1. Tables and Figures

1 Tables

Table 1 Routes distance and cycle time

Stations	Length $[\mathrm{m}]$	CT [min]
1	544	21.76
2	516	20.64
5	436	17.44
4	451	18.04
3	514	20.56
6	210	8.4
OC - PS	280	11.2

Table 2 Example of Daily record of AGV journey's efficiency

Trip n	Total time	Blocked 1	Blocked 2	Blocked 3	Blocked 4	Break	Total time stopped	CT (wo stops)	OEE (w stops vs wo stops)	OEE (w stops vs theoretical)	Time waiting
Trip 1	00:43	00:17	00:02	00:12	00:00	00:00	00:31	00:12	28\%	28\%	00:00
Trip 2	00:18	00:04	00:00	00:00	00:00	00:00	00:04	00:14	78\%	67\%	00:00
Trip 3	00:18	00:03	00:03	00:00	00:00	00:00	00:06	00:12	67\%	67\%	00:00
Trip 4	00:14	00:01	00:00	00:00	00:00	00:00	00:01	00:13	93\%	86\%	00:00
Trip 5	00:15	00:02	00:00	00:00	00:00	00:00	00:02	00:13	87\%	80\%	00:00
Trip 6	00:12	00:00	00:00	00:00	00:00	00:00	00:00	00:12	100\%	100\%	00:00
Trip 7	00:17	00:04	00:00	00:00	00:00	00:00	00:04	00:13	76\%	71\%	00:00
Trip 8	00:15	00:02	00:00	00:00	00:00	00:00	00:02	00:13	87\%	80\%	00:00
Trip 9	00:12	00:00	00:00	00:00	00:00	00:00	00:00	00:12	100\%	100\%	00:00
Trip 10	00:17	00:01	00:03	00:00	00:00	00:00	00:04	00:13	76\%	71\%	00:00
Trip 11	00:16	00:02	00:02	00:00	00:00	00:00	00:04	00:12	75\%	75\%	00:00
Trip 12	00:14	00:02	00:00	00:00	00:00	00:00	00:02	00:12	86\%	86\%	-

Table 3 Summary of AGV journey's efficiency

Day	OEE		Total time used			Load capacity used			
	AGV 1	AGV 2	AGV 3	AGV 1	AGV 2	AGV 3	AGV 1	AGV 2	AGV 3
1	72%	91%	90%	100%	29%	46%	29%	80%	45%
2	75%	91%	85%	100%	44%	43%	22%	100%	49%
3	86%	63%	80%	100%	58%	10%	24%	100%	50%
4	68%	70%	72%	100%	70%	34%	24%	80%	67%
5	79%	85%	72%	100%	68%	55%	35%	78%	51%
6	69%	86%	73%	100%	84%	75%	33%	78%	42%
7	77%	92%	95%	100%	84%	87%	40%	69%	31%
8	73%	80%	78%	100%	63%	71%	29%	86%	43%
9	74%	83%	76%	100%	60%	55%	27%	88%	49%
10	76%	81%	81%	100%	62%	45%	24%	88%	51%
Average	75%	82%	80%	100%	62%	52%	29%	85%	48%

Table 4 Results from positioning tests

Table 5 AGV 1 workload calculation

Table 6 Workload result

AGC	OEE	Total usage time	Workload
AGV 3	82%	292.68	68%
AGV 2	80%	141.00	33%
AGV 1	75%	128.00	30%

Table 7 IoT positioning systems

System	Location of supplier	Type of tracking	Accuracy	Tags power source	Tag battery life	Data extraction			Increase +1 cart	Annual cost	Comments
IoT1	Spain	UWB	0.5 m	Internal battery	3 years	Yes	£	65,00	$\begin{aligned} & \hline £ \\ & 115 \end{aligned}$	-	
IoT2	Germany	UWB	0.5 m	$2 x A A$ battery	3 years	Yes	£	35,000	$\begin{gathered} \hline £ \\ 79 \end{gathered}$	$\begin{aligned} & \qquad \\ & 10,000 \end{aligned}$	Annual soft cost ($€ 11.000$)
IoT3	France	UWB	0.5 m	Internal battery	$\begin{aligned} & \hline 10 \mathrm{~s}-5 \\ & \text { years } \\ & 1 \mathrm{~s}-1 \\ & \text { year } \\ & \hline \end{aligned}$	Yes	$€$	21,000	$\begin{gathered} £ \\ 73 \end{gathered}$	$\begin{aligned} & £ \\ & 1000 \end{aligned}$	Trial kit $£ 3000$
IoT4	US	UWB	1 m	Internal battery	6 days	Yes	£	115,000	$\begin{aligned} & £ \\ & 192 \end{aligned}$	-	
IoT5	UK	UWB Gateway	8m	-	-	Yes	£	150,000	-	-	-
IoT6	Estonia	UWB	0.5 m	Internal battery	-	Yes	-		-	-	
IoT7	Germany	UWB	0.5 M	Internal battery	-	Yes	£	26,000	-	-	
IoT8	Germany	BT Beacons	8 m	cr2032 battery	1 Year	Yes	£	26,000	$\begin{gathered} £ \\ 10 \end{gathered}$	$\begin{aligned} & £ \\ & 10,000 \end{aligned}$	Annual soft cost ($€ 11.000$)
IoT9	UK	RFID EPS WiFi	> 1m	$\begin{aligned} & 24 \mathrm{v} \\ & (1.5 \mathrm{~W}) \end{aligned}$	1 Year	Yes	£	100,000	$\begin{aligned} & \mathrm{£} \\ & 150 \end{aligned}$	-	

2. Figures

Figure 1 Caption: AGVs flowchart

Figure 1 Alt Text: A diagram that shows the routes of two Autonomous Guided Vehicles (AGVs) moving across the factory floor

Figure 2 Caption: Spaghetti chart map

Figure 2 Alt Text: A map of the factory floor showing the continuous flow line tracing the path of one AGV in real time

Figure 3 Caption: Heatmap results

Figure 3 Alt Text: a map of the factory floor that depicts in colour (red) where AGVs stop indicating possible problems in their routing which require investigation.

Figure 4 Caption: IoT Positioning within Alpha

Figure 4 Alt Text: A map of the factory floor showing where Internet of Things (IoT) antennas have been placed to cover the areas AGVs are operating.

Figure 5 Caption: IoT-AGV Positioning system

Figure 5 Alt Text: A map of the factory floor showing where IoTs antennas should be placed to cover the whole factory and create a cyber-physical manufacturing system

Figure 1: AGVs flowchart

Figure 2. Spaghetti chart map

Figure 3. Heatmap results

Figure 4. IoT Positioning within Alpha

Figure 5. IoT-AGV Positioning system

