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Abstract. We introduce a paraconsistent modal logic KG2, based on
Godel logic with coimplication (bi-Godel logic) expanded with a De Mor-
gan negation —. We use the logic to formalise reasoning with graded,
incomplete and inconsistent information. Semantics of KG? is two-
dimensional: we interpret KG? on crisp frames with two valuations v;
and vz, connected via —, that assign to each formula two values from
the real-valued interval [0, 1]. The first (resp., second) valuation encodes
the positive (resp., negative) information the state gives to a statement.
We obtain that KG? is strictly more expressive than the classical modal
logic K by proving that finitely branching frames are definable and by
establishing a faithful embedding of K into KG2. We also construct a con-
straint tableau calculus for KG? over finitely branching frames, establish
its decidability and provide a complexity evaluation.

Keywords: Constraint tableaux - Godel logic - Two-dimensional
logics - Modal logics

1 Introduction

People believe in many things. Sometimes, they even have contradictory beliefs.
Sometimes, they believe in one statement more than in the other. However, if
a person has contradictory beliefs, they are not bound to believe in anything.
Likewise, believing in ¢ strictly more than in xy makes one believe in ¢ completely.
These properties of beliefs are natural, and yet hardly expressible in the classical
modal logic. In this paper, we present a two-dimensional modal logic based on
Godel logic that can formalise beliefs taking these traits into account.

Two-Dimensional Treatment of Uncertainty. Belnap-Dunn four-valued
logic (BD, or First Degree Entailment—FDE) [4,16,34] can be used to formalise
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reasoning with both incomplete and inconsistent information. In BD, formulas
are evaluated on the De Morgan algebra 4 (Fig. 1, left) where the four values
{t, f,b,n} encode the information available about the formula: true, false, both
true and false, neither true nor false. b and n thus represent inconsistent and
incomplete information, respectively. It is important to note that the values
represent the available information about the statement, not its intrinsic truth or
falsity. Furthermore, this approach essentially treats evidence for a statement (its
positive support) as being independent of evidence against it (negative support)
which allows to differentiate between ‘absence of evidence’ and the ‘evidence of
absence’. The BD negation — then swaps positive and negative supports.

N
NN

Fig. 1. 4 (left) and its continuous extension [0,1]™ (right). (z,y) <jou< (2,y') iff
z<z' andy >y

The information regarding a statement, however, might itself be not crisp—
after all, our sources are not always completely reliable. Thus, to capture the
uncertainty, we extend 4 to the lattice [0,1]" (Fig. 1, right). [0,1]™ is a twist
product (cf, [37] for definitions) of [0,1] with itself: the order on the second
coordinate is reversed w.r.t. the order on the first coordinate. This captures the
intuition behind the usual ‘truth’ (upwards) order: an agent is more certain in
x than in ¢ when the evidence for y is stronger than the evidence for ¢ while
the evidence against y is weaker than the evidence against ¢.

Note that [0,1]™ is a bilattice whose left-to-right order can be interpreted as
the information order. This links the logics we consider to bilattice logics applied
to reasoning in Al in [19] and then studied further in [24,35].

Comparing Beliefs. Uncertainty is manifested not only in the non-crisp char-
acter of the information. An agent might often lack the capacity to establish the
concrete numerical value that represents their certainty in a given statement.
Indeed, ‘T am 43% certain that the wallet is Paula’s’ does not sound natural. On
the other hand, it is reasonable to assume that the agents’ beliefs can be com-
pared in most contexts: neither ‘I am more confident that the wallet is Paula’s
than that the wallet is Quentin’s’, nor ‘Alice is more certain than Britney that
Claire loves pistachio ice cream’ require us to give a concrete numerical repre-
sentation to the (un)certainty.

These considerations lead us to choosing the two-dimensional relative of the
Godel logic dubbed G2 as the propositional fragment of our logic. G2 was intro-
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duced in [5] and is, in fact, an extension of Moisil’s logic! from [31] with the
prelinearity axiom (p — ¢q) V (¢ — p). As in the original Godel logic G, the
validity of a formula in G2 depends not on the values of its constituent variables
but on the relative order between them. In this sense, G is a logic of comparative
truth. Thus, as we treat positive and negative supports of a given statement
independently, G? is a logic of comparative truth and falsity. Note that while the
values of two statements may not be comparable (say, p is evaluated as (0.5,0.3)
and ¢ as (0,0)), the coordinates of the values always are. We will see in Sect. 2,
how we can formalise statements comparing agents’ beliefs.

The sources available to the agents as well as the references between these
sources can be represented as states in a Kripke model and its accessibility rela-
tion, respectively. It is important to mention that we account for the possibility
that a source can give us contradictory information regarding some statement.
Still, we want our reasoning with such information to be non-trivial. This is
reflected by the fact that (pA—p) — ¢ is not valid in G2. Thus, the logic (treated
as a set of valid formulas) lacks the explosion principle. In this sense, we call
G? and its modal expansions ‘paraconsistent’. This links our approach to other
paraconsistent fuzzy logics such as the ones discussed in [17].

To reason with the information provided by the sources, we introduce two
interdefinable modalities—0O and {—interpreted as infima and suprema w.r.t.
the upwards order on [0, 1]™. We mostly assume (unless stated otherwise) that
accessibility relations in models are crisp. Intuitively, it means that the sources
are either accessible or not (and, likewise, either refer to the other ones, or not).

Broader Context. This paper is a part of the project introduced in [6] and
carried on in [5] aiming to develop a modular logical framework for reasoning
based on uncertain, incomplete and inconsistent information. We model agents
who build their epistemic attitudes (like beliefs) based on information aggregated
from multiple sources. O and ¢ can be then viewed as two simple aggregation
strategies: a pessimistic one (the infimum of positive support and the supremum
of the negative support), and an optimistic one (the dual strategy), respectively.
They can be defined via one another using — in the expected manner: ¢ stands
for =0—¢ and O¢ for —O—¢. In this paper, in contrast to [15] and [6], we do
allow for modalities to nest.

The other part of our motivation comes from the work on modal Goédel
logic (&R—in the notation of [36]) equipped with relational semantics [12,13,
36]. There, the authors develop proof and model theory of modal expansions
of G interpreted over frames with both crisp and fuzzy accessibility relations.
In particular, it was shown that the O-fragment? of &£ lacks the finite model
property (FMP) w.r.t. fuzzy frames while the {-fragment has FMP? only w.r.t.
fuzzy (but not crisp) frames. Furthermore, both O and ¢ fragments of &R are
PSPACE-complete [28,29)].

! This logic was introduced several times: by Wansing [38] as 14C4 and then by Leit-
geb [27] as HYPE. Cf. [33] for a recent and more detailed discussion.

2 Note that O and ¢ are not interdefinable in &—cf. [36, Lemma 6.1] for details.

3 There is, however, a semantics in [11] w.r.t. which bi-modal && has FMP.
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Description Godel logics, a notational version of modal logics, have found
their use the field of knowledge representation [8-10], in particular, in the repre-
sentation of vague or uncertain data which is not possible in the classical ontolo-
gies. In this respect, our paper provides a further extension of representable data
types as we model not only vague reasoning but also non-trivial reasoning with
inconsistent information.

In the present paper, we are expanding the language with the Godel coimpli-
cation < to allow for the formalisation of statements expressing that an agent is
strictly more confident in one statement than in another one (cf. Sect. 2 for the
details). Furthermore, the presence of — will allow us to simplify the frame defin-
ability. Still, we will show that our logic is a conservative extension of ®A“—the
modal Gdédel logic of crisp frames from [36] in the language with both O and ¢.

Logics. We are discussing many logics obtained from the propositional Godel
logic G. Our main interest is in the logic we denote KG2. It can be produced from
G in several ways: (1) adding De Morgan negation — to obtain G? (in which case
@< ¢ can be defined as —(—¢’ — —¢)) and then further expanding the language
with O or ¢; (2) adding < or A (Baaz’ delta) to G, then both O and ¢ thus
acquiring KbiG* (modal bi-Gddel logic) which is further enriched with —. These
and other relations are given on Fig. 2.

.Gf G2
«/A T
ﬁ D/O
|:|<> </A
b.‘ @ s
</A m] <>

\(g/

Fig. 2. Logics in the article. ff stands for ‘permitting fuzzy frames’. Subscripts on
arrows denote language expansions. / stands for ‘or’ and comma for ‘and’.

Plan of the Paper. The remainder of the paper is structured as follows. In
Sect. 2, we define bi-Godel algebras and use them to present KbiG (on both
fuzzy and crisp frames) and then KG? (on crisp frames), show how to formalise
statements where beliefs of agents are compared, and prove some semantical
properties. In Sect. 3, we show that ¢ fragment of KbiG' (KbiG on fuzzy frames)
lacks finite model property. We then present a finitely branching fragment of
KG? (KG3,) and argue for its use in representation of agents’ beliefs. In Sect. 4,
we design a constraint tableaux calculus for KGZ which we use to obtain the
complexity results. Finally, in Sect.5 we discuss further lines of research.

4 To the best of our knowledge, the only work on bi-Gédel (symmetric Gédel) modal
logic is [20]. There, the authors propose an expansion of biG with O and ¢ equipped
with proof-theoretic interpretation and provide its algebraic semantics.
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2 Language and Semantics

In this section, we present semantics for KbiG (modal bi-Gédel logic) over both
fuzzy and crisp frames and the one for KG? over crisp frames. Let Var be a count-
able set of propositional variables. The language biLJ  is defined via the fol-
lowing grammar.

¢p:=peVar|=¢[(pAd)|(¢VP)[(p—¢)|(d=<¢)|Td|0¢

Two constants, 0 and 1, can be introduced in the traditional fashion: 0 := p<p,
1 := p — p. Likewise, the Godel negation can be also defined as expected:
~¢ = ¢ — 0. The —-less fragment of biLJ ,, is denoted with bilp q.

To facilitate the presentation, we introduce bi-Gdodel algebras.

Definition 1. The bi-Gdédel algebra [0,1]¢ = ([0,1],0,1,Ag, VG, —¢,<g) 18
defined as follows: for all a,b € [0,1], the standard operations are given by
a A b :=min(a,b), a Vg b := max(a,b),

1, ifa<b 0, ifb<a
b<ga=
b else.

Definition 2.

— A fuzzy frame is a tuple § = (W, R) with W # & and R: W x W — [0, 1].
— A crisp frame is a tuple § = (W, R) with W # & and RC W x W.

Definition 3 (KbiG models). A KbiG model is a tuple M = (W, R,v) with
(W, R) being a (crisp or fuzzy) frame, and v : Var x W — [0, 1]. v (a valuation)
is extended on complex biLy ¢ formulas as follows:

v(¢o ¢ w) =v(p,w)og v(¢,w). (o € {A,V,—,<})
The interpretation of modal formulas on fuzzy frames is as follows:

v(0¢,w) = inf {wRw —¢v(p,w')}, v(0p,w)= sup {wRw' NAgv(p,w)}.
w' eW w’' eW

On crisp frames, the interpretation is simpler (here, inf(@)=1 and sup(@)=0):
v(0¢, w) = inf{v(¢p,w’) : wRW'},  v(0p,w) = sup{v(gp,w’) : wRwW'}.

We say that ¢ € biLg o is KbiG valid on frame § (denote, § Exvic ¢) iff for
any w € §, it holds that v(¢,w) =1 for any model M on F.

Note that the definitions of validity in &R and &8 coincide with those in KbiG
and KbiG" if we consider the <-free fragment of biLg ¢.

As we have already mentioned, on crisp frames, the accessibility relation can
be understood as availability of (trusted or reliable) sources. In fuzzy frames, it
can be thought of as the degree of trust one has in a source. Then, ¢ represents
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the search for evidence from trusted sources that supports ¢: v(Q¢,t) > 0 iff
there is ¢’ s.t. tRt’ > 0 and v(¢,t’) > 0, i.e., there must be a source t’ to
which ¢ has positive degree of trust and that has at least some certainty in ¢.
On the other hand, if no source is trusted by t (i.e., tRu = 0 for all u), then
v(0@p,t) = 0. Likewise, Ox can be construed as the search of evidence against x
given by trusted sources: v(0Oy,t) < 1 iff there is a source ¢’ that gives to x less
certainty than ¢ gives trust to ¢'. In other words, if ¢ trusts no sources, or if all
sources have at least as high confidence in x as t has in them, then ¢ fails to find
a trustworthy enough counterexample.

Definition 4 (KG? models). A KG? model is a tuple M = (W, R, v1,v2) with
(W, R) being a crisp frame, and vy1,vs : Var x W — [0,1]. The valuations which
we interpret as support of truth and support of falsity, respectively, are extended
on complex formulas as expected.

’Ul(_‘(,b, ) - U2(¢a w) UQ(_'¢7 ) - ’U1(¢, w)
vi(@ A ¢ w) =v1(d,w) Agv1(¢',w) 2P AP, w) = va(d, w) Vg v2(¢, w)
1(¢ v <l5 w) = vi(¢,w) Vg ui(¢',w) 2oV ¢ w) = v2(¢, w) Ag v2(¢', w)
( ) = (¢ w) —GcU (¢Iv ’U)) (¢ ) = 1}2(¢/7 w) =G U2(¢a w)
1(¢*¢’ w) = v1(p, w) <g v1(¢',w) v <¢' w) = va(¢', w) =6 v2(e, w)
v1(0¢, w) = inf{v1(¢,w’) : wRW'} v2(0¢, w) = sup{va(¢,w’) : wRw'}
v1(0d, w) = sup{v1(¢p,w’) : wRw'} v2(0¢, w) = inf{va(d, w') : wRwW'}

We say that ¢ € biL] , is KG? valid on frame § (§ Fxcz ¢) iff for any
w € F, it holds that ’U1(¢, w) =1 and va(¢,w) = 0 for any model M on §F.

Convention 1. In what follows, we will denote a pair of valuations (vy,ve) just
with v if there is no risk of confusion. Furthermore, for each frame § and each
w € §, we denote

R(w) ={w' : wRw' =1}, (for fuzzy frames)
R(w) = {w' : wRw'}. (for crisp frames)

Convention 2. We will further denote with KbiG the set of all formulas KbiG-
valid on all crisp frames; KbiG’ the set of all formulas KbiG-valid on all fuzzy
frames; and KG? —the set of all formulas KG? valid on all crisp frames.

Before proceeding to establish some semantical properties, let us make two
remarks. First, neither 0O nor ¢ are trivialised by contradictions: in contrast to
K, O(p A —p) — Oq is not KG? valid, and neither is O(p A —p) — Oq. Intuitively,
this means that one can have contradictory but non-trivial beliefs. Second, we
can formalise statements of comparative belief such as the ones we have already
given before:

wallet: I am more confident that the wallet is Paula’s than that the wallet
s Quentin’s.

ice cream: Alice is more certain than Britney that Claire loves pistachio
ice cream.



Paraconsistent Gédel Modal Logic 435

For this, consider the following defined operators.

A7 = n~(1<7) (1)

A7¢:=~(1<g) N v(1 <) (2)

It is clear that for any 7 € biLy ¢ and ¢ € biL] ,, interpreted on KbiG and KG?
models, respectively, it holds that

v(Ame{é o) =1 ang ) —{(1’0) i o(,w) = (L,0)
otherwise, (0,1) otherwise.
3)

Now we can define formulas that express order relations between values of two
formulas both for KbiG and KG?2.
For KbiG they look as follows:

v(r,w) < vl w) iff v(A(T — 7'),w) =1,
v(r,w) > v(r w) iff v (~A(T — 1), w) = 1.

In KG2, the orders are defined in a more complicated way:

(¢, w) < v(¢,w) iff v(A7(¢ — ¢'),w) = (1,0),
v(d,w) > v(¢,w) iff v(A™(¢" — ¢) A~A7 (¢ — ¢'),w) = (1,0).

Observe, first, that both in KbiG and KG? the relation ‘the value of 7 (¢) is less
or equal to the value of 7/ (¢')’ is defined as ‘T — 7/ (¢ — ¢’) has the designated
value’. In KbiG, the strict order is just a negation of the non-strict order since all
values are comparable. On the other hand, in contrast to KbiG, the strict order
in KG? is not a simple negation of the non-strict order since KG? is essentially
two-dimensional. We provide further details in Remark 2.

Finally, we can formalise wallet as follows. We interpret ‘I am confident’ as O
and substitute ‘the wallet is Paula’s’ with p, and ‘the wallet is Quentin’s’ with q.
Now, we just use the definition of > in bil7  to get

A™(Op — Dg) A ~A"(Og — Op). (4)

For ice cream, we need two different modalities: O, and O, for Alice and Brittney,
respectively. Replacing ‘Alice loves pistachio ice cream’ with p, we get

Aﬁ(Dap - Dbp) A NAﬁ(DbP - Dap)- (5)

Remark 1. A is called Baaz’ delta (cf., e.g. [3] for more details). Intuitively, A7
can be interpreted as ‘T has the designated value’ and acts much like a necessity
modality: if 7 is KbiG valid, then so is Ar; moreover, A(p — ¢q) — (Ap — Aq)
is valid. Furthermore, A and < can be defined via one another in KbiG, thus the
addition of A to G makes it more expressive and allows to define both strict and
non-strict orders.
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Remark 2. Recall that we mentioned in Sect. 1 that an agent should usually be
able to compare their beliefs in different statements: this is reflected by the fact
that A(p — q) V A(¢ — p) is KbiG valid. It can be counter-intuitive if the
contents of beliefs have nothing in common, however.

This drawback is avoided if we treat support of truth and support of falsity
independently. Here is where a difference between KbiG and KG? lies. In KG?2,
we can only compare the values of formulas coordinate-wise, whence A™(p —
q) VA~ (g — p) is not KG? valid. E.g., if we set v(p, w) = (0.7,0.6) and v(q, w) =
(0.4,0.2), v(p,w) and v(g,w) will not be comparable w.r.t. the truth (upward)
order on [0, 1]%.

We end this section with establishing some useful semantical properties.
Proposition 1. § Exge ¢ iff for any model M on § and any weF, v1(p, w)=1.

Proof. The ‘if’ direction is evident from the definition of validity. We show the
‘only if” part. It suffices to show that the following statement holds for any ¢
and w € §:

for any v(p, w) = (z,y), let v* (p,w) = (1—y, 1-). Then v($,w) = (z,1)
iff v*(d,w)=(1-y,1—2z).

We proceed by induction on ¢. The proof of propositional cases is identical to

the one in [5, Proposition 5]. We consider only the case of ¢ = Ot since O and

¢ are interdefinable.

Let v(Ov,w) = (z,y). Then inf{v{(¢¥,w’) : wRw'} = x, and sup{vy (¢, w’) :
wRw'} = y. Now, we apply the induction hypothesis to ¥, and thus if v(¢, s) =
(2',y"), then v*(¢,s) = (1—y',1—2a’) for any s € R(w). But then inf{v] (¢, w’) :
wRw'} =1 —y, and sup{vj (¢, w’) : wRw'} = 1 — z as required.

Now, assume that v (¢, w) = 1 for any v; and w. We can show that vy (¢, w)
0 for any w and vy. Assume for contradiction that vy (¢, w)=y>0 but vy (¢, w)=
1. Then, v*(¢)=(1—y,1-1)=(1—y,0). But since y >0, v*(¢) #(1,0).

Proposition 2.

1. Let ¢ be a formula over {0,A,V,—,0,0}. Then, § Eeg ¢ ff § Fxbict ¢
and § Eesc ¢ iff § Exvic ¢, for any §.
2. Let ¢ € biLy . Then, § Exvic ¢ iff § FEree ¢, for any crisp §.

Proof. 1. follows directly from the semantic conditions of Definition 3. We con-
sider 2. The ‘only if’ direction is straightforward since the semantic conditions
of v; in KG? models and v in KbiG models coincide. The ‘if’ direction follows
from Proposition 1: if ¢ is valid on §, then v(¢,w) =1 for any w € § and any v
on §. But then, vi(¢,w) =1 for any w € §. Hence, § Fxgz ¢-

3 Model-Theoretic Properties of KG2

In the previous section, we have seen how the addition of < allowed us to formalise
statements considering comparison of beliefs. Here, we will show that both O
and ¢ fragments of KbiG, and hence KG2, are strictly more expressive than the
classical modal logic K, i.e. that they can define all classically definable classes
of crisp frames as well as some undefinable ones.
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Definition 5 (Frame definability). Let X be a set of formulas. X defines
a class of frames K in a logic L iff it holds that § € K iff § =1 X.

The next statement follows from Proposition 2 since K can be faithfully embed-
ded in R by substituting each variable p with ~~p (cf. [28,29] for details).

Theorem 1. Let K be a class of frames definable in K. Then, K is definable in
KbiG and KG2.

Theorem 2. 1. Let § be crisp. Then § is finitely branching (i.e., R(w) is finite
for every w € F) iff § Fxwvic 1 <O0((p<q) Nq).

2. Let § be fuzzy. Then § is finitely branching and sup{wRw’ : wRw' <1} <1
forallw e §F iff § Exbic 1 <0((p=<¢q) Aq).

Proof. We show the case of fuzzy frames since the crisp ones can be tackled
in the same manner. Assume that § is finitely branching and that sup{wRw’ :
wRw’' <1} < 1 for all w € F. It suffices to show that v(O((p<q) Aq),w) < 1 for
all w € §. First of all, observe that there is no w’ € § s.t. v((p<q) A g, w’) = 1.
It is clear that sup {v((p<¢) A g w') A¢gwRw'} <1 and that

1

wRw’ <
sup{v((p<q) A q,w’) : wRw' =1} = max{v((p<q) ANq,w') : wRw' =1} < 1

since R(w) is finite. But then v(¢((p < ¢) A q),w) < 1 as required.

For the converse, either (1) R(w) is infinite for some w, or (2) sup{wRw’ :
wRw' < 1} =1 for some w. For (1), set v(p,w’) =1 for every w’ € R(w). Now
let W' C R(w) and W’ = {w; : i € {1,2,...}}. We set v(q,w;) = 5. It is casy
to see that sup{v(q,w;) : w; € W'} =1 and that v((p < ¢) A q,w;) = v(g, w;).
Therefore, v(1 < O((p < q) A q),w) = 0.

For (2), we let v(p,w’) = 1 and further, v(¢, w’) = wRw' for all w’ € F. Now
since sup{wRw’ : wRw' < 1} =1 and v(((p=<q)Aq),w’) = v(q,w’) for all w’ € F,
it follows that v(O((p<¢q) A g),w) =1, whence v(1 < O((p<q) A q),w) = 0.

Remark 3. The obvious corollary of Theorem 2 is the lack of FMP for the -
fragment of KbiG™ since O((p < ¢) A ¢) in never true in a finite model. This
differentiates KbiG' from & since the O-fragment of R has FMP [12, Theo-
rem 7.1]. Moreover, one can define finitely branching frames in O fragments of
B R and BKRC. Indeed, ~~0O(p V ~p) serves as such definition.

Corollary 1. KG? and both O and ¢ fragments of KbiG are strictly more
expressive than K.

Proof. From Theorems 1 and 2 since K is complete both w.r.t. all frames and
all finitely branching frames. The result for KG? follows since it is conservative
over KbiG (Proposition 2).

5 Bi-modal KbiG lacks have FMP since it is a conservative extension of GA.
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These results show us that addition of < greatly enhances the expressive power
of our logic. Here it is instructive to remind ourselves that classical epistemic
logics are usually complete w.r.t. finitely branching frames (cf. [18] for details).
It is reasonable since for practical reasoning, agents cannot consider infinitely
many alternatives. In our case, however, if we wish to use KbiG and KG? for
knowledge representation, we need to impose finite branching explicitly.

Furthermore, allowing for infinitely branching frames in KbiG or KG? leads to
counter-intuitive consequences. In particular, it is possible that v(0O¢, w) = (0, 1)
even though there are no w',w” € R(w) s.t. vi(¢,w’) = 0 or va(d,w”) = 1. In
other words, there is no source that decisively falsifies ¢, furthermore, all sources
have some evidence for ¢, and yet we somehow believe that ¢ is completely
false and untrue. Dually, it is possible that v(0¢,w) = (1,0) although there
are no w',w” € R(w) s.t. v1(¢,w') = 1 or va(¢,w”) = 0. Even though ¢ is an
‘optimistic’ aggregation, it should not ignore the fact that all sources have some
evidence against ¢ but none supports it completely.

Of course, this situation is impossible if we consider only finitely branching
frames for infima and suprema will become minima and maxima. There, all
values of modal formulas will be witnessed by some accessible states in the
following sense. For © € {O,0}, i € {1,2}, if v;(V¢,w) = x, then there is
w' € R(w) s.t. vi(¢,w') = . Intuitively speaking, finitely branching frames
represent the situation when our degree of certainty in some statement is based
uniquely on the data given by the sources.

Convention 3. We will further use KbiGg, and KG3, to denote the sets of all
bily,o and biL7 , formulas valid on finitely branching crisp frames.

Observe, moreover, that O and ¢ are still undefinable via one another in bilg .
The proof is the same as that of [36, Lemma 6.1].

Proposition 3. O and ¢ are not interdefinable in KbiGy,.
Corollary 2.

1. O and & are not interdefinable in KbiG, KbiGl,, and KbiG'.
2. Both O and $ fragments of KbiG are more expressive than K.

In the remainder of the paper, we are going to provide a complete proof system
for KG2, (and hence, KbiGg,), and establish its decidability and complexity as
well as finite model property. Note, however, that the latter is not entirely for
granted. In fact, several expected ways of defining filtration (cf. [7,14] for more
details thereon) fail.

Let X C biLg ¢ be closed under subformulas. If we want to have filtration
for KbiGy,, there are three intuitive ways to define ~x on the carrier of a model
that is supposed to relate states satisfying the same formulas.

L w~Lw iff v(g,w) = v(p,w’) for all ¢ € X.

2. w~Lw iff v(g,w) =1 v(p,w)=1forall ¢ € 2.
3. w~3 w iff v(g,w) < v(¢,w) & v(p,w') <v(d,w) for all ¢, ¢’ € XU{0,1}.
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Consider the model on Fig. 3 and two formulas:

Now let X to be the set of all subformulas of = A ¢~ .

First of all, it is clear that v(¢< A ¢~,w) = 1 for any w € M. Observe now
that all states in 90U are distinct w.r.t. ~%. Thus, the first way of constructing
the carrier of the new model does not give the FMP.

M :wy Wo W,

Fig. 3. v(p,wn) = n+-1

As regards to ~% and ~%, one can check that for any w,w’ € 90, it holds that
w ~% w' and w ~% w'. So, if we construct a filtration of 9 using equivalence
classes of either of these two relations, the carrier of the resulting model is going
to be finite. Even more so, it is going to be a singleton.

However, we can show that there is no finite model M = (U, S, e) s.t.
Vs € MN:v(d= A ¢~ s) = 1.

Indeed, e(¢=,t) = 1 iff e(p,t') > 0 for some t' € S(t), while e(¢~,t) = 1 iff
v(p,t) > v(p,t’) for any t' € S(t). Now, if U is finite, we have two options: either
(1) there is u € U s.t. R(u) = @, or (2) U contains a finite S-cycle.

For (1), note that v(p,u) = 0, and we have two options: if e(p,u) = 0, then
e(¢,u) = 0; if, on the other hand, e(p,u) > 0, then e(¢=,u) = 0. For (2),
assume w.l.o.g. that the S-cycle looks as follows: ugSuiSus ... Su,Sug.

If e(p, up) =0, (¢~ , up) =0, so e(p, ug) >0. Furthermore, e(p, u;) > e(p, wir1).
Otherwise, again, e(¢~,u;) = 0. But then we have e(¢~,u;) = 0.

But this means that ~% and ~3%, do not preserve truth of formulas from w
to [w] s, i.e., neither of these two relations can be used to define filtration. Thus,
in order to explicitly prove the finite model property and establish complexity
evaluations for KbiGg, and KG2 | we will provide a tableaux calculus. It will also
serve as a decision procedure for satisfiability and validity of formulas.

4 Tableaux for KG}

Usually, proof theory for modal and many-valued logics is presented in one of the
following several forms. The first one is a Hilbert-style axiomatisation as given in
e.g. [23] for the propositional Gédel logic and in [12,13,36] for its modal expan-
sions. Hilbert calculi are useful for establishing frame correspondence results as
well as for showing that one logic extends another one in the same language. On
the other hand, their completeness proofs might be quite complicated, and the
proof-search not at all straightforward. Second, there are non-labelled sequent
and hyper-sequent calculi (cf. [30] for the propositional proof systems and [28,29]
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for the modal hypersequent calculi). With regards to modal logics, completeness
proofs of (hyper)sequent calculi often provide the answer for the decidability
problem. Furthermore, the proof search can be quite straightforwardly automa-
tised provided that the calculus is cut-free.

Finally, there are proof systems that directly incorporate semantics: in par-
ticular, tableaux (e.g., the ones for Godel logics [2] and tableaux for Lukasiewicz
description logic [25]) and labelled sequent calculi (cf., e.g. [32] for labelled
sequent calculi for classical modal logics). Because of the calculi’s nature, their
completeness proofs are usually simple. Besides, the calculi serve as a decision
procedure that either establishes that the given formula is valid or provides an
explicit countermodel.

Our tableaux system 7 (KG3) is a straightforward modal expansion of con-
straint tableaux for G? presented in [5]. It is inspired by constraint tableaux
for Lukasiewicz logics from [21,22] (but cf. [26] for an approach similar to ours)
which we modify with two-sorted labels corresponding to the support of truth
and support of falsity in the model. This idea comes from tableaux for the
Belnap—Dunn logic by D’Agostino [1]. Moreover, since KGZ is a conservative
extension of KbiGg,, our calculus can be used for that logic as well if we apply
only the rules that govern the support of truth of biLg ¢ formulas.

Definition 6 (7 (KG3)). We fiz a set of state-labels W and let Se{<,<} and
2e{>,2}. Let further weW, xe{1,2}, p€biLly ,, and c€{0,1}. A structure
is either w:x:¢ or c. We denote the set of structures with Str.

We define a constraint tableau as a downward branching tree whose branches
are sets containing the following types of entries:

— relational constraints of the form wRw' with w,w’ € W;
— structural constraints of the form X < X' with X, X' € Str.

Each branch can be extended by an application of a rule® from Fig. J or Fig. 5.
A tableau’s branch B is closed iff one of the following conditions applies:

— the transitive closure of B under < contains X < X;
-0>21eB,orX>1€B,orX<0eB.

A tableau is closed iff all its branches are closed. We say that there is a tableau
proof of ¢ iff there is a closed tableau starting from the constraint w:1:¢ < 1.
An open branch B is complete iff the following condition is met.

7

* If all premises of a rule occur on B, then its one conclusion’ occurs on B.

Remark 4. Note that due to Proposition 1, we need to check only one valuation
of ¢ to verify its validity.

Convention 4 (Interpretation of constraints). The following table gives
the interpretations of structural constraints on the example of <.

SIfX¥ <land X <X (or0< X and X < X') occur on B, then the rules are applied
only to X < X'.
" Note that branching rules have two conclusions.
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w:l:ﬁ¢§% ’LUZQZﬁ(bS:{ w:l:ﬁqSZf{ w:2:ﬁ¢2%
< T~ —|2<7 —\1>7 —\2>7
~ow:2:p<SX ~w:lipSX ~ow:2:p2X ~w:ilip2X

1

1. /> 9. /< - /< 9. />
w:l: NP N%/\ <w.2.¢)/\¢) N.’{\/ <w.1.¢\/¢) X >w.2.¢\/¢ 22X

AMZ 235 N 27
w:l: g2 % w:2: <X w:l:p<X w:2:p2%
w:l: ¢/ > X w:2:¢' <X w:l:¢/ <X w:2:¢' > X
- 1< 9. r>
A< w:l:p NP <X No > w:2:p NP 22X
w:l:p<X |w:l:¢f SX w:2:p2X |w:2:¢ 22X
- r> 9. 1<
Vi w:l:pV o 22X Vo< w:2:pV P <X
w:l:pZ2X |w:l:¢/ 22X w:2: <X |w:2:¢ SX
.1 - / .1 - />
s w:l:pg — ¢ <X S w:l:ig = ¢ 22X
xX<1 w:l:p<w:1:¢ |w:l:¢/ 2%

X221 w:l:¢/ <X
w:l:p>w:1:¢'

:2: <X :2: '>X
g RO ORY Ly WY
w:2:¢ <w:2:¢ | w:2:¢/ <X x>0

X<0| w:2:¢'>%

w:2:¢' >w:2:¢

. w:l:p=<¢' <X o> w:l:p<¢' >X
~Yw:lip<w:l:¢ |w:l: <X - x>0
X<0| wil:p=X
w:l:p>w:1:¢
. w:2:p< ¢ =X < w:2:p < <X
YMw:2:p2X |w:2:¢ <w:2:¢ = xX<1

x>1 w:2:¢<X
w:2:¢ >w:2:¢

<w:1:¢—>¢/<f{ . w:2:p — ¢ >X

w:l:¢p <X w:2:¢' >%
w:l:p>w:1:¢ w:2:¢ >w:2:¢
. / 9. /
o> w:l:p=<¢d' >%X “ w:2:p<¢d <X
w:l:p>X w:2:¢p<X
wil:p>w:1:¢ w:2:p<w:2:¢

Fig. 4. Propositional rules of 7 (KG?b). Bars denote branching.
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entry ‘ interpretation
w:1:¢<w/:2:¢/ U1(¢,W)§U2(¢/,w,)
w:2:p < c va (¢, w) < ¢ with ¢ € {0,1}

As one can see from Fig. 4 and Fig. 5, the rules follow the semantical conditions
from Definition 4. Let us discuss —1< and 0O; < in more details.

The premise of —;< is interpreted as v1(¢ — ¢’,w) < x. To decompose the
implication, we check two options: either 2z = 1 (then, the value of ¢ — ¢’ is
arbitrary) or z < 1. In the second case, we use the semantics to obtain that

v1(¢', w) < x and vy (o, w) > v1(¢', w).

w:l:00 2 X w:2:00 <X
wRw' w:l:0¢0 <X w:2:0¢ 2 X wRw'
Dlz 01 S 05 022> s DQS,
w:l:p 2 X wRw" wRw" w:2:0 <X
w':l:0 <X w':2:0 2 %X
w:1:00 S X w:2:0¢ 2 X
wRw’ w:l:00 2 X w:2:00 S X wRw'
NS ———x 012 7 025 7 022 —
wil:p <X wRw wRw w:2:¢2 X
w’':1:¢0 2 X w’:2:0 <X

Fig. 5. Modal rules of 7 (KGg,). w” is fresh on the branch.

In order to apply 01 < to w:1:0¢ < X, we introduce a new state w” that is
seen by w. Since we work in a finite branching model, w” can witness the value
of O¢. Thus, we add w”:1:¢ < X.

We also provide an example of how our tableaux work. On Fig. 6, one can
see a successful proof on the left and a failed proof on the right.

wo:1:1<O((p=<q)Ag) <1 wo:1:0p — 00Op< 1
\ wo:1:00p<1
wo:1:1 S wo:l:Q((p<q)Aq) wo:1:1< 1 wo:I:Dp>Rwo:1:DDp
wo:1:0((p<q)Aq) 21 x Lo
wo Rw, wo:1l:Op >wi:1:0p
wy:lip>wi:1:0p

wi:1l:(p<q)Ag>1 B
wi:lip<g>1 w1 hws
/ \ wi:lip>wa:lip
®
1<0 wi:l:ig>1
% wi:l:p>1
wi:l:ig <1
X

Fig. 6. x indicates closed branches; @ indicates complete open branches.
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Definition 7 (Branch realisation). We say that a model M = (W, R, vy, v2)
with W = {w : w occurs on B} and R = {{w,w’) : wRw" € B} realises a branch
B of a tree iff the following conditions are met.

— k(P w) < ve (@, w') for anyw:x: ¢ <w X' ¢ € B with x,x" € {1,2}.
— vx(p,w) < c for anyw:x:¢ < c€ B with c € {0,1}.

Theorem 3 (Completeness). ¢ is KG3 valid iff it has a T(KGE) proof.

Proof. We consider only the KG2 case since KbiGg, can be handled the same
way. For soundness, we check that if the premise of the rule is realised, then so is
at least one of its conclusions. We consider the cases of —1< and 0Oy <. Assume
that w:1: ¢ — ¢’ <X is realised and assume w.l.o.g. that X = u:2:9. It is
clear that either va (1), u) = 1 or va(¢), u) < 1. In the first case, X > 1 is realised.
In the second case, we have that v1 (¢, w) > v1(¢',w) and vy (¢, w) < va(W, u).
Thus, X <1, w:1:¢ > w:1:¢', and w:1:¢' < u:1:1 are realised as well, as
required.

For 0y <, assume that w:1: O¢p< X is realised and assume w.l.o.g. that X =
w:2:). Thus, v1(0O¢, w) < v2(1h,u) Then, since the model is finitely branching,
there is an accessible state w” s.t. vy (¢, w) < v2(¢,u). Thus, w”’:1: ¢p< X is
realised too.

As no closed branch is realisable, the result follows.

For completeness, we show that every complete open branch B is realisable.
We construct the model as follows. We let W = {w : w occurs in B}, and set
R = {{w,w') : wRw" € B}. Now, it remains to construct the suitable valuations.

For i € {1,2}, ifw:i:p > 1 € B, we set v;(p,w) = 1. fw:i:p <0 € B,
we set v;(p, w) = 0. To set the values of the remaining variables ¢1, ..., g,, we
proceed as follows. Denote BT the transitive closure of B under < and let

w:x:g <w:x':1q; € BT and wix:q;<w':x':q; ¢ BT
[w:x:q]=14 w:x :q; or
w:x:q >w:x:q; € BT and w:x:q;>w' :x :q; ¢ BT

It is clear that there are at most 2 - n - [W| [w:x: ¢;]’s since the only possible
loop in BT is w;, :x:7 < ... < w;, :x:7, but in such a loop all elements belong
to [wy, :x:7]. We put [w:x:¢q;] < [w':x:¢;] iff there are wy:x:7 € [w:x:¢;] and
wh X' € [w'ix1gj] st wiixir < w)x ' € B

We now set the valuation of these variables as follows

x| X ] < [wixiq)]
2.n-|W|

Ux(qi7 ’lU)

Note that if some ¢ contains s but BT contains no inequality with it, the above
definition ensures that s is going to be evaluated at 0. Thus, all constraints
containing only variables are satisfied.

It remains to show that all other constraints are satisfied. For that, we prove
that if at least one conclusion of the rule is satisfied, then so is the premise. The
propositional cases are straightforward and can be tackled in the same manner
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as in [5, Theorem 2]. We consider only the case of {3 2. Assume w.l.o.g. that
>=> and X = u:1:1. Since B is complete, if w: 2:0¢p > u:1:9¢ € B, then
for any w’ s.t. wRw’ € B, we have w': 2:¢ > u:1:4 € B, and all of them are
realised by 991. But then w: 2:0¢ > u:1:9 is realised too, as required.

Theorem 4.

1. Let ¢ € biL] , be not KG2 valid, and let |¢| denote the number of symbols in
it. Then there is a model M of the size O(|p|!?1) and depth O(|$|) and w € M

s.t. v (o, w) # 1.
2. KG2 walidity and satisfiability® are PSPACE-complete.

Proof. We begin with 1. By Theorem 3, if ¢ is not KG3, valid, we can build
a falsifying model using tableaux. It is also clear from the rules on Fig. 5 that
the depth of the constructed model is bounded from above by the maximal
number of nested modalities in ¢. The width of the model is bounded by the
maximal number of modalities on the same level of nesting. The sharpness of the
bound is obtained using the embedding of K into KG?b since K is complete w.r.t.
finitely branching models and it is possible to force shallow trees of exponential
size in K (cf., e.g. [7, §6.7]). The embedding also entails PSPACE-hardness. It
remains to tackle membership.

First, observe from the proof of Theorem 3 that ¢(p1,...,p,) is satisfiable
(falsifiable) on I = (W, R, v1, v2) iff there are vy and v that give variables values

from V = {0, T AT .l LA ) 1} under which ¢ is satisfied (falsified).

As we mentioned, |W| is bounded from above by k**! with k being the
number of modalities in ¢. Therefore, we replace structural constraints with
labelled formulas of the form w:i:¢=v (v € V) avoiding comparisons of values
of formulas in different states. As expected, we close the branch if it contains
w:i:p=v and w:i:yp=V' for v # V.

Now we replace the rules with the new ones that work with labelled formulas

instead of structural constraints. Below, we give as an example new rules for —
and ¢Y (with |[V| =m + 1):

w:l:p— ¢'=1
w:lip=—1= |w:l:p=-1 w:l:p=m=1
w 1:¢:0‘ .1.¢/7m_f1 .1.¢/7m§1 : .1.¢/7m1;r11 w:l:g/=1
w:l: T m+1 w: i T m+1 w: T om+1
w:l:0¢p= 1 w:l:0¢p= s wRw'
wRw”;w”:1:p= 17 w’:l:¢:0|...|w’:1:¢:;;11

8 Satisfiability and falsifiability (non-validity) are reducible to each other using <: ¢
is satisfiable iff ~~(¢ < 0) is falsifiable; ¢ is falsifiable iff ~~(1 < ¢) is satisfiable.

9 Intuitively, for a value 1 > v > 0 of O¢ at w, we add a new state that witnesses v,
and for a state on the branch, we guess a value smaller than v. Other modal rules
can be rewritten similarly.
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We now show how to build a satisfying model for ¢ using polynomial space.
We begin with wg:1: ¢ =1 and start applying propositional rules (first, those
that do not require branching). If we implement a branching rule, we pick one
branch and work only with it: either until the branch is closed, in which case
we pick another one; until no more rules are applicable (then, the model is
constructed); or until we need to apply a modal rule to proceed. At this stage,
we need to store only the subformulas of ¢ with labels denoting their value at wy.

Now we guess a modal formula (say, wp:2:0x= ﬁ) whose decomposition
requires an introduction of a new state (w) and apply this rule. Then we apply
all modal rules that use woRw; as a premise (again, if those require branching,
we guess only one branch) and start from the beginning with the propositional
rules. If we reach a contradiction, the branch is closed. Again, the only new
entries to store are subformulas of ¢ (now, with fewer modalities), their values
at wy, and a relational term woRwy. Since the depth of the model is O(|¢|) and
since we work with modal formulas one by one, we need to store subformulas of
¢ with their values O(|¢|) times, so, we need only O(|¢|?) space.

Finally, if no rule is applicable and there is no contradiction, we mark wy :
2:0x = mi_l as ‘safe’. Now we delete all entries of the tableau below it and
pick another unmarked modal formula that requires an introduction of a new
state. Dealing with these one by one allows us to construct the model branch by
branch. But since the length of each branch of the model is bounded by O(|¢|)
and since we delete branches of the model once they are shown to contain no

contradictions, we need only polynomial space.

We end the section with two simple observations. First, Theorems 3 and 4
are applicable both to KbiGg, and KG2 because the latter is conservative over
the former. Secondly, since KG? and KbiG are conservative over &£ and since
K can be embedded in &R¢, the lower bounds on complexity of a classical modal
logic of some class of frames K and G2 modal logic of K will coincide.

5 Concluding Remarks

In this paper, we developed a crisp modal expansion of the two-dimensional
Godel logic G2 as well as an expansion of bi-Gédel logic with O and ¢ both for
crisp and fuzzy frames. We also established their connections with modal Godel
logics, and gave a complexity analysis of their finitely branching fragments.
The following steps are: to study the proof theory of KG? and KGZ: both
in the form of Hilbert-style and sequent calculi; establish the decidability (or
lack thereof) for the case of KG2. Moreover, two-dimensional treatment of infor-
mation invites for different modalities, e.g. those formalising aggregation strate-
gies given in [6]—in particular, the cautious one (where the agent takes min-
ima/infima of both positive and negative supports of a given statement) and
the confident one (whereby the maxima/suprema are taken). Last but not least,
while in this paper we assumed that our access to sources is crisp, one can argue
that the degree of our bias towards the given source can be formalised via fuzzy
frames. Thus, it would be instructive to construct a fuzzy version of KG2.
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In a broader perspective, we plan to provide a general treatment of two-
dimensional modal logics of uncertainty. Indeed, within our project [5,6], we are
formalising reasoning with heterogeneous and possibly incomplete and inconsis-
tent information (such as crisp or fuzzy data, personal beliefs, etc.) in a modular
fashion. This modularity is required because different contexts should be treated
with different logics—indeed, not only the information itself can be of various
nature but the reasoning strategies of different agents even applied to the same
data are not necessarily the same either. Thus, since we wish to account for this
diversity, we should be able to combine different logics in our approach.
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