths from x to y sharing at most one edge.

Now, let's investigate the edges of EM (x) in G. Firstly, we introduced the following result, which is given in Foucaud el al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF].

Theorem 4.4. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with a vertex x of G and for any y ∈ N (x), then, we have xy ∈ EM (x).

By Theorem 4.4, we can obtain a lower bound on EM (x) for any graph G with minimum degree δ, the description is as follows.

Corollary 4.5. Let G be a connected graph. For any x ∈ V (G), we have

|EM (x)| ≥ |N G (x)| ≥ δ(G),
with equality if and only if G is a regular graph such that there exist two shortest paths from u to x sharing at most one edge, where u ∈ V (G) -N G [x]. For example, a balanced complete bipartite graph K n,n .

Theorem 4.6. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For a vertex x of a graph G, the set of edges EM (x) induces a forest.

For a graph G and a vertex x ∈ V (G), one can derive the edge set EM (x) from G by Algorithm 1. This algorithm is based on the breadth-first spanning tree algorithm. In the process of finding breadthfirst spanning trees, we delete some edges that cannot be monitored by vertex x, and obtain the edge set EM (x) when the algorithm terminates 

d[u] ← ∞ 4: EM (x) ← E(G) 5: d[x] ← 0 6: Q ← ∅ 7: Enqueue[Q, x] 8: while Q = ∅ do 9: u ← Dequeue[Q] 10: N [u] ← ∅ 11: for each vertx v ∈ Adj[u] do 12: if colour[v] ← White then 13: N [u] ← N [u] ∪ {v} 14: colour[v] ← Gray 15: d[v] ← d[u] + 1 16: Enqueue[Q,v] 17: for v i , v j ∈ N [u] do 18: if v i v j ∈ E(G) then 19: EM (x) = EM (x) -v i v j 20: Dv ← ∅ 21: for each vertx v o ∈ Adj[v] do 22: if colour[v o ] = Gray then 23: D v ← D v ∪ {v o } 24: if |D v | ≥ 1 then 25: for v o ∈ D v do 26: EM (x) = EM (x) -vv o 27: colour[u] ← DarkGary 28: return EM (x)
We now give upper and lower bounds on EM (x) in terms of the order n. Given a vertex x of a graph G and an integer i, let N i (x) denote the set of vertices at distance i of x in G. Is there a way to quickly determine whether e ∈ EM (v) or e / ∈ EM (v)? Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] gave the following characterization about edge uv in EM (x). Theorem 4.7. [8] Let x be a vertex of a connected graph G. Then, uv ∈ EM (x) if and only if u ∈ N i (x) and v is the only neighbor of u in N i-1 (x), for some integer i.

The following results are immediate from Theorem 4.7. These results show that it is easy to determine e / ∈ EM (v) for v ∈ V (G).

Corollary 4.8. Let G be a connected graph, and x ∈ V (G). Let P x,y denote the set of shortest paths from x to y. Suppose that uv is an edge of G b satisfying one of the following conditions.

(1) there exists an odd cycle C 2k+1 containing the vertices x , u, v such that

V (P x,x )∩V (C 2k+1 ) = x and d G (x , u) = d G (x , v) = k.
(2) there exists an even cycle C 2k containing the vertices x , u, v such that

V (P x,x ) ∩ V (C 2k ) = x , d G (x , u) = k -1 and d G (x , v) = k.
Then uv / ∈ EM (x).

Proof. Since d G (x , u) = d G (x , v) = k, it follows that d G (x , u) = d G-uv (x , u) = k and d G (x , v) = d G-uv (x , v) = k. Since V (P x,x ) ∩ V (C 2k+1 ) = x , it follows that d G (x, u) = d G (x, x ) + d G (x , u) and d G (x, v) = d G (x, x ) + d G (x , v), and so d G (x, u) = d G-uv (x, u) and d G (x, v) = d G-uv (x, v).
Clearly, uv / ∈ EM (x), and so (1) holds. From Theorem 4.7, the results are immediate, and hence (2) holds.

Theorem 4.9. For any k (1 ≤ k ≤ n -1), there exists a graph of order n and a vertex v ∈ V (G) such that |EM (v)| = k.

Proof. Let F 1 be a graph of order k and F 2 be a graph obtained from F 1 by adding a new vertex v and then adding all edges from v to V (F 1 ). Let H be a graph obtained from F 2 and a graph F 3 of order n -k -1 such that there are at least two edges from each vertex in F 3 to V (F 1 ). From Corollary 4.5, we have 

|EM (v)| ≥ |N G (v)| = k. To show |EM (v)| ≤ k, it suffices to prove that EM (v) = E H [v, V (F 1 )]. Clearly, E H [v, V (F 1 )] ⊆ EM (v). We need to prove that EM (v) ⊆ E H [v, V (F 1 )], that is, EM (v) ∩ (E(H) \ E H [v, V (F 1 )]) = ∅. It suffices to show that for any xy ∈ E(H) \ E H [v, V (F 1 )], we have d G (v, x) = d H-xy (v, x) or d H (v, y) = d H-xy (v, y). Note that E(H) \ E H [v, V (F 1 )] = E(F 1 ) ∪ E(F 3 ) ∪ E H [V (F 1 ), V (F 3 )]. If xy ∈ E(F 1 ), then d H (v, x) = d H (v, y) = 1,
[V (F 1 ), V (F 3 )]
. Without loss of generality, let x ∈ V (F 1 ) and y ∈ V (F 3 ). Since there are at least two edges from y to V (F 1 ), it follows that there exists a vertex z ∈ V (F 1 ) such that zy ∈ E(H). 

Then d H (v, z) = d H (v, x) =
if G = K 2 . Proof. If |EM (v)| = 1, then it follows from Corollary 4.5 that d G (v) ≤ 1. Since G is connected, it follows that d G (v) ≥ 1 and hence d G (v) = 1. Let u be the vertex such that vu ∈ E(G). Claim 3. d G (u) = 1.
Proof. Assume, to the contrary, that d G (u) ≥ 2. For any vertex y ∈ N G (u)-v, we have y ∈ N 2 (v), and hence d G (y, v) = 2, and so N 1 (v) = {u}. From Theorem 4.7, uy ∈ EM (v), and hence

|EM (v)| ≥ 2, a contradiction. From Claim 3, we have d G (u) = 1. Since G is connected, it follows that G = K 2 . Conversely, let G = K 2 . For any v ∈ V (K 2 ), we have |EM (v)| = {uv}, and hence |EM (v)| = 1.
We now define a new graph A d (d ≥ 3) such that the eccentricity of v in A d is d and all of the following conditions are true.

For each i (2 ≤ i ≤ d), let B i be a graph such that |B i | ≥ 2 for 2 ≤ i ≤ d -1. V (A d ) = {v, u 1 , u 2 } ∪ ( 2≤i≤d V (B i )), where B 1 is a graph with vertex set {u 1 , u 2 }. E(A d ) = {vu 1 , vu 2 }∪( 2≤i≤d E A d (B i ) )∪( 2≤i≤d E A d [v i , V (B i-1 )] with |E A d [v i , V (B i-1 )]| ≥ 2, where v i ∈ V (B i ) for 2 ≤ i ≤ d.
Note that for each vertex in B i , there are at least two edges from this vertex to B i-1 , where 2 ≤ i ≤ d.

For d = 2, let D be a graph of order n-3, D 1 (n) be a graph with 

V (D 1 (n)) = {v, u 1 , u 2 }∪V (D) and E(D 1 (n)) = {u 1 w, u 2 w | w ∈ V (D)} ∪ {u 1 v, u 2 v, uv} ∪ E(D), and D 2 (n) be a graph with V (D 2 (n)) = {v, u 1 , u 2 } ∪ V (D) and E(D 2 (n)) = {u 1 w, u 2 w | w ∈ V (D)} ∪ {u 1 v, u 2 v} ∪ E(D).
v ∈ V (G) such that |EM (v)| = 2 if and only if = D 1 (n) or G = D 2 (n) or G = A d for d ≥ 3. Proof. Suppose that G = D 1 (n) or G = D 2 (n). Then there is a vertex v ∈ V (G). Let d be the eccentricity of v in G.
E(A d ) = {vu 1 , vu 2 } ∪   2≤i≤d E A d (B i )   ∪   2≤i≤d E A d [v i , V (B i-1 )]   with |E A d [v i , V (B i-1 )]| ≥ 2, where v i ∈ V (B i ) for 2 ≤ i ≤ d. Since d G (v, u is ) = i and d G (v, u it ) = i for any u is u it ∈ E(B i ), it follows from Corollary 4.8 that u is u it / ∈ EM (v). Similarly, let C i = E A d [v i , V (B i-1 )] with |E A d [v i , V (B i-1 )]| ≥ 2, where v i ∈ V (B i ) for 2 ≤ i ≤ d. If yx ∈ C i , then x ∈ N i-1 (v), y ∈ N i (i)
(v) ≤ 2. If d G (v) = 1,
without loss of generality, let uv ∈ E(G) and y ∈ N G (u), then uy ∈ EM (v), and hence |N G (u) -v| = 1, and so G ∼ = P 3 , and hence

G ∼ = B 2 (3). Suppose that d G (v) = 2. Without loss of generality, let N G (v) = {u 1 , u 2 }. Suppose that n = 3. If u 1 u 2 / ∈ E(G), then G = D 2 (3). If u 1 u 2 ∈ E(G)
, then the subgraph induced by the vertices in {v, u 1 , u 2 } is a 3-cycle, and hence d G (v, u 1 ) = d G (v, u 2 ). From Corollary 4.8, we have u 1 u 2 / ∈ EM (v), and hence

G = D 1 (3). Suppose that n ≥ 4. Since |EM (v)| = 2, it follows that {vu 1 , vu 2 } ⊆ EM (v), and hence e / ∈ EM (v) for any e ∈ E(G) -{vu 1 , vu 2 }. Claim 4. For any i ≥ 2, y ∈ N i (v) and x ∈ N i-1 (v), if yx ∈ E(G), then there exists a vertex x 1 ∈ N i-1 (v) with yx 1 ∈ E(G).
Proof. Assume, to the contrary, that there exists no

x 1 ∈ N i-1 such that yx 1 / ∈ E(G). Then d G (v, y) = i but d G-yx (v, y) ≥ i + 1, and so yx ∈ EM (v), and hence |EM (v)| ≥ 3, a contradiction. If d = 2, then for any w ∈ V (G) -{v, u 1 , u 2 }, it follows from Claim 4 that if w ∈ N 2 (v) and wu 1 ∈ E(G), then wu 2 ∈ E(G). For any w s , w t ∈ N 2 (v), we assume that w s w t ∈ E(G). Since d G (v, w s ) = 2 and d G (v, w t ) = 2, it follows from Corollary 4.8 that w s w t / ∈ EM (v), and hence G = B 1 (n) or G = B 2 (n). If d ≥ 3, then V (G d * ) = {v, u 1 , u 2 } ∪ {u ij | 2 ≤ i ≤ d, 1 ≤ j ≤ t d } = {v, u 1 , u 2 } ∪ {u 21 , . . . , u 2t 2 } ∪ • • • ∪ {u d1 , . . . , u dt d }, where v ∈ N 0 (v), u 1 , u 2 ∈ N 1 (v), u 21 , . . . u 2t 2 ∈ N 2 (v), . . . u d1 , . . . u dt d ∈ N d (v) and i=d i=2 t s = n -3. By Claim 4, if y ∈ N i (v) and yx ∈ E(G), then there exists a vertex x 1 ∈ N i-1 (v) and x 1 = x such that yx 1 ∈ E(G), and hence yx ∈ E A d [v i , V (B i-1 )] with |E A d [v i , V (B i-1 )]| ≥ 2, where v i ∈ V (B i ) for 2 ≤ i ≤ d. For any u is , u it ∈ B i (v) and u is u it ∈ E(B i ), since d G (v, u is ) = i and d G (v, u it ) = i, it follows from Corollary 4.8 that u is u it / ∈ EM (v)
, and hence B i is a graph with order at least 2, and so

E(A d ) = {vu 1 , vu 2 } ∪   2≤i≤d E A d (B i )   ∪   2≤i≤d E A d [v i , V (B i-1 )]   with |E A d [v i , V (B i-1 )]| ≥ 2, where v i ∈ V (B i ) for 2 ≤ i ≤ d. Therefore, G = A d .
Theorem 4.12. Let G be a connected graph of order n. Then there exists a vertex

v ∈ V (G) such that |EM (v)| = n -1 if and only if for any w ∈ V (G), there are no w 1 , w 2 ∈ N G (w) such that d G (w 1 , v) = d G (w 2 , v) = d G (w, v) -1. Proof. Suppose that |EM (v)| = n -1.
Since G is a connected graph of order n, it follows from Theorem 4.6 that EM (v) forms a spanning tree of G.

Claim 5. For any vertex w ∈ V (G), there exists a vertex

w i ∈ N d G (v,w)-1 (v) with w i w ∈ EM (v).
Proof. Assume, to the contrary, that there is no

w i ∈ N d G (v,w)-1 (v) with w i w ∈ EM (v)
. it follows that EM (v) is disconnected, which contradicts to the fact that the subgraph induced by the edges in EM (v) is connected.

By Claim 5, for any vertex w ∈ V (G), there exists a vertex w i ∈ N d G (v,w)-1 (v) with w i w ∈ EM (v). From Theorem 4.7, w i is the unique neighbor of w in N d G (v,w)-1 (v), and hence for any w ∈ V (G), there are no two vertices

w 1 , w 2 ∈ N G (w) such that d G (w 1 , v) = d G (w 2 , v) = d G (w, v) -1.
Conversely, we suppose that for any w ∈ V (G), there are no

w 1 , w 2 ∈ N G (w) such that d G (w 1 , v) = d G (w 2 , v) = d G (w, v) -1.
Since G is connected, it follows that there is only one vertex w i ∈ N d G (v,w)-1 (v). From Theorem 4.7, we have w i w ∈ EM (v), and hence

|EM (v)| = n -1.
The existence of dem(G) is obvious, because V (G) is always a distance-edge-monitoring set. Thus, the definition of dem(G) is meaningful. The arboricity arb(G) of a graph G is the smallest number of sets into which E(G) can be partitioned and such that each set induces a forest. The clique number ω(G) of G is the order of a largest clique in G. We next see that distance-edge-monitoring sets are relaxations of vertex covers. A vertex set M is called a vertex cover of G if every edge of G has one of its endpoints in M . The minimum cardinality of a vertex cover M in G is the vertex covering number of G, denoted by β(G). Theorem 4.14. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] In any graph G of order n, any vertex cover of G is a distance-edge-monitoring set, and thus dem(G) ≤ β(G).

An independent set is a set of vertices of G such that no two vertices are adjacent. The largest cardinality of an independent set is the independence number of G, denoted by α(G).

The following well-known theorem was introduced by Gallaí in 1959.

Theorem 4.15 (Gallaí Theorem). [START_REF] Chartrand | Graphs & digraphs[END_REF] In any graph G of order n, we have

β(G) + α(G) = n.
Corollary 4.16. For a graph G with order n, we have

dem(G) ≤ n -α(G).
Moreover, the bound is sharp.

Proof. From Theorem 4.15, we have β(G) = n -α(G). From Theorem 4.14, we have dem(G) ≤ β(G), and hence dem(G) ≤ n -α(G), as desired. For a complete graph G = K n or complete bipartite graph G = K m,n , we have dem(G) = n -α(G).

Theorem 4.17. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For any graph G, we have

β(G) ≤ dem(G ∨ K 1 ) ≤ β(G) + 1. Moreover, if G has radius at least 4, then β(G) = dem(G ∨ K 1 ).
Similarly to the proof of Theorem 4.17, we can obtain the following result.

For x ∈ B i,j,k and y ∈ B i,j-1,k , we assume that xy can not be monitored by {u, v, w}. Then there is a path P j of length j from x to v such that xy / ∈ E(P j ). Let z 2 be the neighbor of x in P j . From Lemma 5.1, we have z 2 ∈ B i ,j-1,k , where i ∈ {i -1, i, i + 1} and k ∈ {k -1, k, k + 1}, which contradicts to the condition (3.1). Suppose that x ∈ B i,j,k and y ∈ B i,j-1,k . Then xy can be monitored by {u, v, w}. Similarly, the edges xy can be also monitored by {u, v, w}, where y ∈ B i-1,j,k or y ∈ B i,j-1,k or y ∈ B i,j,k-1 or y ∈ B i,j+1,k+1 or y ∈ B i+1,j,k+1 or y ∈ B i+1,j+1,k .

Case 2. y ∈ B i-1,j-1,k-1 or y ∈ B i+1,j+1,k+1 .

For x ∈ B i,j,k and y ∈ B i-1,j-1,k-1 , we assume that xy is not monitored by {u, v, w}. Then there exists a path P i , P j , P k of length i, j, k from x to u, v, w such that xy / ∈ E(P i ) and xy / ∈ E(P j ) and xy / ∈ E(P k ), respectively. Let z 1 , z 2 , z 3 be the neighbors of x in P i , P j , P k , respectively. Then z 1 ∈ B i-1,j ,k and z 2 ∈ B i ,j-1,k and z 3 ∈ B i ,j ,k-1 . where i , i ∈ {i -1, i, i + 1}, j , j ∈ {j -1, j, j + 1} and k , k ∈ {k -1, k, k + 1}. Since x ∈ B i,j,k and y ∈ B i-1,j-1,k-1 , it follows from the conditions (2) and (3.2) that for any

z i ∈ N (x) (1 ≤ i ≤ 3), it follows that z 1 / ∈ {B i-1,j-1,k-1 , B i-1,j-1,k , B i-1,j,k-1 , B i-1,j,k }, z 2 / ∈ { B i-1,j-1,k-1 , B i-1,j-1,k , B i,j-1,k-1 , B i,j-1,k }, z 3 / ∈ { B i-1,j-1,k-1 , B i-1,j,k-1 , B i,j-1,k-1 , B i,j,k-1 }
, and hence there is a 4-star with edge set {yx,

z 1 x, z 2 x, z 3 x} such that y ∈ B i-1,j-1,k-1 , z 1 ∈B i-1,j-1,k+1 ∪ B i-1,j,k+1 ∪ B i-1,j+1,k-1 ∪ B i-1,j+1,k ∪ B i-1,j+1,k+1 , z 2 ∈B i-1,j-1,k+1 ∪ B i,j-1,k+1 ∪ B i+1,j-1,k-1 ∪ B i+1,j-1,k ∪ B i+1,j-1,k+1 , z 3 ∈B i-1,j+1,k-1 ∪ B i,j+1,k-1 ∪ B i+1,j-1,k-1 ∪ B i+1,j,k-1 ∪ B i+1,j+1,k-1 ,
which contradicting to the condition [START_REF] Chartrand | Graphs & digraphs[END_REF].

So, xy can be monitored by {u, v, w}. Similarly, the edges xy can be also monitored by {u, v, w}, where y ∈ B i+1,j+1,k+1 .

Case 3. y ∈ B i-1,j+1,k-1 or y ∈ B i+1,j-1,k-1 or y ∈ B i-1,j-1,k+1 or y ∈ B i+1,j-1,k+1 or y ∈ B i-1,j+1,k+1 or y ∈ B i+1,j+1,k-1 .

For x ∈ B i,j,k and y ∈ B i-1,j+1,k-1 , we assume that xy is not monitored by {u, v, w}. Then there exists a path P i of length i from x to u such that xy / ∈ E(P i ), and there exist two paths P j+1 , P k of length j + 1, k from y to v, w such that xy / ∈ E(P j+1 ) ∪ E(P k ), respectively. Let z 1 , z 3 be the neighbors of x on the P i , P k , respectively. In addition, let z 2 be the neighbors of y on the P j+1 .

Thus, there is a 5-vertex graph

P + 4 with z 1 ∈ B i-1,a,b , z 2 ∈ B a ,j,b , x ∈ B i,j,k , y ∈ B i-1,j+1,k+1 , z 3 ∈ B a ,b ,k-1 , a, b ∈ {j -1, j, j + 1}, b ∈ {k -1, k, k + 1}, a ∈ {i -2, i -1, i}, b ∈ {k -2, k -1, k}, a ∈ {i -1, i, i + 1}.
Since y ∈ B i-1,j+1,k-1 , it follows from the condition (2) and (3.3) that for any

z i ∈ N (x) (1 ≤ i ≤ 3), we have z 1 / ∈ {B i-1,j,k-1 , B i-1,j,k }, z 2 / ∈ {B i-1,j,k-1 }, z 3 / ∈ {B i-1,j,k-1 , B i,j,k-1 }. Furthermore, we have z 1 ∈B i-1,j-1,k-1 ∪ B i-1,j-1,k ∪ B i-1,j-1,k+1 ∪ B i-1,j,k+1 ∪ B i-1,j+1,k-1 ∪ B i-1,j+1,k ∪ B i-1,j+1,k+1 , z 2 ∈B i-2,j,k-2 ∪ B i-2,j,k-1 ∪ B i-2,j,k ∪ B i-1,j,k-2 ∪ B i-1,j,k ∪ B i,j,k-2 ∪ B i,j,k-1 ∪ B i,j,k . z 3 ∈B i-1,j-1,k-1 ∪ B i-1,j+1,k-1 ∪ B i,j-1,k-1 ∪ B i,j+1,k-1 ∪ B i+1,j-1,k-1 ∪ B i+1,j,k-1 ∪ B i+1,j+1,k-1 .
which contradicts to the condition (7.1).

Case 4. y ∈ B i,j-1,k-1 or y ∈ B i-1,j-1,k or y ∈ B i-1,j,k-1 or y ∈ B i,j+1,k+1 or y ∈ B i+1,j+1,k or y ∈ B i+1,j,k+1 .

For x ∈ B i,j,k and y ∈ B i-1,j+1,k-1 , we assume that xy is not monitored by {u, v, w}. Then there is a path of length j from x to v, say P j , such that xy / ∈ E(P j ). Similarly, there is a path of length k, say P k , from y to w such that xy / ∈ E(P k ). Let z 2 , z 3 be the neighbors of x on the P j , P k , respectively. Then there is a 3-star K 1,3 with edge set {xy,

xz 2 , xz 3 } such that x ∈ B i,j,k , y ∈ B i,j-1,k-1 , z 2 ∈ B a,j-1,c , z 3 ∈ B a ,b ,k-1 , where a, a ∈ {i -1, i, i + 1}, c ∈ {k -1, k, k + 1}, b ∈ {j -1, j, j + 1}. If y ∈ B i,j-1,k-1 , then for any z i ∈ N (x) (2 ≤ i ≤ 3), it follows from the conditions (2) and (3.4), that z 2 / ∈B i-1,j-1,k-1 ∪ B i,j-1,k-1 ∪ B i,j-1,k ∪ B i+1,j-1,k-1 , z 3 / ∈B i-1,j-1,k-1 ∪ B i,j-1,k-1 ∪ B i,j,k-1 ∪ B i+1,j-1,k-1 ,
and hence

x ∈B i,j,k , y ∈ B i,j-1,k-1 , z 2 ∈B i-1,j-1,k ∪ B i-1,j-1,k+1 ∪ B i,j-1,k+1 ∪ B i+1,j-1,k ∪ B i+1,j-1,k+1 ,

z 3 ∈B i-1,j,k-1 ∪ B i-1,j+1,k-1 ∪ B i,j+1,k-1 ∪ B i+1,j,k-1 ∪ B i+1,j+1,k-1 ,
which contradicts to the condition [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF].

Similarly, if x ∈ B i,j,k and y ∈ B i,j-1,k-1 , then xy can be monitored by {u, v, w}. By the same method, we can prove that the edges xy can be also monitored by {u, v, w}, where y ∈ B i-1,j-1,k or y ∈ B i-1,j,k-1 or y ∈ B i,j+1,k+1 or y ∈ B i+1,j+1,k or y ∈ B i+1,j,k+1 .

Case 5. y ∈ B i,j-1,k+1 or y ∈ B i-1,j,k+1 or y ∈ B i,j+1,k-1 or y ∈ B i+1,j-1,k or y ∈ B i+1,j,k-1 or y ∈ B i-1,j+1,k .

For x ∈ B i,j,k and y ∈ B i,j-1,k+1 , we assume that xy is not monitored by {u, v, w}. Then there is a path of length k+1 from y to w, say P k+1 , such that xy / ∈ E(P k+1 ), and there is a path of length j from x to v, say P j , such that xy / ∈ E(P j ). Let z 3 , z 2 be the neighbors of y, x on the P k+1 , P j , respectively. Thus, there is a 4-path P 4 with V (P 4 ) = {z 2 , x, y, z 3 } and E(P 4 ) = {z 2 x, xy, yz 3 } such that x ∈ B i,j,k , y ∈ B i,j-1,k+1 , z 2 ∈ B a,j-1,b , and z 3 ∈ B a ,b ,k , where a, a ∈ {i -1, i, i + 1}, b ∈ {k -1, k, k + 1}, b ∈ {j -2, j -1, j}.

From the conditions (2) and (3.5), we have y ∈ B i,j-1,k+1 , and for any z i ∈ N (x) (2 ≤ i ≤ 3), we have z 3 / ∈ {B i,j-1,k , }, z 2 / ∈ {B i,j-1,k }, and hence x = B i,j,k , y = B i,j-1,k+1 , z 2 ∈B i-1,j-1,k-1 ∪ B i-1,j-1,k ∪ B i-1,j-1,k+1 ∪ B i,j-1,k-1 ∪ B i,j-1,k+1 ∪ B i+1,j-1,k-1 ∪ B i+1,j-1,k ∪ B i+1,j-1,k+1 , z 3 ∈B i-1,j-2,k ∪ B i-1,j-1,k ∪ B i-1,j,k ∪ B i,j-2,k ∪ B i,j,k ∪ B i+1,j-2,k ∪ B i+1,j-1,k ∪ B i+1,j,k .

which contradicts the condition (4.3). If x ∈ B i,j,k and y ∈ B i,j-1,k+1 , then xy can be monitored by {u, v, w}. Similarly, the edges xy can be also monitored by {u, v, w}, where y ∈ B i-1,j,k+1 or y ∈ B i,j+1,k-1 or y ∈ B i+1,j-1,k or y ∈ B i+1,j,k-1 or y ∈ B i-1,j+1,k .

If x ∈ B i,j,k , from it follows Lemma 5.1, that y ∈ T , where T = B i ,j ,k | i ∈ {i -1, i, i + 1}, j ∈ {j -1, j, j + 1}, k ∈ {k -1, k, k + 1} .

From the above cases, the vertex set B i,j,k (u, v, w) has the arbitrariness. Then the xy in E(G b ) can be monitored by {u, v, w}, and hence {u, v, w} is a distance-edge-monitoring set in G b , and so dem(G) = 3.

Conclusion

In this paper, we have continued the study of distance-edge-monitoring sets, a new graph parameter recently introduced by Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF], which is useful in the area of network monitoring. In particular, we have given upper and lower bounds on the parameters P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds were characterized. We also characterized the graphs with dem(G) = 3.

For future work, it would be interesting to study distance-edge monitoring sets in further standard graph classes, including pyramids, Sierpińki-type graphs, circulant graphs, graph products, or line graphs. In addition, characterizing the graphs with dem(G) = n -2 would be of interest, as well as clarifying further the relation of the parameter dem(G) to other standard graph parameters, such as arboricity, vertex cover number and feedback edge set number.

Proposition 3 . 3 .Example 1 .

 331 Let G be a graph of order n. For a vertex set M and an edge e of a graph G, we have 0 ≤ |P (M, e)| ≤ n(n -1). Moreover, the bounds are sharp. Proof. Clearly, |P (M, e)| ≥ 0. From Proposition 3.1, we have P (M, e) ⊂ P (V (G), e). Let M = V (G). Then the number of ordered pairs is n(n -1) in G, and hence |P (M, e)| ≤ n(n -1), as desired. To show the sharpness of the bounds in Proposition 3.3, we consider the following examples. For any graph H, let G = K n ∨ H. Let M = V (K n ) and e ∈ E(H). If x, y ∈ M , then d G (x, y) = d G-e (x, y) = 1, and so (x, y) / ∈ P (M, e). If x ∈ V (K n ) and y ∈ V (H), then d G (x, y) = d G-e (x, y) = 1, and hence (x, y) / ∈ P (M, e). Clearly, P (M, e) = ∅, and hence |P (M, e)| = 0. If G = K 2 , then |P (M, e)| = n(n -1), which means that the bounds in Proposition 3.3 are sharp.

  and hence |P (M, e)| ≥ 2 n/2 n/2 . From Proposition 3.4, we have |P (M, e)| ≤ 2 n/2 n/2 and hence |P (M, e)| = 2 n/2 n/2 . In fact, we can characterize the graphs attaining the lower bounds in Proposition 3.3. Proposition 3.5. Let G be a graph with uv ∈ E(G) and M ⊂ V (G). Then |P (M, uv)| = 0 if and only if one of the following conditions holds.

2 n 2 ,

 22 y), and hence (x, y) ∈ P (M, e). It follows that |P (M, e)| = 2|V (G 1 )||V (G 2 )| = 2|V (G 1 )|(n -|V (G 1 )|) ≤ 2 n where the equality holds if and only |V (G 1 )| = n 2 or |V (G 1 )| = n 2 , and hence ||V (G 1 )| -|V (G 2 )|| ≤ 1. Conversely, we suppose that there are two vertex disjoint subgraphs G 1 and

  and so |P G (M, uv)| = 2. Similarly, for other case, we have |P G (M, uv)| = 1.

Algorithm 1

 1 . The time complexity of the breadth-first search tree algorithm is O(|V (G)| + |E(G)|). In Algorithm 1, we only add the steps of deleting specific edges and checking neighbor vertex shown in Lines 17-26. The algorithm of finding an edge set EM (x) in G Input: a graph G and a vertex x ∈ V (G); Output: A edge set EM (x) in G; 1: for each vertx u ∈ V (G) -{x} do 2: colour[u] ← White 3:

Proposition 4 . 1 .

 41 Let G be a connected graph with |V (G)| ≥ 2. For any v ∈ V (G), we have1 ≤ |EM (v)| ≤ |V (G)| -1.Moreover, the bounds are sharp. Proof. For any vertex v ∈ V (G), it follows from Theorem 4.6 that the set of edges EM (x) induces a forest F in G, and hence |EM (v)| ≤ |E(F )| ≤ |E(T )| = |V (G)| -1, where T is a spanning tree of G. Since G is a connected graph, it follows from Corollary 4.5 that |EM (x)| ≥ δ(G) ≥ 1, and hence |EM (v)| ≥ 1.

  2 and d H (v, y) = 3. From Corollary 4.8 (2), we have xy / ∈ EM (v). From the above argument, |EM (v)| ≤ k, and hence |EM (v)| = k. Graphs with small values of |EM (v)| can be characterized in the following. Theorem 4.10. For a connected graph G and v ∈ V (G), we have |EM (v)| = 1 if and only

Theorem 4 . 11 .

 411 Let G be connected graph with at least 3 vertices. Then there exists a vertex

  For w ∈ V (D), the subgraph induced by the vertices in {w, u 1 , u 2 , v} is an even cycle C 4 , and hence d G (v, u 1 ) = 1 and d G (v, w) = 2. It follows from Corollary 4.8 that wu 1 / ∈ EM (v). Similarly, we have wu 2 / ∈ EM (v). If u 1 u 2 ∈ E(G), then the subgraph induced by the vertices in {u 1 , u 2 , v} is a 3-cycle, and hence d G (v, u 1 ) = 1 and d G (v, u 2 ) = 1. From Corollary 4.8, we have u 1 u 2 / ∈ EM (v). Similarly, we have d G (v, w i ) = 2 and d G (v, w j ) = 2 for w i w j ∈ E(D). From Corollary 4.8, we have w i w j / ∈ EM (v), and hence |EM (v)| = {u 1 v, u 1 v}, and so |EM (v)| = 2. Suppose that G = A d , where d ≥ 3. Note that d is the eccentricity of v in G. Then

Theorem 4 .

 4 [START_REF] Manuel | Strong edge geodetic problem in networks[END_REF].[START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For any graph G of order n and size m, we have dem(G) ≥ arb(G), and thus dem(G) ≥ m n-1 and dem(G) ≥ ω(G) 2 .

  and there exists a vertexx 1 ∈ N i-1 (v) such that yx 1 ∈ E(G).From Corollary 4.8, we have yx / ∈ EM (v), and so |EM (v)| = {u 1 v, u 1 v}, and hence |EM (v)| = 2. Conversely, if |EM (v)| = 2, then it follows from Corollary 4.5 that d G
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Corollary 4.18. For any graph G and integer m, we have

Moreover, the bounds are sharp.

Proof. For any graph G and integer m, we have dem(G ∨ mK 1 ) ≤ β(G ∨ mK 1 ) by Theorem 4.14. Clearly, β(G ∨ mK 1 ) ≤ β(G) + m, and hence dem(G ∨ mK 1 ) ≤ β(G) + m. It suffices to show that an edge monitoring set M of G ∨ mK 1 also is cover set of G. Without loss of generality, suppose that V (mK 1 ) = {w 1 , • • • , w m }. If there exists an edge uv ∈ E(G) with u, v / ∈ M , then uv is monitored by M ∩ V (G) in G ∨ mK 1 . For any x ∈ M , we have d G (x, u) ∈ {1, 2}. Similarly, d G (x, v) ∈ {1, 2}. By Corollary 4.8, we have d G (x, v) = d G (x, u). Without loss of generality, let d G (x, v) = 1 and d G (x, u) = 2, and hence xw i v is a shortest path from x to v. From Corollary 4.8, uv is not monitored by M , a contraction. Then x ∈ M or y ∈ M , and hence β(G) ≤ dem(G ∨ mK 1 ). By Theorem 4.17, if G has radius at least 4 and m = 1, then β(G) = dem(G ∨ K 1 ). If m = 1 and G = K n , then dem(K n ∨ K 1 ) = β(K n ) + 1 = n, and hence the bound is sharp. Proposition 4.2. For any r-regular graph G of order n ≥ 5, we have

Moreover, the bounds are sharp.

Proof. For any r-regular graph graph G of order n, since e(G) = rn 2 , it follows from Theorem 4.13 that dem(G) ≥ m n-1 , and hence dem(G) ≥ rn 2n-2 . From Theorem 4.14, we have dem(G) ≤ n -1. From Theorem 2.3, if r = 1 and n = 2, then dem(K 2 ) = 1, and hence the lower bound is tight.

Graphs with distance-edge-monitoring number three

For three vertices u, v, w of a graph G and non-negative integers i, j, k, let B i,j,k be the set of vertices at distance i from u and distance j from v and distance k from w in G, respectively. Lemma 5.1. Let G be a graph with u, v, w ∈ V (G), and i, j, k be three non-negative integers such that

We have the following claim.

From Claim 6, we have d G (y, u) ∈ {i -1, i, i + 1}. Similarly, d G (y, v) ∈ {j -1, j, j + 1} and d G (y, w) ∈ {k -1, k, k + 1}. Theorem 5.1. For a graph G, dem(G) = 3 if and only if there exists three vertices u, v, w in G b such that all of the following conditions (1)-( 8) hold in G b :

(1) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)}, B i,j,k is an independent set.

(2) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any xy, xy ∈ E(G b ), if y ∈ V (B i ,j ,k ), then y ∈ V (B i ,j ,k ), where i ∈ {i -1, i}, j ∈ {j -1, j}, and k ∈ {k -1, k}.

(3) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any xy, xy

, where (i 1 , j 1 , k 1 ) and (i 2 , j 2 , k 2 ) satisfy all the following conditions:

(4) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)}, there is no 4-path satisfying the following conditions.

(4.1) z 1 xyz 2 is the 4-path with x ∈ B i,j,k , and y ∈ B i-1,j+1,k+1 , z 1 ∈ B i-1,a,b , and

(5) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k , x has at most two neighbors in two of

For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k , there is no 4-star K 1,4 with edge set

There is a no P + 4 satisfying the following conditions: (7.1) V (P + 4 ) = {z 1 , z 2 , x, y, z 3 } and E(P + 4 ) = {z 1 x, z 3 x, xy, yz 2 } such that x = B i,j,k , y = B i-1,j+1,k-1 , and

(7.2) V (P + 4 ) = {z 2 , z 3 , x, y, z 1 } and E(P + 4 ) = {z 2 x, z 3 x, xy, yz 1 } such that x = B i,j,k , y = B i+1,j-1,k-1 , and

and

Proof. Assume that dem(G) = 3. Then dem(G b ) = 3. Let {u, v, w} be a distance-edgemonitoring set of G b .

Claim 1. B i,j,k is an independent set.

Proof. Assume, to the contrary, that B i,j,k is not an independent set. Let x, y ∈ B i,j,k (u, v, w). Then From Claim 1, (1) holds.

For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k with xy, xy ∈ E(G b ), we assume that y ∈ B i ,j ,k and (i , j , k ) = (i, j, k). Then we have the following claim.

Claim 2. y ∈ B i ,j ,k for i ∈ {i -1, i}, j ∈ {j -1, j}, and k ∈ {k -1, k}.

Proof. Assume, to the contrary, that y ∈ B i ,j ,k . We first suppose that y ∈ B i-1,j,k (The case that y, y ∈ B i,j-1,k or B i,j,k-1 is symmetric). Then d G (y, u) = d G (y , u) = i-1. From Theorem 4.7, xy can not be monitored by u. Since x ∈ B i,j,k (u, v, w) and y ∈ B i-1,j,k , it follows that d G (y, v) = d G (x, v) = j. From Theorem 4.7, xy can not be monitored by v. Similarly, since d G (y, w) = d G (x, w) = k, it follows that xy can not be monitored by w by Theorem 4.7, a contradiction.

Next, we suppose that y, y ∈ B i-1,j-1,k (The case that y, y ∈ B i,j-1,k-1 or B i-1,j,k-1 is symmetric). Since d G (y, u) = d G (y , u) = i -1, it follows from Theorem 4.7 that xy can not be monitored by u. Similarly, d G (y, v) = d G (y , v) = j -1, xy can not be monitored by v. in addition, d G (y, w) = d G (x, w) = k, and hence xy is not monitored by w, according to Theorem 4.7. So, xy is not monitored by u, v, w, a contradiction.

by Theorem 4.7, xy is not monitored by u, v, w, a contradiction.

From Claim 2, (2) holds.

For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any xy, xy ∈ E(G b ), we suppose that y ∈ B i,j-1,k . Then we have the following claim.

Proof. Assume, to the contrary, that y ∈ B i 2 ,j 2 ,k 2 . Since x ∈ B i,j,k and y, y are both neighbors of x and y Proof. Assume, to the contrary, that there is a 4-path satisfying the conditions of this claim. Then 

Proof. Assume, to the contrary, that x ∈ B i,j,k has three neighbors y, y , y such that y

From Theorem 4.7, xy is not monitored by v, w. Since y ∈ B i-1,j-1,k-1 and y ∈ B i-1,j ,k , it follows that d G (y, u) = d G (y , u) = i -1, and hence xy is not monitored by u, and so xy is not monitored by u, v, w, a contradiction.

From Claim 5, ( 5) holds. Claim 6. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ B i,j,k , there is no 4-star K 1,4 with edge set E(K 1,4 ) = {yx, z 1 x, z 2 x, z 3 x} such that y ∈ B i-1,j-1,k-1 ,

Proof. Assume, to the contrary, that x ∈ B i,j,k has four neighbors y, z 1 , z 2 , z 3 satisfying the conditions of this claim. Then d G (y, u) = d G (z 1 , u) = i -1. From Theorem 4.7, xy can not be monitored by u. 

Proof. Assume, to the contrary, that there is P + 4 satisfying the conditions of this claim. Since

it follows from Theorem 4.7 that xy can not be monitored by u, v, w, respectively, a contradiction. From Claim 7, (7.1) holds. Similarly, we can prove that (7.2) holds. Claim 8. There is no 3-star K 1,3 with vertex set {z 1 , z 2 , x, y} and edge set {xy, xz 1 , xz 2 } such that x = B i,j,k , y = B i,j-1,k-1 , and

Proof. Assume, to the contrary, that there is a K 1,3 such that V (K 1,3 ) = {z 1 , z 2 , x, y} and E(K From Claim 8, (8) holds. Conversely, we assume that there exists three vertices u, v, w in G b such that all of the conditions (1)-( 8) holds in G b . It suffices to prove that {u, v, w} is a distance-edge-monitoring set in G b , and hence dem(G) = 3. Let xy be any edge of G with x ∈ B i,j,k . Since (1) holds, it follows that y / ∈ B i,j,k . Then we have the following cases: Case 1. y ∈ B i,j-1,k or y ∈ B i-1,j,k or y ∈ B i,j,k-1 or y ∈ B i,j+1,k or y ∈ B i,j,k+1 or y ∈ B i+1,j,k .