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Heart failure (HF) and cancer are responsible for 50% of all deaths in middle-

aged people. These diseases are tightly linked, which is supported by recent

epidemiological studies and case control studies, demonstrating that HF

patients have a higher risk to develop cancer such as lung and breast

cancer. For HF patients, a one-size-fits-all clinical management strategy is

not effective and patient management represents a major economical and

clinical burden. Anti-cancer treatments-mediated cardiotoxicity, leading to

HF have been extensively studied. However, recent studies showed that

even before the initiation of cancer therapy, cancer patients presented

impairments in the cardiovascular functions and exercise capacity. Thus, the

optimal cardioprotective and surveillance strategies should be applied to

cancer patients with pre-existing HF. Recently, preclinical studies addressed

the hypothesis that there is bilateral interaction between cardiac injury and

cancer development. Understanding of molecular mechanisms of HF-cancer

interaction can define the profiles of bilateral signaling networks, and identify

the disease-specific biomarkers and possibly therapeutic targets. Here we

discuss the shared pathological events, and some treatments of cancer- and

HF-mediated risk incidence. Finally, we address the evidences on bilateral

connection between cardiac injury (HF and early cardiac remodeling) and

cancer through secreted factors (secretoms).

KEYWORDS

cardiotoxicity, cancer, heart failure, risk factors, mechanism, bilateral interaction,
secretoms, inflammation

Introduction

Patients with cardiovascular disease have a higher risk
of developing cancer

Heart failure (HF) and cancer are tightly linked (1, 2) which is supported by
recent studies on epidemiological cohort and case-control, research synopsis and meta-
analyses. An increased cancer risk in HF patients was shown by the international
cohorts such as America (3–5), Denmark (6), Japan (7), and Korea (8). These studies
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demonstrate that HF patients have a higher risk to develop
cancer, independently of age (9–11). Furthermore, women with
HF are at higher risk than men, indicating that gender is an
important factor (3). The most common types of cancer in
HF patients below age 55 are colorectal (21%), lung (18%),
gastrointestinal (20%); prostate (16%) (6).

Patient with cancers have higher risk of
dying from heart disease and stroke

Cancer patients can develop cardiovascular diseases (CVD)
mainly for the three reasons: (1) the anticancer drugs can
have direct adverse effect on cardiovascular system (2),
soluble factors (secretoms) such as chemokines, hormones,
and vesicles released from tumor cells can damage the
cardiac cells as a paracrine manner (3), cancer itself or
anticancer drugs induce cachexia that leads to cardiac
dysfunction (12). As a consequence, approximately 20–30%
of cancer patients die from cardiovascular dysfunctions,
regardless of the time passed after cancer diagnosis (13).
Indeed, 50% of patients with breast, prostate, endometrial,
and thyroid cancer die because of CVD (14, 15). In the
most aggressive cancer cases such as cancers of the lung,
liver, brain, stomach, gallbladder, pancreas, esophagus, ovary,
and multiple myeloma, patients die primarily due to cancer
(16). However, the CVD -related mortality were higher among
the survivals with cancer of bladder (19% of patients),
larynx (17%), prostate (17%), uterus (16%), bowel (14%),
and breast (12%).

Sturgeon et al. using databases of the Surveillance,
Epidemiology and End Results (SEER) found that among the
3,234,256 cancer patients with 28 different types of cancer,
38% of mortality was due to cancer, whereas 11% mortality
was from CVDs including hypertension, cerebrovascular
disease, arterial diseases, and cardiac ischemia (17). More
interestingly, the highest mortality among the younger
cancer patients (< 35 years old) 1 year after the cancer
diagnosis was due to CVD.

Co-occurrence of both diseases causes a major clinical
burden and has a strong outcome on the quality of life and
survival rates (10, 18). Early diagnosis and better understanding
of bilateral interaction between HF and cancer is critical for an
optimal treatment and management strategies, because a one-
size-fits-all treatment approach is ineffective for these patients
(7, 8).

Here we outline the known common mechanisms and
preclinical studies emphasizing the interactions to help
mechanistic understanding that may impact on identifying
biomarkers and innovative therapeutic strategies targeting both
diseases simultaneously.

Common mechanisms involved in
tumor growth and heart failure

CVD and cancer share common risk factors such as
smoking, aging, genetic predisposition, obesity, and diabetes
mellitus (9). Indeed, cardiac regeneration and diseases are
reminiscent of processes of tumor development (19). A growing
body of studies have suggested that several mechanisms can
be involved in development of both HF and cancer such
as inflammation, metabolic remodeling, clonal hematopoiesis,
angiogenesis, the extracellular matrix (ECM), and stromal cells
activations (20, 21) (Figure 1).

Inflammation

Any changes in homeostasis by stresses, tissue damage,
infection, metabolic alterations induces low-grade inflammation
to achieve wound healing and tissue regeneration, and to
prevent loss of tissue function (22). However, maladaptive
chronic inflammation leads to progressive myocardial
injury, development of vascular dysfunction, and reduces
cardiac tissue survival. The cytokines chemokines, and lipid
mediators are involved in inflammatory signaling. Accordingly,
high circulating levels of pro-inflammatory cytokines [e.g.,
interleukin (IL)-1β, and IL-6] have been found in acute and
chronic decompensated HF (23). Many cohort studies (> 50)
have showed that both high-sensitive CRP (C-reactive protein)
and IL-6 can predict development of myocardial infarction (MI)
and stroke (24, 25). However, chronic inflammation predisposes
to the development of cancer and affects the tumorigenesis
and tumor-permissive state by promoting proinflammatory
cytokines and chemokines (26). For example, IL-1β and IL-6
have also been reported as key players in development of cancer
(27). Specifically, in the solid malignancies, the infiltration
of immune cells and the production of pro-inflammatory
mediators play key roles for malignant transformation, via
epithelial to mesenchymal transition, and metastasis (28).

In the Whitehall II study cohort, Ridker demonstrated
that low level of systemic inflammation detected by increased
levels of CRP and IL-6 was associated with prediction
of cardiovascular and cancer-related mortality in midlife
patients (24). Anti-Inflammatory Thrombosis Outcome
Study (CANTOS) has also confirmed this study showing
that canakinumab an IL-1β-targeting antibody has beneficial
effects on cardiovascular events (29). Moreover, canakinumab
significantly decreased incident of mortality in patients
with lung cancer.

The role of other inflammatory mediators eicosanoids,
such as prostanoids (prostaglandins and prostacyclines) in
cancer and CVD has not been extensively investigated yet.
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FIGURE 1

Bilateral interactions between cancer and heart failure. The common mechanisms and risk factors are involved in cancer and heart failure
development. The secretoms can be involved in communications between cancer and heart failure.

For example, prostacyclin has been used to treat pulmonary
arterial hypertension (30). Unfortunately, in this condition, the
pulmonary cancer incidence has not been studied. In contrary,
in mice model prostacyclin prevents lung cancer (31). Unlike
prostacyclin, prostaglandin E2 promotes cancer initiation and
lung cancer migration (32) and activates cardiac maladaptive
remodeling (33).

All together these studies show that inflammation is
one of the shared mechanisms of both HF and cancer.
The important question is whether diminishing inflammation
can reduce the development rate of CVD and cancer.
Use of anti-inflammatory drugs (e.g., low-dose methotrexate,
colchicine, and canakinumab) in the large clinical trials should
answer this question.

Metabolic remodeling

The healthy tissues can derive energy from various
circulating substrates. However, metabolic alterations due
to accumulation of toxic intermediates and utilization of
unbalanced substrates can alter the cardiac cell homeostasis and
cancer growth. Indeed, recent studies have shown that onco-
metabolic dysregulation can promote cardiac dysfunction (34).

Metabolic reprogramming occurs as an adaptive event
in both cancer (35) and cardiac cells (36) in response to
pathophysiological insult and stress, indicating that both cells
share the same metabolic pathways. In HF and cancer, glucose
oxidation and glycolysis are central metabolic pathways to
generate energy in the form of adenosine triphosphate (ATP)
(37, 38). Cancer cells are dependent on aerobic glycolysis that
facilitates the incorporation of nutrients into biomass such as
nucleotides, amino acids, and lipids to maintain cancer cell
proliferation. Aerobic glycolysis is also needed for the adaptive
hypertrophy in cardiomyocytes (39). In cancer cells glutamine
is the essential carbon source for aspartate synthesis (40).

However, in the damaged heart glycolysis and glucose oxidation
are predominant over fatty acid oxidation and are required for
pentose phosphate pathway (41).

Because of the upregulated glucose utilization in many
solid tumors (42), as well as in the failing heart (43), glucose
transporter 1 (GLUT1) becomes an important target for
the treatment of cancer and HF. Additionally, it has been
shown that sodium glucose co-transporter 2 (SGLT2) inhibition
has beneficial effects on the heart as well as in pancreatic
and prostate cancers. Thus, inhibition of glucose transports
may prevent cardiac hypertrophy (44) and reduce cancer
growth (45). However, more extensive researches are required
to define their beneficially effects during development and
progression of different cancer types and CVDs, before their
clinical applications.

De novo lipogenesis leading to lipo-expediency has
also emerged as common mechanisms of HF and cancer.
Upregulation of fatty acid synthase (FAS), a key enzyme of
de novo lipogenesis, has been found in both cancers (46)
and HF patients (47). FAS inhibitors have anti-neoplastic
properties in solid cancers and represents a potential
therapeutic target for HF.

Changes in mitochondrial metabolism is also a common
mechanism of HF and cancer development. Inhibition of
mitochondrial electron transport chain (ETC) complex I can
decrease mitochondrial ATP delivery (48), thereby limiting
glucose availability. Additional to ETC inhibitory effects,
metformin has been shown to reduce plasma levels of insulin
and insulin-like growth factor 1 (IGF-1) to limit glucose
availability in the glycolysis-dependent cancer cells (49). In
cancer cells (e.g., pancreas cancer), an increased utilization
of glutamine, a major substrate for respiration, is required in
supporting macromolecule synthesis and maintain the redox
homeostasis to contribute cancer growth (50). Thus, inhibitors
of glutaminase, a catalyzer of the conversion of glutamine
to glutamate, regulate redox balance, and autophagy, induce
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apoptosis via mTOR signaling, and promote growth arrest.
On the other hand, oxidative stress upregulates glutaminase
1 and promotes glutaminolysis in the heart. Inhibition of
glutaminase improves maladaptive cardiac remodeling and
improves sustain activation of autophagy-mediated reduced
cardiac contractility (51).

The common maladaptive metabolism pathways in cancer
and HF can provide opportunities to the discovery of
new biomarkers, and development of juncture strategies and
therapies to battle these diseases, and may anticipate to the
metabolic phenotyping of diseases in the precision medicine in
the field of cardio-oncology.

Angiogenesis

Angiogenesis is involved in the pathophysiology of both
development of HF (52) and cancer (53). Angiogenesis is
crucial for tumor growth and metastasis (54), whereas vascular
refraction in the maladaptive sustained pressure overload
contributes to the transition from compensated hypertrophy
to HF (55). Because of increased oxygen demand in tumor
or ischemic hearts, hypoxia upregulates HIF1a that promotes
expression of angiogenic factors, such as vascular endothelial
growth factor (VEGF) (56), angiopoietin-1 and -2 (57), and
prokineticin (58, 59) to stimulate microvascular expansion.

The pharmacological or genetic inhibition of VEGF,
and other key angiogenic signaling pathways accelerate the
transition from adaptive cardiac remodeling to HF (60), while
anti-angiogenic therapy beneficial to cancer (e.g., metastatic
colon cancer, non-small cell lung cancer, breast cancer).
However, cancer cells develop adaptive resistance to the anti-
angiogenic therapy as well as severe cardiotoxicity, leading to
development of ischemic CVD and HF (61). Thus, angiogenesis
delineates an auspicious substrate for both cancer and HF.

Clonal hematopoiesis

Genetic assets leading to hematologic malignancies such as
somatic mutations in hematopoietic stem cells are the potent
risk factors for CVD and cancer (62). The mutation on the genes
encode for key epigenetic regulators of hematopoiesis leads
to the abnormal expansion of clonally derived hematopoietic
stem cells (63). A higher frequency of accumulation of
hematopoietic mutations in DNA methyltransferase 3 alpha
(DNMT3α), Ten-eleven translocation-2 (TET2), additional sex
combs like 1 (ASXL1), Janus kinase 2 (JAK2), and tumor
protein 53 (TP53) (64) have been found in individuals with
lymphoid or solid tumors who are exposure to genotoxic
stress (65). Hematopoietic mutations in DNMT3a, TET2, and
JAK2V 671F , can accelerate atherosclerosis and the increase
risk of CVD by generating a pool of myeloid cells with an

augmented proinflammatory profile (66). These mutations are
associated with worse outcomes in patients with ischemic HF
(67, 68).

Identification of the mechanisms linking somatic mutation-
driven clonal hematopoiesis to CVDs is off interest specifically
in personalized medicine. There are some questions needs
to be addressed such as whether clonal hematopoiesis also
contribute to CVD in cancer survivors (69) and whether these
mutations can be predictive markers of cardiovascular risk and
therapeutic responsiveness.

Cardiogenetic: Cardiac-associated
genetic variant to cancer
predisposition

Recent studies have demonstrated that 50% of non-ischemic
cardiomyopathies caused by more than gene variants encoding
for cytoskeleton, ion channels, nuclear envelope, intercellular
junctions sarcolemma and sarcomeric proteins (70). A genetic
predisposition to therapy-induced cardiomyopathy has been
observed in families with history of hypertrophic, dilated
and arrhythmogenic cardiomyopathies (71). Patients with
cardiomyopathy or asymptomatic carriers of inherited cardiac
diseases have a potential increased risk for cardiotoxicity
induced by anticancer treatment (72).

Interestingly, several of these genes associated with
familial cardiomyopathies harbor relevant genetic variants
in somatic cancer cells. A high prevalence of somatic
mutations in Titin (TTN), Dystrophin (DMD), and Desmoglein
2 (DSG2) have been associated with different stages of
carcinogenesis process.

The KEGG (Kyoto Encyclopedia of Genes and Genomes
terms) analyses have identified the total of 33 genes and 25
links with 17 metabolic pathways that can be implicated in
interaction between genetic cardiomyopathies and molecular
pathways of cancer. The genes involved in both cardiomyopathy
and carcinogenesis include Protein tyrosine phosphatase, non-
receptor 11 (PTPN11) and LMNA, another 12 genes from
sarcomeric (thin and thick filament), desmosomal (PKG/JUP),
metabolic (PRKAG2, LAMP2, GLA), and calcium handling
(PLN) (73). For example, the RAS family of small Guanosine
Triphosphate (GTP)-binding proteins (G proteins) plays a key
role in intracellular signal transduction required for normal
cardiac growth, development of hypertrophic cardiomyopathy
and HF as well as cancer (74). RASopathies are single-gene
inheritance disorder caused by germline mutations in genes
that encode constituents or regulators of the RAS/mitogen-
activated protein kinase (MAPK) pathway. RASopathies are
accompanied with the higher risk of hematologic or solid
cancer and congenital CVD (75). For example, hypertrophic
cardiomyopathy development during childhood can be
triggered by genetic mutations in PTPN11, KRAS, Son of
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sevenless homolog 1 (SOS1), a RAS effector (RAF1), genes
which are also involved in cancer developments (73).

The signaling pathway of wingless-related integration site
(Wnt) controls proliferation and differentiation processes in
different types of cancer. Indeed, in patients with desmosomal
mutations on the Wnt pathway exhibit the histological fibro-
adipose differentiation, a characteristic of arrhythmogenic
cardiomyocardiopathy (76).

Additional mechanistic studies on damaging gene variants
in CVD and cancer can unravel prognostic biomarkers and new
treatment strategies for both disorders.

Cardiovascular drug: Promoter or
suppressor of cancer incidence?

HF results in the hyperactivity of neurohormonal systems,
including the renin–angiotensin–aldosterone (RAA) system
and the sympathetic nervous system (77). Interestingly,
noradrenaline and angiotensin II also play an important
role in modulation of tumor microenvironment and tumor
development (78). Contrarily, several studies demonstrated that
patients treated with angiotensin-converting enzyme (ACE)
inhibitors but not angiotensin receptor blocker (ARB) for more
than 5 years have a higher lung cancer incidence (79). However,
subgroup analysis has demonstrated a significant association
between ARB and cancers in male genital organs (80). In
contrary, the recent study demonstrated an association between
the ARB and decreased risk of overall cancer and several site-
specific cancers (81). Patients treated with hydrochlorothiazide,
a diuretic drug, had a higher prevalence to have basal and
squamous cell carcinoma (82). A large meta-analysis on
hypertensive patients treated with all types of anti-hypertensive
drugs (ARBs, ACEi, β-blockers, diuretics, and calcium channel
blockers), demonstrated a 5.0–10.0% increase in the risk of
cancer or cancer-related death (83). ARB use in patients
with type 2 diabetes demonstrated a negative association for
losartan (ARB), but a positive association for candesartan and
telmisartan with the overall occurrence of cancer (84). Despite
some contradictory conclusions about ARB mediated cancer
risk, a recent study considering the exposure-risk relationship
and using data from all 15 trials and randomized controlled
trials has resulted in a very significant correlation between the
degree of cumulative exposure (greater than 3 years) to ARBs
and risk of all cancers especially lung cancers (85). In this
study, patients with lower cumulative exposure to ARBs did not
exhibit an increased risk of all cancers combined or lung cancer,
explaining the heterogeneity in the results of randomized trials,
due to terms of cumulative exposure to ARB (Figure 2).

The other cardiovascular drug is aspirin that leads to
antiplatelet effects via inhibition of platelet cyclooxygenase
(COX-1) and blockade of the production of thromboxane
A2. Aspirin uses both cyclooxygenase-dependent and

cyclooxygenase-independent mechanisms in cancer (86).
Low-dose aspirin did not lower the cancer incidence in a low
or medium CVD risk population (87, 88). The U.S. Preventive
Services Task Force (USPSTF) recommended that use of low
dose aspirin can reduce risk of CVDs and colorectal cancer
among the people at the age of 50–60 (89). Thus, these benefit
effect of aspirin may not translate to older adults (90). Currently,
the mechanism of beneficial effects of aspirin is not known. The
appropriate pre-clinical models are emerging to discover the
molecular and cellular mechanism aspirin and ARBs in patient
with cancer and CVD (Figure 2).

Pre-clinical models to study
bilateral interaction between heart
failure and cancer

Despite most of epidemiological studies showed high
prevalence of cancer development in HF patients, they cannot
prove direct interconnection between HF and cancer. There
are some preclinical studies aimed to explore the bilateral
relationship between HF and cancer development.

Cancer to heart failure

Cancer or anti-cancer drug-mediated cachexia and cancer-
secretoms, adverse effects of anticancer drugs may induce
several organ dysfunctions and HF as outlined in Figure 3.

Cancer cachexia promotes cardiac atrophy
Cachexia is defined as a state of involuntary weight loss.

The symptoms of cancer cachexia such as fatigue, shortness of
breath, and impaired exercise capacity are also symptoms of
HF. Cachexia prompts metabolic changes in the metabolisms of
lipids and proteins, leading to a negative nitrogen balance and
reduction of the protein levels, causing insulin resistance, and
anemia. Cachexia affects approximately 32% of cancer patients
within half a year at the time of diagnosis, and causes one third of
cancer deaths (91). Patients with pancreatic, gastro-oesophageal,
lung, head and neck and colorectal cancers often have cachexia
with a prevalence between 40 and 70% (92). It also co-occurs
with metastasis in 80% of late-stage cancer patients (93).

The mechanism of cancer cachexia is not known, but
Indeed, cancer patients, with and without cachexia exhibit the
high levels of serum brain natriuretic peptide (BNP), renin
and aldosterone (94). These altered levels of hormones increase
sensitivity to infections, and decrease responsiveness to both
chemotherapy and radiation treatment. They also cause loss
of muscle protein that promotes muscle weakness and fatigue,
and cardiac or respiratory failure (95). Moreover, the heart
becomes atrophic in cancer patients. There are also several
direct experimental evidence showing that cancer-mediated

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.929259
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-929259 July 11, 2022 Time: 17:0 # 6

Guler et al. 10.3389/fcvm.2022.929259

FIGURE 2

Cardiovascular drugs may promote or suppress cancer incidence. Angiotensin receptor II blocker that are used for treatment of hypertension at
the cumulative exposure more than 3 years may induce cancer risk. Aspirin may lower cancer risk.

FIGURE 3

Role of cachexia in development of heart failure. Cancer or anticancer drug-mediated cachexia may induce several organ dysfunctions leading
to heart failure.

muscle wasting and cachexia (96) can be key players of cancer-
related death. Cancer itself can result in cardiac atrophy as
well (97).

Cancer cachexia-mediated a waste of skeletal muscle and
adipose tissue has been observed more severely in men more
than women. The mechanisms of the sex differences in cancer

cachexia have been experimentally studied by Cosper and
Leinwand (98). In this study the tumor bearing (CD2F1)
mice with injection of Colon-26 adenocarcinoma (C-26) has
displayed a rapidly and increasingly loss of cardiac mass during
the course of tumor progression. Significant differences in the
disease phenotype have also been observed between males and
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females. For example, male mice exhibit more waste in body
weight, skeletal, and cardiac muscle and the higher cardiac
dysfunctions than females. The decrease in all myofibrillar
proteins, at the expenses of myosin heavy chain (MyHC) in
heart is due to autophagy as a main proteolytic pathway. In this
study, the estrogen receptor signaling has been shown to protect
females against the loss of body weight and cardiac mass. Indeed,
it appears that activation of Ca2+ dependent atrophy is also
involved in wasting in skeletal muscle and heart of male Wistar
rat bearing Yoshida AH-130 ascites hepatoma cells for 6 days as
a cancer cachexia models (99).

Springer’s group using the rat hepatoma model (AH-
130-bearing rats) demonstrated that weight loss affects
predominantly skeletal muscle and myocardium associated
with left ventricular-dysfunction, fibrotic remodeling, and
increased mortality (100). They found that several key
anabolic and catabolic pathways were dysregulated in the
cachectic hearts. These detrimental effects of the tumor on
the heart and on survival can be alleviated by treatment
with the β-blocker bisoprolol or the aldosterone antagonist
spironolactone (101). Incoherent to this study, Toledo et al.
have shown that the administration of a highly potent
β2-adrenoceptor-selective agonist, formoterol, to cachectic
tumor-bearing rats caused a significant reduction of muscle
weight loss, an increase in lean body mass probably due
to preventing muscle apoptosis and the increased muscle
regeneration (102). The clinical trial phase 2 has shown
f ormoterol has beneficial effects in patients with advanced
cancer (103). Costelli et al. in AH-130-bearing rats have
shown that β2-adrenoceptor agonists, clenbuterol, prevents
skeletal muscle waste, however, it has no effect parenchymal
organs (104).

Same group has shown that the mechanisms of muscle
depletion is due to increased proteasome- and calpain-
dependent proteolysis in tumor bearing rats treated with TNF-
alpha synthesis inhibitor, or an antiprotozoal drug blocking the
IL-6 and TNF-alpha action (105).

A variety of cytokines have also been proposed to trigger
cancer-induced cardiac muscle wasting. Zhou X ‘s group has
studied involvement of a high affinity activin type 2 receptor
(ActRIIBa), that binds to TGF-β family ligands (myostatin,
activin, Growth differentiation factor 11), utilizing two animal
models; the tumor-bearing mice (colon 26, human G361
melanoma and TOV-21G ovarian carcinoma) and inhibin-
knockout mice (106). Indeed, activation of ActRIIB pathway
enhances ubiquitination of muscle proteins that are key
pathways in muscle wasting. Indeed, inhibition of the ActRIIBa
in this study has fully restored the loss of muscle during cancer
cachexia, without altering the high levels of the inflammatory
cytokine levels.

The emerging question in this area is whether animal models
consistent with clinical cancer cachexia and the potential drugs
can have beneficial effects in cancer patients (107).

Cancer cells derived secreted factors
(secretoms) promote cardiac atrophy

Cancer cells release secreted factors (secretoms) result in
developing cardiac atrophy and metabolic changes, but the
exact signaling pathways in cardiomyocytes are still poorly
understood (108). Cancer cells-mediated systemic metabolic
alterations may impair cardiac function (39). Alterations
in metabolic fueling of the heart as well as metabolic
intermediates can alter gene expression, protein function
and provoke epigenetic modifications thereby stemming in
ventricular remodeling.

Somatic mutations in metabolic regulator genes could be
the mechanism of cancer-mediated cardiac dysfunction. For
example, somatic mutation in dehydrogenase (IDH1/2) gene
causes in a gain-of-function, thereby allowing synthesis of
2-hydroxyglutarate (2-HG) that is structurally similar to α-
ketoglutarate (α-KG), a key regulatory enzyme of cellular
energy metabolism and an intermediate of the tricarboxylic acid
(TCA) Krebs cycle (109). An increased circulating levels of 2-
HG triggers dilated cardiomyopathy and contractile defects by
impairing α-KG pathway, and leading to mitochondrial damage
and myocardial glycogen accumulation (39).

More studies are required to identify novel factors that can
be important to stratify the risk of development of CVD in
cancer patients.

Anti-cancer-induced cardiotoxicity
The anticancer-drug induced cardiotoxicity has been widely

studied, which can occur during, shortly after, or many years
after cancer therapy. Cardiotoxicity can range from subclinical
myocardial dysfunction to irreversible HF. Thus, in the long-
term, the risk of death can be due to cardiovascular dysfunctions
rather than tumor recurrence (39–41). The cancer therapy
related-cardiovascular complications are listed in Figure 4 and
Table 1 (110).

One of the important reasons for cardiotoxicity is that the
anticancer drugs use similar pathways and targets in both cancer
and heart cells to exert their cytotoxic effects as described in
Figure 5. The anthracycline group of anticancer drugs use the
same signaling pathways to induce cytotoxicity in both cancer
and cardiac cells, leading to HF-related morbidity and mortality.
The mechanism of anthracycline-mediated cardiotoxicity has
been widely studied and recently reviewed by Nebigil and
Désaubry (111). Targeted therapies such as tyrosine kinase
inhibitors have also adverse effects on cardiovascular system.
For example, heregulin receptor, HER2, express in both cancer
and cardiac cells. Inhibition of HER2 by antibodies blocks
the cancer cell proliferation, but it also blocks an important
survival pathway in heart (112). Binding of VEGF to its
receptors in endothelial cells activates angiogenesis. VEGF
inhibitors can destroy the tumor angiogenesis and bring
the tumor to avascular stage, whereas it can be detrimental
in the heart due to reduced systemic angiogenesis (113).
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FIGURE 4

Anticancer drugs-mediated cardiac adverse effects. Anticancer drugs can induce hypertension, cardiovascular damage, ischemia and coronary
diseases, thrombosis, contractility defects and arrhythmias.

TABLE 1 Some of the anticancer drugs-mediated adverse effects in cardiovascular system.

Anticancer drugs Clinical manifestation

Anthracyclines (e.g., doxorubicin) LV-dysfunction, contractile defects, ischemia, thromboembolism

Targeted therapy/TK inhibitors (e.g., bevacizumab, sorafenib, nilotinib) and
anti-angiogenic therapy (e.g., VEGF inhibitor)

Hypertension, Bradycardia, QT-prolongation, contractile defects, Ischemia, and
coronary diseases, venous thromboembolism

Immune check point inhibitors (e.g., ipilimumab, nivolumab) Myocarditis/pericarditis

Checkpoint inhibitors induce T-cell activation. Monoclonal
antibodies that are used to block immune inhibitory checkpoints
target cytotoxic T-lymphocyte antigen 4 (CTLA-4 (ipilimumab,
nivolumab, pembrolizumab), or anti-programmed cell death 1
(PD1) (atezolizumab, avelumab, durvalumab). The mechanisms
of the adverse effects of immune checkpoints inhibitors are
(1) release of cytolytic molecules (e.g., tumor necrosis factor-
α, granzyme B, interferon-γ) that kill tumor cell and promote
autoimmune lymphocytic myocarditis, (2) the PD-L1 and
CTLA-4 are also expressed in heart and tumors and can
share antigens that recognize by the same T-cell clones. Thus,
activated T cells attack not only on tumor cells but also on
cardiomyocytes, and destroys hearts (114).

Thus, the paracrine effect of anticancer drugs-mediated
cardiotoxicity remains to be widely investigated.

Heart failure to cancer

Myocardial infarction mediated secretoms and
innate immune system promotes cancer
development

Kitsis et al. investigated the interaction between HF and
cancer by creating MI-induced HF in a precancerous murine
model, adenomatous polyposis coli (APC)−/−mouse strain
(115). These mice carried a non-sense mutation in APC
leading to persistence of beta-catenin that induces spontaneous
intestinal adenoma formation (1). The experimental HF on
those mice resulted in increased tumor formation and tumor
growth, 6 weeks after the MI procedure. To rule out the

possibility that hemodynamic impairments lead to tumor
growth, the failing heart has been transplanted into these
precancer mice as a heterotopic murine (HFTx) heart model.
Indeed, this model further proved that HF can contribute
to tumor formation and progression. The candidate secreted
molecules of HF were then identified based on meta-
analyses from databases of proteins secreted from myocardium,
and allied to the proteins previously associated with new-
onset colorectal cancer. Five potential secreted proteins have
been discovered, namely: α-1-antitrypsin (SerpinA1), α-1-
antichymotrypsin (SerpinA3), fibronectin, ceruloplasmin, and
paraoxonase 1. Indeed, serpinA3 promoted proliferation of
the colon cancer cell that was associated with Akt-S6
phosphorylation. Moreover, Kitsis et al. found that the increased
levels of serpinA3 and A1, fibronectin, ceruloplasmin, and
paraoxonase 1 in patients with chronic HF (115).

Further studies need to establish whether (1) these
secretoms can be used as cancer biomarkers to stratify the cancer
risk in HF patients, (2) these secretoms can promote tumor
formation as well as tumor progression.

The possible role of the immune system in HF to
cancer has also been off great interest. Indeed, monocytes
and monocyte-derived macrophages play key roles in cancer,
such as promoting angiogenesis, tumor cell proliferation,
migration, invasion as well as tumor immune evasion. On the
other hand, post MI provokes sympathetic signaling such β3
adrenergic stimulation together with IL-1β) release, thereby
activating leukocyte progenitors in the bone marrow, and
monocytes, in the circulation (116). Recently using 2 mice
model of breast cancers: C57BL/6J female mice orthotopically
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FIGURE 5

Three widely used anticancer drug mediated cytotoxicity in cancer and heart. Clinically used targeted therapies/tyrosine kinase (TK) inhibitors
mainly focuses on inactivation of heregulin receptor (HER2) or vascular endothelial factor (VEGF) signaling in cancers. HER2 signaling is
important in heart and cancer. HER2 activation by its ligand heregulin stimulates proliferation pathway in the tumor cells. The inhibition of HER2
by its antibody, trastuzumab, in cancer cells blocks the cancer proliferation but in heart it blocks an important survival pathway in heart. Binding
of VEGF to its receptors in endothelial cells activates angiogenesis. Inhibition of VEGF by its antibody, bevacizumab, can destroy the tumor
angiogenesis and bring the tumor to avascular stage, whereas it can be detrimental in the heart due to reduced systemic angiogenesis. Indeed,
the immunotherapy targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4). anti-programmed cell death 1 (PD1) or its receptor (PDL-1) relies on
cancer destruction through the activation of the host immune system. However, PD-L1 is also expressed in the non-immune cells to maintain
self-tolerance. Nivolumab and Ipilimumab activate T cells and promotes T cell clonal expansion to kill tumor cells. However activated T cells
also recognize shared antigens and destroy cardiomyocytes as well.

implanted the murine mammary cancer cell line (E0771) and
genetically engineered mouse breast cancer model (MMTV-
PyMT), Koelwyn et al. demonstrated that MI is an acute
pathologic stimulus that induces the innate immune system,
to accelerate breast cancer growth and metastasis as well as
cancer-associated mortality in mice and humans (116). More
specifically, MI epigenetically reprograms Ly6Chi monocytes
to give rise to an immunosuppressive phenotype in the bone
marrow. In parallel, MI increases circulating levels of Ly6Chi
monocytes and recruitment of these monocytes to tumors.
Furthermore, depletion of these cells abolishes MI-induced
tumor growth. Interestingly, epidemiological studies showed
that early stage breast cancer patients who had cardiovascular
disorders before the treatment with the chemotherapeutics had
increased risk of reappearance of tumor and cancer-specific
death.

These preclinical and clinical results are important
to understand host comorbidities and their impact on
cancer progression.

Transverse aortic constriction mouse model of
pathological hypertrophic cardiomyopathy
promotes cancer

Avraham et al. investigated whether pathologic hypertrophic
cardiomyopathy can alter tumor growth and progression,
using transverse aortic constriction (TAC) as a mice model
of pressure overload–induced cardiac hypertrophy in 2 type
mouse syngeneic tumor models: a breast orthotopic cancer
model (mouse mammary tumor virus–polyomavirus middle
T antigen) and a lung cancer model (Lewis lung carcinoma)
(117). This experimental TAC resulted in increased tumor
growth and metastatic colonization. After TAC, the tumor
implanted mice had a cardiac hypertrophy, and increased
volume of tumors. Avraham et al. also investigated the role of
host immune system in TAC-associated an increase in tumor
growth, using immunodeficient NOD/SCID mice, which lack
T and B lymphocytes, with reduced natural killer cell function.
Indeed, increased tumor growth after TAC was also observed,
eliminating the possible role of the adaptive immune system.

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.929259
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-929259 July 11, 2022 Time: 17:0 # 10

Guler et al. 10.3389/fcvm.2022.929259

Transcriptomic profiling of the mice TAC-hearts revealed a
number of upregulated secretoms known as pro-tumorigenic,
such as connective tissue growth factor and periostin. Indeed,
depletion of periostatin from the sera of TAC-mice abolished
the proliferation of polyomavirus middle T antigen cells.
Exogenous addition of periostin increased polyomavirus middle
T antigen and Lewis lung carcinoma cell proliferation in vitro,
showing that periostin in sera of the TAC-operated mice
plays key role in cancer cell proliferation. Unfortunately,
there was no studies showing that periostin inhibition
in vivo reduces the tumor growth. Future in vivo studies
are necessary to determine whether periostin and other
secreted factors, promote hypertrophic cardiac remodeling-
mediated tumorigenesis.

The mechanisms by which these secretoms exert
tumorigenic effect need to be studied. These preclinical studies
may open an avenue for the discovery of the heart-specific
tumor markers and new therapeutic options.

Perspective

Recent clinical studies have shown that the mortality
of certain cancer patients results from CVD such as HF,
hypertension aneurysm of blood vessels and stroke (118). The
risk of CVD mortality occurs during an acute phase (early
risk) and a chronic phase (late risk) (119). Accordingly, cancer
survivors who were diagnosed cancer before the age of 55 years
displayed ten-fold higher CV-dependent mortality compare to
the general population (118). On the other hand, the cancer risk
incidence is high in the patients with HF (120).

Several limitations of the clinical studies showing a link
between cancer and HF should be considered as well. For
example, in some clinical studies the type of treatments the
patients received have not been known to evaluate whether
these therapies have adverse effects. Some of these studies
have lack of information on co-illnesses and risk factors (e.g.,
smoking, alcohol consumption, obesity). The socioeconomic
status should also be taken in account in these epidemiological
studies. Moreover, these studies have been mostly performed on
western population, therefore the percentage of risks may range
in the different populations.

Preclinical studies are important to unravel the molecular
pathways and targets involved in bilateral interaction between

CVD and cancer. Cardiac- and cancer-secretoms have potential
utility as biomarkers that can be used to identify risks in patient
with HF in terms of cancer risk or vice versa. These data will
exemplify the importance of understanding the development
of comorbidities and help to implementation of strategies
for better management of these patients and identify the
cardiovascular or cancer-specific mortality.

Nevertheless, the cardio-oncology care should assess
regularly the risk of development cancer in HF patients, and
CVD in the cancer patients before starting chemotherapy.
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