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bUniversité Bordeaux, CNRS, Institut des Sciences Moléculaires, 33400 Talence, France
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Abstract

We present a thorough pure rotational investigation of the CH2CN radical in its ground vibrational state.
Our measurements cover the millimeter and sub-millimeter wave spectral region (79–860GHz) using a W-
band chirped-pulse instrument and a frequency multiplication chain-based spectrometer. The radical was
produced in a flow cell at room temperature by H abstraction from acetonitrile using atomic fluorine. The
newly recorded transitions of CH2CN (involving N ′′ and K ′′

a up to 42 and 8, respectively) were combined
with the literature data leading to a refinement of the spectroscopic parameters of the species using a
Watson S -reduced Hamiltonian. In particular, the A rotational constant and K -dependent parameters
are significantly better determined than in previous studies. The present model, which reproduces all
experimental transitions to their experimental accuracy, allows for confident searches for the radical in cold
to warm environments of the interstellar medium.
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1. Introduction

The cyanomethyl radical, CH2CN, is a well-
studied species because of its importance in many
physical and chemical fields. For example, the rad-
ical is suspected to be produced by combustion
processes in pyrrole [1] and biofuel [2]. Numerous
chemical reactions leading to the formation of the
CH2CN radical, mainly from acetonitrile, CH3CN,
have been investigated both experimentally and
theoretically. For example, ion-molecule reactions
(e.g., CH3CN

+ + CH3CN [3]), radical-molecule re-
actions (e.g., CH3CN + OH [4]), pyrolysis (e.g., of
C2H5CN [5]), irradiation (e.g., by γ-rays [6]), and
reactions with halogens (e.g., with fluorine atoms
[7]) have been documented. From these works,
chemical parameters such as the energy barriers,
the potential energy surfaces, or the enthalpies of
the various reactions studied were derived. CH2CN
reactivity has also attracted significant focus; for
instance it has been proposed to react with HCO
to form cyanoacetaldehyde in space [8]. Additional
investigations have focused on the molecular prop-
erties of this carbon-centered radical, such as its
geometry [9, 10], electronic structure [11, 12], and
stabilization energy [13].
Spectroscopic studies have been carried out on

CH2CN since the 1960’s [14]. Early electron para-
magnetic resonance investigations in solution have
provided isotropic hyperfine coupling constants and
g-factor values [15]. Later, gas phase photoelectron
spectroscopy has allowed for the determination of
the radical electron affinity [16] and its ionization
energy [17]. Moran et al. [16] have also established
that the radical is planar and belongs to the C2v

point group of symmetry; they additionally derived
vibrational energies and the first values of the A,
B, and C rotational constants of CH2CN in its vi-
brational ground state. Experimental vibrational
investigations are rather scarce. In matrix, several
bands observed in the photolysis of CH3CN and
the reaction of CH3CN with excited Ar have been
tentatively assigned to the CH2CN radical by Ja-
cox [18]. Quantum chemical calculations enabled
definite assignments in the work of Cho and An-
drews [19]. A single gas phase investigation of a
vibrational band, namely ν5 (CH2 wagging), has
been reported at high resolution to date [20]. The
first pure rotational study in the vibrational ground
state was performed in the millimeter-wave region
[21] and subsequently extended by Saito and Ya-
mamoto [9]. The authors reported the measure-

ment of transitions from 80GHz to 280GHz lead-
ing to the determination of rotational, fine, and
hyperfine constants. Finally, Ozeki et al. [22] ex-
tended the measurement down to the microwave
spectral region (20–80GHz) to refine the hyper-
fine constants. Since the permanent dipole moment
of CH2CN lies along the a-axis [11], only a-type
transitions can be recorded by pure rotation spec-
troscopy complicating the determination of the A
constant and of the ∆K centrifugal distortion (CD)
constant. Consequently, in the fits, A was crudely
determined (A = 284981(115)MHz in Saito and Ya-
mamoto [9] and fixed to that value in the follow-
ing studies) and ∆K was fixed to a numerical value
determined previously for a species similar in size,
ketene (H2CCO [23]).

Using the initial pure rotational investigation
[21], CH2CN was readily detected in the interstellar
medium (ISM) by Irvine et al. [24] toward TMC-
1 and Sgr B2. Since then, the radical has been
detected in another molecular cloud (L483 [25]),
a carbon-rich star (IRC +10216 [26]), a prestellar
core (L1544 [27]), a protostar (L1527 [28]), and,
very recently, in a protoplanetary disk (around
the T Tauri star TW Hya [29]. In these sources,
CH2CN exhibits rotational temperatures ranging
from 5 to 50K and transitions as high as 241GHz
have been detected. It is also worth noting that the
CHDCN radical has recently been detected toward
TMC-1 [30]. The wide distribution of CH2CN in
the ISM has yielded significant focus onto its im-
plication in astrochemical networks. The radical
formation (gas phase versus ice grains chemistry
[31, 32, 29]) as well as its reactivity, in particular its
role in the formation of complex organic molecules
[33, 34, 35, 36, 8, 37], have been studied.

Nowadays, radiotelescopes such as ALMA and
NOEMA offer a large spectral coverage (∼ 80–
950GHz and ∼ 80–360GHz, respectively). Consid-
ering that the pure rotational spectrum of CH2CN
remains intense at frequencies above 300GHz, even
at low temperatures, and that, for species with
only a few heavy atoms, the frequency extrapola-
tion toward high frequencies is usually not reliable,
new measurements over the sub-millimeter range
are warranted [38]. In the laboratory, the relatively
high reactivity of radicals hampers their pure ro-
tational spectroscopic studies. In the centimeter-
wave spectral region, extremely high sensitivity
is achieved by cavity-based Fourier transform mi-
crowave (FTMW) spectrometers associated with
pulsed-discharge supersonic molecular beams [39,
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40]. At higher frequencies, absorption spectrome-
ters based on frequency multiplication chains are
widely used in association with various types of
radical in situ synthesis techniques [41, 42]; al-
though these set-ups do not achieve the sensitivity
of FTMW spectroscopy. Recently, chirped-pulse
(CP) Fourier transform spectroscopy has revolu-
tionized rotational spectroscopy with its broadband
capacities [43]. First and widely used to study
molecules with low reactivity [44, 45], it is more and
more exploited to investigate reaction dynamics
[46] as well as the spectroscopy of reactive species
[47, 48]. The joint use of CP and classical narrow-
band spectrometers has proven particularly efficient
in detecting new species [49, 40]. These instrumen-
tal developments will undoubtedly prove valuable
in enabling new interstellar detections in the mil-
limeter and sub-millimeter [(sub-)millimeter] wave
spectral domain [50, 51].
In this work, we have extended the investiga-

tion of the room-temperature pure rotational spec-
trum of the cyanomethyl radical, produced by H-
abstraction from CH3CN using F atoms, in the
(sub-)millimeter wave spectral regions (from 75 to
almost 900GHz). 801 lines, including 641 previ-
ously unreported (160 are re-measured lines), have
been recorded using a broadband CP spectrom-
eter (75–110GHz) and a widely tunable single-
frequency absorption spectrometer exploiting a fre-
quency multiplication chain with a large spectral
coverage (140–900GHz). These transitions have
been fitted together with available literature data
against a Watson Hamiltonian in the S -reduction
allowing for a refinement of the rotational and cen-
trifugal distortion constants of the species. Our
data set allows for confident interstellar searches for
the radical over the entire (sub-)millimeter region.

2. Laboratory methods

2.1. Synthesis of CH2CN

The CH2CN radical was synthesized using a rel-
atively selective production method based on hy-
drogen abstraction from CH3CN by fluorine atoms,
a method described in Garcia et al. [52]. Fluo-
rine atoms, produced upstream by a 2450MHz dis-
charge (20–100W) in a F2/He mixture at 5% di-
lution, were injected into the reaction cell where
they collided and reacted with CH3CN to pro-
duce the CH2CN radical. The process is similar
to the one employed in our previous work on the

CH2OH radical produced from CH3OH [38]. In
this work, two reaction cells, adapted to either the
CP and frequency multiplication chain-based spec-
trometers, have been used. To limit recombination
reactions, both cells were covered with a fluorinated
wax (Halocarbon Wax 1500) and were pumped by
a roots blower (Edwards, 250m3/h) backed by a
chemically-graded pump (PFPE-E2M28, Edwards,
30m3/h).
By design, the CP spectrometer is optimized for

a ∼70 cm-long cell. For the purpose of this study, a
reaction cell of suitable length and 5 cm inner diam-
eter has been developed (see Fig. 1). It consists of
a central 30 cm long pyrex tube and two T-shaped
window holders allowing for precursor injection and
pumping. A gas inlet, off-centered by 20 cm to-
ward the injection side, was used to inject fluorine
atoms. Partial pressures for the F2/He mixture and
CH3CN have been optimized to maximize the in-
tensity of a known CH2CN line at 80480.5MHz.
The F2/He mixture and the precursor were injected
with partial pressures of about 35 µbar and 6 µbar,
respectively. The design of the reaction cell associ-
ated with the frequency multiplication chain-based
spectrometer is similar, although a longer Pyrex
tube (145 cm) equipped with three fluorine gas in-
lets, each separated by 30 cm, was used (see Fig.
2). The partial pressures of the F2/He mixture and
CH3CN, optimized on CH2CN lines, were set to
about 30 µbar and 2 µbar, respectively. Compared
to our previous publication using this set-up [38],
the multiplication of fluorine injection sites lead to
an increase of the concentration of radicals in the
cell while limiting multiple abstraction reactions for
a given partial pressure of the F2/He mixture.

2.2. Chirped-pulse millimeter-wave spectrometer

The broadband CP FT millimeter-wave spec-
trometer (BrightSpec, Inc) covers the 75–110GHz
spectral region. For all measurements performed in
this work, the High Dynamic Range (HDR) mode
of the Edgar acquisition software (developed by
BrightSpec) was used. It employs a segmented ap-
proach in which the entire 35GHz range is divided
into 1165 segments of 30MHz bandwidth. The ex-
citation pulse was emitted by a horn antenna, col-
limated by an off-axis parabolic mirror and trans-
mitted into the cell equipped with two high density
polyethylene windows (see Fig. 1). Following the
excitation pulse, the resulting free induction decay
(FID) was collected using an essentially symmet-
rical system of an off-axis parabolic mirror and a

3



Figure 1: Schematic representation of the experimental set-
up using the CP spectrometer (in blue) coupled with the H
abstraction method of production. The CH2CN radical is
produced by the reaction between CH3CN and F atoms pro-
duced upstream by a MW discharge. The instrument emits a
collimated radiation (in pink) and collects the free induction
decay (in orange) by means of two off-axis parabolic mirrors.

Figure 2: Schematic representation of the upgraded experi-
mental set-up using the frequency multiplication chain-based
spectrometer coupled with the H-abstraction method of pro-
duction. CH2CN is produced by reaction of CH3CN with F
atoms produced upstream by a MW discharge. The fre-
quency modulated radiation is emitted by a horn antenna
and collimated by a 10 cm focal-length Teflon hemispherical
lens. Vertical (incident) and horizontal (reflected by the roof-
top mirror) polarized radiations are represented in blue and
pink, respectively. The roof-top mirror, located at the right-
end of the cell, is tilted by 45° from the vertical axis. The
off-axis parabolic mirror focuses the radiation onto the detec-
tor (Schottky diode or bolometer). An alternating magnetic
field (inducing a splitting of the rotational levels of open-shell
species by Zeeman effect) is created by an alternating current
circulating in a coil (about 800 spirals total) surrounding the
cell. The detected signal is demodulated by a first lock-in
at the source frequency modulation then demodulated by a
second lock-in at the frequency of the modulated magnetic
field. Signals are retrieved after each demodulation stage.

horn antenna. By optimizing the intensity of the
transition of CH2CN at 80480.5MHz, a pulse dura-
tion of 250 ns was chosen to polarize the sample. To
retrieve the frequency domain spectrum, the FIDs
were Fourier transformed over a 4000 ns duration
starting 100 ns after the end of the excitation pulse
and using a Kaiser-Bessel apodization function. In
these conditions, the line profile is dominated by the
instrument function resulting in typical full width
at half maximum (FWHM) of 600 kHz, larger than
the Doppler width of CH2CN transitions in that
range (about 200 kHz at room temperature).

The acquisition procedure consisted of the
recording of three distinct spectra. The first spec-
trum, of 2millions averaged FIDs (about 4 h of ac-
quisition time), was recorded with the MW dis-
charge switched ON. In these conditions, fluorine
atoms are produced and can react with the precur-
sor to produce the radical of interest. To distinguish
between transitions arising from open- and closed-
shell species, a second spectrum is recorded with
the same number of averages with a cylindrical per-
manent magnet placed underneath the interaction
zone where fluorine atoms collide with the precur-
sor. The presence of the permanent magnet, gen-
erating a magnetic field of about 140G, induces a
splitting of the energy levels of open-shell species by
the Zeeman effect resulting in a significantly modi-
fied line profiles (from broader, weaker lines to total
visual disappearance of the transitions). Finally, we
recorded a reference spectrum of 1million averages
in absence of MW discharge to easily identify the
lines of the precursor. Fig. 3 presents the two spec-
tra recorded in presence of fluorine atoms after re-
moval of the contributions of the precursor and pos-
sible contaminants lines using the reference spec-
trum. Therefore, all visible transitions arise from
species synthesized by reactions between CH3CN
and fluorine atoms. The red and blue traces cor-
respond to the spectra recorded without and with
the permanent magnet, respectively. Lines visible
only on the red trace arise from open-shell species.
The spectra are quite dense with about 1450 transi-
tions arising from reaction products. In the middle
panel of Fig. 3, the same spectra are displayed us-
ing a logarithmic scale revealing the high density
of lines. Zooms over the two regions where tran-
sitions arising from CH2CN are clearly visible are
presented in the lowest panels of Fig. 3. The exper-
imental traces are compared with a simulated stick
spectrum of CH2CN. The experiment is thus able
to rapidly (within a few hours) identify open shell
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species over a broad spectral range.

2.3. Frequency multiplication chain-based (sub-
)millimeter spectrometer

Numerous new pure rotational transitions of
the CH2CN radical were recorded using a (sub-
)millimeter-wave spectrometer based on a fre-
quency multiplication chain in the 140–860 GHz
spectral region. The experimental set-up has been
upgraded compared to our previous publication [38]
to allow for a double absorption pathlength, a triple
fluorine injection, and a double modulation acqui-
sition procedure (see Fig. 2). The spectrome-
ter combines a radio-frequency synthesizer, locked
onto a rubidium atomic clock (Stanford Research
Systems), with a solid state frequency multiplica-
tion chain (Virginia Diode Inc., VDI) covering the
spectral range of interest. The collimated radia-
tion, emitted with a vertical polarization, passed a
wire grid polarizer (5 µm diameter and 22µm spac-
ing wires, PureWavePolarizers Ltd.) before enter-
ing the 2m long Pyrex absorption cell through a
Teflon window. On the back port of the cell, a 45°
rotated vertical roof-top mirror reflected the radia-
tion back into the cell with horizontal polarization.
Once the radiation reached back to the polarizing
grid, it was reflected toward an off-axis parabolic
mirror which focused the radiation onto a detector.
Depending on the spectral range, we used either
a Schottky diode detector (140–220GHz and 220–
330GHz, VDI) or a liquid helium-cooled InSb hot
electron bolometer detector (Infrared Labs) operat-
ing at 4K for higher frequencies. A lock-in ampli-
fier (Ametek 7230 DSP) performed signal recovery
at the second harmonic. For all measurements, a
frequency modulation set to 48.157 kHz was used.
To account for Doppler broadening of the lines with
increasing frequency while maintaining a relatively
constant number of points per line, the frequency
steps were set to values ranging from 50 kHz to
200 kHz. The frequency modulation depth was ad-
justed accordingly from 240 kHz to 1400 kHz. In
conventional frequency modulation measurements,
the time constant was fixed to 10ms, and multiple
averages, ranging from 10 to 160 averages, were per-
formed in the acquisition software to achieve a total
acquisition integration time from 100ms to 1.6 s for
each frequency step.

We made use of the Zeeman modulation to dis-
tinguish transitions arising from closed and open-
shell species as previously implemented by Amano

and Hirota [53]. To generate an amplitude modu-
lated magnetic field, we wrapped a coil of about 800
spirals around the cell (over 1.3m lengthwise, see
Fig. 2). A waveform generator (5MHz Generator,
MLTX 3240, Metrix) generated a 50–100Hz sinu-
soidal waveform of 1V amplitude. The voltage was
then amplified by an audio amplifier (X800 MOS-
FET, Analogue Associates) to reach 10V (peak to
peak) of output voltage. The signal was filtered
by a diode that truncated the sinusoidal alternat-
ing current so that only positive signal remained
and the resulting half-wave rectified current circu-
lated in the coil. A resistor of 1Ω was added in
the circuit in series with the coil yielding a total
resistance of 6.5Ω, resulting in a magnetic field of
about 12Gauss. The FM-demodulated signal out-
put by the first lock-in is sent straight to a sec-
ond lock-in for the detection of an amplitude mod-
ulated signal induced by the alternating magnetic
field. In these dual-demodulation experiments, the
time constant of the second lock-in was 100 ms.
The acquisition program allows for simultaneous
signal acquisition at the first (Frequency Modu-
lation, FM) and second (FM + Magnetic Field
Modulation, FM+MFM) demodulation stages. On
the FM+MFM traces, only transitions arising from
open-shell species are visible. An example of the re-
sulting traces recorded around 341915MHz is pre-
sented in Fig 4, where the FM trace is plotted in
green (upper panel) and the FM+MFM trace in red
(lower panel). On the upper panel, transitions aris-
ing from all absorbing species in the range are de-
tected while, on the lower one, all observed transi-
tions are assigned to the ∆Ka∆NK′′

a
(N ′′)=QR2(16)

and QR3(16) rotational transitions of the CH2CN
radical (pink and blue boxes, respectively). The re-
maining transitions on the upper panel are unas-
signed to date (absent the CDMS and the JPL
spectral catalogs [54, 55]). The figure hence high-
lights the straightforward discrimination of open-
and closed-shell species.

In total, 756 lines of CH2CN have been mea-
sured and assigned to 5109 rotational transitions
(due to unresolved splittings, see spectroscopic sec-
tion). We estimated the frequency accuracy for
each line based on its SNR (ranging from 5 to 130),
FWHM, and frequency step [56]; it varies from
50 kHz (intense and isolated lines) to 600 kHz (weak
or blended transitions).
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Figure 3: Experimental spectra recorded using the CP spectrometer recorded in presence of fluorine atoms without (red trace)
and with (blue trace) the permanent magnet. For the sake of clarity, all transitions arising from the precursor (CH3CN) have
been removed from both spectra. (Upper panels) Broadband spectra over the 75–110GHz spectral region in linear (uppermost)
and logarithmic (middle) scales. (Lower panels) Two zoomed-in portions of the spectrum around 80GHz (bottom left) and
100GHz (bottom right). They both display clusters of transitions of CH2CN involving N ′′ = 3 (left) and N ′′ = 4 (right).
Experimental traces are compared with a simulated stick spectrum of CH2CN (green trace) performed using the final set of
spectroscopic parameters.

Figure 4: Experimental traces obtained by extracting the signal after each demodulation stage (FM in green, upper panel, and
FM+MFM in red, lower panel) around 341915MHz. The two dashed lines are traced at zero intensity for both signal to allow
for the visual inspection of the baseline. The two lines surrounded by pink boxes have been assigned to the QR2(16) rotational
transitions and the four ones surrounded by blue boxes have been assigned to the QR3(16) rotational transitions of the CH2CN
radical. We note that the different intensities for ortho (in pink) and para (in blue) transitions are visible on the figure.
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2.4. Spectroscopic description

The cyanomethyl radical, in its 2B1 electronic
ground state, is a planar molecule belonging to
the C2v point group [16]. The permanent dipole
moment lies along the a-axis and takes a value of
3.5Debye [22]. Consequently, pure rotational tran-
sitions are all a-type (∆Ka = K ′

a − K ′′
a = 0).

The radical is an asymmetric top rotor close to
the prolate limit with an asymmetry parameter
κ = (2B −A− C)/(A− C) = −0.99 [21].
In the vibronic ground state, the following Hamil-

tonian can be used to describe the energy levels of
the radical:

Ĥ = Ĥrot + Ĥsr + Ĥhfs(N) + Ĥhfs(H) (1)

where Ĥrot is the rotational Hamiltonian (A, B and
C rotational constants and centrifugal distortion
constants), Ĥsr is the spin-rotation (sr) Hamilto-
nian (one unpaired electron), Ĥhfs(N) and Ĥhfs(H)
are the hyperfine structure (hfs) Hamiltonians ac-
counting for the non-zero nuclear spin nuclei N
(IN = 1) and the two equivalent H (H1 and H2

with IH1
= IH2

= 1/2).
Rotational levels are labeled using the N, Ka

and Kc quantum numbers. Each rotational level
is split into two sublevels (fine structure), because
of the electron spin-rotation coupling, labeled with
the J quantum number. Each set of fine struc-
ture levels are further split into hyperfine sublevels
because of the interaction between nuclear spins.
Because IN = 1, all levels are split into three sub-
levels labeled using the F1 quantum number. The
presence of the two equivalent hydrogens leads to
values of IH = IH1 ± IH2 = 1 or 0. Rotational
levels with even values of Ka (ortho states) are
associated with IH = 1 and are split into three
sublevels (described with the F quantum number)
by hydrogen hyperfine interaction. Rotational lev-
els with odd values of Ka (para states) are asso-
ciated with IH = 0 and remain unsplit. In con-
sequence, a pattern of nine sublevels is observed
for ortho states, described by six quantum num-
bers: N,Ka,Kc, J, F1, F while a pattern of three
sublevels is observed for para levels described by
five quantum numbers: N,Ka,Kc, J, F1. We note
that the splitting due to both hydrogens is larger
than the one caused by the nitrogen. However, since
we used the CALPGM suite of programs [57] for the
analysis and the fit, which requires equivalent nuclei
to be coupled last, we used the following coupling
scheme:

N+ S = J,

J+ IN = F1,

IH1 + IH2 = IH,

F1 + IH = F.

(2)

An example of the hyperfine splittings of an or-
tho transition is presented in Fig. 5 together with
expected line positions when considering succes-
sive splittings. Even though the hyperfine compo-
nents are not fully resolved for this transition under
our experimental conditions, the recorded spectrum
still nicely reflects the complex structure of the pure
rotational spectrum of CH2CN.

Figure 5: Schematic representation of successive splittings
for the QR0(4) rotational transition of the CH2CN radical
compared with the experimental trace recorded with the CP
spectrometer around 100605MHz (in dark blue). The ex-
perimental trace is a subtraction of the spectrum recorded
without the permanent magnet by the one recorded with
the magnet. This allows the removal of contributions aris-
ing from closed-shell species. Below the experimental trace,
predictions of line positions are presented using models in-
cluding successive couplings.

2.5. Quantum chemical calculations

Quantum-chemical calculations of the molecular
parameters relevant to this experiment were done
using coupled-cluster theory. Specifically, the all-
electron core-correlating cc-pCVTZ and cc-pCVQZ
basis sets [58] were used in conjunction with the
CCSD(T) treatment of electron correlation [59].
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The structure of CH2CN was optimized with each
basis set, and the resulting equilibrium geometries
were used in calculations of the molecular proper-
ties. The calculated properties comprise the dipole
moment, quartic and sextic centrifugal distortion
constants, hyperfine constants, electron and nuclear
spin-rotation constants [60], and harmonic vibra-
tional frequencies. Using the methods of second-
order vibrational perturbation theory (VPT2) [61],
the ground state averaged dipole moment was cal-
culated, along with ground state rotational con-
stants. The latter applies vibrational and centrifu-
gal corrections calculated with VPT2 to the equi-
librium constants that are directly proportional to
the inverse principal moments of inertia. A good
summary of the methodology used in this work can
be found in Puzzarini et al. [62]. All calculations
used the CFOUR program suite [63].

3. Results and discussion

3.1. Chirped-pulse measurements

Despite a rather selective method of production
for the CH2CN radical, many other species were
synthesized by the reaction between fluorine atoms
and the precursor (CH3CN) leading to a rich spec-
trum captured by the broadband CP instrument.
The strongest transitions, largely dominating the
spectra and clearly visible in the upper panel of
Fig. 3, are a triplet lying around 88632 MHz
easily assigned to the HCN molecule in its vibra-
tional ground state [64]. Two other strong lines
around 84432 and 105539MHz are assigned to FCN
[65]. On In Fig. 6, the experimental trace is the
spectrum recorded without the permanent magnet.
Similarly to Fig. 3, all contributions from the pre-
cursor have been removed using the reference (MW
discharge switched off) spectrum. Consequently, all
observed transitions arise from species synthesized
in the experiment, closed-shell as well as open-shell
molecules. The experimental trace is normalized to
the most intense transition at 88631.8 MHz (HCN).
To assign the spectrum, we first queried the Splata-
logue database [66] itself querying JPL and CDMS
spectral catalogs [55, 54]. For fluorinated species,
we used literature data on species we thought could
be present in the set-up. All assigned transitions
are plotted in color, the unassigned ones remain
in black; for the sake of clarity, the lower panel of
Fig. 6 displays these transitions only. The same
color is used to plot pure rotational transitions of

all variants of a given molecule: within the vibra-
tional ground and excited states as well as isotopo-
logues. A summary of all assignments is provided
in Table 1. With the employed method of produc-
tion, dehydrogenated species from acetonitrile were
expected, namely CH2CN, HCCN and C2N. In-
deed, we observe spectroscopic features unambigu-
ously assigned to CH2CN (in green on Fig. 6).
For HCCN, a single extremely weak, magnet depen-
dent feature is present around 87767.5MHz which
is insufficient for any definite assignment. No C2N
transitions are detected. Besides H-abstraction,
the method is also known for F-addition, for in-
stance CH2FCN transitions are observed on the
spectrum. Interestingly, other products are also
present with shorter (HCN, FCN) or longer (HC3N,
FC3N) heavy atom backbones than the precursor.
The presence of COF2 and HFCO is unambiguous
and results from oxygen-contamination in our set-
up. As highlighted by the lower panel of Fig. 6,
many transitions remain unassigned on the spec-
trum. Some of these transitions probably arise from
other fluorinated species. Currently, in terms of
number of transitions, a third of the spectrum has
been assigned (around 370 transitions over 1050
total). The assignment can also be expressed in
terms of percentage of intensity as previously done
in McCarthy et al. [40]. The total intensity is de-
fined as the sum of the intensity of all transitions
and for each species the sum of individual transi-
tions intensities is determined (see Table 1). The
35% of transitions assigned on the spectrum corre-
sponds to 91% of the total spectral intensity. Con-
sequently, most of the remaining transitions are
relatively weak which complicate their assignment.
We note that the number of identified peaks de-
pends on the SNR threshold we arbitrary choose.
Because the noise level is not constant over the
spectral range, some peaks can be missed (because
of their low intensity) and, in return, some noisy
signal can be misconstrued as peaks, increasing the
number of transitions to assign. Finally, it is worth
noting that only a few unassigned transitions arise
from open-shell species and all exhibit extremely
weak SNR. As seen previously by others [67, 40, 68],
this example illustrates the ability of CP spectrom-
eters to capture the molecular composition of com-
plex mixtures on broadband spectra.

3.2. (Sub-)millimeter measurements

Using the frequency multiplication chain-based
spectrometer, we followed a line-by-line procedure

8



Table 1: Summary of the assignments of the CP broadband spectrum

N° linesa % linesa Sum of intensityb % Intensityb Ref.c

Total 1032 100 4.44 100

HCNd 11 1.07 2.05 46.14 [1]
FCNe 28 2.71 1.75 39.36 [2]

HC3N
f 70 6.78 1.48× 10−1 3.34 [3]

CH2CN 85 8.24 2.31× 10−2 0.52 [4]
CH2FCN 13 1.26 7.83× 10−3 0.18 [5]
FC3N

g 5 0.48 2.73× 10−3 0.06 [6]
HNC 1 0.10 1.29× 10−3 0.03 [7]
FCCH 2 0.19 1.66× 10−3 0.04 [8]
HFCO 35 3.39 1.88× 10−2 0.42 [9]
COF2 116 11.24 6.03× 10−2 1.36 [10]

Assigned 366 35.47 4.06 91.46
Remaining 666 64.53 0.379 8.54

(a) Number of frequencies (and %) assigned to a given species synthesized by the MW discharge. (b) Sum of
the corresponding intensity (and %) for all transitions assigned to a given species. (c) Literature data used for
the assignment: [1] DeLucia and Gordy [64], Zelinger et al. [69], Fuchs et al. [70]. [2] Bogey et al. [65], Tyler and
Sheridan [71]. [3] de Zafra [72], Mallinson and de Zafra [73], Creswell et al. [74]. [4] Saito and Yamamoto [9] and
this work. [5] Guarnieri and Tolkmit [75]. [6] Tanaka et al. [76]. [7] Saykally et al. [77]. [8] derived from Tyler
and Sheridan [71]. [9] Jones and Typke [78]. [10] Carpenter [79]. (d) v0, v2 = 2, H13CN v0, HC15N v0.

(e)

v0, v1 = 1, v2 = 1, 2, 3, FC15N v0, F
13CN v0.

(f) v0, v4 = 1, v5 = 1, v6 = 1, v7 = 1, v5 = 1+ v7 = 3, v6 = 1+ v7 = 1,
HC13CCN v0, HCC13CN v0.

(g) v0, v7 = 1.

to measure CH2CN transitions resulting in few lines
arising from other species being detected. The im-
provements made to the experimental set-up al-
lowed us to perform an efficient re-investigation of
the pure rotational spectrum of the CH2CN rad-
ical. Tripling the injection site of fluorine atoms
improved production of the radical, while doubling
the path length of the cell in combination with the
development of the dual demodulation scheme al-
lowed for the detection of weak lines arising from
CH2CN.

Besides the CH2CN radical, several others species
were produced (both open and closed shell). There-
fore, the double demodulation detection is ex-
tremely efficient in discriminating features arising
from open-shell species (as seen on Fig. 4). An
additional advantage of this modulation scheme is
that transitions arising from open-shell species are
detected over a flat baseline (Figs. 4 and 7). Fig.
7 displays several transitions of CH2CN, follow-
ing the same selection rule (QR1(N)), spanning the
spectral range covered in this study. Both FM (in
green) and FM+MFM (in red) traces are plotted.
One can notice that that the SNR is weaker on the
FM+MFM trace than on the FM one. This is prob-
ably due to the magnet not being strong enough

to completely shift the split transitions away from
the frequency of the un-split transition, resulting
in less than 100% effective AM modulation depth.
In other words, the magnetic field modulation is
not 100% efficient. This phenomena is empha-
sized when increasing the frequency (and hence the
FWHM). Therefore, in this work, the FM+MFM
signal was always used to identify lines of the radi-
cal but, depending on the line profile, we used either
the FM or FM+MFM signal to retrieve the most
accurate line frequency possible. It is worth noting
that, for the line lying around 830275MHz, there is
a shift between the FM and the FM+MFM traces.
This is probably due to a close shell species possess-
ing a transition at a close frequency from the one of
the CH2CN radical. However, the close shell species
is not referenced in the Splatalogue database [66].

3.3. Spectroscopic discussion

In this work, transitions were assigned in a mul-
tistep procedure. First, we refit the literature data
using a Watson S -reduced Hamiltonian in the Ir

representation. The initial dataset contains all pure
rotational transitions from Saito et al. [21], Saito
and Yamamoto [9], Ozeki et al. [22] at the estimated
experimental accuracy of 5 kHz for Ozeki et al. [22]
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Figure 6: Experimental CP broadband spectrum (black
traces) recorded with the MW discharge (without the perma-
nent magnet). For the sake of clarity, all transitions arising
from the precursor have been removed. (Upper panel) All
transitions assigned to various species are plotted in color.
(Lower panel) Remaining unassigned transitions after the
removal of all assigned transitions.

data and 30 kHz for Saito et al. [21], Saito and Ya-
mamoto [9]. Compared to Ozeki et al. [22] who fit
in the A-reduction, we here favored the S -reduction
because CH2CN is close to the prolate limit. We
present in table 2 the spectroscopic parameters de-
rived in this work. We refer the reader to the table
S1 in the supplementary material for parameters
in the A-reduction and a direct comparison with
the work of Ozeki et al. [22]. Since the dipole mo-
ment lies along the a-axis [11], only a-type pure ro-
tational transitions can be recorded which induces
large error bars on the determination of the A rota-
tional constant and for all “K” dependent param-
eters. In our refit, we fixed A, DK , and all pa-
rameters that could not be properly determined to
their calculated value (hence, ∆K , is no longer fixed
to the calculated value of ketene). In addition, we
favored a rather constrained fit by keeping all sex-
tic CD constants, but HKN , and the three Caa(N),
Cbb(N), Ccc(N) constants fixed to their calculated
values. In addition, while both electron-spin ro-
tation centrifugal distortion constants DS(K) and

Figure 7: Experimental traces obtained by extracting the
signal after the first demodulation stage (FM, in green)
and after the second demodulation stage (FM+MFM, in
red). (Upper panel) Measurement of the QR1(12) rotational
transition around 263920MHz, (middle panel) QR1(24) ro-
tational transition around 527405MHz and (lower panel)
QR1(40) rotational transition around 830270MHz.

DS(KN) were used in the literature, here DS(KN)
has proven of very little influence in the fit and
was thus not included. This model allows the re-
production of literature data relatively well with a
root mean square (rms) of 44 kHz and a weighted
standard deviation of 2.16, and served as a reliable
ground for the new assignments.

In total, we measured 801 frequencies corre-
sponding to 5260 transitions in the linelist. The
newly measured transitions, involving N” and K ′′

a

up to 42 and 8, respectively (compared to 13 and
6 previously), allow for a refinement of the spec-
troscopic parameters (Table 2). In case of par-
tially resolved structure, the central frequency of
the feature is used in the fit and corresponding hy-
perfine transitions are weighted according to their
calculated intensity at 300K. The A rotational con-
stant is relatively confidently determined account-
ing for the fact that only a-type transitions are ob-
served. The current value of 284994.2 (39)MHz dif-
fers by 13MHz (0.005%) from the literature data,
well within the error bar given by Saito and Ya-
mamoto [9], and is 30 times better determined.
There is also a significant improvement of the CD
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Table 2: Spectroscopic parameters (in MHz, unless otherwise noted) of CH2CN in the Watson S -reduction calculated in this
work and determined in the refit of the literature (Refit) and after including the present measurements (Final). Numbers in
parentheses are one standard deviation in units of the least significant figure.

Parameters a Calc.b Refitc Final

Rotational parameters
A 285022 285022 284994.4 (39)
B 10248 10246.22630 (42) 10246.23330 (38)
C 9877 9876.56830 (42) 9876.56149 (36)

Rotational centrifugal distortion constants
DN ×103 3.79 3.95221 (90) 3.95500 (15)
DNK 0.429 0.416451 (97) 0.415810 (53)
DK 20.7 20.7 20.7
d1 ×103 −0.140 −0.140 −0.16338 (16)
d2 ×103 −0.0374 −0.0374 −0.04670 (15)
HN ×109 −1.08 −1.08 −1.08
HNK ×106 3.19 3.19 3.480 (38)
HKN ×103 −1.05 −0.7075 (78) −0.8449 (45)
HK ×103 5.86 5.86 5.86
h1 ×1011 1.70 1.70 1.70
h2 ×1010 3.93 3.93 3.93
h3 ×1011 6.32 6.32 6.32
LNK ×106 −0.0278 (18)
LKKN ×106 −8.54 (16) −0.84 (12)
PKKNN ×109 0.946 (21)
PKKKN ×106 −0.1244 (11)

Electron spin-rotation and higher order terms
ϵaa −697 −661.5169 (93) −661.5305 (84)
ϵbb −23.7 −24.1133 (47) −24.1120 (46)
ϵcc 1.43 −2.0412 (47) −2.0388 (46)
DS(K) 0.0886 (39) 0.0998 (14)

Isotropic and anisotropic hyperfine interaction constants
aF (N) 7.19 9.4902 (17) 9.4905 (17)
Taa(N) −14.8 −15.6448 (33) −15.6451 (32)
Tbb(N) −13.5 −12.4720 (42) −12.4734 (42)
χaa(N) −4.26 −4.1964 (40) −4.1959 (40)
χbb(N) 1.89 1.8199 (60) 1.8168 (60)
Caa(N) −0.0275 −0.0275 −0.0275
Cbb(N) −0.0021 −0.0021 −0.0021
Ccc(N) −0.0023 −0.0023 −0.0023

aF (H)d −56.9 −59.640 (13) −59.644 (13)

Taa(H)d −17.1 −15.8966 (28) −15.8965 (28)

Tbb(H)d 16.0 16.0 16.0

Tbc(H)d 1.15 1.15 1.15

Relevant fit parameters
n e 545(207) 545(207)+5260(801)

N ′′
max, K

′′
a max

f 13,6 42,8
rms 0.044 0.147
σ g 2.16 1.18

(a) Parameters with no numerical values have not been used in the fit (i.e., fixed to 0); all values without error have been kept fixed

to the calculated value, this work. (b) see text. (c) Refit from the data from Saito et al. [21], Saito and Yamamoto [9] and Ozeki

et al. [22]. (d) X(H) = X(H1) = X(H2) for a given parameter X . (e) Number of fitted transitions (different frequencies). In the

final fit, the number of lines from the literature and of newly measured lines are reported, respectively. (f) unitless (g) Weighted
standard deviation, unitless
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parameters. While it was possible to determine al-
most all quartic CD terms (DK remains fixed to
the calculated value), only sextic terms (and higher
order of magnitude terms) involving both N and K
were determined. More specifically, terms involving
higher order in K than N (such asHKN , LKKN and
PKKKN ) have proven of greater importance for the
reproduction of transitions involving high values of
N and Ka. We note that the LKKN parameter is
ten times smaller in the final fit than in the refit,
we attribute this difference to the addition of more
higher order terms in the final fit. The PKKKN

parameter is only almost 10 times smaller than
the LKKN parameter probably reflecting anoma-
lous centrifugal distortion. Electron-spin rotation
and hyperfine constants are very similar in the refit
and final fit, and in excellent agreement with the
calculated values. We note that for the electron
spin-rotation ϵcc parameter, the fitted value is of
opposite sign compared to the calculated one. Con-
cerning the hyperfine structure, even though it is
partly resolved for several transitions (for example
see Fig. 5), the error on the corresponding param-
eters is set by the highly accurate centimeter-wave
data. One significant difference with the literature
data however is the sign of the Caa(N) parameter
(0.0273MHz in Ozeki et al. [22]). We found that
this sign is set positive by four transitions from
Ozeki et al. [22] only. All the other data are re-
produced within their experimental accuracy using
the negative calculated value (−0.0275MHz). We
favored a constrained fit with Caa(N) fixed to its
calculated value. In the final fit, the aforementioned
four transitions are poorly reproduced (10σ). Fi-
nally, it is worth noting that the CDMS [54] predic-
tion (based on the literature pure rotational data)
is quite reliable when extrapolating in N for Ka

values previously observed (with experimental fre-
quencies located at 800GHz lying less than 2MHz
away from the catalog). However, for such a light
molecule treated using a semi-rigid rotor model, the
extrapolation inKa is far less reliable. For example,
the QR8(14) transition (lying around 300905MHz)
is predicted more than 10MHz away from the ex-
perimental measurement.
Overall, the final fit allows the reproduction of

the 5805 rotational transitions (1008 different fre-
quencies) at their experimental accuracy with a
weighted standard deviation of 1.18 and a rms of
147 kHz. It is worth noting that the weighted stan-
dard deviation obtained at the refit stage came from
the rather constrained model. A fit of all the avail-

able pure rotation data (literature and this work)
in the Watson A-reduction is also provided in the
supplementary material (Table S1 and ASCII files).
This fit is of similar quality to the one in the S -
reduction.

4. Conclusion and prospects

In this work, we re-investigated the pure ro-
tational spectrum of the cyanomethyl radical,
CH2CN, from 75 GHz to almost 900GHz. The
radical was produced by hydrogen abstraction from
acetonitrile with fluorine atoms. To record its ro-
tational transitions, we used two spectrometers: a
newly available CP instrument and a frequency
multiplication chain-based spectrometer that has
been upgraded (double pass, triple F injection and
double modulation) to improve its sensitivity com-
pared to a similar instrument used in a previous
study. Our set-ups appear complementary: the CP
offers a broadband view in the 75–110GHz range
while the frequency multiplication chain is highly
tunable up to 900GHz. In addition to CH2CN
lines, many transitions arising from other species
have been observed, several of them remaining
unassigned to date. The CP set-up is promising for
future studies of reactive species. Concerning the
second spectrometer, the double modulation proce-
dure has proven extremely efficient in quickly iden-
tifying transitions arising from the CH2CN radical.

With these set-ups, transitions of CH2CN, in-
volving N ′′ up to 42 and K ′′

a up to 8, have been
measured and added to the literature data leading
to a refinement of the spectroscopic parameters de-
scribing the species. Currently, the most recent de-
tection of the radical in the ISM [29] was performed
using transitions lying around 240GHz. Since the
rotational spectrum of CH2CN extends well above
this frequency even at mild rotational temperature
(see Fig. S1 in the supplementary material), the
present work may help future detection using cur-
rent astronomical observatories from cold to warm
environments of the ISM and up to the terahertz
range.
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Supporting Information

• fit files in ascii format (both A- and S -
reduction)

• Simulation of the pure rotational spectrum
of the radical calculated at different temper-
atures.

• Table of the spectroscopic parameters in the
Watson A-reduction.
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Fig. S1. Predictions of the rotational spectrum of the CH2CN radical at different temperatures ranging from 10 K (lowest
panel, in light blue) to 300 K (uppermost panel, in red) using the final set of rotational parameters. Note that the vertical
grey line corresponds to the highest frequencies recorded by Ref. [2]. The list of partition functions used are provided in
[4].
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Table S1. Spectroscopic parameters (in MHz, unless otherwise noted) of CH2CN in the Watson A-reduction determined
in the literature [1] and from this work (Refit and Final). Numbers in parentheses are one standard deviation in units of
the least significant figure.

Parameters a Ref. [1] Calc. Refit Final

Rotational parameters
A 284981 b 285022 284981b 284975.1 (39)
B 10246.7658 (99) 10248 10246.69610 (56) 10246.7578 (18)
C 9876.0299 (73) 9877 9876.09860 (56) 9876.0372 (18)

Rotational centrifugal distortion constants
∆N ×103 4.063 (70) 3.87 4.02560 (90) 4.04678 (35)
∆NK ×103 416.26 (85) 428 416.145 (97) 415.195 (56)
∆K 23.536 c 20.7 20.7 20.7d

δN ×103 0.1611 b 0.140 0.1647 (13) 0.16405 (16)
δK 0.263 b 0.233 0.233 0.26200 (86)
ΦN ×109 −0.291 −0.291 −1.24 (12)
ΦNK ×106 4.76 4.76 0.827 (38)
ΦKN ×103 −0.719 b −1.05 −0.7019 (77) −0.8433 (46)
ΦK ×103 −2.4 b 5.86 5.86 5.86
φN ×109 0.08 0.08
φNK ×106 2.44 2.44
φK ×103 −2.4 b 1.37 1.37
LNK ×106 0.115 b 0.0170 (18)
LKKN ×106 −8.93 b −8.80 (16) −0.74 (13)
PKKNN ×109 0.833 (21)
PKKKN ×106 −0.1262 (11)

Electron spin-rotation and higher order terms
εaa −661.537 (20) -697 −661.5481 (82) −661.5287 (84)
εbb −24.1205 (42) -23.7 −24.1171 (47) −24.1118 (46)
εcc −2.035 (22) 1.43 −2.0401 (47) −2.0384 (46)
∆S(K) 0.14b 0.14b 0.0993(14)
∆S(KN) 0.0105b 0.0105b

isotropic and anisotropic hyperfine interaction constants
aF (N) 9.4866 (37) 7.19 9.4897 (17) 9.4905 (17)
Taa(N) −15.6386 (73) -14.8 −15.6449 (32) −15.6451 (32)
Tbb(N) −12.4519 (96) -13.5 −12.4731 (42) −12.4734 (42)
χaa(N) −4.1950 (89) -4.26 −4.1953 (40) −4.1959 (40)
χbb(N) 1.833 (13) 1.89 1.8171 (60) 1.8167 (60)
Caa(N) 0.0273 (70) -0.0275 -0.0275 -0.0275
Cbb(N) ×103 2.9 (23) -0.0021 -0.0021 -0.0021
Ccc(N) ×103 -0.0023 -0.0023 -0.0023
aF (H) f −59.630 (33) -56.9 −59.639 (13) −59.644 (13)
Taa(H) f −15.9006 (68) -17.1 −15.8966 (28) −15.8965 (28)
Tbb(H) f 14.6 (67) 16.0 16.0 16.0
Tbc(H)d 1.15 1.15 1.15d

Relevant fit parameters
ng 545(206) 545(206) 545(207)+5260(801)
N′′

max, K′′
a max

h 13,6 13,6 42,8
rms 0.03 0.15
σ i 1.77 1.20

(a) Parameters with no numerical values have not been used in the fit (i.e., fixed to 0) (b) Fixed at the value determined by Ref. [2]. (c) fixed at
the value determined by Ref. [3] (d) Fixed at the calculated value. (e) Fixed at the value determined by Ref. [1]. ( f ) X(H) = X(H1) = X(H2)
for a given parameter X . (g) Number of fitted transitions (recorded frequencies). In the present fit, the number of newly measured lines and lines
from the literature [1, 2] are reported, respectively. (h) unitless (i) Weighted standard deviation, unitless
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