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11 Abstract: The lateral and angular Goos-Hänchen shifts undergone upon reflection on a 
12 dielectric plate by a spatially phase-modulated Gaussian beam are derived. It is shown that the 
13 amplitude and the direction of both the lateral and angular shifts are very sensitive to the degree 
14 of spatial phase modulation of the incident beam, so that such a modulation thus provides a 
15 means to control those shifts. It is also shown that the modulation incurs some beam reshaping 
16 upon reflection. Analytical calculations of the lateral shift are found to be in good agreement 
17 with numerical simulations of the beam propagation before and after reflection. In these 
18 simulations the required spatial transverse phase modulation is achieved by focusing a 
19 microwave Gaussian beam onto the dielectric plate with a non-spherical lens or a flat-surfaced 
20 thin lamella exhibiting a suitable gradient of its refractive index. The optimal parameters 
21 governing the spatial phase modulation are discussed in order to achieve: i) an enhancement of 
22 the lateral shift of a spatially phase-modulated beam in comparison to that of a non-modulated 
23 beam and ii) simultaneous large values of the reflectivity and of the lateral shift, while keeping 
24 the reshaping of the reflected beam to a minimum.

25 © 2022 Optica Publishing Group 

26 1. Introduction
27 Non-specular effects occurring upon the reflection of light wavepackets from various optical 
28 structures have been intensively studied in the last two decades. These effects include both 
29 lateral and transverse shifts of the reflected beams relatively to the position predicted by ray 
30 optics (first described, in the context of the total internal reflection, as the Goos-Hänchen [1] 
31 and the Imbert-Fedorov [2,3] effects, respectively) [4], as well as the corresponding angular 
32 shifts in the plane of incidence or perpendicular to it, i.e., deviations of the reflection angle from 
33 the value it takes in the frame of geometric optics [5,6].
34 Although these effects are, as a rule, rather small, the beam shifts have nevertheless been 
35 reported to take potentially significant values in many configurations, including upon total 
36 internal reflection [1,7], but also at the vicinity of minima of the reflection coefficient, for 
37 instance at Brewster and pseudo-Brewster incidence angles [8–10], near the edges of photonic 
38 bandgaps in photonic crystals [11], or in a nanophotonic cavity [12]. In all cases, measurements 
39 of the beam shifts can be made using conventional methods based on position sensitive 
40 detectors, while charge-coupled device can give more detailed information about the profile of 
41 the reflected beam [13]. More precise detection techniques include interferometric set-ups 
42 [14,15] or signal enhancement techniques [7,10,16–19].
43 Far from being mere curiosities, such beam shifts can obviously be exploited in order to 
44 yield information about the material(s) constituting the optical structure from which reflection 
45 takes place or about the medium surrounding that structure. Indeed, as they can be shown to be 
46 extremely sensitive to tiny variations of material properties (in particular, the permittivity) upon 
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47 any kind of external excitations (electric or magnetic fields, pressure, temperature, mechanical 
48 strain,...), these effects are good candidates for the design of very precise sensors in particular, 
49 which is one of the main reasons they have attracted much attention lately. Indeed, the lateral 
50 shifts can be put to use for the design of bio- or chemical sensors [20,21], surface plasmon 
51 resonance sensors [22] or simply for the precise measurement of refractive indices [23]. In 
52 some systems, the dependence of the GH shift to temperature can be used for the design of 
53 thermal sensors [24,25]. Beyond sensing applications, the principles of optical switches [26], 
54 beam splitters [27], de/multiplexers [28], the monitoring of local electric and magnetic fields 
55 [29] or optical differential operation and image edge detection [30] have been proposed on the 
56 basis of the GH effect.
57 To that intent, however, it is also desirable to be able to enhance, and particularly, control 
58 in a reversible way the beam shifts, as well as relate the values they assume with the changes 
59 of permittivity of the materials the light beam encounters. The control of Goos-Hänchen beam 
60 shifts has been studied in a variety of functional materials and structures. For instance, an 
61 external magnetic field can tune the Goos-Hänchen shift in magnetic media [17,31–36]. 
62 Similarly, in combined magneto-optic and electro-optic systems the shift can be controlled via 
63 external electric and magnetic fields [24,31,37,38]. A GH shift can be induced through the 
64 electro-optic effect [39] or by misfit strain [8].
65 In all these instances, the focus has for the most part been set on ways to design the optical 
66 system in which the beam shifts take place, as well as to select the properties of its constituents, 
67 in order to achieve the desired control and enhancement of the effect and possibly use it for 
68 applications. More rarely has the focus been set on the properties of the beam itself, specifically 
69 on the way it can be tailored for an enhanced control of the Goos-Hänchen effect, but also on 
70 the way the reflected beam can be distorted as a corollary to that effect. Among those rarer 
71 studies, let us note the demonstration that the lateral Goos-Hänchen shift of light beams 
72 reflected and transmitted through a layered dielectric structure can be effectively controlled by 
73 the focusing (and defocusing) of the incident beam [40], with an increase of the shift when the 
74 beam is narrower. A significant reshaping of the reflected light beam has been discussed in a 
75 number of studies [41–44], including the observation that it can even split into two beams when 
76 a giant shift occurs [45]. In multilayered structures, reshaping takes place due to the interference 
77 between the waves reflected from all interfaces [46]. As a rule, beam distortion is also more 
78 noticeable for narrow beams with waists of the same order of magnitude as their wavelength. 
79 Thus, reshaping of the beam upon reflection requires additional studies.
80 In this paper, we discuss one such alternative method of exaltation of the lateral beam shift 
81 related not to specific properties of the structure it interacts with, but to the properties of the 
82 beam itself. Specifically, we present analytical and numerical calculations in order to 
83 investigate the effect of a transverse spatial modulation of the phase of a narrow Gaussian 
84 beam on the lateral and angular shifts, as well as the reshaping, it undergoes in its plane of 
85 incidence upon reflection off a simple dielectric isotropic plate. Those calculations were carried 
86 out in the microwave domain. The paper is organized as follows. In Section 2, we provide an 
87 analytical derivation of the reflected microwave electric field at the upper surface of the plate. 
88 In Section 3, we show how it can be used for the calculation of the lateral beam shift for various 
89 degrees of phase modulation of the incoming wavepacket. In Section 4, we show the results of 
90 the numerical simulations of beam propagation before and after reflection from the plate 
91 calculations and discuss the influence of the spatial phase modulation of the Gaussian beam on 
92 its lateral and angular shifts, as well as its reshaping upon reflection. The conclusions of our 
93 study (Section 5) are followed with an Appendix that describes ways to achieve the desired 
94 phase modulation of the incoming Gaussian beam.

95 2. Geometry and analytical description
96 In this study, we consider the reflection of a microwave Gaussian beam from a simple, 
97 homogeneous, isotropic, dielectric, non-magnetic plate of refractive index nP and thickness d, 



98 as shown in Fig. 1. The refractive index of the surrounding medium is nS. The upper and lower 
99 surfaces of the plate are parallel to the (xy) plane of a Cartesian system of coordinates. 

100 A two-dimensional (2D) monochromatic Gaussian s-polarized beam (wavelength  in 
101 vacuum and angular frequency   πс/) impinges on the top surface of the plate. The 
102 propagation direction of the beam is determined by its central wavevector kc , with kc = k0 nS, 
103 where k0  2 / 0 is the wavenumber of the beam in vacuum. The incidence angle  is defined 
104 as the angle between kc and the normal to the surface parallel to the z-axis. In the (xz) plane of 
105 incidence, a system of x′ and z′ axes (obtained through a rotation of the x and z-axes by a rotation 
106 of angle  around the y-axis) is associated to the beam, so that its central wavevector is parallel 
107 to the z′-axis. The lateral dimensions of the plate, along the x- and y-axes, are supposed to be 
108 much larger than the diameter of the Gaussian beam, so that side effects can be neglected. The 
109 choice of a 2D beam description, in which the electric field profile does not depend on the y 
110 coordinate in the direction perpendicular to the plane of incidence (see Eq. (1) below) is 
111 justified by the fact that this study is devoted to the non-specular effects (in particular the beam 
112 shifts) that can be observed in that plane. Indeed, upon reflection, a Gaussian beam undergoes 
113 a Goos-Hänchen lateral shift x in its plane of incidence (Fig. 1) that can be seen as a translation 
114 of the central wavevector of the reflected beam (solid red arrow) with respect to the direction 
115 of specular reflection (dashed red arrow).

116
117 Fig. 1. Schematic of the system. A 2D Gaussian microwave beam impinges on the upper surface 
118 of a dielectric plate of thickness d. The incidence plane is (xz) and  is the incidence angle. The 
119 lateral shift of the reflected beam is denoted x. Solid and dashed curves respectively show the 
120 profiles of the modulus and real part of the optical electric fields of the incident (blue curves) 
121 and reflected (red curves) beams. The dashed red arrow shows the direction of specular reflection 
122 without lateral shift.

123 In this paper, we specifically study the effect of a spatial modulation of the phase of the 
124 incident Gaussian beam on the lateral (as well as angular) shift and the simultaneous reshaping 
125 of the reflected beam. This modulation is quantified by the additional (in comparison with the 
126 expression of the field for a usual Gaussian beam) complex exponential factor that depends on 
127 the real-valued coefficient  in the following expression of the transverse electric field 
128 amplitude distribution  (i) ,yE x z  , in which the origin common to the (xyz) and (x′y′z′) 
129 Cartesian systems of axes coincides with the center of the incident 2D Gaussian beam in the 
130 plane of its waist, and the time dependence of the propagating wavepacket is chosen as 
131 exp(i t):

132
   

   
2

(i) 20
0 2 2

0

1( , ) exp exp
2y c

w xE x z E i x i z ik z
w z R zw z w

 
      

                        
. (1)



133 In Eq. (1), z′ is the algebraic axial distance from the waist, w(z′) is the beam radius (defined 
134 as the distance from the z′-axis for which the field amplitude falls to 1/e of its axial value), 
135 w0  w(0) is the waist radius, and E0 is the axial value of the field amplitude at the waist. An 
136 important characteristic parameter of the Gaussian beam is its Rayleigh length 
137 2

0 0 / 2Rz k w  , from which the z′-dependent beam parameters in Eq. (1) can be deduced, 
138 namely the beam radius at position z′, 
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140 the radius of the wavefront curvature at position z′,
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142 and its Gouy phase
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144 It should be noted that although similar at first glance, phase factors 2 2
0exp{ / }i x w   and 

145 2exp{ / 2 ( )}сik x R z   in Eq. (1) are not equivalent, since the latter varies with the position z′ 
146 along the propagation axis of the incident beam and explicitly depends on the curvature radius 
147 of the wavefront, especially so at large distances from the beam waist, and thus does not yield 
148 a parabolic modulation of the phase. It is also worth noting that the additional imaginary factor 
149 2 2

0/ i x w in the spatial dependence of the field profile of a Gaussian beam is analogous to a 
150 similar term describing linearly chirped Gaussian pulses in the time/frequency domain [47,48]. 
151 The phase modulation parameter  is thus the spatial equivalent of the linear chirp parameter 
152 of such a pulse.
153 With the choice of origin for both systems of axes mentioned above, the center line of the 
154 Gaussian incident beam crosses the upper surface of the plate at the point {x = x′ = 0, y = y′ = 
155 0, z = z′ = 0} and the center of the beam in the waist plane thus coincides with z′ = 0 on that 
156 surface. In oblique incidence (for  ≠ 0), the other points of the beam waist are located above 
157 or below the upper surface of the dielectric plate. Using Eq. (1) and the relations
158 cosx x   , s inz x   , (5)
159 the complex amplitude of the incident electric field on the upper surface of the plate (z = 0) in 
160 the (x,y,z) system of coordinates is:
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162 where w(x), R(x) and (x) are thus calculated for / sinx z  .
163 In the paraxial approximation, in the vicinity of the beam waist (i.e., when z′ << z′R), one 
164 can see from Eqs. (2)–(4) that w(z′) ≈ w0, R(z′) → ∞, and  (z′) ≈ 0 for all points inside the beam 
165 spot at the upper surface of the plate (i.e., for z = 0). Thus, the electric field distribution of the 
166 incident beam on that surface can be written as
167  (i)(i)( , 0) ( ) expy G cxE x z E x ik x   , (7a)
168 with
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170 and where kcx = kc sin  is the x-component of the central wavevector of the incident beam in 
171 the surrounding medium.
172 The spatial profile (r) ( )yE x  of the reflected beam at the upper surface of the plate can then 
173 be obtained using the inverse spatial Fourier transform [8,24]: 
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178 is the incident field distribution in the spatial frequency domain. In Eqs. (8) and (9), the spatial 
179 Fourier variable K is defined as K = kx – kcx , where kx is the x-component of the wavevector k 

180 of any given spatial Fourier component of the incoming field distribution  (i)
yE x , and the 

181 corresponding ( ) ( )cx xK k k     is the complex reflection coefficient of the system at a 
182 given position x across the beam at the surface of the plate. This reflection coefficient   is 
183 deduced from Maxwell’s equations and from the boundary conditions at each interface in the 
184 system as [49]:
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186 where, for any given spatial Fourier component of the incoming field distribution, 
187 0 cosz Sk k n    and 0 costz P tk k n    are the components along the z-axis of its wavevector 
188 k and of its corresponding refracted wavevector kt . The angles    and t   are thus the 
189 incidence angle and the refraction angle in the plate respectively associated to k and kt  and 
190 they are related by Snell’s law sin sinS P tn n   . The spread of values assumed by the 
191 angles    and t  reflects the divergence of the incoming Gaussian beam. Equations (8)–(10) 
192 lead to the determination of the reflected beam intensity profile from which, after comparison 
193 with the incoming beam intensity profile, the value of the lateral shift at the upper surface of 
194 the plate, denoted x, can be numerically deduced. As a rule, an angular shift  with respect 
195 to the specular geometry can also be observed. Its value cannot be deduced from the analytical 
196 approach described above and discussed below in Section 3 (as that approach yields the field 
197 distribution at the surface of the plate only), but it can be obtained from numerical simulations 
198 of the propagation of the Gaussian beam after reflection (see Section 4). 

199 3. Analytical study of the effect of phase modulation on the reflected beam at 
200 the surface of the plate
201 In this Section, we apply the previous analytical description to a Gaussian beam in the 
202 microwave domain, for which the lateral and angular beam shifts are expected to reach large 
203 and easily measurable values. Note that the intermediate Fourier transforms expressed in Eqs. 
204 (8) and (9) require numerical calculations.
205 Our simulations were carried out for a dielectric plate made of fused quartz (relative 
206 permittivity 2 3.8P Pn    at vacuum wavelength λ0  2.912 mm [44], and thickness d  8.33 
207 mm) surrounded by air (nS  1). For that value of thickness d, the reflection coefficient   



208 deduced from Eq. (10) can be shown to reach a zero minimum at an incidence angle of 
209 approximately 18.5°. Around that incidence angle, for small but non-zero values of  , beam 
210 shifts are known to reach large values [9]. The waist of the incident Gaussian beam is chosen 
211 as w0  3 λ0. In this case, the Rayleigh length is z′R ≈ 84.5 mm, so that we can neglect the 
212 variations of the beam diameter across the thickness of the plate.
213 The transverse spatial distribution of the normalized Gaussian amplitude (i)

0( )/GE x E  of the 
214 electromagnetic field at the upper surface of the plate (z = 0) is shown in Fig. 2 as a function of 
215 the incidence angle and for the spatial modulation parameter ξ = 5. Panels (a), (b), and (c) 
216 present the modulus (i)

0| / |GE E , real part (i)
0Re[ / ]GE E , and imaginary part (i)

0Im[ / ]GE E  of the 
217 normalized amplitude, respectively, and panel (d) shows the cross-sections of distributions (a)-
218 (c) for an incidence angle  = 20°. As expected from Eq. (7b), the distribution of the Gaussian 
219 field amplitude is symmetrical with respect to the x-axis (position x  0 corresponds to the 
220 center of the incident beam waist). Although the phase modulation of the Gaussian beam (for 
221 ξ  0) does not affect the envelope (modulus) of the field amplitude it does, however, modify 
222 the real and imaginary parts of (i)( )GE x , and an increase of the modulation parameter ξ leads to 

223 increasingly fast oscillations of (i)
0Re[ / ]GE E  and (i)

0Im[ / ]GE E  along the x-axis. In accordance 
224 with Eq. (7b), a reversal of the sign of ξ reverses the sign of the imaginary part of the Gaussian 
225 field amplitude. As a whole, the phase modulation of the field can be expected to exert a 
226 noticeable influence on the overall reflected beam, as the latter results from the interference 
227 between multiple waves reflected from the upper and lower surfaces of the dielectric plate.

228

229 Fig. 2. Normalized distribution of the amplitude of the incident spatially modulated Gaussian 
230 beam at the upper surface of the plate (at z = 0) as a function of the incidence angle and for 
231 spatial modulation parameter ξ = 5: (a) modulus (i)

0| / |GE E , (b) real part (i)
0Re[ / ]GE E , and (c) 

232 imaginary part (i)
0Im[ / ]GE E . Panel (d) shows the cross-section of panels (a)-(c) for incidence 

233 angle  = 20° (horizontal black dashed lines), where the red solid, blue dotted and green dashed 
234 curves denote the modulus, real and imaginary parts of the normalized field, respectively.

235
236 This is clearly illustrated in Fig. 3, where the transverse distribution along the x-axis of the 
237 normalized modulus ( )

0| / |rE E  of the reflected field at the upper surface of the plate (z = 0), 
238 deduced from Eqs. (1)-(10), is shown as a function of incidence angle  and for different values 
239 of the spatial modulation parameter . The black curves follow the position of the maximum of 
240 the beam intensity, i.e., a departure of those lines from x = 0 indicates and quantifies the lateral 
241 beam shift x. In the absence of spatial modulation ( = 0, Fig. 3(a)), the reflected beam already 
242 exhibits a significant distortion, with respect to the Gaussian profile of the incident beam, in 
243 particular in the vicinity of incidence angles corresponding to minima of the modulus of 
244 reflection coefficient  ― specifically, around  = 18.5° and  = 60° (the precise values of 
245 those angles are determined using Eqs. (10)). Indeed, near  = 18.5°, the reflected wave splits 



246 into two beams with almost equal maxima. With an increase of the absolute value of the spatial 
247 phase modulation parameter  (Fig. 3(b)-(g)), the distortion of the reflected field becomes 
248 stronger, and larger intervals of  appear for which the profile of the reflected field is split and 
249 exhibits two peaks. Due to this beam reshaping, the determination of the lateral shift, as 
250 calculated analytically at the surface of the plate, is sometimes ambiguous, since both maxima 
251 of the split beam can be of comparable amplitudes — this is especially true in the case of a non-
252 modulated beam, as evidenced by the black lines in Fig. 3.
253 This ambiguity, however, is less of a difficulty for incidence angles far from those for which 
254 | |  nears a minimum. In this case, the reflected field is still split in two, but one maximum is 
255 visibly larger than the other one (see for example Figs. 3(e)-3(g), as well as the discussion of 
256 Fig. 4 in the next Section), and for all intents and purposes the lateral beam shift x can be 
257 defined as the shift in position of the brighter part of the reflected wave. The analytical 
258 calculations depicted in Fig. 3 show that, for such incidence angles, an increase of the spatial 
259 phase-modulation (increase of | |) leads to an increase of the lateral beam shift. It can also be 
260 noted that for 0 <  <15° and  > 20°, the lateral shift experienced upon reflection by a spatially 
261 phase-modulated beam is coupled with significantly larger values of the reflected field than is 
262 the case for a non-modulated beam (ξ = 0). This fact makes spatially phase-modulated beams 
263 particularly useful for so-called weak measurements of the lateral beam shifts [7,17,19]. For 
264 increasing absolute values of the modulation parameter, however, the reflected beam also 
265 experiences an increased reshaping – see Figs. 3(d) and 3(g), so that a compromise, when 
266 choosing the value of the phase modulation parameter, must be found between increased lateral 
267 shift, large reflected intensity and distortion of the beam.

268
269 Fig. 3. Distribution of the normalized modulus (r)

0| / |yE E  of the reflected field at the upper 

270 surface of the plate (at z = 0) as a function of the x-coordinate and the incidence angle θ for 
271 values of the spatial phase modulation parameter equal to: (a) ξ = 0, (b) ξ = +3, (c) ξ = +5, (d) 
272 ξ = +7, (e) ξ = 3, (f) ξ = 5, and (g) ξ = 7. Black lines follow the position of the absolute 
273 maximum of the field amplitude when  varies. The horizontal dotted and dashed lines in panels 
274 (a), (e), (f), and (g) correspond to incidence angles  = 20° and  = 25° and refer to the cases 
275 depicted in Fig. 4 and discussed in Section 4. The vertical white lines show the position of the 
276 center of the incident beam (x = 0).

277 Finally, Fig. 3 also shows that the general tendency for the dependence of the lateral shift 
278 on the angle of incidence is that its evolution when  increases is reversed (although non-
279 symmetrically with respect to x = 0) upon a sign reversal of the spatial modulation parameter 
280 , as can readily be seen when comparing Figs. 3(b) and 3(e), Figs. 3(c) and 3(f), or Figs. 3(d) 
281 and 3(g). However, as should be expected, for incidence angles around normal incidence 



282 ( = 0), calculations show that the distribution of the Gaussian beam field is symmetric with 
283 respect to x = 0 for any value of .
284 Overall, the results shown in Fig. (3) clearly highlight the marked sensitivity of the lateral 
285 shift of the Gaussian beam upon a spatial modulation of its phase and the way a thoughtful 
286 choice of the parameter governing that modulation provides a control of both the amplitude and 
287 the sign of the shift.
288 It must be noted, however, that the lateral GH beam shift upon reflection is, as mentioned 
289 earlier, coupled to an angular shift, also in the plane of incidence, with respect to the purely 
290 specular direction, for which the central wavevector of the reflected beam would make the exact 
291 same angle  (in absolute value) with the normal to the surface as the central wavector of the 
292 incoming beam. In reality, the reflection of the beam departs from this simple behaviour 
293 familiar to ray optics, and an angular shift  is indeed observed that can, in some cases, reach 
294 several degrees and thus cannot be neglected, as it must be taken into account for the design of 
295 any device exploiting the measurement of the GH effect for sensing purposes. The analytical 
296 calculations presented in this Section do not allow a simple evaluation of . Estimates based 
297 on numerical simulations of the propagation of the reflected beam, however, can be carried out, 
298 and are presented and discussed below. 

299 4. Numerical simulation of the propagation of the reflected phase-modulated 
300 Gaussian beam
301 In this Section, we show the results of numerical simulations of the production of a phase-
302 modulated Gaussian beam and its propagation after reflection on the dielectric plate. These 
303 simulations were carried out using the COMSOL Multiphysics solver.
304 Several routes can be followed in order to obtain the transverse spatial phase modulation of 
305 the form 2exp( )i x  that appears in Eq. (1) in addition to the longitudinal phase term 
306 0exp( )Sik n z  of a conventional Gaussian beam. We propose here two ways of achieving that 
307 goal by focusing a non-modulated Gaussian beam: 1) with a lens with one (plano-convex lens) 
308 or two (biconvex lens) parabolically-shaped surface profile(s) in the (x′z′) plane; or 2) with a 
309 flat-surfaced thin lamella exhibiting a parabolic gradient of its refractive index also acting as a 
310 converging lens (see the Appendix for details). In both cases, the constitutive parameters of the 
311 lens were chosen so that it produces a spatially phase-modulated beam with a negative 
312 modulation parameter ( < 0).
313 Figure 4 shows the results of numerical simulations where a spatial phase modulation is 
314 added to an initially non-modulated Gaussian beam when it is focused with a symmetrical 
315 biconvex lens whose thickness (in the direction of the z’-axis) follows a parabolic dependence 
316 as a function of x’ (see Eq. (14) in the Appendix Section). In order to properly assess the 
317 influence of the resulting phase modulation, the position of the lens relatively to the plate as 
318 well as the waist of the incoming (non-modulated) Gaussian beam were adapted for each value 
319 of the resulting negative modulation parameter , in such a way that the focused (phase-
320 modulated) beam keeps the same waist w0 at the upper surface of the dielectric plate in all cases. 
321 Note that the height h of the lens should be significantly larger than the diameter 2w0 of the 
322 incoming beam in order to reduce non-paraxial aberrations. Thus, for each value of , the height 
323 of the lens must be adapted in addition to its curvature.
324 In practice, the lateral beam shift measurements are easier to realize at relatively small 
325 incidence angles. Here we show in Fig. 4 the reflection of the Gaussian beam simulated for two 
326 values of the incidence angle:  = 20° (top panels) and  = 25° (bottom panels). The first of 
327 these values is close to the minimum of reflectivity | | of the plate, as was discussed above, 
328 whereas for the second value reflection is characterized by both large values of the lateral shift 
329 and large values of | | . The analytically calculated profiles of the field modulus at the surface 
330 of the plate for those angles of incidence correspond to the horizontal dotted and dashed white 
331 lines in Fig. 3.



332 As was predicted by the calculations based on the analytical model described in Section 3, 
333 the Gaussian beam undergoes a reshaping of its field profile even when its phase is not spatially 
334 modulated (ξ = 0, Figs. 4(a) and 4(e)). As can be seen in all panels of Fig. 4, the reflected 
335 intensity is split between two beams as a result of this reshaping, one of which corresponds to 
336 a positive lateral shift x (solid arrows) with respect to the specular direction (dashed arrows) 
337 and the other corresponds to a negative lateral shift x (dotted arrows). In what follows, these 
338 two beams will be referred to as the first and second reflected beams, respectively. 

339
340 Fig. 4. Numerical simulation of the total electric field amplitude distribution (normalized with 
341 respect to E0) for values of the spatial phase modulation parameter equal to (a) and (e) ξ = 0, (b) 
342 and (f) ξ = 3, (c) and (g) ξ = 5, (d) and (h) ξ = 7, and for incidence angle  = 20° (top panels) 
343 and  = 25° (bottom panels), in the case where the phase of the incident Gaussian beam is 
344 spatially modulated using a parabolically-shaped biconvex lens. The white dashed line denotes 
345 the center of the incoming beam and the white dashed arrow indicates the direction of its specular 
346 reflection. The solid and dotted arrows show the propagation directions of the first and second 
347 reflected beams, respectively. Note that the color scale for the normalized field amplitude has 
348 been truncated to the [0; 0.5] interval in order to enhance the readability of the graphs.

349 At incidence angle  = 20° (Fig. 4(b)-(d)), these two beams are of comparable amplitudes 
350 for all values of the modulation parameter ξ (with the first reflected beam corresponding to 
351 x > 0 only slightly brighter), but as mentioned above, the overall reflected intensity is low, as 
352 this incidence angle coincides with low values of | | .
353 For all intents and purposes, the case where incidence angle  is equal to 25° (Fig. 4(f)-(h)) 
354 is more interesting, since the detection of beam shifts is bound to be easier in this case due to 
355 the larger values of the reflected intensity. At that incidence angle, the intensities of the two 
356 reflected beams greatly differ, with the first beam (solid arrow, for x > 0) much brighter than 
357 the second one (dotted arrow, for x < 0), and thus more suitable to potential applications. The 
358 position of the center (defined as the location where intensity is maximum) of the first reflected 
359 beam at the surface of the plate can be numerically deduced from the simulations and its 
360 comparison with that of the incoming beam yields the positive value of the lateral shift x it 
361 undergoes. Similarly, the direction of propagation of either first or second reflected beam, 
362 obtained through a numerical determination of its center, can be compared to the specular 
363 direction, which leads to the value of the angular shift   r , where r denotes the absolute 
364 value of the angle between the central propagation axis of a reflected beam and the normal to 



365 the top surface of the plate. The angular shift thus determined is positive for the first reflected 
366 beam, whereas it is negative for the less bright second reflected beam ― meaning that r >   
367 and  > 0 for the first reflected beam, and r <   and  < 0 for the second one (whereas 
368 r =  in the case of the specular reflection).

369
370 Fig. 5. (a) Comparison of the normalized lateral spatial shift x/0 of the first reflected beam as 
371 a function of the phase modulation parameter  (for 7 ≤  ≤ 0) obtained with the analytical 
372 calculation (orange curve) and with the numerical simulation (green curve). (b) Angular shift  
373 of the first reflected beam for the same set of values of  obtained using the numerical simulation. 
374 The incidence angle is  = 25°.

375 The results of the analytical and numerical determinations of the normalized lateral spatial 
376 shift x/0 of the brighter first reflected beam are compared in Fig. 5(a) as functions of  for 
377 7 ≤  ≤ 0 and for  = 25°. The error bars are those of the numerical procedure used for the 
378 determination of the reflected beam center at the upper surface of the plate (z = 0), with an 
379 uncertainty related to the reshaping of that beam (as shown in Fig. 3). The values of x obtained 
380 with both approaches are in a satisfactorily good agreement for all values of  considered in 
381 our calculations, and, for 3 ≤  ≤ 0, indicate a steady increase of the shift (by a factor that can 
382 slightly exceed 2) when the absolute value of parameter  increases, i.e., when the transverse 
383 modulation of the phase of the incoming Gaussian electric field increases. For larger values of 
384 || (for 7 ≤  ≤ 3), both methods seem to indicate a general tendency for x to decrease 
385 slightly. This can be related to the fact that the reshaping undergone by the reflected beam 
386 becomes markedly stronger when the modulation parameter increases in absolute value. Thus, 
387 for an effective control of the enhancement of the lateral shift, one should retain values of the 
388 modulation parameter within the interval  ≤  ≤ –1. Overall, our calculations show that the 
389 lateral shift x can exceed twice the value of the wavelength in vacuum of the incoming beam, 
390 that is, reach values of the order of 1 cm.
391 Similarly, Fig. 5(b) represents the variations of the angular shift  of the first reflected 
392 beam for the same incidence angle  = 25° and over the same range 7 ≤  ≤ 0 of the phase 
393 modulation parameter. Here again, the error bars stem from the procedure used for the 
394 determination of the central axis of the primary reflected beam. The angular shifts deduced 



395 from the numerical simulations are noticeably enhanced when the incoming Gaussian beam is 
396 phase-modulated (by a factor larger than 4 when  increases from 0 to 7 in absolute value) and 
397 reach several degrees, which makes them easy to detect for potential applications of lateral shift 
398 measurements. Note that similar tendencies for the lateral and angular shifts can be obtained 
399 for the second, much less intense, reflected beam.
400 As mentioned earlier, similar results can be obtained when the spatial modulation of the 
401 Gaussian beam is achieved using a flat-surfaced thin lamella with a spatial gradation of its 
402 refractive index ngr (x’) obeying a parabolic law along the x’-axis. For the case  <0, the 
403 refractive index profile of such a thin lamella is described by Eq. (A5) in Section 6. Again, 
404 simulations show a split of the reflected field in two separate beams with different propagation 
405 directions (on either side of the specular direction), one being markedly more intense than the 
406 other. Figure 6 illustrates this approach with the example of numerical simulations of beam 
407 propagation carried out when the refractive index at the center of such a focusing lamella is 
408 ngr,c = nP and for  = 3. The other parameters are identical to those used in Figs. 3 and 4. In 
409 this case the refractive index in the lamella decreases parabolically along the x’-axis from the 
410 center of the lamella to its extremities, so that ngr (x′ = ± H/2) = 1.5, where H = 33.4 mm is the 
411 total height of the lamella, whose thickness is chosen as D = 9.2 mm. For this set of structural 
412 parameters, calculations lead to values of the lateral spatial shift x of the first (i.e., brighter) 
413 reflected beam, estimated as previously at the surface of the plate coinciding with the (xy) plane, 
414 approximately equal to 2.82 0 for incidence angle  = 20° and 2.33 0 for  = 25°, which is in 
415 a good agreement with the corresponding values estimated with a parabolic lens.

416
417 Fig. 6. Numerical simulation of the electric field amplitude distribution (normalized with respect 
418 to E0) for spatial phase modulation parameter ξ = 3 and for incidence angle (a)  = 20° and (b) 
419  = 25° in the case where the phase of the incident Gaussian beam is spatially modulated with 
420 the help of a focusing thin lamella with a parabolic refractive index gradient. The white dashed 
421 line denotes the central axis of the incoming beam and the normal to the surfaces of the focusing 
422 lamella. The white dashed arrow indicates the direction of the specular reflection, and the solid 
423 and dotted arrows show the central axes of the first (brighter) and second reflected beams, 
424 respectively. As in Fig. 4, the color scale for the normalized field amplitude has been truncated 
425 to the [0; 0.5] interval in order to enhance the readability of the graphs.

426 5. Conclusions
427 We have shown theoretically and numerically that a spatial transverse modulation of the 
428 phase of a Gaussian beam provides a way to control the amplitude and direction of the lateral 
429 Goos-Hänchen shift to which the reflected beam is subjected with respect to the conventional 
430 specular reflection geometry of geometrical optics. We show in the Appendix how, in practice, 
431 such a modulation can be achieved by placing a parabolic lens, or a dielectric lamella with a 
432 parabolic gradient of its refractive index distribution, in front of a usual Gaussian beam.
433 Our theoretical analysis and numerical simulations show that the spatial lateral shift of the 
434 reflected beam is of the order of one wavelength of the incoming non-modulated Gaussian 
435 beam, and that it can be increased up to 2.5 times by introducing a spatial modulation to the 
436 beam. For the chosen waist of the microwave beam used for the calculations, this translates into 



437 an exaltation of the spatial shift from 2.9 mm to 7.3 mm, which would facilitate its detection in 
438 the context of practical applications.
439 Our numerical simulations of the beam propagation indicate that the angular shift that 
440 typically accompanies the lateral Goos-Hänchen shift in the plane of incidence is also sensitive 
441 to the modulation of the phase of the beam. Specifically, we have shown that the angular shift 
442 can be increased more than four times by the phase modulation of the Gaussian beam and can 
443 reach up to 9°, which, again, makes the measurement of such a shift easier.
444 We have established the optimal range [–5, –1] of values of the dimensionless parameter  
445 that governs the spatial phase modulation for which the lateral shift of the reflected beam is 
446 significantly larger than that of a non-modulated beam, but also coincides with large values of 
447 the reflection coefficient, while the reshaping of the reflected beam remains limited and thus 
448 does not prevent practical application of beam shift measurements.
449 Such applications can for example be found in the microwave domain, where our 
450 calculations have shown that the lateral shift of the reflected beam, enhanced and controlled by 
451 a well-chosen phase modulation, can reach up to several millimeters and its experimental 
452 measurement in devices such as sensitive sensors, routers, or de/multiplexers, is thus facilitated.
453 It should be noted that the conclusions presented here remain valid for other spectral ranges, 
454 for instance in the visible or near-infrared domains. However, the required precision of the 
455 techniques used for the detection of the spatial and angular beam shifts in those domains would 
456 be higher.

457 6. Appendix: Obtaining a spatially phase-modulated gaussian beam
458 We discuss here two ways of achieving a transverse spatial phase modulation of the electric 
459 field of a Gaussian beam of the form 22

0exp( / ) i x w , as indicated in Eq. (1).
460 A first way consists in focusing a conventional (i.e., without phase modulation) Gaussian 
461 beam with a non-spherical lens tailored to yield the required phase modulation. Let us consider 
462 such a lens, made of a transparent material with refractive index nL and immersed in an 
463 homogeneous medium with refractive index nS (with nS < nL , which is the case when the 
464 surrounding medium is vacuum or air). Its optical axis coincides with the z′-axis (the central 
465 axis of the incoming beam, see Fig. 1), i.e., the incoming conventional Gaussian beam is 
466 incident along the optical axis of the lens. The lens is located close to the waist of the beam, 
467 that can thus be considered to be collimated and its wavefront to be plane across the lens, 
468 provided the latter’s thickness is at all points much smaller than the Rayleigh length Rz  of the 
469 beam.
470 Let us first consider the case of a symmetrical biconvex lens (Fig. 7(a)), introduce the 
471 function bc (x′) describing the lens thickness profile and denote bc0 = 2 bc(0) its total thickness 
472 on the optical axis. In the paraxial approximation, the additional transverse spatial phase 
473 modulation introduced by the lens verifies:

474 2
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475
476 Fig. 7. Schematic of (a) a biconvex lens and (b) a plano-convex lens with a parabolic thickness 
477 profile, height h and refractive index nL surrounded by a medium with refractive index nS. Note 
478 that the actual origin of the (x′y′z′) Cartesian system of axes is the same as in Fig. 1.

479 As a result, the dependence of bc on the distance x′ from the optical axis is thus parabolic 
480 (for h/2 ≤ x′ ≤ h/2, where h is the height of the lens), with
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482 For  < 0, the lens is at its thickest at its center and it is thus converging. The numerical 
483 simulations discussed in Section 4 (Figs. 4 and 5) were carried out for such a symmetrical 
484 biconvex lens, made of the same fused quartz as the dielectric plate (nL  nP) and surrounded 
485 with air (nS  1) as well. 
486 Of course, other types of converging lenses can be considered in order to obtain the required 
487 phase modulation, for instance a plano-convex lens (Fig. 7(b)). Now the lens profile function, 
488 denoted pc(x′), verifies, in the paraxial approximation:

489 2
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490 which, for h/2 ≤ x′ ≤ h/2, yields
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492 where pc(0) = pc0 is the thickness of lens on its optical axis. Again, for  < 0, the lens is 
493 converging.
494 Yet another way to achieve the desired spatial modulation of the phase of the incident 
495 Gaussian beam is to use a flat dielectric lamella whose refractive index ngr exhibits a parabolic 
496 gradient in the direction x′ perpendicular to the beam propagation direction z′ (Fig. 8). It is 
497 assumed that the local refractive index ngr(x′) exceeds the ambient refractive index nS for all 
498 [ 2, 2] x H H , where H, the height of the lamella, must be larger than the diameter 2 w0 
499 of the incoming Gaussian beam. 



500  

501 Fig. 8. Schematic of a flat dielectric lamella (thickness D, height H and parabolic gradient ngr(x′) 
502 of its refractive index) acting as a converging lens and surrounded by a medium with refractive 
503 index nS. The color variations inside the lamella schematically illustrate the change in the 
504 refractive index along the x’-axis.

505 In order to induce the desired parabolic phase term in Eq. (1), ngr(x′) must vary as

506    20
, 2

02gr gr cn x n x
w D





   , (15)

507 where D is the thickness of the lamella and ngr,c is its refractive index at x′ = 0. The minimal 
508 size of such a graded flat lens along of the x'-axis is dependent on the width of the incident 
509 Gaussian beam. As can be seen from Eq. (15), the rate of change 2

,( ( ) ) / gr gr cn x n x  of the 
510 local refractive index along the transverse dimension of the lamella is determined by both the 
511 beam parameters (0, w0, ) and the lamella thickness D. 
512 For 0   the local refractive index decreases with the distance x

 from the plane x′ = 0, 
513 which is the plane of symmetry of the lamella. The calculations shown and discussed in Section 
514 4 (see Fig. 6) were made for ngr,c = nP = 1.95, ngr ( H/2) = 1.5, H = 33.4 mm, and D = 9.2 mm. 
515 Such a graded-index flat lens can be obtained for different spectral ranges by using additive 
516 manufacturing technologies (3D-printing), resulting in the fabrication of a composite material, 
517 or of a perforated gradient index lamella, that provide the required refractive index gradient 
518 [50–54].
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