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POLAR ISOPERIMETRY. I. THE CASE OF THE PLANE

S. G. BOBKOV, N. GOZLAN, C. ROBERTO AND P.-M. SAMSON

Abstract. This is the first part of the notes with preliminary remarks on the plane isoperi-
metric inequality and its applications to the Poincaré and Sobolev-type inequalities in di-
mension one. Links with informational quantities of Rényi and Fisher are briefly discussed.

1. Isoperimetry on the plane and the upper half-plane

The paper by Diaz et al [D-H-H-T] contains the following interesting Sobolev-type inequality
in dimension one.

Proposition 1.1. For any smooth real-valued function f on [0, 1],

(1.1)

∫ 1

0

√
f(x)2 +

1

π2
f ′(x)2 dx ≥

(∫ 1

0
f(x)2 dx

)1/2
.

More precisely, this paper mentions without proof that (1.1) is a consequence of the isoperi-
metric inequality on the plane R2. Let us give an argument, which is actually based on the
isoperimetric inequality

(1.2) µ+(A) ≥
√

2π (µ(A))1/2, A ⊂ R2
+ (A is Borel),

in the upper half-plane R2
+ = {(x1, x2) ∈ R2 : x2 ≥ 0}. Here, µ denotes the Lebesgue measure

restricted to this half-plane, which generates the corresponding notion of the perimeter

µ+(A) = lim inf
ε→0

µ(A+ εB2)− µ(A)

ε

(cf. e.g. [B-Z]).
Inequality (1.2) follows from the Brunn-Minkowski inequality in R2

µ(A+B)1/2 ≥ µ(A)1/2 + µ(B)1/2

along the same arguments as in the case of its application to the usual isoperimetric inequality
(see [B-Z]). Indeed, applying it with a Borel set A ⊂ R2

+ and B = εB2 (ε > 0), we get

µ(A+ εB2) ≥
[
µ(A)1/2 + µ(εB2)1/2

]2
=

[
µ(A)1/2 +

(π
2

)1/2
ε
]2

= µ(A) +
√

2π (µ(A))1/2ε+O(ε2),

and therefore (1.2) from the definition of the perimeter.

Key words and phrases. Isoperimetry, Sobolev-type inequalities, Rényi Divergence Power, Relative Fisher
Information.
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The relation (1.2) is sharp and is attained for the upper semi-discs

Aρ = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ ρ2, x2 ≥ 0}, ρ > 0.

In this case, µ(Aρ) = 1
2 πρ

2 is the area size between the upper part of the circle x2
1 + x2

2 = ρ2

and the x1-axis x2 = 0, while the µ-perimeter is just the length of the half-circle µ+(Aρ) = πρ.
To derive (1.1), one may assume that the function f is non-negative and is not identically

zero on [0, 1]. Then we associate with it the set in R2
+ described in polar coordinates as

A = {(x1, x2) : 0 ≤ r ≤ f(t), 0 ≤ t ≤ 1}

with x1 = r cos(πt), x2 = r sin(πt). Integration in polar coordinates indicates that, for any
non-negative Borel function u on R2,

(1.3)

∫∫
R2

u(x1, x2) dx1 dx2 = π

∫ 1

−1

[∫ ∞
0

u
(
r cos(πt), r sin(πt)

)
rdr

]
dt.

Applying it to the indicator function u = 1A, we get

µ(A) =
π

2

∫ 1

0
f(t)2 dt.

On the other hand, µ+(A) represents the length of the curve C = {(x1(t), x2(t)) : 0 ≤ t ≤ 1}
parameterized by

x1(t) = f(t) cos(πt), x2(t) = f(t) sin(πt).

Since

x′1(t)2 + x′2(t)2 = f ′(t)2 + π2f(t)2,

we find that

µ+(A) =

∫ 1

0

√
x′1(t)2 + x′2(t)2 dt =

∫ 1

0

√
f ′(t)2 + π2f(t)2 dt.

As a result, the isoperimetric inequality (1.2) takes the form∫ 1

0

√
f ′(t)2 + π2f(t)2 dt ≥

√
2π
(π

2

∫ 1

0
f(t)2 dt

)1/2
.

which is the same as (1.1). Note that the condition f ≥ 0 may easily be removed in the
resulting inequality. �

One can reverse the argument and obtain the isoperimetric inequality (1.2) on the basis of
(1.1) for the class of star-shaped sets in the upper half-plane.

The same argument may be used on the basis of the classical isoperimetric inequality

(1.4) µ+(A) ≥
√

4π (µ(A))1/2 (A is Borel)

in the whole plane R2 with respect to the Lebesgue measure µ. It is attained for the discs

Aρ = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ ρ2}, ρ > 0,

in which case µ(Aρ) = πρ2 and µ+(Aρ) = 2πρ.
Starting from a smooth non-negative function f on [−1, 1] such that f(−1) = f(1), one

may consider the star-shaped region

A = {(x1, x2) : 0 ≤ r ≤ f(t), −1 ≤ t ≤ 1}, x1 = r cos(πt), x2 = r sin(πt),
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enclosed by the curve C = {(x1(t), x2(t)) : −1 ≤ t ≤ 1} with the same functions x1(t) =
f(t) cos(πt), x2(t) = f(t) sin(πt). Integration in polar coordinates (1.3) then yields a similar
formula as before,

µ(A) =
π

2

∫ 1

−1
f(t)2 dt,

and also the perimeter µ+(A) represents the length of C, i.e.,

µ+(A) =

∫ 1

−1

√
x′1(t)2 + x′2(t)2 dt =

∫ 1

−1

√
f ′(t)2 + π2f(t)2 dt.

As a result, the isoperimetric inequality (1.4) takes the form∫ 1

−1

√
f ′(t)2 + π2f(t)2 dt ≥

√
4π
(π

2

∫ 1

−1
f(t)2 dt

)1/2
,

or equivalently,

(1.5)
1

2

∫ 1

−1

√
1

π2
f ′(t)2 + f(t)2 dt ≥

(1

2

∫ 1

−1
f(t)2 dt

)1/2
.

To compare with (1.1), let us restate (1.5) on the unit interval [0, 1] by making the substi-
tution f(t) = u(1+t

2 ). Then it becomes

1

2

∫ 1

−1

√
1

4π2
u′
(1 + t

2

)2
+ u
(1 + t

2

)2
dt ≥

(
1

2

∫ 1

−1
u
(1 + t

2

)2
dt

)1/2

.

Changing x = 1+t
2 , replacing u again with f , and removing the unnecessary condition f ≥ 0,

we arrive at:

Proposition 1.2. For any smooth real-valued function f on [0, 1] such that f(0) = f(1),

(1.6)

∫ 1

0

√
f(x)2 +

1

4π2
f ′(x)2 dx ≥

(∫ 1

0
f(x)2 dx

)1/2
.

As we can see, an additional condition f(0) = f(1) allows one to improve the coefficient in
front of the derivative, in comparison with (1.1). It should also be clear that (1.6) represents
an equivalent form of the isoperimetric inequality (1.4) for the class of star-shaped regions.

2. Relationship with Poincaré-type inequalities

It would be interesting to compare Propositions 1.1-1.2 with other popular Sobolev-type
inequalities such as the Poincaré-type and logarithmic Sobolev inequalities. Starting from
(1.1) and (1.6), a simple variational argument yields:

Corollary 2.1. For any smooth real-valued function f on [0, 1],

(2.1) Varµ(f) ≤ 1

π2

∫ 1

0
f ′(x)2 dx,

where the variance is understood with respect to the uniform probability measure dµ(x) = dx
on the unit segment. Moreover, if f(0) = f(1), then

(2.2) Varµ(f) ≤ 1

4π2

∫ 1

0
f ′(x)2 dx.



4 S. G. BOBKOV, N. GOZLAN, C. ROBERTO AND P.-M. SAMSON

The constants 1
π2 and 1

4π2 in (2.1)–(2.2) are optimal and are respectively attained for the
functions f(x) = cos(πx) and f(x) = sin(2πx) (cf. also [B-G-L]).

For the proof, let us note that an analytic inequality of the form

(2.3)

∫ 1

0

√
f(x)2 + cf ′(x)2 dx ≥

(∫ 1

0
f(x)2 dx

)1/2

with a constant c > 0 becomes equality for f = 1. So, one may apply it to fε = 1 + εf , and
letting ε → 0, one may compare the coefficients in front of the powers of ε on both sides.
First, ∫ 1

0
fε(x)2 dx = 1 + 2ε

∫ 1

0
f(x) dx+ ε2

∫ 1

0
f(x)2 dx,

so, by Taylor’s expansion, as ε→ 0,(∫ 1

0
fε(x)2 dx

)1/2
= 1 + ε

∫ 1

0
f(x) dx+

ε2

2

∫ 1

0
f(x)2 dx

−1

8

(
2ε

∫ 1

0
f(x) dx+ ε2

∫ 1

0
f(x)2 dx

)2
+O(ε3)

= 1 + ε

∫ 1

0
f(x) dx+

ε2

2

∫ 1

0
f(x)2 dx− ε2

2

(∫ 1

0
f(x) dx

)2
+O(ε3).

On the other hand, since

fε(x)2 + cf ′ε(x)2 = 1 + 2εf(x) + ε2
(
f(x)2 + cf ′(x)2

)
,

we have (
fε(x)2 + cf ′ε(x)2

)1/2
= 1 + εf(x) +

ε2

2

(
f(x)2 + cf ′(x)2

)
−1

8

(
2εf(x) + ε2

(
f(x)2 + cf ′(x)2

))2
+O(ε3)

= 1 + εf(x) +
cε2

2
f ′(x)2 +O(ε3).

Hence ∫ 1

0

(
fε(x)2 + cf ′ε(x)2

)1/2
dx = 1 + ε

∫ 1

0
f(x) dx+

cε2

2

∫
f ′(x)2 dx+O(ε3).

Inserting both expansions in (2.3), we see that the linear coefficients coincide, while comparing
the quadratic terms leads to the Poincaré-type inequality

c

∫
f ′(x)2 dx ≥

∫ 1

0
f(x)2 dx−

(∫ 1

0
f(x) dx

)2
.

�

Thus, the isoperimetric inequality on the upper half-plane implies the Poincaré-type in-
equality (2.1) on [0, 1], while the isoperimetric inequality on the whole plane implies the
restricted Poincaré-type inequality (2.2), with optimal constants in both cases.
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3. Sobolev inequalities

If f is non-negative, then f(x) = 0 ⇒ f ′(x) = 0 and thus f(x)2 + cf ′(x)2 = 0. Hence,
applying Cauchy’s inequality, from (2.3) we get∫ 1

0
f(x)2 dµ(x) ≤

(∫ 1

0

√
f(x)

√
f(x) + c

f ′(x)2

f(x)
1{f(x)>0} dx

)2

≤
∫ 1

0
f(x) dx

(∫ 1

0
f(x) dx+ c

∫ 1

0

f ′(x)2

f(x)
1{f(x)>0} dx

)
.

Therefore, Propositions 1.1-1.2 also yield:

Proposition 3.1. For any non-negative smooth function f on [0, 1] with
∫ 1

0 f(x) dx = 1,

(3.1) Varµ(f) ≤ 1

π2

∫ 1

0

f ′(x)2

f(x)
1{f(x)>0} dx,

where the variance is with respect to the uniform probability measure µ on the unit segment.
Moreover, if f(0) = f(1), then

(3.2) Varµ(f) ≤ 1

4π2

∫ 1

0

f ′(x)2

f(x)
1{f(x)>0} dx.

Recall that there is a general relation between the entropy functional

Entµ(f) =

∫
f log f dµ−

∫
f dµ log

∫
f dµ (f ≥ 0)

and the variance, namely

(3.3) Entµ(f)

∫
f dµ ≤ Varµ(f).

It is rather elementary; assume by homogeneity that
∫
f dµ = 1. Since log t ≤ t − 1 and

therefore t log t ≤ t(t− 1) for all t ≥ 0, we have

f(x) log f(x) ≤ f(x)2 − f(x).

After integration it yields (3.3).
Using the latter in (3.1)-(3.2), we arrive at the logarithmic Sobolev inequalities.

Corollary 3.2. For any non-negative smooth function f on [0, 1], with respect to the
uniform probability measure µ on the unit segment we have

(3.4) Entµ(f) ≤ 1

π2

∫ 1

0

f ′(x)2

f(x)
1{f(x)>0} dx.

Moreover, if f(0) = f(1), then

(3.5) Entµ(f) ≤ 1

4π2

∫ 1

0

f ′(x)2

f(x)
1{f(x)>0} dx.

Replacing here f by (1+εf)2 and letting ε→ 0, we return to the Poincaré-type inequalities
(2.1) and (2.2) with an extra factor of 2. The best constant in (3.4) is however 1

2π2 and in

(3.5) is 1
8π2 [B-G-L, Proposition 5.7.5]. On the other hand, the inequalities (3.1)-(3.2) are

much stronger than (3.4)-(3.5).
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4. Informational quantities and distances

The inequalities (3.4)-(3.5) may be stated equivalently in terms of informational distances
to the uniform measure µ on the unit segment. Let us recall that, for random elements X
and Z in an abstract measurable space Ω with distributions ν and µ respectively, the Rényi
divergence power or the Tsallis distance from ν to µ of order α > 0 is defined by

Tα(X||Z) = Tα(ν||µ) =
1

α− 1

[ ∫ (p
q

)α
p dλ− 1

]
=

1

α− 1

[ ∫
fα dµ− 1

]
,

where p and q are densities of ν and µ with respect to some (any) σ-finite dominating measure
λ on Ω, with f = p/q being the density of ν with respect to µ (the definition does not depend
on the choice of λ). If α = 1, we arrive at the Kullback-Leibler distance or an informational
divergence

T1(X||Z) = D(X||Z) =

∫
p log

p

q
dλ =

∫
f log f dµ,

which is the same as Entµ(f). For α = 2 the Tsallis T2-distance is the same as the χ2-distance.
If α ≥ 1, necessarily Tα(X||Z) =∞ as long as ν is not absolutely continuous with respect to
µ. In any case, the function α → Tα is non-decreasing; we refer an interested reader to the
survey [E-H].

In the case of the real line Ω = R, and when the densities p and q are absolutely continuous,
the relative Fisher information or the Fisher information distance from ν to µ is defined by

I(X||Z) = I(ν||µ) =

∫ ∞
−∞

(p′
p
− q′

q

)2
p dλ =

∫ ∞
−∞

f ′2

f
dµ,

still assuming that the probability measure ν is absolutely continuous with respect to µ and
has density f = p/q. This definition is commonly used when q is supported and is positive
on an interval ∆ ⊂ R, finite or not, with the above integration restricted to ∆. With these
notations, Proposition 3.1 corresponds to the order α = 2 and therefore takes the form

(4.1) T2(X||Z) ≤ 1

π2
I(X||Z), T2(X||Z) ≤ 1

4π2
I(X||Z),

holding true for an arbitrary random variableX with values in [0, 1]. Here the random variable
Z has a uniform distribution µ on [0, 1], and we use an additional constraint f(0) = f(1) in
the second relation.

There is also another non-distance formulation of (3.6) in terms of classical informational
quantites such as the Rényi entropy power and the Fisher information

Nα(X) =
(∫ ∞
−∞

p(x)α dx
)− 2

α−1
, I(X) =

∫ ∞
−∞

p′(x)2

p(x)
dx.

Here the case α = 2 defines the quadratic Rényi entropy power N2(X). If µ is supported and
has an absolutely continuous positive density q on the interval ∆ ⊂ R, one may also define
the restricted Fisher information

I0(X) =

∫
∆

p′(x)2

p(x)
dx.

For example, if Z is uniformly distributed in the unit interval, so that q(x) = 1 for 0 < x < 1,
we have I(Z) =∞, while I0(Z) = 0. In this case, if X has values in [0, 1], we have

T2(X||Z) =

∫ 1

0
p(x)2 dx− 1 = N2(X)−1/2 − 1, I(X||Z) = I0(X).

Hence, the first inequality in (3.6) may be written as the following.
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Corollary 4.1. For any random variableX with values in [0, 1], having there an absolutely
continuous density, we have

(4.2) N2(X)
(

1 +
1

π2
I0(X)

)2
≥ 1.

This relation is analogous to the well-known isoperimetric inequality for entropies,

N(X) I(X) ≥ 2πe,

where N(X) = N1(X) = e2h(X) is the entropy power, corresponding to the Shannon differ-
ential entropy

h(X) = −
∫ ∞
−∞

p(x) log p(x) dx.

The functional I0(X) may be replaced with I(X) in (4.2) (since I0 ≤ I), and then one
may remove the assumption on the values of X. Moreover, with the functional I(X), this
inequality may be considerably strengthened. Indeed, the relation N2(X)(1 + 1

π2 I(X))2 ≥ 1
is not 0-homogeneous with respect to X, and therefore it admits a self-refinement when
applying it to the random variables λX, λ > 0. Optimizing over this parameter, we will
obtain an equivalent 0-homogeneous relation

(4.3) N2(X)I(X) ≥ c,

with c = π/4. But, it is obviously true that with c = 1. To see this, first note that, by the
Cauchy inequality, for all x ∈ R,

p(x) =

∫ x

−∞
p′(y) dy ≤

∫
p(y)>0

|p′(y)| dy =

∫
p(y)>0

|p′(y)|√
p(y)

√
p(y) dy

≤
(∫

p(y)>0

p′(y)2

p(y)
dy

)1/2 (∫
p(y)>0

p(y) dy

)1/2

=
√
I(X).

Therefore, ∫ ∞
−∞

p(x)2 dx ≤
√
I(X),

that is, N2(X)I(X) ≥ 1.
Observe that another inequality involving the quadratic Rényi entropy power N2(X) and

some generalisation of Fisher information can be extracted from [L-Y-Z], namely for all
1 ≤ q < ∞, N2(X)q

∫
|p′|qp ≥ Cq for an optimal constant Cq. However it’s unclear how to

related this inequality to (4.3).
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