
HAL Id: hal-03825175
https://hal.science/hal-03825175v1

Submitted on 22 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INTELlinext: A Fully Integrated LSTM and
HMM-Based Solution for Next-App Prediction With

Intel SUR SDK Data Collection
Cyril Gorlla, Jared Thach, Hiroki Hoshida

To cite this version:
Cyril Gorlla, Jared Thach, Hiroki Hoshida. INTELlinext: A Fully Integrated LSTM and HMM-Based
Solution for Next-App Prediction With Intel SUR SDK Data Collection. Halıcıoğlu Data Science
Institute Capstone Showcase, Apr 2022, La Jolla, United States. �hal-03825175�

https://hal.science/hal-03825175v1
https://hal.archives-ouvertes.fr


INTELlinext: A Fully Integrated LSTM and
HMM-Based Solution for Next-App Prediction With

Intel SUR SDK Data Collection
Cyril Gorlla
Jared Thach

Hiroki Hoshida
cyril.m.gorlla@jacobs.ucsd.edu

j1thach@ucsd.edu
hhoshida@ucsd.edu

Halıcıoğlu Data Science Institute
University of California San Diego

La Jolla, California, USA

Figure 1. Diagram of LSTM for usage duration prediction.

CCS Concepts: • Computingmethodologies→Machine
learning; Neural networks;Markov decision processes;
Active learning settings.

Keywords: app prediction, lstm, hidden markov model

1 Abstract
As the power of modern computing devices increases, so
too do user expectations for them. Despite advancements in

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HDSI Intel Capstone ’21, Jan 3–March 19, 2022, San Diego, CA
© 2022 Copyright held by the owner/author(s).
.

technology, computer users are often faced with the dreaded
spinning icon waiting for an application to load. Building
upon our previous work developing data collectors with the
Intel System Usage Reporting (SUR) SDK, we introduce IN-
TELlinext, a comprehensive solution for next-app prediction
for application preload to improve perceived system fluidity.
We develop a Hidden Markov Model (HMM) for prediction
of the k most likely next apps, achieving an accuracy of 70%
when k = 3. We then implement a long short-term memory
(LSTM) model to predict the total duration that applications
will be used. After hyperparameter optimization leading to
an optimal lookback value of 5 previous applications, we are
able to predict the usage time of a given application with a
mean absolute error of 45 seconds. Our work constitutes a
promising comprehensive application preload solution with
data collection based on the Intel SUR SDK and prediction
with machine learning.

https://orcid.org/0000-0001-5612-4211


HDSI Intel Capstone ’21, Jan 3–March 19, 2022, San Diego, CA Gorlla et al.

2 Introduction
Users often face a myriad of minuscule slow-downs when
navigating a computer. These slow-downs largely take the
form of application loading times andwe aimed to first collect
user data by building custom data collectors in our previ-
ous work. The collected data can then be used to study user
patterns and to extract insights via machine learning prac-
tices and models such as Hidden Markov Models (HMM) and
Long Short-Term Memory (LSTM) Models. By leveraging
these models, the inconvenience of accumulated application
start-up times can be greatly reduced.
Despite computer processor speeds increasing year after

year, there are still high usage programs and processes that
interrupt workflows in our daily lives. Whether that inter-
ruption be lag when opening Zoom to join a meeting, or
waiting for Google Chrome to open a link embedded in a
Word document, these micro (or in some cases, major) stut-
ters can cause a process meant to be relatively smooth to
be a large source of frustration in the daily lives of an end
user. One key point, however, is that these processes are
actually often “scheduled” in a sense. That is, most people
often repeat the same or similar tasks every day, and have
a set routine. One example could be an office worker who
opens Microsoft Excel almost every time they turns on their
laptop at the office. These sorts of patterns can be studied,
and by using machine learning, we can create predetermined
schedules for users, allowing us to preload apps, or have pro-
cesses ready before the user needs them. In other words, by
analyzing user behavior, we can load an application the user
would likely use next in advance, reducing wait and loading
times.
By using Intel’s System Usage Reporting library and the

accompanying XLSDK, we created “monitors” of user and
computer activity, known as collectors or Input Libraries,
and create activity logs which we can then analyze to provide
preloading solutions for the user. In our previous work, we
have covered the development of these Input Libraries. We
now briefly restate their descriptions.
In order for us to create our own Input Libraries, the

XLSDK provides a wide range of examples which can be
used either as references or templates. Throughout the first
ten weeks of working with Intel, we developed four dif-
ferent Input Libraries, each using a different template and
measuring different categories of inputs from the user and
computer. The first, the mouse_input Input Library, keeps a
log of the cursor coordinates as the user moves the mouse
around. Second, the user_waiting Input Library, keeps a
timer based log of the cursor icon as the user uses the com-
puter. The third, a foreground_window Input Library, cre-
ates a log entry whenever the foreground window (the win-
dow in front of all other windows) changes whether it be
automatically (such as a notification pop up) or by user input
(clicking the taskbar). Finally, the fourth Input Library is the

desktop_mapper, which, when triggered by a change in the
foreground window, maps all the windows on the desktop in
z-order and stores pertinent information about each window
e.g. position and size. Each of these Input Libraries are coded
differently in fundamental ways, and measure changes in dif-
ferent ways as well. By using the data provided by Libraries
like these, we can determine preloading schedules for the
individual user.

3 Methods
3.1 Data Collection & Preliminary Analysis
With our Input Libraries fully functional, they were continu-
ously run on two computers (identified by the IDs LAPTOP
and DESKTOP) over the course of three months, from No-
vember 2021 to February 2022. The users were advised to
continue operating the machine according to their regular
schedules to ensure that the following analysis would best
generate insights on naturally occurring user patterns. In
total, the Input Libraries collected over 160,000 rows of raw
data in 76 database (.db) files from the twomachines. Thanks
to our extensive data validation process we built in the first
half of the project, the data cleanup needed was minimal.
These processes include functions to check for appropriate
data types, improbable values (such as negative mouse X
and Y coordinates), and null values. As a result, the manual
work required mainly consisted of column renaming and
other simple DataFrame manipulations. After extracting just
the foreground process information, we were left with two
datasets with 5,241 and 10,113 rows respectively.

We found that each computer had separate periods of high
and low usage, with general boundaries around Fall Quarter
2021, Winter Break 2021/2022, and Winter Quarter 2022.
Because of the higher consistency of data of some periods
depending on the machine, we used data before December
10, 2021 for the laptop and we used data after January 7, 2022
for the desktop.
Some trends in the data can be seen in the exploratory

plots below. For instance, Chrome was the most common
application in the dataset followed by Windows Explorer
for both datasets, but the trends differ after those. We found
that each computer had separate periods of high and low
usage, with general boundaries around Fall Quarter 2021,
Winter Break 2021/2022, and Winter Quarter 2022. Because
of the higher consistency of data of some periods depending
on the machine, we used data before December 10, 2021
for the laptop and we used data after January 7, 2022 for
the desktop. Some trends in the data can be seen in the
exploratory plots below. For instance, Chrome was the most
common application in the dataset followed by Windows
Explorer for both datasets, but the trends differ after those.



LSTM and HMMs for Next-App Prediction HDSI Intel Capstone ’21, Jan 3–March 19, 2022, San Diego, CA

Figure 2. Laptop foreground changes per day

Figure 3. Desktop foreground changes per day

Figure 4. Top 10 foregrounds for each machine

3.2 Model Building & Data Science
We addressed two predictive tasks using the data collected.
For our first task, we built models to predict the next applica-
tion used based on previous user activity. For our second task,
we built a model to predict the duration the next application
would be used based on previous user activity.

3.2.1 Task 1. Approach 1. Next-App Prediction: Hidden
Markov Model

The Hidden Markov Model (HMM) is a particular machine
learning approach that ingests sequences of time-related
events in order to predict future events. For our purposes,
we manually implemented a First Order HMM (adopting a
similar model class as the package, scikit-learn) which looks
at a single previous application in order to predict the single
next application. A HMM’s “order” refers to the amount of
previous applications, or “look-back”, the HMM will use in
order to generate a single next prediction, and therefore, our
First Order HMM will use a single previous event to predict
a single next event. This is equivalent to simply computing
conditional probabilities of each unique 2 sequence event; for
a given previous event A, the probability of the next event B
is determined by:

𝑃 (𝐵 | 𝐴) = 𝑃 (𝐵 ∩𝐴)
𝑃 (𝐴) (1)

These probabilistic values are calculated upon model train-
ing and stored into a posterior matrix instance variable.
These probabilities are then recalled upon prediction.

Given an input foreground of notepad++.exe, for exam-
ple, the probability of explorer.exe being the next fore-
ground is approximately 43% as shown in Figure 4. One
special implementation of our First Order HMM is the cus-
tom predict function which has an optional parameter of
n_foregrounds which specifies the number of foregrounds
to return for a single input, based on the foregroundswith the
highest probabilities. When viewing Figure 4 yet again, a pre-
dict with n_foregrounds = 3will return the list [‘explorer.exe’,
‘mmc.exe’, ‘chrome.exe’]. Accuracy for a single obser-
vation is therefore calculated by determining whether or not
the true foreground application exists within the list of pre-
dicted foreground applications. Using n_foregrounds = 3
for our testing dataset, we achieve a final accuracy of 70.05%.

3.2.2 Task 1. Approach 2. Next-App Prediction: Long
Short-Term Memory
Though our Hidden Markov Model implementation was

fairly successful, we wanted to approach the task from a
different angle, so we built a Long Short-Term Memory Re-
current Neural Network (LSTM RNN) model as well. Because
of the higher complexity of LSTMs compared to HMMs, we
developed our model using Keras, a deep learning API built
on Python that allows for a streamlined pipeline of model



HDSI Intel Capstone ’21, Jan 3–March 19, 2022, San Diego, CA Gorlla et al.

creation. By using Keras, we could manipulate various val-
ues quickly and easily, allowing us to test many variations
of the models in a short period of time, without having to
rewrite any significant part of the code. Keras also contains
many preprocessing and testing functions that allow us to
prepare our data and test the model accuracy easily. We de-
cided on a RNN model because RNNs are a type of neural
network that uses previous inputs to make new predictions.
This was perfect for our case, as our data is time based, and
we were trying to make future predictions based on past
actions. Furthermore, out of the many implementations of
RNNs, we decided it was best to use a Long Short-TermMem-
ory (LSTM) model. This is because LSTM models are more
tailored to situations where the durations between events
vary. In our case, the durations between each foreground ap-
plication switch were different, meaning that the timestamps
of each point of data were spread unevenly.

Figure 5. LSTM cell (Source: Christopher Olah)

In order to use our data to create themodel, we first needed
to process it into the correct format so Keras could read it in.
First, we needed to select the features to use for our model. In
other words, the model would use these properties to make
the prediction. We used the time of foreground change, the
previous application used, and the time the user spent on
the previous application right before the foreground window
change. Even with the features selected, however, we had to
do further preprocessing to make the data usable. First, we
extracted just the hour out of the timestamp. This is because
we wanted to see if app usage depended on time of day, and
removing non-repeating elements (such as month and day)
and removing elements too minute (such as minutes and
seconds) seemed appropriate. Second, we one-hot encoded
the previous application used. As we found that some of
the applications found in the dataset only appeared once or
twice (installers, for example), we found the top ten most
used applications, and renamed the rest to “Other”. Though
initially we did not do this, after multiple rounds of testing
we found that removing the lower outliers improved our
model accuracy tremendously. Finally, we created the output

column by shifting the application name column by one.
After preprocessing, we split the data into a 70:30 ratio, in
which 70% of the data was used for training, and 30% was
used for testing. The training dataset was used to create
the LSTM model in Keras. Our final model consisted of four
layers; an LSTM layer, a dropout layer, another LSTM layer,
and a dense layer with a softmax activation function. Thanks
to the flexibility and ease of use of Keras layers, we were able
to experimentwith various configurations, andwe found that
using the ADAM optimizer, the categorical cross-entropy
loss function, and 100 epochs created a fairly accurate model
of our training set.

In order to use our data to create themodel, we first needed
to process it into the correct format so Keras could read it in.
First, we needed to select the features to use for our model. In
other words, the model would use these properties to make
the prediction. We used the time of foreground change, the
previous application used, and the time the user spent on
the previous application right before the foreground window
change. Even with the features selected, however, we had to
do further preprocessing to make the data usable. First, we
extracted just the hour out of the timestamp. This is because
we wanted to see if app usage depended on time of day, and
removing non-repeating elements (such as month and day)
and removing elements too minute (such as minutes and
seconds) seemed appropriate. Second, we one-hot encoded
the previous application used. As we found that some of
the applications found in the dataset only appeared once or
twice (installers, for example), we found the top ten most
used applications, and renamed the rest to “Other”. Though
initially we did not do this, after multiple rounds of test-
ing we found that removing the lower outliers improved
our model accuracy tremendously. Finally, we created the
output column by shifting the application name column by
one. After preprocessing, we split the data into a 70:30 ratio,
in which 70% of the data was used for training, and 30%
was used for testing. The training dataset was used to cre-
ate the LSTM model in Keras. Our final model consisted of
four layers; an LSTM layer, a dropout layer, another LSTM
layer, and a dense layer with a softmax activation function.
Thanks to the flexibility and ease of use of Keras layers, we
were able to experiment with various configurations, and
we found that using the ADAM optimizer, the categorical
cross-entropy loss function, and 100 epochs created a fairly
accurate model of our training set. Similarly to our HMM,
our LSTM returned a list of the top four most likely applica-
tions to follow the current foreground application, ordered in
levels of confidence. Accuracy was calculated with the same
function (where a single observation was labeled accurate if
the true future foreground application appeared in the list of
predictions). Our LSTM model had a test accuracy of 68.60%,
a value similar to our HMM accuracy.



LSTM and HMMs for Next-App Prediction HDSI Intel Capstone ’21, Jan 3–March 19, 2022, San Diego, CA

3.2.3 Task 2. Next-App Duration Prediction: Long Short-
Term Memory

Figure 6. LSTM duration prediction model

Because of the flexibility of the LSTM model, we decided
to focus on a LSTM solution for task 2, predicting next-
application durations, as well. Our task 1 LSTM model used
a “look-back” value of one previous foreground application
in order to predict one future foreground application, where
a “look-back” is defined as the number of previous events a
single input will use in order to generate the next output. In
order to raise accuracy, our task 2 LSTM used a look-back
value of five. In other words, the model uses the previous five
data points to predict the next. The task 2 model architecture
is similar to our task 1 model, with the four layers in the
same order. However, we used a MAE loss function, ReLU
activation function, and 25 epochs instead. After training,
our model made predictions with a mean absolute error of
0.74 minutes. With our testing dataset’s mean foreground
duration of 1.73 minutes, on average our model predicted
foreground durations accurate within approximately 44 sec-
onds.

Figure 7. LSTM duration prediction model training and
validation loss)

4 Results
Our project addressed two predictive tasks: (1) next-app pre-
diction and (2) next-app duration prediction. Task 1 was
explored via two machine learning models with our First
Order Hidden Markov Model yielding an accuracy of 70.05%
using a prediction list of three and our Long Short-Term
Memory Model yielding an accuracy of 68.60% using a pre-
diction list of four. Task 2 was explored through a single
Long Short-Term Memory Model with an average error rate
of 42.77%, or 44.4 seconds.

5 Conclusion
By leveraging C programming to custom code data collectors,
we were able to efficiently collect user data while minimiz-
ing extraneous information gathering. Additionally, primary



HDSI Intel Capstone ’21, Jan 3–March 19, 2022, San Diego, CA Gorlla et al.

data sourcing was elucidated as an essential aspect of ma-
chine learning practices.
Although we have successfully solved our two project

tasks of (1) next-app prediction and (2) next-app duration
prediction, there exists improvements in several realms. Our
original HMM was based on a First Order HMM, and there-
fore, only used single, previous applications to predict future
applications. By spending more time working towards a Sec-
ond, Third, or higher Order HMM, we can hope to achieve
greater model performance. Additionally during our data
collection phase, there was heavy overlap of distinct time
periods, such as Fall Quarter 2021, Winter Break, and Winter

Quarter 2022 (based on a college quarter system). In the fu-
ture, we may aim to clearly demarcate data collection bound-
aries to ensure quality data that is independent from each
distinct time period. With the aforementioned model perfor-
mances for our classification-based next-app prediction task
and regression-based next-app duration prediction task, we
hope to implement our data science work for other relevant
applications. These other applications include edge device
machine learning, cloud machine learning, and repurposing
of obsolete hardware.

Acknowledgments
Jamel Tayeb and Bijan Arbab, Intel; Intel DCA Team


	1 Abstract
	2 Introduction
	3 Methods
	3.1 Data Collection & Preliminary Analysis
	3.2 Model Building & Data Science

	4 Results
	5 Conclusion
	Acknowledgments

