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Abstract

Top Two algorithms arose as an adaptation of Thompson sampling to best arm
identification in multi-armed bandit models [38], for parametric families of arms.
They select the next arm to sample from by randomizing among two candidate arms,
a leader and a challenger. Despite their good empirical performance, theoretical
guarantees for fixed-confidence best arm identification have only been obtained
when the arms are Gaussian with known variances. In this paper, we provide
a general analysis of Top Two methods, which identifies desirable properties of
the leader, the challenger, and the (possibly non-parametric) distributions of the
arms. As a result, we obtain theoretically supported Top Two algorithms for best
arm identification with bounded distributions. Our proof method demonstrates in
particular that the sampling step used to select the leader inherited from Thompson
sampling can be replaced by other choices, like selecting the empirical best arm.

1 Introduction

Finding the distribution that has the largest mean by sequentially collecting samples from a pool of
candidate distributions (“arms”) has been extensively studied in the multi-armed bandit [6, 24] and
ranking and selection [21] literature. While existing approaches often rely on parametric assumptions
for the distributions, we are interested in (near) optimal and computationally efficient strategies when
the distributions belong to an arbitrary class F of distributions.

For applications to online marketing such as A/B testing [30, 37] assuming Bernoulli or Gaussian
arms is fine, but more sophisticated distributions arise in other fields such as agriculture. In Section 5
we consider a crop-management problem: a group of farmers wants to identify the best planting
date for a rainfed crop. The reward (crop yield) can be modeled as a complex distribution with
multiple modes, but upper bounded by a known yield potential. Therefore, sequentially identifying
the best planting date calls for efficient best arm identification algorithms for the class of bounded
distributions with a known range.

To tackle this problem, we build on Top Two algorithms [38, 35, 39], originally proposed for specific
parametric families. We propose a generic analysis of this type of algorithms, which puts forward
new possibilities for the choice of leader and challenger used by the algorithm. In particular, this
work leads to the first asymptotically β-optimal strategies for bounded distributions.
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1.1 Setting and related work
A bandit problem is described by a finite number of probability distributions (K many), called arms.
Let4K be the K-dimensional probability simplex and P(R) the set of probability distributions over
R. Let F ⊂ P(R) be a known family of distributions to which the arms to. We will refer to tuples of
distributions in FK with bold letters, e.g. F = (F1, . . . , FK) ∈ FK where Fi is the cdf of arm i.
We suppose that all distributions in F have finite first moment and we denote the mean of F ∈ F by
m(F ). We denote by I = {m(F ) | F ∈ F} the set of possible means for the arms.

The goal of a best arm identification (BAI) algorithm is to identify an arm with highest mean in the
set of available arms, i.e. an arm which belongs to the set i?(F ) = arg maxk∈[K]m(Fk). At each
time n ∈ N, the algorithm interacts with the environment (the set of arms) by (1) choosing an arm
In based on previous observations, (2) observing a sample Xn,In ∼ FIn , and (3) deciding whether
to stop and return an arm ı̂n or to continue. We study the fixed confidence identification setting, in
which we require algorithms to make mistakes with probability less than a given δ ∈ (0, 1). To
compare such algorithms we consider their sample complexity τδ , which is a stopping time counting
the number of rounds before the algorithm terminates. The goal is then to minimize E[τδ] among the
class of δ-correct algorithms.

Definition 1. An algorithm is δ-correct1 on FK if PF (τδ < +∞, ı̂τδ /∈ i?(F )) ≤ δ for all F ∈
FK .

In order to be δ-correct on FK , an algorithm has to be able to distinguish problems in FK with
different best arms. This intuition is formalized by the lower bound provided in Lemma 1. The
characteristic time defined in the lower bound depends on two functions K+

inf and K−inf , mapping
P(R)× R to R+, obtained by minimizing a Kullback-Leibler divergence (KL) over F ,

K+
inf(F, u) := inf{KL(F,G) | G ∈ F , EX∼G[X] > u} ,
K−inf(F, u) := inf{KL(F,G) | G ∈ F , EX∼G[X] < u} .

Lemma 1 (From [16, 3]). Any algorithm which is δ-correct on FK verifies, for any F ∈ FK ,

EF [τδ] ≥ T ?(F ) log (1/(2.4δ)) ,

where T ?(F )−1 := supw∈4K mini 6=i? infu∈I
{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}

.

We say that an algorithm is asymptotically optimal if its sample complexity matches that lower bound,
that is if lim supδ→0 EF [τδ]/ log (1/δ) ≤ T ?(F ).

A related, weaker notion of (asymptotic) optimality is (asymptotic) β-optimality [39]. An algorithm
is called asymptotically β-optimal if it satisfies lim supδ→0 EF [τδ]/ log (1/δ) ≤ T ?β (F ), for the
complexity term

T ?β (F )−1 := sup
w∈4K ,wi?=β

min
i6=i?

inf
u∈I

{
βK−inf(Fi? , u) + wiK+

inf(Fi, u)
}
.

An asymptotically β-optimal algorithm is asymptotically minimizing the sample complexity among
algorithms which allocate a β fraction of samples to the best arm and T ?(F ) = minβ∈(0,1) T

?
β (F ).

As was first shown by [38] when F is an exponential family, an asymptotically β-optimal algorithm
with β = 1/2 also has an expected sample complexity which is asymptotically optimal, up to a
multiplicative factor 2. That is, T ?1/2(F ) ≤ 2T ?(F ).

We denote by w?(F ) and w?β(F ) the allocations realizing the argmax in the definition of T ?(F ) and
T ?β (F ), respectively. We will show that for common choices of F these allocations are unique when
there is a unique best arm.

Distribution classes The characteristic time T ?(F ) depends on the class of distributions F , known
to the algorithm in advance, to which F belongs to. For example, all arms could have Bernoulli
distributions. We strive to provide an analysis which could easily be applied to many classes F , but
we specialize our results to two main cases:

1. distributions with bounded support, F = {F ∈ P(R) | supp(F ) ⊆ [0, B]} for B > 0,

1A stronger definition of δ-correctness has also been studied by requiring the algorithm to stop almost surely.
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2. single parameter exponential families (SPEF) of sub-exponential distributions.

Given a distribution P(0) with cumulant generating function ϕ, defined on an interval Iϕ, the
SPEF defined by P(0) is the set of distributions P(λ) with density with respect to P(0) given by
dP(λ)

dP(0) (x) = eλx−ϕ(λ). For example, Gaussian distributions with a known variance form a SPEF, as
do Bernoulli distributions with means in (0, 1). We consider SPEF of sub-exponential distributions
to have a concentration property for the empirical mean estimator.

Related work The first Best Arm Identification (BAI) algorithms [14, 27, 15, 23] were proposed
and analyzed for bounded rewards, but their sample complexity scales with a sum of inverse gaps
between the means of arms instead of the quantity T ?(F ) prescribed by the lower bound. Asymptoti-
cally optimal BAI algorithm were first designed when the arms belong to the same single-parameter
exponential family. In this context, two families of asymptotically optimal algorithms have emerged.
Tracking-based algorithms solve the optimization problem provided by the lower bound in every
round, and track the corresponding allocation [16]. The gamification approach views the characteristic
time as a min-max game between the learner and the nature, and apply a saddle-point algorithm to
solve it sequentially at a lower computational cost [13].

Some Bayesian algorithms arose as another computationally appealing alternative to Track-and-
Stop. Russo notably proposed the Top Two Probability Sampling (TTPS) and Top Two Thompson
Sampling (TTTS) algorithms [38], that may be seen as counterparts of the popular Thompson
Sampling algorithm for regret minimization [41]. Other Bayesian flavored Top Two algorithms have
been proposed, Top Two Expected Improvement (TTEI, [35]) and Top Two Transportation Cost
(T3C, [39]). All these algorithms sample either a leader with fixed probability β or a challenger with
probability 1− β. TTTS, TTEI and T3C were proved to be asymptotically β-optimal for Gaussian
bandits and perform well in practice even against asymptotically optimal algorithms [35, 39]. This
motivates our investigation of Top Two algorithms to tackle bounded distributions, which led us
to propose a new generic analysis of this kind of algorithms of independent interest. We prove the
asymptotic β-optimality of several Top Two instances for bounded bandit models, some of which
depart from their original Bayesian motivation as they don’t need a sampler. An asymptotically
optimal algorithm for a non-parametric class of distribution has been proposed by [3] for heavy-tailed
rewards. It relies on the computationally prohibitive Track-and-Stop approach, and an adaptation to
bounded distributions is mentioned, yet without an explicit calibration of the stopping rule.

1.2 Contributions
We present the first fixed-confidence analysis of Top Two algorithms for distribution classes other than
Gaussian, including the non-parametric setting of bounded distributions. In Section 2, we introduce
several variants of Top Two algorithms, including new ones which choose the empirical best arm as a
leader instead of relying on (Thompson) sampling and/or use some penalization in the previously
proposed Transportation Cost challenger.

For the class of bounded distributions, we propose in Section 3 a calibration of the stopping rule and
a concrete instantiation of the Top Two algorithms, based on a Dirichlet sampler for the randomized
variants. We prove in Theorem 1 that those algorithms are asymptotically β-optimal. This optimality
can also be shown for deterministic instances in the case of sub-exponential single parameter
exponential families (Appendix H). Our generic analysis, sketched in Section 4, provides insight
on what properties the leader and challenger in a Top Two algorithm should have in order to reach
asymptotic β-optimality. We show that the algorithm should ensure that all arms are explored
sufficiently, and explain how to guarantee that the sampling proportions reach their optimal values
once the sufficient exploration condition holds.

Finally, in Section 5 we report results from numerical experiments on a challenging non-parametric
task using real-world data from a crop-management problem for various members of the Top Two
family of algorithms. Most of them perform significantly better than the baselines.

2 Generic Top Two algorithms
Let F ∈ FK such that |i?(F )| = 1 and µi := m(Fi) ∈ I for all i ∈ [K]. As for most BAI
algorithms, each arm is pulled once for the initialization. At time n + 1, the σ-algebra Fn :=
σ(U1, I1, X1,I1 , · · · , In, Xn,In , Un+1), called history, encompasses all the information available to
the agent and the internal randomization denoted by (Ut)t∈[n+1], which is independent of everything
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else. For all Fn-measurable sets A, we denote by P|n[A] := P[A | Fn] its probability. For an
arm i, we denote its number of pulls by Nn,i :=

∑
t∈[n] 1 (It = i), its empirical distribution by

Fn,i := 1
Nn,i

∑
t∈[n] δXt,It1 (It = i) and its empirical mean by µn,i := m(Fn,i).

Stopping and recommendation rules Our Top Two algorithms rely on the same stopping rule,
which can be expressed using the (empirical) transportation cost between arm i and arm j, defined as

Wn(i, j) = inf
x∈I

[
Nn,iK−inf(Fn,i, x) +Nn,jK+

inf(Fn,j , x)
]
. (1)

In particular, using the definition of K±inf , it can be noted that Wn(i, j) = 0 if µn,i ≤ µn,j . Given a
threshold function c(n, δ), the stopping rule is

τδ = inf{n ∈ N | min
j 6=ı̂n

Wn(̂ın, j) > c(n, δ)} , (2)

and the recommendation rule is ı̂n = arg maxi µn,i. Up to the choice of threshold, this stopping rule
coincides with the GLR-based stopping rule proposed when F is an exponential family [16] and by
[3] for heavy-tailed distributions with an upper bound on a non-centered moment. For a general class
F the stopping rule can be calibrated to ensure δ-correctness under any sampling rule if the threshold
is such that the following time-uniform concentration inequality holds for all F ∈ FK :

PF
(
∃n, ∃i 6= i?(F ) : Nn,iK−inf(Fn,i, µi) +Nn,i?(F )K+

inf(Fn,i?(F ), µi?(F )) > c(n, δ)
)
≤ δ . (3)

Lemma 2 in the next section gives an explicit threshold for the class of bounded distribution. For
SPEF, we can use generic stopping thresholds derived in [29].

1: Input: β
2: Choose a leader Bn ∈ [K]
3: U ∼ U([0, 1])
4: if U < β then
5: In = Bn
6: else
7: Choose a challenger Cn ∈ [K] \ {Bn}
8: In = Cn
9: end if

10: Output: next arm to sample In

Figure 1: Generic β-Top Two sampling rule

Choice of the leader (two propositions):
EB - BEB

n ∈ arg maxi µn−1,i

TS - Sample θ ∼ Πn−1 then set BTS
n ∈

arg maxi∈[K] θi

Choice of the challenger (three propositions):
TC - CTC

n ∈ arg minj 6=BnWn−1(Bn, j)

TCI - CTCI
n ∈ arg minj 6=BnWn−1(Bn, j) +

logNn−1,j

RS - repeat θ ∼ Πn−1 until
CRS
n ∈ arg maxi∈[K] θi 63 Bn

Figure 2: Choices of leader and challenger (uni-
form tie-breaking).

Sampling rule The sampling rule of a Top Two algorithm is shown in Figure 1. The method chooses
a first arm Bn called leader which is then sampled with probability β. If Bn is not sampled, then a
second arm Cn called challenger is chosen and sampled. Our analysis isolates properties that those
two choices should fulfill in order for the Top Two algorithm to be asymptotically β-optimal.

The practical implementation of a Top Two method then requires subroutines for Bn and Cn. Two
possibilities for the leader and three possibilities for the challenger are presented in Figure 2. Our
analysis will apply to any combination of those and we will refer to the algorithms obtained by
β-[leader]-[challenger]; for example β-EB-TCI or β-TS-TC.

We have two flavors of leaders and challengers: deterministic and randomized. The deterministic
choices (EB, for Empirical Best, leader, TC and TCI challengers) rely on the empirical Transportation
Costs (TC) Wn(i, j) used in the stopping rule: the TC and TCI challengers are the arms which
minimize the transportation cost from the leader (up to a penalization for TCI, hence TC Improved).
The randomized choices (TS leader and RS challenger) rely on a sampler, denoted by Πn. Πn

generates i.i.d. vectors θ = (θ1, . . . , θK) ∈ IK which are interpreted as possible means for the
arms, under a distribution which depends on observations gathered in the first n rounds. The TS
leader is the best arm in the sampled vector, which is inspired by Thompson Sampling. The RS (for
Re-Sampling) challenger is obtained by performing repeated calls to the sampler until the best arm in
the sampled vector is not Bn, then taking the best arm.
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Randomized instances The samplers suggested by prior work all have a Bayesian flavor. For
SPEF bandits, they use Πn = Πn,1 × · · · × Πn,K where Πn,i is the posterior distribution on the
mean of arm i after n rounds (given some prior distribution). With this choice of sampler, β-TS-RS
coincides with the TTTS algorithm [38], while β-TS-TC coincides with the T3C algorithm [39].
TTTS and T3C were only proved to be asymptotically β-optimal for Gaussian bandits with improper
priors, whereas a by-product of the general analysis that we propose in this work permits to establish
the necessary properties on the sampler for it to hold for more general distributions. Moreover, we
extend these algorithms to bounded distributions by virtue of Dirichlet sampling and also analyze
their sampler-free counterparts. As will be apparent in our analysis, the crucial property needed from
the sampler in a Top Two algorithm using the RS challenger is that for all arms i, j such that µi > µj ,
Pθ∼Πn(θj > θi) ' exp(−Wn(i, j)).

Deterministic instances Under the RS challenger, the probability to obtain as a challenger arm j is
proportional to the probability that Pθ∼Πn(θj > θBn). Therefore, if Πn is a good sampler satisfying
the above property, the TC challenger can be seen as replacing the randomization in the RS challenger
by a computation of the mode of the distribution of CRS

n . This was the motivation behind T3C [39] as
Gaussian transportation costs have a simple closed form expression while re-sampling becomes more
and more costly when the posterior distributions are concentrated. While our asymptotic analysis
holds for deterministic algorithms, the empirical performance of fully deterministic algorithms
might suffer from unlucky draws. In Section 5, we show that β-EB-TC is indeed the least robust
of all our instances. To cope for this pitfall, explicit or implicit exploration mechanisms can be
added. Inspired by IMED [20], the TCI challenger fosters exploration by penalizing over-sampled
challengers. Randomization and forced exploration are two other examples of implicit and explicit
exploration mechanisms.

3 Asymptotically β-optimal algorithms for bounded distributions
For bounded distribution, Lemma 2 provides a calibration of the stopping rule. Its proof, given in
Appendix E.1, relies on a martingale construction proposed by [5].

Lemma 2. The stopping rule (2) with threshold

c(n, δ) = log (1/δ) + 2 log (1 + n/2) + 2 + log(K − 1) (4)
is δ-correct for the family of bounded distributions.

Transportation costs Both the stopping rule and the TC and TCI challengers of the sampling
rule require the computation of Wn(i, j) defined in (1). For single-parameter exponential families,
this can be done easily since K±inf are KL divergences and the transportation cost has a closed form
expression [16, 38]. However, for bounded distributions, computing K±inf is more challenging and we
rely on the dual formulation first obtained by [18] (see Theorem 3):

Nn,iK+
inf(Fn,i, x) = sup

λ∈[0,1]

∑
t∈[n]

1 (It = i) log

(
1− λXt,i − x

B − x

)
.

The minimization in λ can be computed using a zero-order optimization algorithm (e.g. Brent’s
method [10]). The same optimizer can be used to compute the minimization in x ∈ [0, B] featured in
Wn(i, j). By nesting those optimizations of univariate functions on a bounded interval, the computa-
tion of Wn(i, j) in the stopping rule dominates the computational cost of our Top Tow algorithms
(except the RS challenger). Our experiments suggest that using (2) is twice as computationally expen-
sive as the LUCB-based stopping rule, which is a mild price to pay for the improvement in terms of
empirical stopping time. Algorithms for non-parametric distributions are bound to be computationally
more expensive than their counterpart in SPEF, where a sufficient statistic can summarize Fn.

Sampler The TS leader and RS challenger require a sampler. Our proposed sampler for bounded
distributions in [0, B] has a product form: Πn = Πn,1 × · · · ×Πn,K where Πn,i leveragesHn,i :=
(X1,i, . . . , XNn,i,i), which is the history of samples from arm i collected in the first n rounds. Let
F̃n,i denote the empirical cdf ofHn,i augmented by the known bounds on the support, {0, B}. For
each arm i, Πn,i outputs a random re-weighting of F̃n,i. Concretely, lettingw = (w1, . . . , wNn,i+2)
be drawn from a Dirichlet distribution Dir(1Nn,i+2), a call to the sampler Πn,i returns∑

t∈[Nn,i]

wtXt,i +BwNn,i+1 .
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This sampler is inspired by that used in the Non Parametric Thompson Sampling (NPTS) algorithm
proposed by [36] for regret minimization in bounded bandits, with the notable difference that we
have to add both 0 and B in the support, while NPTS only adds the upper bound B. We will see that
this is only necessary to ensure that the re-sampling procedure stops. Therefore, the TS leader could
use a sampler Π̃n based directly onHn,i.
Theorem 1. Combining the stopping rule (2) with threshold (4) and a Top Two algorithm with
β ∈ (0, 1), instantiated with any pair of leader/challenger as in Figure 2, yields a δ-correct algo-
rithm which is asymptotically β-optimal for all F ∈ FK with µF ∈ (0, B)K and ∆min(F ) :=
mini 6=j |µFi − µFj | > 0.

Theorem 1 gives the asymptotic β-optimality for six algorithms (Figure 2). Choosing our favorite Top
Two instances therefore requires further empirical and computational considerations. Computing the
EB leader has a constant computational cost, while the TS leader is computationally costly for large
time n since it requires to sample from a Dirichlet distribution with Nn,i + 2 parameters for each
arm i. On the challenger side, the RS challenger is computationally very expensive for large time n
as the sampler becomes concentrated around the true mean vector. On the contrary, by leveraging
computations done in the stopping rule (2), the TC and TCI challengers can be computed in constant
time. Based on these computational considerations, the most appealing Top Two algorithm for
bounded distribution appears to be the fully deterministic β-EB-TC. But experiments performed
in Section 5 reveal its lack of robustness, and for bounded distributions the best trade-off between
robustness and computational complexity is β-EB-TCI. More generally, β-TS-TC can also be a good
choice provided that we have access to an efficient sampler.

Distinct means Restricting to instances such that ∆min(F ) > 0 (which implies |i?(F )| = 1) is
an uncommon assumption in BAI. However, known Top Two algorithms [38, 35, 39] only have
guarantees on those instances. Our generic analysis reveals that it is solely used to prove sufficient
exploration, characterized by (7) (Appendix C.3). Experiments highlights that all our Top Two
algorithms except β-EB-TC perform well on instances where |i?(F )| = 1 and ∆min(F ) = 0
(Figure 4(b)). Proving theoretical guarantees in this situation is an interesting problem for future
work (see Appendix D.3 for a discussion).

4 Sample complexity analysis
In this section, we sketch the proof of Theorem 1, which follows from the generic sample complexity
analysis of Top Two algorithms presented in Appendix C. Our proof strategy is the same as that first
introduced by [35] for the analysis of TTEI and also used by [39] for TTTS and T3C. It consists in
upper bounding the expectation of the convergence time, defined as

T εβ := inf

{
T ≥ 1 | ∀n ≥ T, max

i∈[K]

∣∣∣∣Nn,in − wβi

∣∣∣∣ ≤ ε} , (5)

for ε small enough. Indeed, we prove in Appendix C.5 that for any sampling rule

∃ε0(F ) > 0, ∀ε ∈ (0, ε0(F )], EF [T εβ ] < +∞ =⇒ lim sup
δ→0

EF [τδ]

log (1/δ)
≤ T ?β (F ) . (6)

This implication only leverages the expression of the stopping rule and the threshold. It was previously
established for Gaussian bandits by [35] and we extend this property to bounded distributions and
SPEF of sub-exponential distributions. Up to technicalities (Kinf continuity and second order terms),
this implication is shown by using that if τδ ≥ n, then

log (1/δ) ≈δ→0 c(n, δ) ≥ min
j 6=ı̂n

Wn(̂ın, j) ≈n≥T εβ nT
?
β (F )−1 .

To upper bound the expected convergence time, as prior work we first establish sufficient exploration:

∃N1 s.t. EF [N1] < +∞, ∀n ≥ N1, min
i∈[K]

Nn,i ≥
√
n/K . (7)

By generalizing [39] which considered Gaussian, we identify two generic properties for the leader
and the challenger under which (7) hold (Appendix C.3), provided that we assume ∆min > 0.

We proceed similarly to prove convergence by identifying in Appendix C desired properties for the
leader and challenger, which are satisfied by all our leaders and challengers for bounded distributions
(Appendix D). We sketch these conditions below. Let i? be the unique element of i?(F ).
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The requirements on the leader and the challenger to ensure EF [T εβ ] < +∞ become apparent when
looking at generic properties of Top Two algorithms. Under any Top Two algorithm, the probability
to select arm i at round n, ψn,i := P|(n−1)[In = i], can be written as

ψn,i = βP|(n−1)[Bn = i] + (1− β)
∑
j 6=i

P|(n−1)[Bn = j]P|(n−1)[Cn = i|Bn = j] . (8)

We let Ψn,i :=
∑
t∈[n] ψt,i. For the leader, we can prove using (8) that

∀M ∈ N,
∣∣∣∣Ψn,i?

n
− β

∣∣∣∣ ≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?] .

This suggests that a good leader should satisfy that there exists N2 with EF [N2] < +∞ s.t.

∀n ≥ N2, P|n[Bn+1 6= i?] ≤ g(n) , (9)

where g(n) =+∞ o(n−α) for some α > 0. For the challenger, noticing that

∀M ∈ N, ∀i 6= i?,
Ψn,i

n
≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?]+
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i?] ,

suggests that a good challenger should satisfy that there exists N3 with EF [N3] < +∞ s.t.

∀n ≥ N3, ∀i 6= i?,
Ψn,i

n
≥ wβi + ε ⇒ P|n[Cn+1 = i|Bn+1 = i?] ≤ h(n) , (10)

where h(n) =+∞ o(n−α) for some α > 0. Then, Cesaro’s theorem further yields

∃N4 s.t. EF [N4] < +∞, ∀n ≥ N4, max
i∈[K]

∣∣∣∣Ψn,i

n
− wβi

∣∣∣∣ ≤ ε .
Using that (Nn,i −Ψn,i)/

√
n are sub-Gaussian random variables, we obtain EF [T εβ ] < +∞.

We now explain why (9) and (10) are satisfied for the leaders and challengers in Figure 2 when F is
the class of bounded distributions. This follows from concentration properties. Using the fact that√
n‖Fn,i − F‖∞ is sub-Gaussian, which follows for the Dvoretzky–Kiefer–Wolfowitz inequality

[31], the continuity of the mean operator m on F and the sufficient exploration property (7), we
establish that for all α > 0, there exists a random variable Nα with finite expectation such that

∀n ≥ Nα, max
i∈[K]

‖Fn,i − Fi‖∞ ≤ α and max
i∈[K]

|µn,i − µi| ≤ α . (11)

Deterministic instances Recall that BEB
n+1 ∈ arg maxi∈[K] µn,i. Choosing α in (11) smaller than

half the gap between the best and second best arm (which is possible as |i?(F )| = 1) yields that for
all n ≥ Nα, BEB

n+1 = i?. This proves (9) with g(n) = 0. Using continuity and convexity properties
of K±inf , we then establish that there exists α > 0 and a problem-dependent constant CF > 0 such
that for n ≥ Nα and for all i 6= i?,

Ψn,i

n
≥ wβi + ε =⇒ 1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
≥ CF .

This implies that i /∈ minj 6=i?Wn(i?, j), hence P|n[CTC
n+1 = i | Bn+1 = i?] = 0 for n ≥ Nα.

Therefore, (10) holds with h(n) = 0. A similar argument holds for CTCI
n+1.

Randomized instances Let an+1,i := Pθ∼Πn(i ∈ arg maxj∈[K] θj) be the probability that arm i
is the best arm in a sampled model at round n. Since

P|n[BTS
n+1 6= i?] ≤ (K − 1) max

i 6=i?
an+1,i ≤ (K − 1) max

i6=i?
Pθ∼Πn(θi ≥ θi?) ,

an upper bound on Pθ∼Πn [θi ≥ θi? ] is sufficient to prove (9). We show in Lemma 64 that this can be
obtained by leveraging upper bound on the Boundary Crossing Probability (BCP) of the Dirichlet
sampler, Pθ∼Πn [θi ≥ u] for a fixed threshold u ∈ (0, B). An upper bound on the BCP can be
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obtained using the work of [36] and is given in Theorem 5 for the sake of completeness. Putting
things together yields that, for all n,

Pθ∼Πn [θi ≥ θi? ] ≤ f
(

inf
u∈[0,B]

[(Nn,i? + 2)K−inf(F̃n,i? , u) + (Nn,i + 2)K+
inf(F̃n,i, u)]

)
,

where f(x) = (1 +x)e−x. Using again continuity and concentration (11), we conclude that (9) holds
with g(n) = (K − 1)f

((√
n
K + 2

)
DF
)
, where DF > 0 is a problem dependent constant.

For the challenger, we first observe that

P|n[CRS
n+1 = i | Bn+1 = i?] =

an+1,i

1− an+1,i?
≤ Pθ∼Πn [θi ≥ θi? ]

maxj 6=i? Pθ∼Πn [θj ≥ θi? ]
.

Further upper bounding this quantity to prove (10) requires a lower bound on Pθ∼Πn [θi ≥ θi? ] which
can again be obtained using a lower bound on the BCP. In Appendix G.3 we provide a tight lower
bound on Pθ∼Πn [θi ≥ θi? ] featuring the K±inf functions. It permits to prove that (10) holds with
− log(h(n))/n =+∞ C̃F + o(1) where C̃F > 0 is a problem dependent constant.

The above derivations all use the concentration property (11), which requires the sufficient exploration
property (7). For our deterministic challengers, sufficient exploration is obtained by noticing that
Wn(i, j) can be upper and lower bounded by linear functions of the number of samples. Proving
sufficient exploration is more challenging for a randomized challenger, and existing proofs were
exploiting the symmetry of the Gaussian posterior. In our analysis we show that a coarse lower bound
on the BCP is sufficient to obtain (11), and prove such lower bound for the Dirichlet sampler:

Pθ∼Πn [θi ≥ u] ≥ (1− u/B)
n+1 and Pθ∼Πn [θi ≤ u] ≥ (u/B)

n+1
.

These lower bounds ensure that any arm has some (small) probability of being the challenger thanks
to re-sampling. Without adding {0, B} toHn,i, those probabilities could be equal to zero.

Our analysis is easily amenable to tackle different families of distributions F . This requires continuity
and convexity properties for the correspondingKinf functions, an appropriate concentration result and
further upper and lower bounds on the BCP of the sampler if one wish to analyze randomized algo-
rithms. As an illustration, we show asymptotic β-optimality of the β-EB-TC, β-EB-TCI algorithms
for SPEF with sub-exponential distributions, see Appendix H.

5 Experiments
We assess the empirical performance of our Top Two algorithms on the DSSAT real-world data and
on Bernoulli instances in the moderate regime (δ = 0.01). The stopping rule (2) is used with the
threshold c(n, δ) defined in (4). As Top Two sampling rules, we present results for β-EB-TC, β-EB-
TCI, β-TS-TC and β-TS-TCI with β = 0.5. Additional experiments are available in Appendix I.2:
on the RS challenger whose computational cost prevent it to be evaluated with (4) and on larger sets
of arms (up to K = 1000).

As benchmarks for the sampling rule, we use KL-LUCB with Bernoulli divergence [28] (whose
theoretical guarantees extend to any distribution bounded in [0, 1]), “fixed” sampling which is
an oracle playing with proportions w?(F ) and uniform sampling. We also propose a heuristic
adaptation of the DKM algorithm [13] (which is asymptotically optimal for SPEF) to tackle bounded
distributions, which we denote by Kinf -DKM, and uses forced exploration instead of optimism.
Inspired by the regret minimization algorithm Kinf -UCB [4], we propose its LUCB variant [27],
named Kinf -LUCB. The upper/lower confidence indices are obtained by inverting of K±inf , i.e.

∀i 6= ı̂n, Un+1,i = max
{
u ∈ [µn,i, B] | Nn,iK+

inf(Fn,i, u) ≤ c(n, δ)
}
,

Ln+1,̂ın = min
{
u ∈ [0, µn,̂ın ] | Nn,̂ınK−inf(Fn,̂ın , u) ≤ c(n, δ)

}
.

LUCB-based algorithms [27] use their own stopping rule, namely they stop when Ln+1,̂ın ≥
maxj 6=ı̂n Un+1,j . For Bernoulli distributions, Kinf -LUCB recovers KL-LUCB. While being asymp-
totically optimal for heavy-tailed distributions [3] with an adequate stopping threshold, the Track-
and-Stop algorithm is computationally intractable for bounded distributions as it requires to compute
w?(Fn) at each time n (or on a geometric grid). We hence omit it from our experiments.
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Crop-management problem We benchmark our algorithms on the DSSAT simulator2 [22]. Each
arm corresponds to a choice of planting date and fixed soil conditions (details in Appendix I). To
illustrate the problem’s difficulty we represent an empirical estimate (independent of the runs of our
algorithms) of the yield distributions in Figure 3(b). Since the gaps between means are small, the
identification problem is hard. Moreover, Kinf computations for non-parametric distributions are
costlier than Bernoulli ones (see Appendix I.1), so we only present the results for 100 runs.

Figure 3: Empirical stopping time (a) on scaled DSSAT instances with their density and mean (b).
Lower bound is T ?(F ) log(1/δ). “stars” equal means.

In Figure 3, β-EB-TCI, β-TS-TC and β-TS-TCI slightly outperformKinf -DKM and the fixed (oracle)
sampling rule. Moreover, Kinf -LUCB performs significantly worse than uniform sampling. Due to
the small number of runs, we don’t observe large outliers for β-EB-TC (see Appendix I.2). KL-LUCB
performs ten times worse than Kinf -LUCB, hence we omit it from Figure 3.

Bernoulli instances Next we assess the performance on 1000 random Bernoulli instances with
K = 10 such that µ1 = 0.6 and µi ∼ U([0.2, 0.5]) for all i 6= 1, where we enforce that ∆min ≥ 0.01.
We also study the instance µ = (0.5, 0.45, 0.45), in which ∆min = 0, and perform 1000 runs.

Figure 4: Empirical stopping time on Bernoulli (a) random instances with K = 10 and (b) instance
µ = (0.5, 0.45, 0.45).

In Figure 4(a), we see that β-EB-TCI, β-TS-TC and β-TS-TCI outperform other algorithms. While
this gain is slim compared to Kinf -DKM, the empirical stopping time is twice (resp. three times) as
large for KL-LUCB (resp. uniform sampling). Even when ∆min = 0, Figure 4(b) hints that their
empirical performance might be preserved. Figure 4 confirms the lack of robustness of β-EB-TC,
which is prone to large outliers. For the symmetric instance in Figure 4(b), uniform sampling
outperforms KL-LUCB and perform on par with the “fixed” sampling.

6 Perspectives
We provided a general analysis of Top Two algorithms, including new variants using the EB leader
and TCI challenger, and proved their asymptotic β-optimality on the non-parametric class of bounded

2DSSAT is an Open-Source project maintained by the DSSAT Foundation, see https://dssat.net.
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distributions. On experiments on distributions coming from a real world application, several Top Two
variants (in particular β-TS-TC and β-EB-TCI) proved more effective than all baselines. Furthermore,
β-EB-TCI is computationally not costlier than computing the stopping rule.

As in previous work on Top Two methods our result only characterizes the asymptotic performance of
the algorithms, and obtaining bounds on the sample complexity for any δ that would reflect their good
empirical performance is a most pressing open question. Our work also hints at what is needed to
obtain non-asymptotic guarantees: the only variant for which the empirical behavior does not reflect
the asymptotic bound is β-EB-TC, which is also the most greedy variant. Algorithms using a sampler
naturally explore, and the penalized version β-EB-TCI successfully corrects the shortcomings of
β-EB-TC by penalizing over-sampling. Quantifying the amount of exploration required by Top Two
algorithms should also allow the removal of the hypothesis ∆min > 0 from Theorem 1.

Finally, Top Two algorithms are promising algorithms to tackle the setting of fixed budget identifica-
tion, in which the algorithms have to stop at a given time and should then make as few mistakes as
possible. As their sampling rule is anytime (i.e. independent of δ), Top Two algorithms might also
have theoretical guarantees for BAI in the fixed-budget setting or even the anytime one, in which
guarantees on the error probability should be given at all time.
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A Outline

The appendices are organized as follows:

• Notation are summarized in Appendix B.

• We present a unified analysis of Top Two algorithms in Appendix C, which highlights key
properties on the leader and challenger mechanisms.

• In Appendix D, we analyze several instances for the leader and the challenger mechanisms.

• In Appendix E, we show Lemma 2 and derive results from concentration on sub-Gaussian
random variables.

• Appendix F gathers key properties on K±inf , including new ones which are required for BAI.

• In Appendix G, we show lower and upper bounds on Boundary Crossing Probability (BCP)
and on Pn[θi ≥ θj ] for the Dirichlet sampler.

• The generalization to single-parameter exponential families is done in Appendix H.

• Implementation details and additional experiments are presented in Appendix I.

Table 1: Notation for the setting.

Notation Type Description

K N Number of arms
B R?+ Upper bound for bounded distributions
P(R) Probability distributions over R
F Set of distributions, e.g. bounded distributions on [0, B]
Fi F CDF of the distribution of arm i ∈ [K]
F FK F := (Fi)i∈[K]

m F → R Mean operator, m(F ) := EX∼F [X]
I ⊆ R Interval of means I := {m(F ) | F ∈ F}, e.g. [0, B] for bounded
µi I̊ Mean of arm i ∈ [K], i.e. µi := m(Fi)

µ (I̊)K Vector of means, µ := (µi)i∈[K]

i? FK → [K] Best arm operator, i?(F ) ∈ arg maxi∈[K] µi
T ?(F ) R?+ Asymptotic characteristic time
T ?β (F ) R?+ Asymptotic β-characteristic time
w?(F ) 4K Asymptotic optimal allocation
w?β(F ) 4K Asymptotic β-optimal allocation

B Notation

We recall some commonly used notation: the set of integers [n] := {1, · · · , n}, the complement X
and interior X̊ of a set X , the Kullback-Leibler (KL) divergence KL(F,G) between two distributions
F and G, the KL for Bernoulli distributions kl, the Kinf K±inf(F, u) between a distribution F
and a scalar u, Landau’s notation o and O and the K-dimensional probability simplex 4K :={
w ∈ RK+ | w ≥ 0,

∑
i∈[K] wi = 1

}
, the infinity norm ‖ · ‖∞, i.e. ‖f‖∞ = supx∈R f(x). For all

Fn-measurable set A, we denote by P|n[A] := P[A | Fn] its probability. For all Fn-measurable set
Aθ depending on θ ∼ Πn, we denote by Pn[Aθ] := Pθ∼Πn [Aθ | Fn]. In Table 1, we summarize
problem-specific notation. Table 2 gathers notation for the algorithms.
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Table 2: Notation for algorithms.

Notation Type Description

Bn [K] Leader at time n
Cn [K] Challenger at time n
In [K] Arm sampled at time n
β (0, 1) Probability of sampling the leader instead of the challenger

Xn,In I Sample observed at the end of time n, i.e. Xn,In ∼ FIn
Un Internal randomization at time n
Fn History at time n, i.e. Fn := σ(U1, I1, X1,I1 , · · · , In, Xn,In , Un+1)
ı̂n [K] Arm recommended after time n, i.e. ı̂n ∈ arg maxi∈[K] µn,i
τδ N Sample complexity (stopping time of the algorithm)
ı̂ [K] Arm recommended by the algorithm

c(n, δ) N× (0, 1)→ R?+ Stopping threshold function
Nn,i N Number of pulls of arm i at time n, i.e. Nn,i :=

∑
t∈[n] 1 (It = i)

Fn,i F Empirical distribution, i.e. Fn,i := 1
Nn,i

∑
t∈[n] δXt,It1 (It = i)

µn,i I Empirical mean, i.e. µn,i := m(Fn,i)
Wn(i, j) R+ Empirical transportation between arms i and j, defined in (1)

Πn Sampler at time n, e.g. Dirichlet sampler for bounded
θ IK Observation from the sampler, i.e. θ ∼ Πn

an,i [0, 1] an,i := Pn−1[i ∈ arg maxj∈[K] θj ]
ψn,i [0, 1] Probability of sampling arm i at time n: ψn,i := P|(n−1)[In = i]
Ψn,i R?+ Cumulative sampling probability: Ψn,i :=

∑
t∈[n] ψt,i

B̂n [K] Effective leader at time n
Ĉn [K] Effective challenger at time n

C Unified analysis of Top Two algorithms
In this section, we present a unified analysis of Top Two algorithms (Appendix C.2). The analysis is
split into three parts that will highlight how to explore (Appendix C.3), how to converge towards the β-
optimal allocation (Appendix C.4) and finally proving asymptotic optimality (Appendix C.5).

In this section, we identify the required properties that the leader and the challenger should satisfy. In
Appendix D, we prove that those properties are verified by the EB and TS leader and the TC, TCI and
RS challenger for bounded distributions. In Appendix H, we discuss the proofs of those properties
for single-parameter exponential families.

The general proof strategy follows that first proposed by [35] for the TTEI algorithm and later also
used by [39] for TTTS and T3C. However we contribute with a new, modular proof structure which
furthermore get rids of several Gaussian-specific arguments.

Striving to tackle simultaneously bounded distributions (Appendix F) and single-parameter ex-
ponential families (Appendix H), we need to introduce some notation to unify both formulation
(Appendix C.1).

C.1 Generic asymptotic β-optimality
In the case of single-parameter exponential families, a distribution F ∈ F is characterized by its
mean parameter m(F ) ∈ R. Therefore, convergence/continuity results can be formulated directly
with the | · | norm.

For general bounded distributions, it is not possible to characterize them by using a scalar (or vector)
parameter. Therefore, we need to consider the space of probability measures on (R,B(R)) with
the topology of weak convergence of measures, denoted by P(R). Recall that weak convergence
is equivalent to the convergence of the respective cdfs for the infinity norm ‖ · ‖∞, defined as
‖f‖∞ = supx∈R f(x).

To unify both approach, we introduce an operator T from F to a topological space, which associates
the distribution F ∈ F with a transformation T (F ) that characterizes it. When considering single-
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parameter exponential families, T coincides with the mean operator m : F 7→ EF [X]. For bounded
distributions, T will be the identity. Moreover, we define T (F ) := (T (Fi))i∈[K] for all F ∈ FK
and T (FK) :=

{
T (F ) | F ∈ FK

}
.

Let I ⊆ R be the interval of means I := {m(F ) | F ∈ F}. The functions (F, u) 7→ K±inf(F, u) are
defined on F × I . Two archetypal examples for I are I = [0, B] (bounded, Bernoulli, Beta, etc) and
I = R (Gaussian, etc).

Condition on the means We detail the assumptions on the means of F ∈ FK under which Top
Two algorithms can be studied.

Assumption 1. There is a unique best arm denoted by i?(F ) and the means are away from the
boundary, i.e. µi := m(Fi) ∈ I̊ for all i ∈ [K].

The first part of Assumption 1 is a standard assumption in BAI problem, where a unique best arm has
to be identified. Indeed, in the presence of two best arms existing algorithms would only stop with a
small probability as they would try to statistically distinguish two identical distributions. In order to
circumvent this hurdle, one can relax the BAI problem in which the goal is to find one arm which
is ε-close to the best arm, for some parameter ε > 0. When it comes to asymptotic optimality, this
setting is known to be much more complex than standard BAI [12, 25].

The second part of Assumption 1 is also standard, as we require the distribution to have mass away
from the boundary. When I = R, the condition µi ∈ I̊ = R is always satisfied since we consider
finite means. When I = [0, B], the assumption µi ∈ (0, B) is often made when studying Bernoulli
or bounded distributions. For the bounded setting, this excludes δB and δ0, where δx denotes the
Dirac distributions in x. Since those requirements are mild, we consider that Assumption 1 holds in
the following, without mentioning it further.

Assumption 2. All the arms have distinct means, i.e. ∆min(F ) := mini 6=j |µFi − µFj | > 0.

Requiring ∆min > 0, is stronger than the unique best arm condition from Assumption 1. While this
is a unusual requirement to study BAI problem, previous works on Top Two algorithms [38, 35, 39]
also supposed that ∆min > 0. Our unified analysis of Top Two algorithms highlights the role of this
condition in the analysis. It is solely used to prove sufficient exploration (Appendix C.3). Provided
enough exploration, the convergence towards the β-optimal allocation (Appendix C.4) only relies on
Assumption 1.

As we aim to shed light on the role of Assumption 2 in the analysis, we will explicitly highlight where
it is used in the proof of sufficient exploration. The empirical performance of Top Two algorithms
on instances where ∆min = 0 is assessed in Appendix I.2.2. In Appendix D.3, we discuss possible
relaxations of this Assumption for some leaders and challengers.

Transportation costs and β-optimal allocation With the notation introduced above, the trans-
portation cost between arms (i, j) ∈ [K]2 for an allocation w ∈ 4K rewrites as

Ci,j(T (F ), w) := inf
u∈I

{
wiK−inf(T (Fi), u) + wjK+

inf(T (Fj), u)
}
, (12)

and the empirical transportation cost rewrites as

1

n
Wn(i, j) = Ci,j

(
T (Fn),

Nn
n

)
. (13)

Similarly, the β-characteristic time and β-optimal allocation

T ?β (F )−1 := max
w∈4K :wi?(F )=β

min
j 6=i?(F )

Ci?(F ),j(T (F ), w) ,

w?β(F ) := arg max
w∈4K :wi?(F )=β

min
j 6=i?(F )

Ci?(F ),j(T (F ), w) .

Property 1 requires w?β(F ) to be a singleton. For single-parameter exponential families, it is well
known that Property 1 holds [38]. For bounded distribution, we showed it in Lemma 61. As Property 1
holds for the distributions of interest, we won’t mention it further.

Property 1. For all F ∈ FK satisfying Assumption 1, w?β(F ) is a singleton.
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To ease the notation, in the sequel we denote the unique β-optimal allocation bywβ = (wβi )i∈[K]. For
an algorithm to be asymptotically β-optimal, its empirical allocation (Nn,i/n)i∈[K] should converge
towards wβ .

C.2 Generic Top Two algorithms
The σ-algebra Fn := σ(U1, I1, X1,I1 , · · · , In, Xn,In , Un+1), called history, encompasses all the
information available to the agent at time n and the internal randomization denoted by (Ut)t∈[n+1],
which is independent of everything else. For all Fn-measurable set A, we denote by P|n[A] := P[A |
Fn] its probability. As most BAI algorithms, out methods pull each arm once for the initialization.
At time n+ 1, a Top Two sampling rule outputs an arm In+1 which is Fn-measurable. The choice
In+1 is defined by two mechanisms: the choice of a leader Bn+1 ∈ [K] which is Fn-measurable and
the choice of the challenger Cn+1 ∈ [K] \ {Bn+1} is Fn-measurable.

Following the proof strategy first introduced by [35], our goal is to upper bound the expectation of the
convergence time. For ε > 0, the random variable T εβ (already defined in (5)) quantifies the number
of samples required for the empirical allocations Nn

n to be ε-close to wβ :

T εβ := inf

{
T ≥ 1 | ∀n ≥ T,

∥∥∥∥Nnn − wβ
∥∥∥∥
∞
≤ ε
}
.

To this end, we first leverage generic properties of Top Two algorithms to understand how the
average probability to select an arm can converge to wβ . We denote by ψn,i := P|(n−1)[In = i], the
probability that an arm is sampled at round n, and by Ψn,i :=

∑
t∈[n] ψt,i its cumulative version. For

a Top Two sampling rule, we have

ψn,i = βP|(n−1)[Bn = i] + (1− β)
∑
j 6=i

P|(n−1)[Bn = j]P|(n−1)[Cn = i|Bn = j] . (14)

Mean probability of being sampled Even before specifying the leader and the challenger mecha-
nisms, we can study the general properties of Top Two algorithms, given in Lemmas 3 and 4. While
being obtained by simple algebra, they highlight quite naturally the respective roles of the leader and
the challenger mechanisms in order to achieve asymptotic β-optimality.

Lemma 3 upper bounds the deviation between the fixed allocation β and the mean probability of
sampling the optimal arm Ψn,i?(F )

n .

Lemma 3. For all M ∈ N∗,∣∣∣∣Ψn,i?(F )

n
− β

∣∣∣∣ ≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?(F )] . (15)

Proof. Let i? = i?(F ) and M ∈ N∗. Summing (14) for i? and using P|(t−1)[Bt = i?] = 1 −
P|(t−1)[Bt 6= i?] yields

Ψn,i?

n
− β =

1− β
n

∑
t∈[n]

∑
j 6=i?

P|(t−1)[Bt = j]P|(t−1)[Ct = i?|Bt = j]− β

n

∑
t∈[n]

P|(t−1)[Bt 6= i?] .

Dropping the second negative term, splitting the sum into two and using that P|(t−1)[Ct = i?|Bt =
j] ≤ 1 and

∑
j 6=i? P|(t−1)[Bt = j] = P|(t−1)[Bt 6= i?], we obtain the following upper bound

Ψn,i?

n
− β ≤ (1− β)

(
M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?]

)
.

Dropping the first positive term and splitting the sum into two, we obtain the following lower bound

Ψn,i?

n
− β ≥ −β

(
M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?]

)
.

Combining the upper and the lower bound and using that max{β, 1− β} ≤ 1 yields the result.
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Since an asymptotically β-optimal algorithm should allocate a proportion β of its samples to the best
arm, the right-hand side of (15) should vanish. Cesaro’s theorem yields the result when

lim
t→+∞

P|(t−1)[Bt 6= i?(F )] = 0 .

This means that a good leader should asymptotically identify i?(F ). As we will see, the convergence
almost surely won’t be enough to obtain an upper bound on EF [τδ]. To that end, we will need to
specify the rate of convergence.

Lemma 4 upper bounds the probability of sampling an arm different from the optimal one.

Lemma 4. For all M ∈ N∗ and i 6= i?(F ),

Ψn,i

n
≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?(F )] +
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i?(F )] . (16)

Proof. Let i? = i?(F ). Using (14) for i 6= i? and P[Cn = i|Bn = j] ≤ 1, we have

ψn,i ≤ βP|(n−1)[Bn = i] + (1− β)
∑

j /∈{i,i?}

P|(n−1)[Bn = j]

+ (1− β)P|(n−1)[Bn = i?]P|(n−1)[Cn = i|Bt = i?]

≤ max{β, 1− β}P|(n−1)[Bn 6= i?] + (1− β)P|(n−1)[Bn = i?]P|(n−1)[Cn = i|Bn = i?]

≤ P|(n−1)[Bn 6= i?] + P|(n−1)[Cn = i|Bn = i?]

where we used that
∑
j 6=i? P|(n−1)[Bn = j] = P|(n−1)[Bn 6= i?], max{β, 1 − β} ≤ 1 and

P|(n−1)[Bn = i?] ≤ 1. Summing over t ∈ [n] after splitting the sum into two, we obtain

Ψn,i

n
≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?] +
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i?]

Given a good leader, the first two terms on the right-hand side of (16) vanish. An asymptotically
β-optimal algorithm should allocate a proportion wβi of its samples to the sub-optimal arms. As∑
i∈[K]

Ψn,i
n = 1, Cesaro’s theorem yields the result when

lim
t→+∞

P|(t−1)[Ct = i|Bt = i?(F )] = wβi .

Given a good leader, a good challenger should asymptotically have a probability wβi of pulling a
sub-optimal arm i. Likewise, a rate of convergence will be necessary to upper bound EF [τδ].

From Ψn,i to Nn,i The above results feature Ψn,i
n , which is the mean probability of an arm to be

sampled. Thanks to Lemma 5, it can be linked to the empirical allocation Nn,i
n . Its proof, deferred

to Appendix E.2, is a direct consequence of concentration inequalities for sub-Gaussian random
variables. A similar result was already derived in the work of [35], who first introduced this style of
W -based concentration results, which we will use also in Appendix D.

Lemma 5. There exists a sub-Gaussian random variable W1 such that for all (n, i) ∈ N× [K]

|Nn,i −Ψn,i| ≤W1

√
(n+ 1) log(e+ n) a.s. . (17)

In particular, E
[
eλW1

]
< +∞ for all λ > 0.

In the following, we take W1 as in Lemma 5. Since E
[
eλW1

]
< +∞ for all λ > 0, we have in

particular that for all N = Poly(W1), E [N ] < +∞.
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Convergence towards β-optimal allocation In Appendix C.5, we show that if EF
[
T εβ

]
< +∞

for all ε small enough, then

lim sup
δ→0

EF [τδ]

log
(

1
δ

) ≤ T ?β (F ) .

The proof of EF
[
T εβ

]
< +∞ can be naturally split into two distinct parts. In Appendix C.3, under

Assumption 2, we show that any Top Two algorithm ensures sufficient exploration provided its
leader and challenger each satisfy one property. In Appendix C.4, given sufficient exploration,
the convergence of the empirical allocation towards the β-optimal one is proven for any Top Two
algorithm provided its leader and challenger pairs each satisfy one property.

C.3 How to explore
In this section, we identify one property for the leader (Property 2) and one property for the challenger
(Property 3) under which we prove that the corresponding Top Two algorithm ensures sufficient
exploration, when Assumption 2 holds. More precisely, we prove in Lemma 7 that

∃N1s.t. EF [N1] < +∞ : ∀n ≥ N1, min
i∈[K]

Nn,i ≥
√
n/K

We discuss other algorithmic choices that could ensure sufficient exploration without Assumption 2
in Appendix D.3. This section borrows several elements from existing proofs of sufficient exploration
for Top Two algorithms in Gaussian bandits [35, 39] but we managed to simplify the argument in
order to put forward the key properties needed from a leader and a challenger. First, our generic
analysis needs to define an appropriate notion of effective leader and challenger.

Effective leader and challenger For an algorithm to alleviate under-sampling some arms, it should
have a strictly positive probability of sampling them. In Top Two algorithms, the choice of the arm
to pull In is defined by the leader Bn and the challenger Cn. Due to possible randomization, it is
not trivial to manipulate Bn and Cn. Therefore, we define the effective leader B̂n and the effective
challenger Ĉn as the arms maximizing the respective probability of being sampled:

B̂n ∈ arg max
i∈[K]

P|(n−1)[Bn = i] and Ĉn ∈ arg max
i6=B̂n

P|(n−1)[Cn = i|Bn = B̂n] , (18)

where Ĉn is defined conditioned on the effective leader B̂n. We assume that ties are broken uniformly
at random. Note that they are fully determined by the leader and challenger mechanisms.

Lemma 6 gives a strictly positive lower bound on the probability of sampling B̂n and Ĉn.

Lemma 6. Let ψmin := 1
K min{β, 1−β

K−1}. Then, ψn,i ≥ ψmin for all i ∈ {B̂n, Ĉn}.

Proof. Since
∑
i∈[K] P|(n−1)[Bn = i] = 1 and B̂n ∈ arg maxi∈[K] P|(n−1)[Bn = i], we have

ψn,B̂n ≥ βP|(n−1)[Bn = B̂n] =
β

K
≥ ψmin .

Similarly,
∑
i∈[K] P|(n−1)[Cn = i|Bn = B̂n] = 1 and Ĉn ∈ arg maxi 6=B̂n P|(n−1)[Cn = i|Bn =

B̂n] yields that P|(n−1)[Cn = Ĉn|Bn = B̂n] ≥ 1
K−1 . Therefore,

ψn,Ĉn ≥ (1− β)P|(n−1)[Bn = B̂n]P|(n−1)[Cn = Ĉn|Bn = B̂n] ≥ 1− β
K(K − 1)

≥ ψmin .

In light of Lemma 6, the sufficient exploration can be proven if we show that either B̂n or Ĉn is
among the under-sampled arms if some still exists. Before formalizing the properties required by the
leader and challenger pair to ensure sufficient exploration, we introduce the relevant notation.

Given an arbitrary threshold L ∈ R∗+, we define the sampled enough set and its arms with highest
mean (when not empty) as

SLn := {i ∈ [K] | Nn,i ≥ L} and I?n := arg max
i∈SLn

µi . (19)
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Assumption 2 ensures that I?n is unique. To highlight why it is necessary, we view I?n as a set with
potentially multiple values, and derive properties without assuming that I?n is a singleton. At time n,
SLn can only be non-empty for L ≤ n, hence it depends explicitly on n.

To prove sufficient exploration, we aim at finding a threshold L(n) such that SL(n)
n = [K] for n ≥ Ñ0

where EF [Ñ0] < +∞. We proceed by contradiction. The idea is to show that if some arms are still
highly under-sampled, then either B̂n or Ĉn will be mildly under-sampled. Since they have a strictly
positive probability of being sampled (Lemma 6), this would yield a contradiction by the pigeonhole
principle. We define the highly and the mildly under-sampled sets

ULn := {i ∈ [K] | Nn,i <
√
L} and V Ln := {i ∈ [K] | Nn,i < L3/4} . (20)

The choice of
√
L and L3/4 is arbitrary and we could consider instead Lα1 and Lα2 with 0 < α1 <

α2 < 1. Note that ULn = S
√
L

n and V Ln = SL3/4

n where SLn is the set defined in (19). We are now
ready to state the properties that the leader and the challenger should satisfy in order to show sufficient
exploration under Assumption 2.

Exploring with leader and challenger pair We describe the properties that a good
leader/challenger should have to ensure sufficient exploration. In order for the challenger to explore,
a good leader should first identify the best arm among the arms that are sampled enough (Property 2).
Then, given a good leader, a good challenger should enforce exploration on the arms that are not
sampled enough yet when the leader doesn’t do it already (Property 3).

Property 2 states that if B̂n+1 is sampled enough, then B̂n+1 is an arm with highest mean among the
sampled enough arms.

Property 2. There exists L0 with EF [(L0)α] < +∞ for all α > 0 such that if L ≥ L0, for all n
such that SLn 6= ∅, B̂n+1 ∈ SLn implies B̂n+1 ∈ I?n.

Property 2 holds for the EB leader (Lemma 17) and the TS leader (Lemma 26).

Property 3 states that if some arms are still highly under-sampled, i.e. ULn 6= ∅, then having sampled
B̂n+1 enough implies that Ĉn+1 is mildly under-sampled or has highest true mean among the sampled
enough arms.

Property 3. Let Bn+1 be a leader satisfying Property 2 and Cn the associated challenger. Let
J ?n = arg max

i∈V Ln
µi. There exists L1 with EF [L1] < +∞ such that if L ≥ L1, for all n such that

ULn 6= ∅, B̂n+1 /∈ V Ln implies Ĉn+1 ∈ V Ln ∪
(
J ?n \

{
B̂n+1

})
.

Property 3 holds for the TC challenger (Lemma 19), the TCI challenger (Lemma 21) and the RS
challenger (Lemma 28).

Provided Assumption 2 holds, Lemma 7 shows that sufficient exploration is achieved for any Top
Two algorithm satisfying Properties 2 and 3.

Lemma 7. Assume Assumption 2 holds. Under a Top Two algorithm whose leader Bn+1 and
challenger Cn+1 satisfy Properties 2 and 3, there exist N0 with EF [N0] < +∞ such that for all
n ≥ N0 and all i ∈ [K], Nn,i ≥

√
n
K .

Proof of Lemma 7 When Assumption 2 holds, combining Properties 2 and 3 and Lemma 6 yields
Lemma 8.

Lemma 8. Assume Assumption 2 holds. Under a Top Two algorithm whose leader Bn+1 and
challenger Cn+1 satisfy Properties 2 and 3, there exists L2 with EF [L2] < +∞ such that if L ≥ L2,
for all n, ULn 6= ∅ implies that there exists Jn+1 ∈ V Ln such that ψn+1,Jn+1 ≥ ψmin.

Proof. Let J ?n = arg max
i∈V Ln

µi. Under Assumption 2, we know that |J ?n | = 1. Let L0 as in

Property 2. If L ≥ L
4/3
0 , for all n, B̂n+1 ∈ V Ln implies J ?n = {B̂n+1}. Let L1 as in Property 3.

Therefore, we have if L ≥ L2 := max{L1, L
4/3
0 }, for all n such that ULn 6= ∅, B̂n+1 /∈ V Ln

implies Ĉn+1 ∈ V Ln . By Lemma 6, we know that ψn+1,i ≥ ψmin for all i ∈ {B̂n+1, Ĉn+1}. Since
EF [L2] ≤ EF [L1] + EF [L

4/3
0 ] < +∞, this concludes the proof.
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Using concentration on ‖Tn −Ψn‖∞ (Lemma 5) and the pigeonhole principle yield a contradiction
for a large enough L. Therefore, the set of highly under-sampled arms is empty (Lemma 9). This
technical result was proven in [39] for TTTS (Lemma 11) and T3C (Lemma 18). For the sake of
completeness, we include the proof.

Lemma 9. Assume Assumption 2 holds. Under a Top Two algorithm whose leader Bn+1 and
challenger Cn+1 satisfy Properties 2 and 3, there exists L3 with EF [L3] < +∞ such that for all
L ≥ L3, U

L
bKLc is empty.

Proof. Assume Assumption 2 holds and we are given a Top Two algorithm whose leader Bn+1 and
challenger Cn+1 satisfy Properties 2 and 3. Let L2 as in Lemma 8, with EF [L2] < +∞. We proceed
by contradiction, and we assume that ULbKLc is not empty. Then for any 1 ≤ ` ≤ bKLc, UL` and V L`
are non empty as well. There exists a deterministic L4 such that for all L ≥ L4, bLc ≥ KL3/4. In
particular, EF [L4] = L4 < +∞. In the following, we consider L ≥ max{L2, L4}.

Using the pigeonhole principle, there exists some i ∈ [K] such that NbLc,i ≥ L3/4. Thus, we have∣∣∣V LbLc∣∣∣ ≤ K − 1. Next, we prove
∣∣∣V Lb2Lc∣∣∣ ≤ K − 2. Otherwise, since UL` is non-empty for any

bLc+ 1 ≤ ` ≤ b2Lc, thus by Lemma 8, there exists J`+1 ∈ V L` such that ψ`+1,J`+1
≥ ψmin. Since

V L` ⊂ V LbLc, we have ∑
i∈V L`

ψ`+1,i ≥ ψmin and
∑
i∈V LbLc

ψ`+1,i ≥ ψmin .

Therefore, ∑
i∈V LbLc

(
Ψb2Lc+1,i −ΨbLc+1,i

)
=

b2Lc∑
`=bLc+1

∑
i∈V LbLc

ψ`+1,i ≥ ψminbLc

Then, using Lemma 5, there exists L5 = Poly (W1) such that for all L ≥ max{L2, L4, L5}, we
have ∑

i∈V LbLc

(
Nb2Lc+1,i −NbLc+1,i

)
≥
∑
i∈V LbLc

(
Ψb2Lc+1,i −ΨbLc+1,i − 2W1

√
(b2Lc+ 1) log (e+ b2Lc+ 1)

)
≥ ψminbLc − 2KW1

√
(b2Lc+ 1) log (e+ b2Lc+ 1) .

Then, there exists L3 = Poly (W1) such that for all L ≥ L3 := max{L2, L4, L5, L6},∑
i∈V LbLc

(
Nb2Lc+1,i −NbLc+1,i

)
≥ KL3/4 ,

which implies that we have one arm in V LbLc that is pulled at least L3/4 times between bLc+ 1 and

b2Lc, thus
∣∣∣V Lb2Lc∣∣∣ ≤ K − 2.

By induction, for any 1 ≤ k ≤ K, we have
∣∣∣V LbkLc∣∣∣ ≤ K − k, and finally ULbKLc = ∅ for all L ≥ L3.

Since E[eλW1 ] < +∞ for all λ > 0, we have in particular that EF [Poly(W1)] < +∞. Since

EF [L3] ≤
∑

i∈{2,4,5,6}

EF [Li] < +∞ ,

this concludes the proof.

Let L3 as Lemma 9. Defining N0 = KL3, we have EF [N0] = KEF [L3] < +∞. For all n ≥ N0,
we let L = n

K , then by Lemma 9, we have ULbKLc = U
n/K
n is empty, which concludes the proof of

Lemma 7.
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C.4 How to converge
In this section, we identify one property for the leader (Property 5) and one property for the challenger
(Property 6) under which we prove that the convergence time of the corresponding Top Two algorithm
has finite expectation expectation (Lemma 10), provided sufficient exploration occurs. Sufficient
exploration is formalized by Property 4.

Property 4. There exist N1 with EF [N1] < +∞ such that for all n ≥ N1 and all i ∈ [K],
Nn,i ≥

√
n
K .

For a Top Two algorithm whose leader Bn and challenger Cn satisfy Properties 2 and 3, Lemma 7
shows that Property 4 holds provided that Assumption 2 holds. While Assumption 2 allows to
ensure sufficient exploration, other algorithmic choices could ensure this property without having the
constraint that all means are distinct. We discuss algorithmic fixes in Appendix D.3. As mentioned
above the dependency

√
n is arbitrary and we could consider nα with α ∈ (0, 1). A similar Lemma 7

could be obtained for this choice.

Let SLn := {i ∈ [K] | Nn,i ≥ L} as in (19) and N1 as in Property 4. Using Assumption 1, we have
that arg max

i∈S
√
n/K

n

µi = i?(F ) for all n ≥ N1.

Converging with leader and challenger pair We describe the properties that a good
leader/challenger should have to ensure convergence towards the β-optimal allocation, assuming
Property 4 holds. In order for the challenger to converge, a good leader should first identify the best
arm i?(F ) (Property 5). Then, given a good leader, a good challenger should sample each sub-optimal
arm with probability wβi : in particular, when the mean probability of sampling a sub-optimal arm i

exceeds wβi , this arm should have a small probability of being sampled again (Property 6).

Property 5. Assume Property 4 holds. There exists N2 with EF [N2] < +∞ such that for all
n ≥ N2,

P|n[Bn+1 6= i?(F )] ≤ g(n) ,

where g : N? → (0,+∞) such that g(n) =+∞ o(n−α) with α > 0.

Property 5 holds for the EB leader (Lemma 18) and the TS leader (Lemma 27).

Property 6. Assume Property 4 holds. Let Bn+1 be a leader satisfying Property 5 and Cn+1 the
associated challenger. Let ε ∈ (0, ε0(F )] where ε0(F ) > 0 is a problem dependent constant. There
exists N3 with EF [N3] < +∞ such that for all n ≥ N3 and all i 6= i?(F ),

Ψn,i

n
≥ wβi + ε =⇒ P|n[Cn+1 = i | Bn+1 = i?(F )] ≤ h(n) , (21)

where h : N? → (0,+∞) such that h(n) =+∞ o(n−α) with α > 0.

Property 6 holds for the TC challenger (Lemma 20), the TCI challenger (Lemma 22) and the RS
challenger (Lemma 29).

Provided that Property 4 holds, Lemma 10 shows that EF [T εβ ] < +∞ for any Top Two algorithm
satisfying Properties 5 and 6.

Lemma 10. Assume Property 4 holds. Let ε ∈ (0, ε1(F )] where ε1(F ) > 0 is a problem dependent
constant. Let T εβ as in (5). Under a Top Two algorithm whose leader Bn+1 and challenger Cn+1

satisfy Properties 5 and 6, we have EF [T εβ ] < +∞.

Proof of Lemma 10 We first establish in Lemma 11 the convergence towards the optimal allocation
for the best arm, wβi?(F ) = β.

Lemma 11. Let ε > 0. Assume Property 4 holds. Under a Top Two algorithm whose leader Bn
satisfies Property 5, there exists N4 with EF [N4] < +∞ such that for all n ≥ N4,∣∣∣∣Nn,i?(F )

n
− β

∣∣∣∣ ≤ ε .
Proof. Let i? = i?(F ) and ε > 0. Let N1 as in Property 4 and N2 as in Property 5.
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For all n ≥ max{N1, N2}, we have P|(n−1)[Bn 6= i?] ≤ g(n− 1). Let M ≥ max{N1, N2}. Using
Lemma 3, we have∣∣∣∣Ψn,i?

n
− β

∣∣∣∣ ≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?] ≤ M − 1

n
+

1

n

n∑
t=M

g(t− 1)

By Property 5, g(n) = o(n−α) with α > 0. Using Cesaro’s theorem, there exists N5 = Poly(W1)
such that for all n ≥ max{N1, N2, N5},

M − 1

n
≤ ε

4
and

1

n

n∑
t=M

g(t− 1) ≤ ε

4
.

Therefore, we have shown that
∣∣∣Ψn,i?n − β

∣∣∣ ≤ ε
2 for all n ≥ max{N1, N2, N5}. Using Lemma 5, we

have

∀n ∈ N,
∣∣∣∣Nn,i?n

− Ψn,i?

n

∣∣∣∣ ≤W1

√
n+ 1

n2
log(e+ n) .

Therefore, there exists N6 = Poly (W1) such that for all n ≥ N4 := max{N1, N2, N5, N6},∣∣∣∣Nn,i?n
− Ψn,i?

n

∣∣∣∣ ≤ ε

2
.

Using the triangular inequality, we obtain∣∣∣∣Nn,i?n
− β

∣∣∣∣ ≤ ε .
Finally N4 verifies the condition EF [N4] <∞ since

EF [N4] ≤
∑

i∈{1,2,5,6}

EF [Ni] < +∞ .

We then prove in Lemma 12 the convergence towards the optimal allocation for all arms. We notably
use the previous convergence result established for the optimal arm.

Lemma 12. Assume Property 4 holds. Let ε ∈ (0, ε1(F )] where ε1(F ) > 0 is a problem dependent
constant. Under a Top Two algorithm whose leader Bn and challenger Cn satisfy Properties 5 and 6,
there exists N5 with EF [N5] < +∞ such that for all n ≥ N5,

∀i ∈ [K],

∣∣∣∣Nn,in − wβi

∣∣∣∣ ≤ ε .
Proof. Let i? = i?(F ). Let ε0 = ε0(F ) and N3 as in Property 6 and ε ∈ (0, ε0]. Let N1 and N2 as
in Properties 4 and 5. Let N4 as in Lemma 11. For all n ≥ maxi∈[4]Ni, we have

∣∣∣Nn,i?n − β
∣∣∣ ≤ ε

and for all i 6= i?,

Ψn−1,i

n− 1
≥ wβi + ε =⇒ P|(n−1)[Cn = i | Bn = i?] ≤ h(n− 1) .

Let M ≥ maxi∈[4]Ni. By Properties 5 and 6, g(n) = o(n−α) with α > 0 and h(n) = o(n−α) with
α > 0. Using Cesaro’s theorem, there exists a deterministic N6 such that for all n ≥ N6,

M − 1

n
≤ ε ,

1

n

n∑
t=M

g(t− 1) ≤ ε and
1

n

n∑
t=M

h(t− 1) ≤ ε .
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In particular, EF [N6] = N6 < +∞. Let tn−1,i(ε) = max
{
t ≤ n | Ψt−1,i

n−1 ≤ w
β
i + ε

}
. Using

Lemma 4 and Ψt−1,i

n−1 ≤
Ψt−1,i

t−1 for t ≤ n, we obtain for all n ≥ maxi∈[4]∪{6}Ni

Ψn,i

n
≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?] +
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i?]

≤ ε+
1

n

n∑
t=M

g(t− 1) +
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i?]1

(
Ψt−1,i

n− 1
≥ wβi + ε

)

+
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i?]1

(
Ψt,i

n− 1
≤ wβi + ε

)

≤ 2ε+
1

n

n∑
t=M

h(t− 1) +
1

n

tn,i(ε)∑
t=M

P|(t−1)[Ct = i|Bt = i?]1

(
Ψt−1,i

n− 1
≤ wβi + ε

)
≤ 3ε+

Ψtn−1,i(ε),i

n− 1

≤ wβi + 4ε

As a similar upper bound was already shown in the proof of Lemma 11, we obtain Ψn,i
n ≤ wβi + 4ε

for all i ∈ [K] and all n ≥ maxi∈[4]∪{6}Ni.

Since Ψn,i
n and wβi sum to 1, we obtain for all n ≥ maxi∈[4]∪{6}Ni and all i ∈ [K],

Ψn,i

n
= 1−

∑
j 6=i

Ψn,j

n
≥ 1−

∑
j 6=i

(
wβj + 4ε

)
= wβi − 4(K − 1)ε .

Therefore, for all n ≥ maxi∈[4]∪{6}Ni and all i ∈ [K],
∣∣∣Ψn,in − wβi

∣∣∣ ≤ 4(K − 1)ε .

Using Lemma 5, we have for all n ∈ N and all i ∈ [K],
∣∣∣Nn,in − Ψn,i

n

∣∣∣ ≤ W1

√
n+1
n2 log(e+ n) ,

hence there exist N7 = Poly (W1) such that for all n ≥ N5 := maxi∈[4]∪{6,7}Ni and all i ∈ [K],∣∣∣∣Nn,in − Ψn,i

n

∣∣∣∣ ≤ ε .
Using the triangular inequality, we obtain that for all n ≥ N5 and all i ∈ [K],∣∣∣∣Nn,in − wβi

∣∣∣∣ ≤ (4K − 3)ε .

Since
EF [N5] ≤

∑
i∈[4]∪{6,7}

EF [Ni] < +∞ ,

taking ε1 = ε0
4K−3 yields the result for all ε ∈ (0, ε1].

Let N5 as in Lemma 12. By definition of T εβ in (5), we have EF [T εβ ] ≤ EF [N5] < +∞. This
concludes the proof of Lemma 10.

C.5 Asymptotic β-optimality
Provided some regularity assumption on the class of distribution F , we show that asymptotic β-
optimality is a direct consequence of EF [T εβ ] < +∞. More precisely, we show (6):

∃ε1(F ) > 0, ∀ε ∈ (0, ε1(F )], EF [T εβ ] < +∞ =⇒ lim sup
δ→0

EF [τδ]

log (1/δ)
≤ T ?β (F ) .

In [35], (6) was proven for Gaussian. We generalize the proof from [35] to hold provided we
have joint continuity of the minimal transportation cost (Property 7) and rate of convergence for
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T (Fn,i) (Property 8). Those properties hold for bounded distributions and SPEF with sub-exponential
distributions, and potentially many other distributions.

Before stating the adequate properties, we recall the notation introduced in Appendix C.1. Let
Ci,j(T (F ), w) be transportation costs defined in (12) as

Ci,j(T (F ), w) := inf
u∈I

{
wiK−inf(T (Fi), u) + wjK+

inf(T (Fj), u)
}
,

where I ⊆ R, and their empirical version in (13) as

1

n
Wn(i, j) = Ci,j

(
T (Fn),

Nn
n

)
.

Similarly, the β-characteristic time and β-optimal allocation

T ?β (F )−1 := max
w∈4K :wi?(F )=β

min
j 6=i?(F )

Ci?(F ),j(T (F ), w) ,

w?β(F ) := arg max
w∈4K :wi?(F )=β

min
j 6=i?(F )

Ci?(F ),j(T (F ), w) .

Property 7. T (F ) 7→ m(F ) is continuous on T (F) and (T (F ), w) 7→
minj 6=i?(F ) Ci?(F ),j(T (F ), w) is continuous on T (FK) × 4K . If |i?(F )| = 1, then
w?β(F ) = {wβ} is a singleton such that mini∈[K] w

β
i > 0.

For single-parameter exponential families, Property 7 is a known result from the literature [38] as
T (F ) = m(F ). Property 7 holds for bounded distributions: F 7→ m(F ) continuous (bounded),
using proof of Lemma 58 (consequence of Lemma 54) and by Lemmas 61 and 60.

Property 8. For all ε > 0, there exists Nε with EF [Nε] < +∞ such that

∀i ∈ [K], ∀Nn,i ≥ Nε, ‖T (Fn,i)− T (Fi)‖ ≤ ε ,

where ‖ · ‖ is the norm on T (F).

For SPEF, we have T (Fn,i) = µn,i, hence Property 8 holds for any SPEF with sub-exponential
distributions (see Lemma 73). For bounded distributions, Property 8 is a direct corollary of Lemma 14.
Since Nε = Poly( 1

ε ,W2) and EF [eλW2 ] < +∞ for all λ > 0, we have directly that EF [Nε] <
+∞.

Using the empirical transportation defined in (13), generalizing the stopping time in (2) yields

τδ = inf

{
n ∈ N | min

j 6=ı̂n
Wn(̂ın, j) > c(n, δ)

}
. (22)

Calibrating the stopping threshold to obtain δ-correctness of the stopping rule (22) highly depends on
the considered F . Definition 2 introduces asymptotically tight thresholds, whose (n, δ) dependencies
ensure asymptotic (β-)optimality.

Definition 2 (Asymptotically tight threshold). A threshold c : N × (0, 1] → R+ is said to be
asymptotically tight if there exists α ∈ [0, 1), δ0 ∈ (0, 1], functions f, T̄ : (0, 1] → R+ and C
independent of δ satisfying: (1) for all δ ∈ (0, δ0] and n ≥ T̄ (δ), then c(n, δ) ≤ f(δ) + Cnα, (2)
lim supδ→0 f(δ)/ log(1/δ) ≤ 1 and (3) lim supδ→0 T̄ (δ)/ log(1/δ) = 0.

For bounded distributions, the stopping threshold defined in (4) is asymptotically tight, e.g. take
(α, δ0, C) = (1/2, 1, 1), f(δ) = log

(
K−1
δ

)
+ 2 and T̄ (δ) = 1. Lemma 2 shows that it is also

δ-correct for bounded distributions.

For single-parameter exponential families, the thresholds for which δ-correctness has been proved
are also asymptotically tight, e.g. the ones derived in [29]. Those thresholds are all upper bounded by
some threshold of the form c(n, δ) = log

(
Dnκ

δ

)
. This stylized threshold is asymptotically tight, e.g.

by taking (α, δ0, C) = (1/2, 1, κ), f(δ) = log
(
D
δ

)
and T̄ (δ) = 1.

Theorem 2 shows (6) when using the stopping rule (22) with an asymptotically tight threshold.
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Theorem 2. Assume that Properties 7 and 8 hold on FK . Let (δ, β) ∈ (0, 1)2. Assume that there
exists ε1(F ) > 0 such that for all ε ∈ (0, ε1(F )], EF [T εβ ] < +∞. Combining the stopping rule
(22) with an asymptotically tight threshold yields an algorithm such that for all F ∈ FK , with

|i?(F )| = 1 and µF ∈
(
I̊
)K

,

lim sup
δ→0

EF [τδ]

log
(

1
δ

) ≤ T ?β (F ) .

Proof. Let i? = i?(F ) and ε1 = ε1(F ). Let cβ = 1
2 mini∈[K] w

β
i > 0 and ∆ = minj 6=i? |µi? −

µi| > 0. Let ζ > 0. Using Property 7, the continuity of
(T (F ), w) 7→ min

j 6=i?(F )
Ci?(F ),j(T (F ), w) and T (F ) 7→ m(F )

yields that there exists ε2 > 0 such that

max
i∈[K]

∣∣∣∣Nn,in − wβi

∣∣∣∣ ≤ ε2 and max
i∈[K]

‖T (Fn,i)− T (Fi)‖ ≤ ε2

=⇒ max
i∈[K]

|µn,i − µi| ≤
∆

4
and

1

n
min
j 6=i?

Wn(i?, j) ≥ 1− ζ
T ?β (F )

.

Choosing such a ε2, we take ε ∈ (0,min{ε1, ε2, cβ}). By assumption, we have EF [T εβ ] < +∞,
hence Nn,i

n ≥ wβi − ε ≥ cβ for all i ∈ [K].

Let Nε as in Property 8. Using Property 8, for all n ≥ c−1
β Nε, we have maxi∈[K] ‖T (Fn,i) −

T (Fi)‖ ≤ ε ≤ ε2 as mini∈[K]Nn,i ≥ Nε. Therefore, we have ı̂n ∈ arg maxi∈[K] µn,i =

arg maxi∈[K] µi as maxi∈[K] |µn,i − µi| ≤ ∆
4 .

Let α ∈ [0, 1), δ0 ∈ (0, 1], functions f, T̄ : (0, 1] → R+ and C as in the definition of an asymp-
totically tight family of thresholds. In the following, we consider δ ≤ δ0. Let κ > 0. Let
T ≥ 1

κ max{T εβ , c
−1
β Nε, T̄ (δ)}. Using the definition of the stopping rule (2) with a family of

asymptotically tight threshold, we have

min {τδ, T} ≤ κT +

T∑
n=κT

1 (τδ > n) ≤ κT +

T∑
n=κT

1

(
min
j 6=i?

Wn(i?, j) ≤ c(n, δ)
)

≤ κT +

T∑
n=κT

1

(
n

1− ζ
T ?β (F )

≤ f(δ) + CTα

)

≤ κT +
T ?β (F )

1− ζ
(f(δ) + CTα) .

Let Tζ(δ) defined as

Tζ(δ) := inf

{
T ≥ 1 |

T ?β (F )

(1− ζ)(1− κ)
(f(δ) + CTα) ≤ T

}
.

For every T ≥ max{Tζ(δ), 1
κ max{T εβ , c

−1
β Nε, T̄ (δ)}}, we have τδ ≤ T , hence

EF [τδ] ≤
1

κ
EF [T εβ ] +

1

κcβ
EF [Nε] +

1

κ
T̄ (δ) + Tζ(δ) .

As EF [T εβ ] + c−1
β EF [Nε] < +∞ and limδ→0

T̄ (δ)
log(1/δ) , we obtain for all ζ, κ > 0

lim sup
δ→0

EF [τδ]

log(1/δ)
≤ lim sup

δ→0

Tζ(δ)

log(1/δ)
≤

T ?β (F )

(1− ζ)(1− κ)
,

where the last inequality uses Lemma 13, which is an inversion result. Letting ζ and κ go to zero
yields that

lim sup
δ→0

EF [τδ]

log(1/δ)
≤ T ?β (F ) .
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Corollary 1 is a direct consequence of Lemma 7, Lemma 10 and Theorem 2.

Corollary 1. Assume that Properties 7 and 8 hold on FK . Let (δ, β) ∈ (0, 1)2. Combining the
stopping rule (22) with an asymptotically tight threshold and a Top Two algorithm, whose leader Bn
and challenger Cn satisfy Properties (2, 5) and (3, 6), yields an algorithm such that for all F ∈ FK ,

with ∆min(F ) := minj 6=i |µi − µj | > 0 and µF ∈
(
I̊
)K

,

lim sup
δ→0

EF [τδ]

log
(

1
δ

) ≤ T ?β (F ) .

Proof. Having ∆min(F ) > 0 yields that i?(F ) is a singleton. Since ∆min(F ) > 0 and leader Bn
and challenger Cn satisfies Properties 2 and 3, Lemma 7 shows that Property 4 holds. As leader Bn
and challenger Cn satisfies Properties 5 and 6, we can use Lemma 10. Directly applying Theorem 2
yields the result.

Lemma 13. Let C,D ∈ R?+, α ∈ [0, 1), f : (0, 1]→ R+ such that limδ→0
f(δ)

log(1/δ) ≤ 1 and

TD(δ) := inf {T ≥ 1 | D (f(δ) + CTα) ≤ T} . (23)

Then,

lim sup
δ→0

TD(δ)

log(1/δ)
≤ D .

Proof. Let γ > 0. Since α ∈ [0, 1), there exists Tγ (depending on D) such that for all T ≥ Tγ ,

T
1

D
− CTα ≥ T 1

D(1 + γ)
.

Then,

TD(δ) ≤ Tγ + inf

{
T ≥ 1 | f(δ) ≤ T 1

D(1 + γ)

}
≤ Tγ +D(1 + γ)f(δ) + 1 .

Since lim supδ→0
f(δ)

log(1/δ) ≤ 1, we obtain for all γ > 0

lim sup
δ→0

TD(δ)

log(1/δ)
≤ D(1 + γ) .

Letting γ go to zero yields the result.

D Top Two instances for bounded distributions
While we provided a unified analysis of Top Two algorithms in Appendix C, we are interested in
specific instances. We distinguish between the deterministic mechanisms in Appendix D.1 and
the randomized mechanisms in Appendix D.2. After introducing them, we will show they each
satisfies the properties required on the leader and the challenger to ensure sufficient exploration
(Appendix C.3) and to converge towards the β-optimal allocation (Appendix C.4).

As deterministic mechanisms, we study the EB leader (Appendix D.1.1), the TC challenger (Ap-
pendix D.1.2) and the TCI challenger (Appendix D.1.3). For the randomized mechanisms which
are based on a sampler Πn (Appendix D.2.1), we consider the TS leader (Appendix D.2.2) and the
RS challenger (Appendix D.2.3). While those leaders and challengers are defined and analyzed for
bounded distributions, we will also discuss why the analysis still hold for single-parameter exponen-
tial families (Appendix H). This is especially simple for deterministic mechanisms. For randomized
mechanisms, a natural sampler is the posterior distribution. However, proving the properties on Πn

(Appendix D.2.1) in all generality is more cumbersome.

By the end of Appendix D, we will have shown that Properties 2 and 5 hold for the EB and TS
leaders, and that Properties 3 and 6 hold for the TC, TCI and RS challengers, which leads to
Theorem 1.
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Proof of Theorem 1 The threshold (4) is asymptotically tight (Definition 2), e.g. (α, δ0, C) =
(1/2, 1, 1), f(δ) = log

(
K−1
δ

)
+ 2 and T̄ (δ) = 1. Lemma 2 shows that it is also δ-correct for

bounded distributions. Therefore, Theorem 1 is obtained by applying Corollary 1.

Proof of Property 8 Lemma 14 gives the convergence rate of empirical cdfs (Fn,i)i∈[K] towards
the true cdfs (Fi)i∈[K]. Deferred to Appendix E.2, its proof is a direct consequence of concentration
inequalities for sub-Gaussian random variables.

Lemma 14. There exists a sub-Gaussian random variable W2 such that for all (n, i) ∈ N× [K]

‖Fn,i − Fi‖∞ ≤W2

√
log(e+Nn,i)

1 +Nn,i
a.s. . (24)

In particular, E
[
eλW2

]
< +∞ for all λ > 0.

In the following, we take W2 as in Lemma 14. Let ε > 0. Using Lemma 14, there exists Nε =
Poly( 1

ε ,W2) such that for all i ∈ [K] and all Nn,i ≥ Nε,

max
i∈[K]

‖Fn,i − Fi‖∞ ≤ ε .

As EF [eλW2 ] < +∞ for all λ > 0, we have EF [Nε] < +∞. Therefore, Property 8 holds for
bounded distributions.

Property 7 holds for bounded distributions: F 7→ m(F ) continuous (bounded), using proof of
Lemma 58 (consequence of Lemma 54) and by Lemmas 61 and 60.

D.1 Deterministic mechanisms
Conditioned on the history Fn, deterministic mechanisms for the leader and the challenger don’t
depend on a sampler Πn. The sole randomness in those mechanisms occurs in case of ties, which are
broken uniformly at random. In Appendix D.1.1, we define the EB leader and shows that it satisfies
Properties 2 and 5. In Appendix D.1.2, we define the TC challenger and proves that Properties 3
and 6 hold. In Appendix D.1.3, we define the TCI challenger and proves that Properties 3 and 6
hold.

Rates for empirical transportation costs Analyzing deterministic mechanisms heavily relies on
properties of the empirical transportation costs. Given two arms having distinct mean, Lemma 15
shows that the transportation cost is strictly positive and increases linearly.

Lemma 15. Let SLn and I?n as in (19). There exists L4 with EF [(L4)α] < +∞ for all α > 0 such
that if L ≥ L4, for all n such that SLn 6= ∅,

∀(i, j) ∈ I?n ×
(
SLn \ I?n

)
, Wn(i, j) ≥ LDF ,

where DF > 0 is a problem dependent constant.

Proof. Let SLn and I?n as in (19). Assume that SLn 6= ∅. If SLn \ I?n is empty, then the statement is not
informative. Assume SLn \ I?n is not empty. Let (i, j) ∈ I?n ×

(
SLn \ I?n

)
.

By definition of Wn in (1) and using {i, j} ⊆ SLn , we obtain

Wn(i, j) = inf
u∈[0,B]

{
Nn,iK−inf(Fn,i, u) +Nn,jK+

inf(Fn,j , u)
}

≥ L inf
u∈[0,B]

{
K−inf(Fn,i, u) +K+

inf(Fn,j , u)
}
.

Using Lemma 30, there exists α > 0 such that

DF = min
(i,j):m(Fi)>m(Fj)

inf
Gi,Gj :

∀k∈{i,j},‖Gk−Fk‖∞≤α

inf
u∈[0,B]

{
K−inf(Gi, u) +K+

inf(Gj , u)
}
> 0 .

Using Lemma 14, there exists L4 = Poly(W2) such that for all L ≥ L4 and all i ∈ SLn ,

‖Fn,i − Fi‖∞ ≤ α .
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Further lower bounding by using that µi > µj , we obtain

Wn(i, j) ≥ L inf
Gi,Gj :

∀k∈{i,j},‖Gk−Fk‖∞≤α

inf
u∈[0,B]

{
K−inf(Gi, u) +K+

inf(Gj , u)
}
≥ LDF .

As EF [eλW2 ] < +∞ for all λ > 0, we have EF [(L4)α] < +∞ for all α > 0 since (L4)α =
Poly(W2). This concludes the proof.

Lemma 16 gives an upper bound on the transportation costs between a sampled enough arm and an
under-sampled one.

Lemma 16. Let SLn as in (19). There exists L5 with EF [(L5)α] < +∞ for all α > 0 such that for
all L ≥ L5 and all n ∈ N,

∀(i, j) ∈ SLn × SLn , Wn(i, j) ≤ LD1 ,

where D1 > 0 is a problem dependent constant.

Proof. For bounded distributions, F 7→ m(F ) is continuous on F for the weak convergence. Since
µi ∈ (0, B) for all i ∈ [K] (Assumption 1), Lemma 14 yields that there exists L6 = Poly(W1) such
that for all L ≥ L6 and all i ∈ SLn , we have µn,i ∈ (0, B). In the following, we consider L ≥ L6.

Let (i, j) ∈ SLn × SLn . By definition and taking u = µn,i ∈ (0, B) yields

Wn(i, j) = inf
u∈[0,B]

{
Nn,iK−inf(Fn,i, u) +Nn,jK+

inf(Fn,j , u)
}

≤ Nn,jK+
inf(Fn,j , µn,i) ≤ LK

+
inf(Fn,j , µn,i) ≤ −L log

(
1− µn,i

B

)
,

where we used that j ∈ SLn and Lemma 42. By continuity of F 7→ m(F ), Lemma 14 yields that
there exists L7 = Poly(W1) such that for all L ≥ L5 := max{L6, L7} and all i ∈ SLn

− log
(

1− µn,i
B

)
≤ −2 log

(
1− µi

B

)
≤ D1 ,

where D1 = −2 log
(
1− maxk∈[K] µk

B

)
. As EF [eλW2 ] < +∞ for all λ > 0, we have EF [(L5)α] ≤

EF [(L6)α]+EF [(L7)α] < +∞ since (L6)α = Poly(W2) and (L7)α = Poly(W2). This concludes
the proof.

D.1.1 EB leader
Conditioned on Fn, the Empirical Best (EB) leader is defined as an arm with highest empirical mean

BEB
n+1 ∈ arg max

i∈[K]

µn,i , P|n[BEB
n+1 = i] =

1
(
i ∈ arg maxi∈[K] µn,i

)
| arg maxi∈[K] µn,i|

. (25)

and B̂EB
n+1 = BEB

n+1.

Property 2 Lemma 17 shows that Property 2 is satisfied by BEB
n+1.

Lemma 17. Let SLn and I?n as in (19). Let L4 in Lemma 15. Then, for all L ≥ L4, for all n such
that SLn 6= ∅, B̂EB

n+1 ∈ SLn implies B̂EB
n+1 ∈ I?n.

Proof. Let SLn and I?n as in (19). Assume that SLn 6= ∅. If SLn \ I?n is empty, then the result is true.
Assume SLn \ I?n is not empty. Let L4 in Lemma 15. Then,

∀(i, j) ∈ I?n ×
(
SLn \ I?n

)
, Wn(i, j) ≥ LDF ,

Assume that B̂EB
n+1 ∈ SLn . Suppose towards contradiction that B̂EB

n+1 /∈ I?n. Therefore,
Wn(i, B̂EB

n+1) ≥ LDF > 0 for all i ∈ I?n. Since the choice of the leader is deterministic, we
have BEB

n+1 = B̂EB
n+1. Since BEB

n+1 ∈ arg maxi∈[K] µn,i, we have Wn(i, B̂EB
n+1) = 0. This is a

contradiction, hence B̂EB
n+1 ∈ I?n.

29



Property 5 Lemma 18 shows that Property 5 is satisfied by BEB
n+1. More precisely, we show that

after enough time, the leader is the best arm almost surely.

Lemma 18. Assume Property 4 holds. There exists N6 with EF [N6] < +∞ such that for all
n ≥ N6,

P|n[BEB
n+1 6= i?(F )] = 0 .

Proof. Let i? = i?(F ). Let N1 as in Property 4, then Nn,i ≥
√

n
K for all n ≥ N1. Since i? is

unique, we have ∆ := minj 6=i? |µi? −µj | > 0. For bounded distributions, F 7→ m(F ) is continuous
on F for the weak convergence. Lemma 14 yields that there exists N7 = Poly(W2) such that for
all n ≥ N6 := max{N1, N7} and all i ∈ [K], we have |µn,i − µi| ≤ ∆

4 . Therefore, for all n ≥ N6,
arg maxi∈[K] µn,i = arg maxi∈[K] µi = i? and

P|n[BEB
n+1 6= i?] = 1− P|n[BEB

n+1 = i?] = 1−
1
(
i? ∈ arg maxi∈[K] µn,i

)
| arg maxi∈[K] µn,i|

= 0 .

As EF [eλW2 ] < +∞ for all λ > 0, we have EF [N7] < +∞. Therefore, EF [N6] ≤ EF [N1] +
EF [N7] < +∞ yields the result.

D.1.2 TC challenger
Conditioned on Fn and given a leader Bn+1, the Transportation Cost (TC) challenger is defined as
the arm with smallest transportation cost compared to the leader

CTC
n+1 ∈ arg min

j 6=Bn+1

Wn(Bn+1, j) , P|n[CTC
n+1 = j|Bn+1 = i] =

1
(
j ∈ arg mink 6=iWn(i, k)

)
| arg mink 6=iWn(i, k)|

,

(26)
and ĈTC

n+1 ∈ arg minj 6=B̂n+1
Wn(B̂n+1, j).

Property 3 We prove Property 3 for CTC
n+1 in Lemma 19 by comparing the rates at which Wn

increases (Lemmas 15 and 16). The effective challenger ĈTC
n+1 is taken as an arm minimizing the

transportation cost compared to the leader B̂n+1. Therefore, it is sufficient to show that the sampled
enough arms have higher transportation costs than the mildly under-sampled ones. This implies that
ĈTC
n+1 has to be mildly under-sampled or be an arm with highest mean among the sampled enough

arms.

Lemma 19. Let Bn+1 be a leader satisfying Property 2. Given (Bn+1, B̂n+1), let (CTC
n+1, Ĉ

TC
n+1)

as in (26). Let ULn and V Ln as in (20) and J ?n = arg max
i∈V Ln

µi. There exists L6 with EF [L6] <

+∞ such that if L ≥ L6, for all n such that ULn 6= ∅, B̂n+1 /∈ V Ln implies ĈTC
n+1 ∈ V Ln ∪(

J ?n \
{
B̂n+1

})
.

Proof. Let J ?n = arg max
i∈V Ln

µi. In the following, we consider ULn 6= ∅ (hence V Ln 6= ∅) and

B̂n+1 ∈ V Ln . LetBn+1 be a leader satisfying Property 2, and L0 defined therein. Then, for L ≥ L4/3
0 ,

we have B̂n+1 ∈ J ?n . If ĈTC
n+1 ∈ J ?n \

{
B̂n+1

}
, we are done. Assume that ĈTC

n+1 /∈ J ?n \
{
B̂n+1

}
.

Let (L4, DF ) and (L5, D1) as in Lemmas 15 and 16. Then, for all L ≥ max{L4/3
0 , L

4/3
4 , L2

5},

B̂n+1 ∈ J ?n ,

∀(i, j) ∈ J ?n ×
(
V Ln \ J ?n

)
, Wn(i, j) ≥ L3/4DF ,

∀(i, j) ∈ ULn × ULn , Wn(i, j) ≤
√
LD1 .

There exists a deterministic L7 such that for all L ≥ L7,

L3/4DF >
√
LD1 .
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Since J ?n ⊆ V Ln ⊆ ULn , for all L ≥ L6 := max{L4/3
0 , L

4/3
4 , L2

5, L7} we have

∀(i, k, j) ∈ J ?n × ULn ×
(
V Ln \ J ?n

)
, Wn(i, j) > Wn(i, k) .

As B̂n+1 ∈ J ?n and ĈTC
n+1 /∈ J ?n \

{
B̂n+1

}
, the definition ĈTC

n+1 ∈ arg maxj 6=B̂n+1
Wn(B̂n+1, j)

yields that ĈTC
n+1 ∈ V Ln . Otherwise the above strict inequality would wield a contradiction. Since

EF [L6] ≤ L7 + EF [(L0)4/3] + EF [(L4)4/3] + EF [(L5)2] < +∞ ,

this concludes the proof.

Property 6 Lemma 20 shows that the Property 6 is satisfied by CTC
n+1. More precisely, it shows

that if the mean probability of sampling a sub-optimal arm overshoots its β-optimal allocation, then
it won’t be sampled almost surely if the leader is the best arm.

Lemma 20. Assume Property 4 holds. Let ε > 0. Let Bn+1 be a leader satisfying Property 5 and
CTC
n+1 as in (26). There exists N7 with EF [N7] < +∞ such that for all n ≥ N7 and all i 6= i?(F ),

Ψn,i

n
≥ wβi + ε =⇒ P|n[CTC

n+1 = i | Bn+1 = i?(F )] = 0 . (27)

Proof. Let ε > 0 and i? = i?(F ). Let N1 as in Property 4, then Nn,i ≥
√

n
K for all n ≥ N1. Since

i? is unique, we have ∆ := minj 6=i? |µi? − µj | > 0. For bounded distributions, F 7→ m(F ) is
continuous on F for the weak convergence. Lemma 14 yields that there exists N8 = Poly(W2)
such that for all n ≥ max{N1, N8} and all i ∈ [K], we have |µn,i − µi| ≤ ∆

4 . Therefore, for all
n ≥ max{N1, N8}, arg maxi∈[K] µn,i = arg maxi∈[K] µi = i?.

Let ξ > 0. Since Property 4 holds and Bn+1 satisfies Property 5, we can use the results from
Lemma 11. Let N4 defined in Lemma 11, we have

∣∣∣Nn,i?n − β
∣∣∣ ≤ ξ for all n ≥ max{N1, N4}.

Using the definition of CTC
n+1 in (26), we have

P|n[CTC
n+1 = i | Bn+1 = i?] = 0 ⇐⇒ i /∈ arg min

k 6=i?
Wn(i?, k)

⇐⇒ 1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
> 0 .

Let i 6= i? such that Ψn,i
n ≥ wβi + ε. Using Lemma 5, there exists N9 = Poly(W1), such that for all

n ≥ max{N1, N9}, we have Nn,i
n ≥ wβi + ε

2 . Therefore, for all n ≥ max{N1, N4, N8, N9},
1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
≥ inf
u∈[0,B]

{
Nn,i?

n
K−inf(Fn,i? , u) +

(
wβi +

ε

2

)
K+

inf(Fn,i, u)

}
−min
j 6=i?

inf
u∈[0,B]

{
Nn,i?

n
K−inf(Fn,i? , u) +

Nn,j
n
K+

inf(Fn,j , u)

}
≥ inf
u∈[0,B]

{
Nn,i?

n
K−inf(Fn,i? , u) +

(
wβi +

ε

2

)
K+

inf(Fn,i, u)

}
− sup
w∈4K :wi?=

Nn,i?

n

min
j 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fn,i? , u) + wjK+

inf(Fn,j , u)
}

≥ inf
β̃:|β̃−β|≤ξ

Gi(Fn, β̃)

where

Gi(F , β̃) = inf
u∈[0,B]

{
β̃K−inf(Fi? , u) +

(
wβi +

ε

2

)
K+

inf(Fi, u)
}

− sup
w∈4K :wi?=β̃

min
j 6=i?

inf
u∈I

{
wi?K−inf(Fi? , u) + wjK+

inf(Fj , u)
}
,
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where we lower bounded by considering the best possible allocation such that wi? =
Nn,i?

n .

Using Lemma 31, the functions (F , β̃) 7→ Gi(F , β̃) andF 7→ inf β̃:|β̃−β|≤ξ Gi(F , β̃) are continuous.
Therefore, there exists N10 = Poly(W2) and ξ0 such that for n ≥ N7 := {N1, N4, N8, N9, N10}
and all ξ ≤ ξ0,

inf
β̃:|β̃−β|≤ξ

Gi(Fn, β̃) ≥ 1

2
inf

β̃:|β̃−β|≤ξ
Gi(F , β̃) ≥ 1

4
Gi(F , β) .

At the β-equilibrium all transportation costs are equal (Lemma 61). Therefore, by definition of wβ ,

sup
w∈4K :wi?=β

min
j 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wjK+

inf(Fj , u)
}

= min
j 6=i?

inf
u∈[0,B]

{
βK−inf(Fi? , u) + wβj K

+
inf(Fj , u)

}
= inf
u∈[0,B]

{
βK−inf(Fi? , u) + wβi K

+
inf(Fi, u)

}
< inf
u∈[0,B]

{
βK−inf(Fi? , u) +

(
wβi +

ε

2

)
K+

inf(Fi, u)
}

where the strict inequality is obtained because the transportation costs are increasing in their alloca-
tion arguments (Lemma 56). Therefore, we have Gi(F , β) > 0. This yields that Wn(i?, i) >
minj 6=i?Wn(i?, j). As EF [eλW1 ] < +∞ and EF [eλW2 ] < +∞ for all λ > 0, we have
EF [Ni] < +∞ for i ∈ {8, 9, 10}. Since

EF [N7] ≤
∑

i∈{1,4,8,9,10}

EF [Ni] < +∞ ,

this concludes the proof.

D.1.3 TCI challenger
Conditioned on Fn and given a leader Bn+1, the Transportation Cost Improved (TCI) challenger is
defined as the arm with smallest penalized transportation cost compared to the leader

CTCI
n+1 ∈ arg min

j 6=Bn+1

{Wn(Bn+1, j) + log(Nn,j)} , ĈTCI
n+1 ∈ arg min

j 6=B̂n+1

{
Wn(B̂n+1, j) + log(Nn,j)

}
,

(28)
and

P|n[CTCI
n+1 = j|Bn+1 = i] =

1
(
j ∈ arg mink 6=i {Wn(i, k) + log(Nn,k)}

)
| arg mink 6=i {Wn(i, k) + log(Nn,k)} |

The TCI challenger is inspired by IMED [20]. As we will see in Appendix I.2, it is more stable than
the TC challenger. In Appendix D.3, we explain intuitively why. The analysis of the TCI challenger
is very close to the one of the TC challenger.

Property 3 With similar arguments as in Lemma 19, Lemma 21 shows that the Property 3 is
satisfied by CTCI

n+1.

Lemma 21. Let Bn+1 be a leader satisfying Property 2. Let (CTCI
n+1, Ĉ

TCI
n+1) as in (28). Let ULn and

V Ln as in (20) and J ?n = arg max
i∈V Ln

µi. There exists L̃6 with EF [L̃6] < +∞ such that if L ≥ L̃6,

for all n such that ULn 6= ∅, B̂n+1 /∈ V Ln implies ĈTCI
n+1 ∈ V Ln ∪

(
J ?n \

{
B̂n+1

})
.

Proof. In the following, we consider ULn 6= ∅ (hence V Ln 6= ∅) and B̂n+1 ∈ V Ln . Let L0 be defined
as in Property 2. Then, for L ≥ L4/3

0 , we have B̂n+1 ∈ J ?n . If ĈTCI
n+1 ∈ J ?n \

{
B̂n+1

}
, we are done.

Assume that ĈTCI
n+1 /∈ J ?n \

{
B̂n+1

}
.
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Let (L4, DF ) and (L5, D1) as in Lemmas 15 and 16. Then, for all L ≥ max{L4/3
0 , L

4/3
4 , L2

5},

B̂n+1 ∈ J ?n ,

∀(i, j) ∈ J ?n ×
(
V Ln \ J ?n

)
, Wn(i, j) + log(Nn,j) ≥ L3/4DF +

3

4
logL ,

∀(i, j) ∈ ULn × ULn , Wn(i, j) + log(Nn,j) ≤
√
LD1 +

1

2
logL .

There exists a deterministic L̃7 such that for all L ≥ L̃7,

L3/4DF +
3

4
>
√
LD1 +

1

2
logL .

Since J ?n ⊆ V Ln ⊆ ULn , for all L ≥ L̃6 := max{L4/3
0 , L

4/3
4 , L2

5, L̃7} we have

∀(i, k, j) ∈ J ?n × ULn ×
(
V Ln \ J ?n

)
, Wn(i, j) + log(Nn,j) > Wn(i, k) + log(Nn,k) .

As B̂n+1 ∈ J ?n and ĈTCI
n+1 /∈ J ?n \

{
B̂n+1

}
, the definition ĈTCI

n+1 ∈

arg maxj 6=B̂n+1

{
Wn(B̂n+1, j) + log(Nn,j)

}
yields that ĈTCI

n+1 ∈ V Ln . Otherwise the above
strict inequality would wield a contradiction. Since

EF [L̃6] ≤ L̃7 + EF [L
4/3
0 ] + EF [L

4/3
4 ] + EF [L2

5] < +∞ ,

this concludes the proof.

Property 6 With similar arguments as in Lemma 20, Lemma 22 shows that the Property 6 is
satisfied by CTCI

n+1.

Lemma 22. Assume Property 4 holds. Let ε > 0. Let Bn+1 be a leader satisfying Property 5 and
CTCI
n+1 as in (28). There exists Ñ7 with EF [Ñ7] < +∞ such that for all n ≥ Ñ7 and all i 6= i?(F ),

Ψn,i

n
≥ wβi + ε =⇒ P|n[CTCI

n+1 = i | Bn+1 = i?(F )] = 0 . (29)

Proof. Let ε > 0 and i? = i?(F ). Using the definition of CTCI
n+1 in (28), we have

P|n[CTCI
n+1 = i | Bn+1 = i?] = 0

⇐⇒ i /∈ arg min
k 6=i?

{Wn(i?, k) + log(Nn,k)}

⇐⇒ 1

n

(
Wn(i?, i) + log(Nn,i)−min

j 6=i?
{Wn(i?, j) + log(Nn,j)}

)
> 0

⇐=
1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
>

log(nK)

2n
,

where we used that Nn,i ≥
√

n
K and Nn,j ≤ n.

Let N7 as in Lemma 22. In the proof of Lemma 22, we showed that there exists CF > 0 such that
for all n ≥ N7 and all i 6= i?,

Ψn,i

n
≥ wβi + ε =⇒ 1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
≥ CF .

Since log(nK)
2n →∞ 0, there exists a deterministic N8 such that for all n ≥ Ñ8,

log(nK)

2n
< CF .

Therefore, for all n ≥ Ñ7 := max{N8, N7} and all i 6= i?,

Ψn,i

n
≥ wβi + ε =⇒ P|n[CTCI

n+1 = i | Bn+1 = i?] = 0 .

Since EF [Ñ7] = N8 + EF [N7] < +∞, this concludes the proof.
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D.2 Randomized mechanisms
Conditioned on the history Fn, randomized mechanisms for the leader and the challenger depend on
a sampler Πn. In addition, ties will be broken uniformly at random. In Appendix D.2.1, we introduce
the general properties that a good sampler should verify. Depending on whether we are using the
sampler for the leader or for the challenger different properties are necessary. In Appendix D.2.2, we
define the TS leader and shows that it satisfies Properties 2 and 5. In Appendix D.2.3, we define the
RS challenger and proves that Properties 3 and 6 hold.

D.2.1 How to sample
As both TS leader and RS challenger rely on a sampler Πn, it is crucial for this sampler to be tailored
to the considered set of distributions FK . For bounded distributions, the sampler Πn under scrutiny
is the Dirichlet sampler introduced in Section 3, which produces for each arm a random re-weighting
of the current history of rewards, augmented with {0, B}. Yet, aiming for a unified analysis of Top
Two algorithms relying on a sampler, we put forward some general properties that the sampler should
satisfy. Those properties are only expressed in terms of the Boundary Crossing Probability (BCP)
associated to each arm, i.e. the probabilities Pn[θi ≥ u] and Pn[θi ≤ u] where u is a fixed threshold.
For all measurable sets Aθ, we denote by Pn[Aθ] := Pθ∼Πn [Aθ | Fn].

From an+1,i to BCP Let an,i := Pn−1[i ∈ arg maxj∈[K] θj ]. From the definition of the TS
leader in (32) and the RS challenger in (33), it becomes apparent that we should control the quantity
an,i. We will need both upper and lower bounds on an+1,i. To derive those, we can write

∀j 6= i, an+1,i ≤ Pn[θi ≥ θj ] ,
an+1,i ≤ 1−max

j 6=i
Pn[θj ≥ θi] ,

∀u ∈ (0, B), an+1,i ≥ Pn [θi ≥ u]
∏
j 6=i

Pn [θj ≤ u] .

The lower bound is already expressed using BCPs, however the upper bound requires to control
Pn[θi ≥ θj ]. In Lemma 64 stated in Appendix G, we provide upper bounds on this probability
featuring only BCPs (for some well-chosen threshold).

As we will see, a sampler Πn is tailored to the considered set of distributions when the upper and
lower bounds on the BCP involve K±inf . Those bounds will be referred to as tight, the ones without
K±inf will be referred as coarse. To show that the TS leader satisfies Properties 2 and 5, we need a
tight upper bound on the BCP. Proving Property 3 for the RS challenger requires a tight upper bound
and a coarse lower bound on the BCP. However, the proof of Property 6 for the RS challenger relies
on a tight upper and lower bound on the BCP.

In Appendix G, we prove the corresponding bounds on the BCP for the Dirichlet sampler. These
bounds use some ingredients from BPCs bounds obtained for variants of Non-Parametric Thompson
Sampling [36, 7] in the regret minimization literature. Our new Lemma 64 is instrumental to bring
those to the best arm identification literature.

Coarse lower bound on an+1,i Recall that Fn,i is the empirical cdf of arms i. To ensure that the
sampling stops, the sampler Πn should rely on modified cdfs instead of simply using Fn. Those
probability measures are denoted by F̃n,i and their means by µ̃n,i. For single-parameter exponential
family, this modification corresponds to the posterior update based on the prior. For bounded
distributions (and Bernoulli), this modification amounts to adding {0, B} to the support. This ensures
that µ̃n,i ∈ (0, B), hence it is not a Dirac in 0 or B. Alternatively, we can view this step as mixing
Fn,i with the distribution G = 1

2 (δ0 + δB) which is in the interior of the domain, i.e.

F̃n,i =

(
1− 2

n+ 2

)
Fn,i +

1

n+ 2
(δ0 + δB) . (30)

The necessity of addingB to the support was already known [8] to obtain a lower bound on Pn[θi ≥ u].
Since we also need to control Pn[θi ≤ u], we should add 0 in the support (by symmetry).

In all generality, the considered modified cdfs should be close to the empirical cdf, i.e.

∀n ∈ N, max
i∈[K]

∥∥∥F̃n,i − Fn,i∥∥∥
∞
≤ d0(n) , (31)
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where the function d0 : N∗ → N∗ satisfies d0(n) =+∞ o(n−α) with α > 0. For bounded
distributions (and Bernoulli), F̃n defined in (30) verifies Property (31) for d0(n) = 3

n+2 .

Property 9 states that the sampler Πn based on F̃n yields an exponential lower bound on the BCP. It
is coarse as it doesn’t involve K±inf .

Property 9. There exists functions κ+, κ− : (0, B) → R∗+ such that for all u ∈ (0, B), all n ≥ 1
and all i ∈ [K]

Pn[θi ≥ u] ≥ e−c0(Nn,i)κ
+(u) and Pn[θi ≤ u] ≥ e−c0(Nn,i)κ

−(u) .

The function c0 : N∗ → N∗ is increasing with c0(x) ∼+∞ x. Moreover, κ−(B) = κ+(0) = 0 and
limu→B κ

+(u) = limu→0 κ
−(u) = +∞.

Property 9 plays a role in the proof of sufficient exploration for the RS challenger. For bounded
distributions (and Bernoulli), Lemma 65 in Appendix G shows that Property 9 holds with

κ−(u) = − log
( u
B

)
, κ+(u) = − log

(
1− u

B

)
, c0(n) = n+ 1 .

Tight upper bound on an+1,i Property 10 states that the sampler Πn based on F̃n yields an
exponential upper bound on the BCP. Importantly, this upper bound is tailored to the considered
family of distributions F as it involves the K±inf for the set of distributions F .

Property 10. For all u ∈ (0, B), all n ≥ 1 and all i ∈ [K],

Pn[θi ≥ u] ≤ e−c1(Nn,i)K+
inf (F̃n,i,u) and Pn[θi ≤ u] ≤ e−c1(Nn,i)K−inf (F̃n,i,u) ,

where c1 : N∗ → N∗ is an increasing function such that c1(x) ∼+∞ x.

Property 10 plays an important role for the TS leader and the RS challenger, both in the proof of
sufficient exploration and convergence towards the β-optimal allocation. For bounded distributions
(and Bernoulli), Theorem 5 in Appendix G shows that Property 10 holds with c1(n) = n+ 2.

Lemma 23 is a direct corollary of Property 10 by using Lemma 64. For bounded distributions, it is
exactly Corollary 2.

Lemma 23. Let Πn satisfying Property 10. Then, for all n ≥ 1 and all (i, j) ∈ [K]2

Pn[θj ≥ θi] ≤ f
(

inf
u∈[0,B]

{
c1(Nn,i)K−inf(F̃n,i, u) + c1(Nn,j)K+

inf(F̃n,j , u)
})

,

where f : x 7→ (1 + x)e−x is decreasing on R+ with values in (0, 1].

Proof. Using Property 10 and Lemma 64, we obtain for all n ≥ 1 and all (i, j) ∈ [K]2

Pn[θj ≥ θi] ≤ f
(
c1(Nn,i)K−inf(F̃n,i, ui,j) + c1(Nn,j)K+

inf(F̃n,j , ui,j)
)

≤ f
(

inf
u∈[0,B]

{
c1(Nn,i)K−inf(F̃n,i, u) + c1(Nn,j)K+

inf(F̃n,j , u)
})

,

where ui,j = arg maxc∈[0,B] Pn[θj ≥ c]Pn[θi ≤ c]. When µ̃n,i ≤ µ̃n,j , this result is non informative
as f(0) = 1.

While the proof of Property 9 heavily relies on the transformed cdfs, Property 10 also holds for
the empirical cdfs Fn. There is no need to add {0, B} in the support for this property. We aim at
presenting a unified sampler Πn, which could be used both for the TS leader and the RS challenger.
Therefore, we present all the results with the modified cdfs F̃n instead of differentiating between a
sampler Πn for the TS leader and a sampler Π̃n for the RS challenger.
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Tight lower bound on an+1,i Property 11 states that the sampler Πn based on F̃n yields an
exponential lower bound on Pn[θi ≥ θi? ]. Importantly, this lower bound is tailored to the considered
family of distributions F as it involves the K±inf for the set of distributions F .

Property 11. Let ε > 0 and i? = i?(F ). There exists N8, with EF [(N8)α] < +∞ for all α > 0,
such that for all n with mini∈[K]Nn,i ≥ N8 and all i 6= i?,

Pn [θi ≥ θi? ] ≥ e−ε(Nn,i?+Nn,i)

hε(Nn,i? , Nn,i)
exp

(
− inf
x∈[0,B]

{
Nn,i?K−inf(Fi? , x) +Nn,iK+

inf(Fi, x)
})

,

where hε : (N?)2 → (0,+∞) is an increasing function of both arguments, such that hε(n,m) =+∞
o
(
e(n+m)α

)
where α < 1.

For bounded distributions (and Bernoulli), Property 11 is a direct corollary of Theorem 8 given in
Appendix G. Let ε > 0 and η > 0 as in Theorem 8. Using Lemma 14, there exists N8 = Poly(W2)
such that for all n such that mini∈[K]Nn,i ≥ N8, we have maxi∈[K] ‖Fn,i − Fi‖∞ ≤ η. As
EF [eλW2 ] < +∞ for all λ > 0, we have EF [(N8)α] < +∞ for all α > 0 since (N8)α = Poly(W2).
Therefore, Property 11 holds for bounded distributions with

hε(n,m) = (nm)
Mε+1

2 Cε and Cε =
4(8π)Mε−1

MMε
ε

,

where hε satisfies the conditions from Property 11.

Using Lemma 64, Theorem 8 was shown thanks to tight lower bound on the BCP for bounded
distributions (Lemma 67). Given a family of distribution for which a tight lower bound on the
BCP exists, similar manipulations would yield a tight lower bound on Pn[θi ≥ θj ], hence showing
Property 11. The proof of Theorem 8 heavily relies on the modified empirical cdf featured in the
tight BCP lower bound. Indeed, for bounded distributions Lemma 67 follows from a discretization of
the empirical cdf, which allows to use results on multinomial distributions. Since the technicalities
depend on the considered distribution, we don’t provide a general proof of Property 11 given a tight
lower bound on the BCP.

Rates for an+1,i Analyzing randomized mechanisms heavily relies on properties of an+1,i.
Lemma 24 shows that an+1,i decreases exponentially with a linear rate for the arms not having
highest means.

Lemma 24. Let Πn satisfying Property 10, and c1 therein. Let SLn and I?n as in (19). There exists
L7 with EF [(L7)α] < +∞ for all α > 0 such that if L ≥ L7, for all n such that SLn 6= ∅,

∀i ∈ SLn \ I?n, an+1,i ≤ f(c1(L)DF ) ,

where f(x) = (1 + x)e−x and DF > 0 is the problem dependent constant from Lemma 15.

Proof. Let SLn and I?n as in (19). Assume that SLn 6= ∅. If SLn \ I?n is empty, then the statement is not
informative. Assume SLn \ I?n is not empty. Let (i, j) ∈ I?n ×

(
SLn \ I?n

)
.

Since Πn satisfies Property 10, using Lemma 23 yields

an+1,j ≤ Pn[θj ≥ θi] ≤ f
(

inf
u∈[0,B]

{
c1(Nn,i)K−inf(F̃n,i, u) + c1(Nn,j)K+

inf(F̃n,j , u)
})

≤ f
(
c1(L) inf

u∈[0,B]

{
K−inf(F̃n,i, u) +K+

inf(F̃n,j , u)
})

,

where we used that {i, j} ⊂ SLn , c1 increasing and f decreasing.

Using Lemma 30, there exists α > 0 such that

DF = min
(i,j):m(Fi)>m(Fj)

inf
Gi,Gj :

∀k∈{i,j},‖Gk−Fk‖∞≤α

inf
u∈[0,B]

{
K−inf(Gi, u) +K+

inf(Gj , u)
}
> 0 .

Using Lemma 14 and (31), i.e. maxi∈[K]

∥∥∥F̃n,i − Fn,i∥∥∥
∞
≤ d0(n) where d0(n) =+∞ o(n−α),

there exists L7 = Poly(W2) such that for all L ≥ L7 and all i ∈ SLn ,
∥∥∥F̃n,i − Fi∥∥∥

∞
≤ α .
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Since f is decreasing, further upper bounding yields directly that for all L ≥ L7 and all j ∈ SLn \ I?n,
we have

an+1,j ≤ f (c1(L)DF ) .

As EF [eλW2 ] < +∞ for all λ > 0, we have EF [(L7)α] < +∞ for all α > 0 since (L7)α =
Poly(W2). This concludes the proof.

Lemma 25 gives a lower bound on an,i for under-sampled arms.

Lemma 25. Let Πn satisfying Properties 9 and 10. Let SLn as in (19). There exists L8 with
EF [(L8)α] < +∞ for all α > 0 such that for all L ≥ L8 and all n ∈ N,

∀i ∈ SLn , an+1,i ≥
e−D0c0(L)

2K−1
,

where c0 is defined in Property 9 and D0 > 0 is a problem dependent constant.

Proof. Let i ∈ SLn and u ∈ (0, B). As explained above, we have

an+1,i ≥ Pn [θi ≥ u]
∏
j∈SLn

Pn [θj ≤ u]
∏

j∈SLn \{i}

Pn [θj ≤ u] .

For all j ∈ SLn , Property 10 yields

Pn [θj ≤ u] = 1− Pn [θj ≥ u] ≥ 1− e−c1(Nn,j)K+
inf (F̃n,j ,u) ≥ 1− e−c1(L)K+

inf (F̃n,j ,u) ,

where we used that Nn,j ≥ L for all j ∈ SLn and c1 increasing.

By Theorem 4, the function F 7→ K+
inf(F, u) is continuous on F . Using Lemma 14 and (31), i.e.

maxi∈[K]

∥∥∥F̃n,i − Fn,i∥∥∥
∞
≤ d0(n) where d0(n) =+∞ o(n−α), there exists L9 = Poly(W2) such

that for all L ≥ L9 and all j ∈ SLn ,

K+
inf(F̃n,j , u) ≥ 1

2
K+

inf(Fj , u) ≥ 1

2
min
j∈[K]

K+
inf(Fj , u) .

Since µj ∈ (0, B) for all j ∈ [K], there exists u ∈ (0, B) such that minj∈[K]K+
inf(Fj , u) > 0.

Choosing such a u, there exists a deterministic L10 such that for all L ≥ L8 := max{L9, L10}

∀j ∈ SLn , Pn [θj ≤ u] ≥ 1

2
.

For the under-sampled arms j ∈ SLn , Property 9 yields that

∀j ∈ SLn \ {i}, Pn [θj ≤ u] ≥ e−c0(Nn,j)κ
−(u) ≥ e−c0(L)κ−(u) ,

Pn [θi ≥ u] ≥ e−c0(Nn,i)κ
+(u) ≥ e−c0(L)κ+(u) ,

where we used that Nn,i < L for j ∈ SLn , c0 increasing and κ−, κ+ strictly positive.

Combining the above and further lower bounding, we have shown that for L ≥ L8,

∀i ∈ SLn , an+1,i ≥
e−D0c0(L)

2K−1
,

whereD0 = κ+(u)+(K−1)κ−(u). As EF [eλW2 ] < +∞ for all λ > 0, we have EF [(L9)α] < +∞
for all α > 0. Since EF [(L8)α] ≤ (L10)α + EF [(L9)α] < +∞, this concludes the proof.

D.2.2 TS leader
Conditioned on Fn, the internal randomness of the Thompson Sampling (TS) leader is parameterized
by a sampler Πn, where an+1,i = Pn[i ∈ arg maxj∈[K] θj ]. Given an observation θ ∼ Πn, the TS
leader is defined as an arm with highest mean for θ,

BTS
n+1 ∈ arg max

i∈[K]

θi , P|n[BTS
n+1 = i] = an+1,i and B̂TS

n+1 ∈ arg max
i∈[K]

an+1,i , (32)

where B̂TS
n+1 is defined as an arm with highest an,i.
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Property 2 Lemma 26 shows that Property 2 is satisfied by BTS
n+1.

Lemma 26. Let Πn satisfying Property 10. Let SLn and I?n as in (19). There exists L̃7 with
EF [(L̃7)α] < +∞ for all α > 0 such that if L ≥ L̃7, for all n such that SLn 6= ∅, B̂TS

n+1 ∈ SLn
implies B̂TS

n+1 ∈ I?n.

Proof. Let SLn and I?n as in (19). Assume that SLn 6= ∅. If SLn \ I?n is empty, then the result is true.
Assume SLn \ I?n is not empty. Let j ∈ SLn \ I?n and L7 as in Lemma 24, hence

an+1,j ≤ f (c1(L)DF ) .

As c1(x) ∼+∞ x and lim+∞ f(x) = 0, there exists a deterministic L8 such that for all L ≥ L8,

f (c1(L)DF ) <
1

K
.

Therefore, for all L ≥ L̃7 := max{L7, L8} and all j ∈ SLn \ I?n, we have an+1,j <
1
K .

Assume that B̂TS
n+1 ∈ SLn . Suppose towards contradiction that B̂TS

n+1 /∈ I?n. Then, the above shows
that an+1,B̂TS

n+1
< 1

K . This is a contradiction with B̂TS
n+1 ∈ arg maxi∈[K] an+1,i, hence B̂TS

n+1 ∈ I?n.

Since EF [(L̃7)α] ≤ (L8)α + EF [(L7)α], this concludes the proof.

Property 5 Lemma 27 shows that Property 5 is satisfied by BTS
n+1. More precisely, we show that

after enough time, the probability for the leader to not be the best arm is decreasing exponentially
fast.

Lemma 27. Assume Property 4 holds. Let Πn satisfying Property 10, and c1 therein. There exists
N9 with EF [N9] < +∞ such that for all n ≥ N9,

P|n[BTS
n+1 6= i?(F )] ≤ (K − 1)f

(
c1

(√
n

K

)
DF

)
,

where f(x) = (1 + x)e−x and DF > 0 is the problem dependent constant from Lemma 15.

Proof. Let i? = i?(F ). Let N1 as in Property 4, then Nn,i ≥
√

n
K for all n ≥ N1. Let L7 as in

Lemma 24. For all n ≥ N9 = max{N1,K(L7)2}, Lemma 26 and Property 4 yields that

∀i 6= i?, an+1,i ≤ f
(
c1

(√
n

K

)
DF

)
.

Using the definition of BTS
n+1 in (32), we obtain

P|n[BTS
n+1 6= i?] =

∑
i 6=i?

P|n[BTS
n+1 = i] ≤ (K − 1) max

i6=i?
an+1,i ≤ (K − 1)f

(
c1

(√
n

K

)
DF

)
.

Since EF [N9] ≤ EF [N1] +KEF [(L7)2] < +∞, this concludes the result.

D.2.3 RS challenger
Conditioned on Fn, the internal randomness of the Re-Sampling (RS) challenger is parameterized by
a sampler Πn, where an+1,i := Pn[i ∈ arg maxj∈[K] θj ]. Given a leader Bn+1, the RS challenger is
defined by repeatedly sampling θ̃ ∼ Πn until Bn+1 /∈ arg maxi∈[K] θ̃i and by taking an arm with
highest mean for this θ̃

CRS
n+1 ∈ arg max

i∈[K]

θ̃i 63 Bn+1 and ĈRS
n+1 ∈ arg max

j 6=B̂n+1

an+1,j , (33)

where

P|n[CRS
n+1 = j|Bn+1 = i] =

+∞∑
k=0

akn+1,ian+1,j =
an+1,j

1− an+1,i
.
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Property 3 We prove Property 3 for CRS
n+1 in Lemma 28 by comparing the rates with which an+1,i

decreases. The effective challenger ĈRS
n+1 is taken as an arm different from B̂n+1 which maximizes

an+1,i. Therefore, it is sufficient to show that the sampled enough arms have lower an+1,i than the
mildly under-sampled ones. This will imply that ĈRS

n+1 has to be mildly under-sampled or be an arm
with highest true mean among the sampled enough arms.

Lemma 28. Let Πn satisfying Properties 9 and 10. LetBn+1 be a leader satisfying Property 2. Given
(Bn+1, B̂n+1), let (CRS

n+1, Ĉ
RS
n+1) as in (33). Let ULn and V Ln as in (20) and J ?n = arg max

i∈V Ln
µi.

There exists L9 with EF [L9] < +∞ such that if L ≥ L9, for all n such that ULn 6= ∅, B̂n+1 /∈ V Ln
implies ĈRS

n+1 ∈ V Ln ∪
(
J ?n \

{
B̂n+1

})
.

Proof. Let J ?n = arg max
i∈V Ln

µi. In the following, we consider ULn 6= ∅ (hence V Ln 6= ∅) and

B̂n+1 ∈ V Ln . LetBn+1 be a leader satisfying Property 2, and L0 defined therein. Then, for L ≥ L4/3
0 ,

we have B̂n+1 ∈ J ?n . If ĈRS
n+1 ∈ J ?n \

{
B̂n+1

}
, we are done. Assume that ĈRS

n+1 /∈ J ?n \
{
B̂n+1

}
.

Since Πn satisfies Properties 9 and 10, let L7 and L8 as in Lemmas 24 and 25. Then, for all
L ≥ max{L4/3

0 , L
4/3
7 , L2

8},

B̂n+1 ∈ J ?n ,
∀i ∈ V Ln \ J ?n , an+1,i ≤ f(c1(L3/4)DF ) ,

∀j ∈ ULn , an+1,j ≥
e−D0c0(

√
L)

2K−1
.

Since f(x) = (1 + x)e−x, c0(x) ∼+∞ x and c1(x) ∼+∞ x, there exists a deterministic L10 such
that for all L ≥ L10,

f(c1(L3/4)DF ) <
e−D0c0(

√
L)

2K−1
.

Therefore, for all L ≥ L9 := max{L4/3
0 , L

4/3
7 , L2

8, L10},

∀(j, i) ∈ ULn ×
(
V Ln \ J ?n

)
, an+1,j > an+1,i .

As B̂n+1 ∈ J ?n and ĈRS
n+1 /∈ J ?n \

{
B̂n+1

}
, the definition ĈRS

n+1 ∈ arg maxj 6=B̂n+1
an+1,j yields

that ĈRS
n+1 ∈ V Ln . Otherwise the above strict inequality would wield a contradiction. Since

EF [L9] ≤ L10 + EF [(L0)4/3] + EF [(L7)4/3] + EF [(L8)2] < +∞ ,

this concludes the proof.

Property 6 Lemma 29 shows that Property 6 is satisfied by CRS
n+1.

Lemma 29. Assume Property 4 holds. Let Πn satisfying Properties 10 and 11. Let Bn+1 be a leader
satisfying Property 5. Let ε ∈ (0, ε0] where ε0 is a problem dependent constant. Given Bn+1, let
CRS
n+1 as in (33). There exists N10 with EF [N10] < +∞ such that for all n ≥ N10 and all i 6= i?(F ),

Ψn,i

n
≥ wβi + ε =⇒ P|n[CRS

n+1 = i | Bn+1 = i?(F )] ≤ h(n) , (34)

where h : N? → (0,+∞) such that h(n) =+∞ o(n−α) with α > 0.

Proof. Let ε > 0 and i? = i?(F ). Let N1 as in Property 4, then Nn,i ≥
√

n
K for all n ≥ N1. Since

i? is unique, we have ∆ := minj 6=i? |µi? − µj | > 0. For bounded distributions, F 7→ m(F ) is
continuous on F for the weak convergence. Lemma 14 yields that there exists N11 = Poly(W2)
such that for all n ≥ max{N1, N11} and all i ∈ [K], we have |µn,i − µi| ≤ ∆

4 . Therefore, for all
n ≥ max{N1, N8}, arg maxi∈[K] µn,i = arg maxi∈[K] µi = i?.
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Let ξ > 0. Since Property 4 holds and Bn+1 satisfies Property 5, we can use the results from
Lemma 11. Let N4 defined in Lemma 11, we have

∣∣∣Nn,i?n − β
∣∣∣ ≤ ξ for all n ≥ max{N1, N4}.

Using the definition of CRS
n+1 in (33), we have

P|n[CRS
n+1 = i | Bn+1 = i?] =

an+1,i

1− an+1,i?
≤ Pn[θi ≥ θi? ]

maxj 6=i? Pn[θj ≥ θi? ]
,

where we used that {θj > θi?} ⊆
⋃
j 6=i?{θj > θi?} = {i? /∈ arg maxj∈[K] θj}.

Let i 6= i? such that Ψn,i
n ≥ wβi + ε. Using Lemma 5, there exists N12 = Poly(W1), such that for

all n ≥ max{N1, N12}, we have Nn,i
n ≥ wβi + ε

2 . Therefore, for all n ≥ maxi∈{1,4,11,12}Ni,

Let f(x) = (1 + x)e−x. Since Πn satisfies Property 10, Lemma 23 yields

Pn[θi ≥ θi? ] ≤ f
(
n inf
u∈[0,B]

{
c1(Nn,i?)

n
K−inf(F̃n,i? , u) +

c1(Nn,i)

n
K+

inf(F̃n,i, u)

})
.

Let ε̃ > 0. Since f(x) =+∞ O
(
e−(1−ε̃)x) and c1(x) ∼+∞ x, there exists deterministic Cε̃ and N13

such that for all n ≥ maxi∈{1,4,11,12,13}Ni,

Pn[θi ≥ θi? ] ≤ Cε̃ exp

(
−n(1− ε̃) inf

u∈[0,B]

{
Nn,i?

n
K−inf(F̃n,i? , u) +

Nn,i
n
K+

inf(F̃n,i, u)

})
≤ Cε̃ exp

(
−n(1− ε̃) inf

u∈[0,B]

{
Nn,i?

n
K−inf(F̃n,i? , u) +

(
wβi +

ε

2

)
K+

inf(F̃n,i, u)

})
.

Let (hε, N8) as in Property 11. Since hε is increasing in both its arguments, we
have hε(Nn,i? , Nn,i) ≤ hε(n, n) and Nn,i? + Nn,i ≤ n. Therefore, for all n ≥
max{KN2

8 ,maxi∈{1,4,11,12}Ni},
max
j 6=i?

Pn[θj ≥ θi? ]

≥ e−εn

hε(n, n)
exp

(
−nmin

j 6=i?
inf

x∈[0,B]

{
Nn,i?

n
K−inf(Fi? , x) +

Nn,j
n
K+

inf(Fj , x)

})

≥ e−εn

hε(n, n)
exp

−n sup
w∈4K :wi?=

Nn,i?

n

min
j 6=i?

inf
x∈[0,B]

{
wi?K−inf(Fi? , x) + wjK+

inf(Fj , x)
} ,

where we lower bounded by considering the best possible allocation such that wi? =
Nn,i?

n . For
(G, β̃) ∈ F2 × [0, 1], let

Hε̃(G, β̃) = (1− ε̃) inf
u∈[0,B]

{
β̃K−inf(G1, u) +

(
wβi +

ε

2

)
K+

inf(G2, u)
}

− sup
w∈4K :wi?=β̃

min
j 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wjK+

inf(Fj , u)
}
.

Let G̃n,i?,i = (F̃n,i? , F̃n,i). Combining the upper and the lower bound, we obtain for all n ≥
max{KN2

8 ,maxi∈{1,4,11,12,13}Ni},

P|n[CRS
n+1 = i | Bn+1 = i?] ≤ Cε̃hε(n, n)eεn exp

(
−nHε̃

(
G̃n,i?,i,

Nn,i?

n

))
≤ Cε̃hε(n, n)eεn exp

(
−n inf

β̃:|β−β̃|≤ξ
Hε̃

(
G̃n,i?,i, β̃

))
.

Using Lemma 31, the functions (G, β̃) 7→ Hε̃(G, β̃) andG 7→ inf β̃:|β−β̃|≤ξHε̃(G, β̃) are continu-
ous. LetGi?,i = (Fi? , Fi). Therefore, there exists N14 = Poly(W1), ξ0 > 0 and ε̃0 > 0 such that
for all n ≥ N10 := max{KN2

8 ,maxi∈{1,4,11,12,13,14}Ni}, all ξ ∈ (0, ξ0] and ε̃ ∈ (0, ε̃0], we have

inf
β̃:|β−β̃|≤ξ

Hε̃

(
G̃n,i?,i, β̃

)
≥ 1

2
inf

β̃:|β−β̃|≤ξ
Hε̃(Gi?,i, β̃) ≥ 1

4
Hε̃(Gi?,i, β) ≥ 1

8
H0(Gi?,i, β) .
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In the following, we take such ξ0 > 0 and ε̃0 > 0 and ε ∈ (0, ε0] where ε0 = 1
16H0(Gi?,i, β) is a

problem dependent constant.

At the β-equilibrium all transportation costs are equal (Lemma 61). Therefore, by definition of wβ ,

sup
w∈4K :wi?=β

min
j 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wjK+

inf(Fj , u)
}

= min
j 6=i?

inf
u∈[0,B]

{
βK−inf(Fi? , u) + wβj K

+
inf(Fj , u)

}
= inf
u∈[0,B]

{
βK−inf(Fi? , u) + wβi K

+
inf(Fi, u)

}
< inf
u∈[0,B]

{
βK−inf(Fi? , u) +

(
wβi +

ε

2

)
K+

inf(Fi, u)
}

where the strict inequality is obtained because the transportation costs are strictly increasing in their
allocation arguments (Lemma 56). Therefore, we have H0(Gi?,i, β) > 0.

As EF [eλW1 ] < +∞ and EF [eλW2 ] < +∞ for all λ > 0, we have EF [Ni] < +∞ for i ∈
{11, 12, 14} and

EF [N10] ≤ N13 +KEF [(N8)2] +
∑

i∈{1,4,11,12,14}

EF [Ni] < +∞ .

Summarizing, we have shown that for all ε ∈ (0, ε0], there exists N10 with EF [N10] < +∞ such
that for all n ≥ N10,

Ψn,i

n
≥ wβi + ε =⇒ P|n[CRS

n+1 = i | Bn+1 = i?(F )] ≤ h(n) ,

where

h(n) := Cε̃0hε(n, n) exp
(
− n

16
H0(Gi?,i, β)

)
.

Since H0(Gi?,i, β) > 0, n 7→ hε(n, n) is decreasing and hε(n, n) =+∞ o
(
e(2n)α

)
where α < 1,

we obtain that h(n) =+∞ o(n−α) with α > 0. It is obvious by definition that h(n) ∈ (0,+∞) for
all n ∈ N?.

D.3 Relaxing the distinct means assumption
In Appendix C, we highlighted that Assumption 2 (∆min(F ) > 0) was only used to show sufficient
exploration (see Appendix C.3). We also remarked that the proofs in Appendices C.3 and C.4 work
similarly when the amount of exploration

√
n
K in Lemma 7 and Property 4 is replaced by

(
n
K

)α
for some arbitrary α ∈ (0, 1). We conjecture that, besides β-EB-TC, all the Top Two algorithms
studied in this paper are also asymptotically β-optimal when ∆min(F ) = 0, as detailed below. Let
∆min := ∆min(F ).

Lack of robustness of β-EB-TC for ∆min = 0 For the EB-TC sampling rule, a simple explanation
hints that it can dramatically fail empirically, which is confirmed experimentally in Appendix I.2.
Let F be a bandit instance in which there are two arms with equal mean that are closest to µi? . At
small time, it can happen that the best arm is under-estimated (e.g. when under-sampled) and the
two second-best arms have higher empirical mean. In that case, is is very hard for β-EB-TC to
recover as it will mostly sample the two second-best arms instead of the best arm. The EB leader will
alternate between one of the two second-best arms, depending on the collected samples. Then, given
the EB leader, the TC challenger will output the arm with smallest transportation cost. When both
second-best arms have higher empirical mean and the best arm is under-estimated, the transportation
cost will be smaller between the two second-best arms. Therefore, the TC challenger will propose the
second of the two second-best arms. As neither the leader nor the challenger propose to sample the
true best arm, it is very hard for β-EB-TC to recover from unlucky first draws.

The condition ∆min > 0 asymptotically prevents the above situation. When µi > µj , the transporta-
tion cost between (i, j) grows linearly with Nn,i +Nn,j . Therefore, the transportation cost between
the over-sampled arms will become larger than between the current leader and the best arm, even if
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it is under-estimated. This ensures that the challenger will propose to sample the best arm, hence
allowing the algorithm to eventually recover from unlucky first draws. Based on our analysis, the
number of samples required by β-EB-TC to recover from unlucky first draws is a function of (DF )−1,
where DF is a problem dependent constant defined in (35). Extrapolating from results on Gaussian, it
is intuitive to expect that small ∆min yields small DF . Therefore, for small ∆min, β-EB-TC can need
a large number of samples before recovering from unlucky first draws. This undesirable behavior in
moderate confidence regime is hidden in the asymptotic analysis. Therefore, we expect β-EB-TC to
also suffer from large outliers in the moderate regime, even when ∆min > 0.

On asymptotic β-optimality for ∆min = 0 Experiments reported in Appendix I.2.2 reveal that
on some instance with ∆min = 0, the other Top Two instances still have a good performance. We
conjecture that using either regularization in the TCI challenger or randomization in the TS leader
or RS challenger is adding the right amount of exploration to avoid the undesirable behavior of
β-EB-TC described above, and ensure asymptotic β-optimality. More precisely, we conjecture that
this amount of exploration is actually logarithmic, and that logarithmic exploration is sufficient to
prove β-optimality (which is currently not supported by our analysis).

In particular, for the TS leader it is known from the literature on regret minimization that Thompson
Sampling is selecting sub-optimal arms a logarithmic amount of time (at least in expectation) [1].
As for the TCI challenger, we observe that it is designed to avoid the situation described above in
which β-EB-TC fails when there are two equal second best arms. When choosing the challenger, we
penalize the highly over-sampled arms by adding log(Nn,j). While the transportation cost can be
very small for two highly sampled arms having similar means, the penalization makes sure that the
under-sampled best arm will be selected as the challenger. We conjecture that the TCI challenger
ensures an implicit logarithmic exploration.

On forced exploration Another natural idea to prove asymptotic β-optimality when ∆min = 0 is
to add some small amount of forced exploration to the algorithm. A round n, if there exists an arm i
such that Nn,i < nα (for some small value of α), we draw this arm. This will make Property 4 hold
for an exploration level (n/K)α. However, forced exploration can be wasteful as it is agnostic to Fn
and all under-sampled arms should not be drawn equally. Our experiments confirm that it is actually
not needed for most Top Two algorithms.

Concurrently to our work, [33] introduces and studies the TT-SPRT algorithm for general SPEF.
In our terminology, it corresponds to the β-EB-TC algorithm with an added forced exploration in√
n/K. As expected, adding forced exploration allows to obtain asymptotic β-optimality even for

instances where ∆min = 0. By adding forced exploration, their result also holds for SPEF which are
not sub-exponential distributions. In our work, the sub-exponential assumption is made to control
the concentration towards the mean parameter. Controlling the concentration rate is of the upmost
importance to prove sufficient exploration. Therefore, while this fact is not a direct consequence of
our unified analysis, it is not surprising.

D.4 Technicalities
We present some technical results used in the above proofs. Those technicalities are direct corollaries
of properties on K±inf obtained in the Appendix F.

Lemma 30. There exists α > 0 such that

DF = min
(i,j):m(Fi)>m(Fj)

inf
Gi,Gj :

∀k∈{i,j},‖Gk−Fk‖∞≤α

inf
u∈[0,B]

{
K−inf(Gi, u) +K+

inf(Gj , u)
}
> 0 . (35)

Proof. Using Lemma 54 for w1 = w2 = 1, we have that

F 7→ inf
u∈[0,B]

{
K−inf(Fi, u) +K+

inf(Fj , u)
}

is continuous on FK . Since it has strictly positive values when m(Fi) > m(Fj) (Lemma 55), there
exists α such that

inf
Gi,Gj :

∀k∈{i,j},‖Gk−Fk‖∞≤α

inf
u∈[0,B]

{
K−inf(Gi, u) +K+

inf(Gj , u)
}
> 0 .

Further lower bounding by a finite number of strictly positive constants yields the result.
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For all i ∈ [K], we define the distributions for which i is among the best arm

FKi :=
{
F ∈ FK | i ∈ i?(F )

}
.

Lemma 31. Let i? ∈ [K], F ∈ FKi? , i 6= i? and ϕ ∈ [0, 1]. Define for β ∈ [0, 1],

Gi(F , β) = inf
u∈[0,B]

{
βK−inf(Fi? , u) + ϕK+

inf(Fi, u)
}

− sup
w∈4K :wi?=β

min
j 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wjK+

inf(Fj , u)
}
.

Then, (F , β) 7→ Gi(F , β) is continuous on FK × [0, 1]. Moreover, the function F 7→
inf β̃:|β−β̃|≤ξ Gi(F , β̃) is continuous on FK .

Let ν ∈ FK1 , F ∈ F2 such that m(F1) > m(F2), α > 0 and ϕ ∈ [0, 1]. Define for β ∈ [0, 1],

H(F , β) = α inf
u∈[0,B]

{
βK−inf(F1, u) + ϕK+

inf(F2, u)
}

− sup
w∈4K :w1=β

min
i6=1

inf
u∈[0,B]

[
w1K−inf(ν1, u) + wiK+

inf(νi, u)
]
.

Then, (F , β) 7→ H(F , β) is continuous on F2 × [0, 1]. Moreover, the function F 7→
inf β̃:|β−β̃|≤ξH(F , β̃) is continuous on F2.

Proof. Since
⋃
i∈[K] FKi = FK , it is enough to show the property for all i ∈ [K]. Let i? ∈ [K] and

i 6= i?. In the proof of Lemma 58, we have obtained that

(F , w) 7→ inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}

and (F , w) 7→ min
i 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}

are continuous on FKi? ×4K .

Let Φi? : (F , β) 7→ {w ∈ 4K | wi? = β}, it is compact valued and non-empty for all β ∈ [0, 1].
It is also continuous (both lower and upper hemicontinuous). Using the continuity proven above,
Berge’s theorem yields that

(F , β) 7→ sup
w∈4K :w1=β

min
i 6=1

inf
u∈[0,B]

[
w1K−inf(ν1, u) + wiK+

inf(νi, u)
]
,

is continuous on FKi? × [0, 1]. Combining with the above continuity results, we obtain that (F , β) 7→
Gi(F , β) is continuous on FKi? × [0, 1] for all i? ∈ [K], hence on FK × [0, 1].

Let Φ : F 7→
{
β̃ : |β − β̃| ≤ ξ

}
, it is a continuous (constant), compact valued and non-

empty correspondence. Using the continuity proven above, Berge’s theorem yields that F 7→
inf β̃:|β−β̃|≤ξ Gi(F , β̃) is continuous on FK .

Using exactly the same arguments, we obtain that (F , β) 7→ H(F , β) is continuous on F2 × [0, 1]

and F 7→ inf β̃:|β−β̃|≤ξH(F , β̃) is continuous on F2.

E Concentration
In Appendix E.1, we leverage results on martingales [5] to prove δ-correctness of the threshold (4)
from Lemma 2. In Appendix E.2, we derive technical results needed in our analysis of Top Two
algorithms based on concentration for sub-Gaussian random variables.

E.1 Calibration for bounded distributions
After proving Lemma 32, we give a threshold for bounded distributions (Lemma 2). The concentration
is obtained as a direct corollary of recent work on martingales [5]. We apply their technical result to
the case of bounded distributions.
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Calibration by concentration Lemma 32 states that δ-correct thresholds can be obtained by
concentration results.

Lemma 32. If with probability 1− δ, for all n ∈ N and all i 6= i?(F ),

Nn,iK−inf(Fn,i, µi) +Nn,i?(F )K+
inf(Fn,i?(F ), µi?(F ))) ≤ c(n, δ) , (36)

then the stopping rule (2) using c(n, δ) is δ-correct on FK .

Proof. Let i? = i?(F ) and ı̂n = i?(Fn). The empirical transportation costs in (1) can be rewritten as

Wn(̂ın, j) = inf
x≤y

[
Nn,̂ınK−inf(Fn,̂ın , x) +Nn,jK+

inf(Fn,j , y)
]
.

Using j = i?, x = µi and y = µi? , we obtain

P (τδ < +∞, ı̂τδ 6= i?)

≤ P
(
∃n ∈ N, ∃i 6= i?, i = ı̂n, min

j 6=i
Wn(i, j) > c(n, δ)

)
≤ P

(
∃n ∈ N, ∃i 6= i?, Nn,iK−inf(Fn,i, µi) +Nn,i?K+

inf(Fn,i? , µi?) > c(n, δ)
)
.

Concentration of Kinf The key technical result, which was extracted from [5], is reproduced in
Lemma 33.

Lemma 33 (Lemma E.1 in [5]). Let a compact and convex set Λ ⊆ Rd, and q be the uniform
distribution on Λ. Let gt : Λ 7→ R be any series of exp-concave functions. Then,

max
λ∈Λ

n∑
k=1

gk(λ) ≤ logEλ∼q
[
e
∑n
k=1 gt(λ)

]
+ d log(n+ 1) + 1

We are now ready to prove Lemma 2.

Proof. For all (n, i) ∈ N × [K], we denote by (Xk,i)k∈[Nn,i] the samples collected on arm i. Let
i? = i?(F ) and i ∈ [K] \ {i?}. Using Theorem 3, we obtain

Nn,i?K+
inf(Fn,i? , µi?)) = max

λ∈
[
0, 1
B−µi?

] ∑
k∈[Nn,i? ]

log(1− λ(Xk,i? − µi?)) ,

Nn,iK−inf(Fn,i, µi)) = max
λ∈

[
0, 1
µi

] ∑
k∈[Nn,i]

log(1 + λ(Xk,i − µi)) .

Let q+
i and q−i be the uniform distributions over

[
0, 1

B−µi

]
and

[
0, 1

µi

]
, which are compact and

convex sets of R. Define

Ln,i = Eλ∼q−i

 ∏
k∈[Nn,i]

(1 + λ(Xk,i − µi)) | X1,i, · · · , XNn,i,i

 ,

Un,i = Eλ∼q+i

 ∏
k∈[Nn,i]

(1− λ(Xi,k − µi)) | X1,i, · · · , XNn,i,i

 ,

Y −n,i = Nn,iK−inf(Fn,i, µi)− log(Nn,i + 1)− 1 ,

Y +
n,i = Nn,iK+

inf(Fn,i, µi)− log(Nn,i + 1)− 1 .

With d = 1, using Lemma 33 with the exp-concave functions g+
k,i(λ) = log(1− λ(Xk,i − µi)) for

k ∈ [Nn,i], and g−k,i(λ) = log(1 + λ(Xk,i − µi)) for k ∈ [Nn,i], yields

eY
−
n,i ≤ Ln,i and eY

+
n,i ≤ Un,i a.s.
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Furthermore, it is easy to verify that for each arm i ∈ [K], Ln,i and Un,i are non-negative martingales
with unit initial value L0,i = 1 and U0,i = 1 almost surely. The martingale property is shown directly
by the tower rule (conditioned on the arm sampled at time n) and E

[
1± λ(XNn,i,i − µi)

]
= 1.

Furthermore, they satisfy E[Un,i] ≤ 1 and E[Ln,i] ≤ 1. Thus, Un,i?Ln,i is a non-negative martingale
with unit initial value.

By concavity of log and using
∑
j∈{i,i?}Nn,j ≤ n, we have

c(n, δ) ≥ log

(
K − 1

δ

)
+ 2 +

∑
j∈{i,i?}

log (Nn,j + 1) .

Taking a union bound over i 6= i? and using Ville’s inequality, we obtain

P
(
∃t ∈ N, ∃i 6= i?, Nn,iK−inf(Fn,i, µi) +Nn,i?K+

inf(Fn,i? , µi?) > c(n, δ)
)

≤
∑
i 6=i?

P
(
∃t ∈ N, Y −n,i + Y +

n,i? > log

(
K − 1

δ

))

≤
∑
i 6=i?

P
(
∃t ∈ N, Un,i?Ln,i >

K − 1

δ

)
≤ δ .

Combining the above concentration with Lemma 32 yields the result.

E.2 Sub-Gaussian random variables

We want to exhibit a sub-Gaussian random variables which controls the deviation of various random
variables to their means. More precisely, we will prove the existence of W1 in Lemma 5 and W2 in
Lemma 14.

Definition 3. A random variable X is said to be sub-Gaussian with constant c if for all x ≥ 0,
P(X ≥ x) ≤ e−cx2/2 and for all x ≤ 0, P(X ≤ x) ≤ e−cx2/2.

We are interested in sub-Gaussian random variable mainly due to the following property.

Lemma 34. If X is sub-Gaussian, then for all λ ∈ R, E[eλX ] <∞.

The proof can be found in any textbook dealing with sub-Gaussian random variables, e.g. [42]. We
will furthermore use the following classical properties:

• If X and Y are sub-Gaussian and α ∈ R then X + Y is sub-Gaussian and αX is sub-
Gaussian.

• Bounded random variables are sub-Gaussian.

• If X verifies that for all x ≥ x1 ≥ 0, P(X ≥ x) ≤ a1e
−c1x2/2 and for all x ≤ x2 ≤ 0,

P(X ≤ x) ≤ a2e
−c2x2/2, then X is sub-Gaussian.

• The maximum (or minimum) of a finite number of sub-Gaussian random variables is
sub-Gaussian.

Lemma 35. If (Xn)n∈N,n≥1 are sub-Gaussian random variables with constants (cn) such that
infn cn > 0, then supn

Xn√
n log(e+n)/(1+n)

is sub-Gaussian.
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Proof. For x ≥
√

8
infn cn

,

P(ξ ≥ x) ≤
∞∑
n=1

P

(
Xn ≥ x

√
n log(e+ n)

n+ 1

)

≤
∞∑
n=1

exp

(
−(inf

n
cn)x2n log(e+ n)

n+ 1

)

≤
∞∑
n=1

exp

(
−
[
2 log(e+ n) +

infn cn
2

x2n

n+ 1

])

≤
∞∑
n=1

exp

(
−
[
2 log(e+ n) +

infn cn
4

x2

])

=

[ ∞∑
n=1

1

(e+ n)2

]
e−

infn cn
4 x2

,

where we have used that n
n+1 ≥

1
2 and that αβ ≥ α + β for α, β ≥ 2. Now for the lower tail, for

x ≤ 0,

P(ξ ≤ x) ≤ P

(
X1 ≤ x

√
log(1 + e)

2

)
≤ exp

(
− log(1 + e)

2
c1x

2/2

)
.

Application to our work We will use the following two examples of sub-Gaussian variables.
Lemma 36 is a consequence of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [31] while
Lemma 37 follows from Azuma’s inequality.

Lemma 36. Let (Xn)n≥1 be i.i.d. random variables with cdf F and let Fn be the empirical distribu-
tion function of (Xi)i∈[n]. Then for all n,

√
n‖Fn − F‖∞ is sub-Gaussian with a constant which

does not depend on n.

Lemma 37. Let (Xn)n≥1 be a martingale with mean 0 and c-sub-Gaussian increments and µn =
Xn/n. Then for all n,

√
nµn is sub-Gaussian with constant c.

Theses results permit to establish the concentration results that are used in Appendix C and D.

Lemma (Lemma 5 and 14). There exists sub-Gaussian random variables W1 and W2 such that for
all (n, i) ∈ N× [K] with n ≥ K + 1 (such that all arms are pulled at least once)

|Nn,i −Ψn,i| ≤W1

√
(n+ 1) log(e+ n) a.s. ,

‖Fn,i − Fi‖∞ ≤W2

√
log(e+Nn,i)

1 +Nn,i
a.s. .

In particular, E
[
eλWi

]
< +∞ for all λ > 0 and i ∈ {1, 2}.

Proof. For the first inequality, we use that Nn,i −Ψn,i is a martingale and combine Lemma 37 with
Lemma 35 to get that for all i ∈ [K]

W1,i := sup
n≥1

|Nn,i −Ψn,i|/
√
n√

n log(e+ n)/(1 + n)

is sub-Gaussian. Therefore W1 = maxi∈[K]W1,i is sub-Gaussian and we have, for all (n, i),

|Nn,i −Ψn,i| ≤W1

√
n2

n+ 1
log(e+ n) ≤W1

√
(n+ 1) log(e+ n).

For the second inequality, we define W2,i := supn≥K+1 ‖Fn,i − Fi‖∞
√

1+Nn,i
log(e+Nn,i)

. Letting F̂n,i
be the empirical distribution fo the first n samples from arm i (while Fn,i is the empirical distribution
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of the samples collected up to time n), one can rewrite

W2,i = sup
n≥1

∥∥∥F̂n,i − Fi∥∥∥
∞

√
1 + n

log(e+ n)
= sup
n≥1

√
n
∥∥∥F̂n,i − Fi∥∥∥

∞√
n log(e+ n)/(1 + n)

.

Combining Lemma 36 with Lemma 35 yields that W2,i is sub-Gaussian for all i ∈ [K]. Then
W2 = maxi∈[K]W2,i is sub-Gaussian and we have, for all (n, i),

‖Fn,i − Fi‖∞ ≤W1

√
1 +Nn,i

log(e+Nn,i)
.

F Kinf for bounded distributions
Here, F is the set of probability distributions with support in the interval [0, B]. The goal of this
section is to study the properties of K+

inf and K−inf , which are functions F × [0, B] → R+ defined
by

K+
inf(F, µ) = inf{KL(F,G) | G ∈ F ,EG[X] > µ} ,
K−inf(F, µ) = inf{KL(F,G) | G ∈ F ,EG[X] < µ} .

As a first step, we remark that for µ ∈ (0, B) we can rewrite the Kinf functions using non-strict
inequalities, which will be more convenient [18, 17]. We do so and will work in this section on

K+
inf(F, µ) = inf{KL(F,G) | G ∈ F ,EG[X] ≥ µ} ,
K−inf(F, µ) = inf{KL(F,G) | G ∈ F ,EG[X] ≤ µ} .

There is a strong link between these two definitions, which we will use to transport results from one
function to the other.

Lemma 38. Let F ∈ F , µ ∈ [0, B] and let f : [0, B] → [0, B] be defined by f(x) = B − x. Let
FB−X be the pushforward measure of F through f . Then

K+
inf(F

B−X , B − µ) = K−inf(F, µ) and K−inf(F
B−X , B − µ) = K+

inf(F, µ) .

Proof. The function f is measurable, bijective and involutive. We have KL(F,G) =
KL(FB−X , GB−X) for all F,G ∈ F .

K+
inf(F

B−X , B − µ) = inf{KL(FB−X , G) | G ∈ F ,EG[X] ≥ B − µ}
= inf{KL(FB−X , G) | G ∈ F ,EGB−X [X] ≤ µ}
= inf{KL(FB−X , (GB−X)B−X) | G ∈ F ,EGB−X [X] ≤ µ}
= inf{KL(F,GB−X) | G ∈ F ,EGB−X [X] ≤ µ}
= inf{KL(F,G) | G ∈ F ,EG[X] ≤ µ}
= K−inf(F, µ) .

Let F+(µ) = {G ∈ F | EG[X] ≥ µ} and define F−(µ) similarly.

Lemma 39. For all µ ∈ [0, B], F+(µ) is a nonempty compact convex set (for the weak convergence
of measures).

Proof. It is nonempty since the Dirac distribution at B belongs to the set.

The set F is compact, hence a sequence of distributions in F+(µ) admits a convergent subsequence.
Suppose then that we have a convergent sequence (Fn)n∈N, converging to F , and let’s show that
F ∈ F+(µ). We can rewrite F+(µ) = {G ∈ F | EG[max{X,B}] ≥ µ} . This is useful since the
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function x 7→ max{x,B} is bounded from above and continuous. We can thus apply the Portmanteau
theorem to write

EF [max{X,B}] ≥ lim sup
n

EFn [max{X,B}] ≥ µ .

We conclude that F ∈ F+(µ), which is then compact.

To prove convexity, let F,G ∈ F+(µ) and let α ∈ [0, 1]: αF + (1− α)G ∈ F and

EαF+(1−α)G[X] = αEF [X] + (1− α)EG[X] ≥ αµ+ (1− α)µ = µ .

Lemma 40. µ 7→ F+(µ) is an upper hemicontinuous correspondence.

Proof. Since F+ is a compact-valued correspondence (Lemma 39), it suffices to show that for all
sequences (µn) and (Qn) with Qn ∈ F+(µn), if µn → µ then there exists a convergent subsequence
of (Qn), which converges to Q ∈ F+(µ) [40, Proposition 9.8, p. 231]. The existence of a convergent
subsequence comes from the compactness of F . The limit Q then belongs to F since F is closed.
We need to show that Q belongs to {G | EG[X] ≥ µ}.

We can rewrite F+(µ) = {G ∈ F | EG[max{X,B}] ≥ µ} and prove that Q belongs to {G |
EG[max{X,B}] ≥ µ}. This is useful since the function x 7→ max{x,B} is bounded from above
and continuous. We can thus apply the Portmanteau theorem to write

EQ[max{X,B}] ≥ lim sup
n

EQn [max{X,B}] ≥ lim sup
n

µn = µ .

We conclude that Q ∈ F+(µ). We have proved upper hemicontinuity.

Lemma 41. The infimum in the definition of K+
inf is attained at a distribution in F+(µ).

Proof. G 7→ KL(F,G) is lower semicontinuous wrt the topology of weak convergence of measures
and the set F+(µ) over which the minimization is performed is compact, hence the functions attains
its infimum at a point in F+(µ).

F.1 Duality
For (λ, F, u) ∈ R+ × F × [0, B], let H+(λ, F, u) = EF [log(1 − λ(X − u))], where we define
log(x) = −∞ for x ≤ 0. Let H−(λ, F, u) = EF [log(1 + λ(X − u))].

Theorem 3. For all F ∈ F and u ∈ [0, B],

K+
inf(F, u) = sup

λ∈[0,(B−u)−1]

H+(λ, F, u) ,

K−inf(F, u) = sup
λ∈[0,u−1]

H−(λ, F, u) .

Proof. A proof of this statement for K+
inf can be found in any one of [18, 17]. The result for K−inf

then follows from Lemma 38.

Lemma 42 ([18], Lemma 14). For all (F, u) ∈ F × [0, B), K+
inf(F, u) ≤ − log

(
1− u

B

)
.

Proof. Let (F, u) ∈ F × [0, B). The proof relies on Theorem 3 and X ≥ 0 for all X ∈ supp(F ).
Using that log is increasing on (0,+∞) and EF [1] = 1,

K+
inf(F, u) = sup

λ∈[0,(B−u)−1]

H+(λ, F, u) ≤ sup
λ∈[0,(B−u)−1]

log (1 + λu) = − log
(

1− u

B

)
.
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F.2 Continuity and differentiability
Lemma 43. The function λ, F, u 7→ H+(λ, F, u) is upper semicontinuous (jointly in all arguments)
on R+ ×F × [0, B].

Proof. Let (λn, Fn, un) ∈ R+×F × [0, B] be a sequence converging to (λ, F, u). We want to prove
that

lim supEFn [log(1− λn(X − un))] ≤ EF [log(1− λ(X − u))] .

By Skorokhod’s representation theorem, there exists real random variables (Xn)n∈N, X defined on a
common probability space (Ω,A,P) such that the law of Xn is Fn for all n ∈ N, the law of X is F
and (Xn) converges to X almost surely (hence also in probability).

The family (Xn) has compact support, hence it is uniformly integrable. By Vitali’s theorem, since
Xn is uniformly integrable and converges in probability, it also converges in L1.

We get that λn(Xn − un)
a.s.−−→ λ(X − u) and E[λn(Xn − un)]→ E[λ(X − u)]. Now we want to

translate this into a statement about the log.

Since −λn(Xn − un)− log(1− λn(Xn − un)) ≥ 0, by Fatou’s lemma,

E [−λ(X − u)]− E [lim sup log(1− λn(Xn − un))]

= E [lim inf (−λn(Xn − un)− log(1− λn(Xn − un)))]

≤ lim inf (E [−λn(Xn − un)− log(1− λn(Xn − un))])

= E [−λ(X − u)]− lim supE [log(1− λn(Xn − un))] .

Canceling the first term, we get the inequality we were after.

Theorem 4. The function K+
inf (resp. K−inf ) is continuous on F × [0, B) (resp. F × (0, B]).

Proof. We follow the proof method of [5] (which applied to a slightly different setting).

We first prove lower semicontinuity. We want to apply Berge’s Maximum Theorem [9, Theorem
2, p. 116] to the correspondence C(F, u) = F+(u) and the function f((F, u), G) = −KL(F,G).
We will obtain the upper semicontinuity of f∗(F, u) := inf{f((F, u), G) | G ∈ C(F, u)} =
− inf{KL(F,G) | G ∈ F+(u)}, which gives us the lower semicontinuity we are after. We need to
show that

• F, u 7→ C(F, u) = F+(u) is upper hemicontinuous: this is proved in Lemma 40,

• F, u,G 7→ f(F, u,G) = −KL(F,G) is upper semicontinuous (jointly in all arguments):
this is true since KL is jointly lower semicontinuous [34].

We have lower semicontinuity on F × [0, B].

To prove upper semicontinuity, we first use duality (Theorem 3) to write K+
inf(F, u) =

supλ∈[0,(B−u)−1]H
+(λ, F, u). Since we want to prove semicontinuity on F × [0, B), we can

take any ε > 0 and prove it on F × [0, B − ε].
We want to apply Berge’s Maximum Theorem [9, Theorem 2, p. 116] to the correspondence
C(F, u) = [0, (B − u)−1] and the function f((F, u), λ) = EF [log(1− λ(X − u))]. We will obtain
the upper semicontinuity of f∗(F, u) = sup{f((F, u), G) | G ∈ C(F, u)}, which is exactly what
we are after. We need to show that

• F, u 7→ C(F, u) = [0, (B − u)−1] is upper hemicontinuous, nonempty and compact,

• F, u, λ 7→ f(F, u, λ) = EF [log(1 − λ(X − u))] is upper semicontinuous (jointly in all
arguments): this is true by Lemma 43.

For the first point, nonempty compact values are obvious for u ≤ B − ε. The upper hemicontinuity
comes from the continuity of the upper bound of the interval.

Lemma 44. λ 7→ H+(λ, F, u) is strictly concave on [0, (B − u)−1).
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Proof. For α ∈ (0, 1), by strict concavity of the logarithm,

H+(αλ+ (1− α)η, F, u) = EF [log(α(1− λ(X − u)) + (1− α)(1− η(X − u)))]

> EF [α log(1− λ(X − u)) + (1− α) log(1− η(X − u))]

= αH+(λ, F, u) + (1− α)H+(η, F, u) .

The restriction to the interval [0, (B − u)−1) guarantees that all quantities appearing in logarithms
above are finite.

Lemma 45. (λ, u) 7→ H+(λ, F, u) is continuous on {(λ, u) ∈ R+ × [0, B] | λ < (B − u)−1}.

Proof. We already have upper semicontinuity by Lemma 43. We only need lower semicontinuity.
That is, we need that for λn → λ and un → u in that set, we have

lim inf
n

EF [log(1− λn(X − un))] ≥ EF [log(1− λ(X − u))] .

There exists ε > 0 such that λ ≤ (B−u)−1(1−ε). Then for n big enough, λn ≤ (B−un)−1(1−ε/2).
For all n large enough, we get log(1− λn(X − un))− log(ε/2) ≥ 0. By Fatou’s lemma,

lim inf
n

EF [log(1− λn(X − un))− log(ε/2)] ≥ EF [log(1− λ(X − u))− log(ε/2)] .

We cancel the log(ε/2) term and get the lower semicontinuity.

Let λ+
? (F, u) = arg maxλ∈[0,(B−u)−1] EF [log(1 − λ(X − u))] =

arg maxλ∈[0,(B−u)−1]H
+(λ, F, u) and λ−? (F, u) = arg maxλ∈[0,u−1]H

−(λ, F, u).

Lemma 46. u 7→ λ+
? (F, u) is continuous over the set {u ∈ [0, B) | λ+

? (F, u) < (B − u)−1}.

Proof. We first show that for any ε ∈ (0, B−1], the function u 7→
arg maxλ∈[0,(B−u)−1−ε]H

+(λ, F, u) is continuous on [0, B) and the argmax is unique. This is
not exactly continuity of u 7→ λ+

? (F, u) because of the [0, (B − u)−1 − ε] interval instead of
[0, (B − u)−1].

We will apply Berge’s Maximum theorem [9, page 116]. For ε ∈ (0, B−1], let

ϕ(λ, u) = H(λ, F, u) ,

Γ(u) = [0, (B − u)−1 − ε] ,
M(u) = max{H(λ, u) | λ ∈ Γ(u)} ,
Φ(u) = arg max{ϕ(λ, u) | λ ∈ Γ(u)} .

We verify the hypotheses of the theorem for any ε′ > 0 and u < B − ε′:
• H is continuous on {(λ, u) ∈ R+ × [0, B] | λ < (B − u)−1}, by Lemma 45, which is a

domain containing Γ(u)× {u} for all u.

• Γ is nonempty (since (B − u)−1 − ε ≥ 0), compact-valued (since u ≤ B − ε′) and
continuous.

We obtain that M is continuous on [0, B) and that Φ is upper hemicontinuous.

Now since ϕ is a strictly concave function of λ (by Lemma 44) and Γ is convex, we can argue as in
[40, Theorem 9.17] to prove that Φ is a single-valued upper hemicontinuous correspondence, hence a
continuous function.

Now that we have proved the continuity of the argmax restricted to the interval [0, (B − u)−1 − ε],
let’s prove the continuity of u 7→ λ+

? (F, u) over the set {u ∈ [0, B) | λ+
? (F, u) < (B − u)−1}.

let u ∈ [0, B) such that λ+
? (F, u) < (B − u)−1. Then there exists ε > 0 such that

λ+
? (F, u) = arg max

λ∈[0,(B−u)−1−ε]
H+(λ, F, u) ,

and λ+
? (F, u) ≤ (B − u)−1 − 3ε .
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Remark that by concavity of H in λ, for all u, if arg maxλ∈[0,(B−u)−1−ε]H
+(λ, F, u) 6= (B −

u)−1 − ε then λ+
? (F, u) = arg maxλ∈[0,(B−u)−1−ε]H

+(λ, F, u).

For v in some neighborhood of u, we have both (B − v)−1 − ε > (B − u)−1 − 2ε and
arg maxλ∈[0,(B−v)−1−ε]H

+(λ, F, v) < (B − u)−1 − 2ε. This means that for all v in that neighbor-
hood, λ+

? (F, v) = arg maxλ∈[0,(B−v)−1−ε]H
+(λ, F, v). The continuity of the ε version then gives

continuity of λ+
? at u.

Lemma 47 (Theorem 6 in [18]). For all F ∈ F and u ∈ (m(F ), B], u 7→ K+
inf(F, u) is differentiable

and
∂K+

inf(F, u)

∂u
= λ+

? (F, u) . (37)

For all F ∈ F and u ∈ [0,m(F )), u 7→ K−inf(F, u) is differentiable and

∂K−inf(F, u)

∂u
= −λ−? (F, u) . (38)

F.3 Convexity
Lemma 48. The functions K+

inf and K−inf are jointly convex on F × [0, B].

Proof. We prove the result for K+
inf , but the proof for K−inf is identical. Let F1, F2 ∈ F , u1, u2 ∈

[0, B] and let G1, G2 ∈ F be distributions at which the infimum is attained in K+
inf(F1, u1) and

K+
inf(F2, u2) respectively (which exist by Lemma 41). For all α ∈ [0, 1], αG1 + (1 − α)G2 has

expectation αu1 + (1− α)u2. Hence for all α ∈ [0, 1],

K+
inf(αF1 + (1− α)F2, αu1 + (1− α)u2) ≤ KL(αF1 + (1− α)F2, αG1 + (1− α)G2)

≤ αKL(F1, G1) + (1− α)KL(F2, G2)

= αK+
inf(F1, u1) + (1− α)K+

inf(F2, u2)

The first inequality follows from the definition ofK+
inf as an infimum and the second inequality comes

from the joint convexity of the Kullback-Leibler divergence. We have proved joint convexity.

Lemma 49 (Theorem 5 in [18]). Let F ∈ F and u+(F ) = B − 1

EF [ 1
B−X ]

≥ m(F ). We have

λ+
? (F, u) = 0 ⇐⇒ u ≤ m(F ) , (39)

u ∈ (m(F ), u+(F )] =⇒ EF
[

1

1− λ+
? (F, u)(X − u)

]
= 1 , (40)

and
λ+
? (F, u) =

1

B − u
⇐⇒ u ≥ u+(F ) . (41)

Proof. First, we have
λ+
? (F, u) = 0 ⇐⇒ u ≤ m(F ) .

If λ+
? (F, u) = 0, then K+

inf(F, u) = H+(0, F, u) = 0, hence u ≤ m(F ). The other direction is
obtained in Theorem 5 in [18].

Let u+(F ) = B − 1

EF [ 1
B−X ]

and u−(F ) = 1

EF [ 1
X ]

. Then,

u ∈ (m(F ), u+(F )] =⇒ EF
[

1

1− λ+
? (F, u)(X − u)

]
= 1 ,

Moreover,

λ+
? (F, u) =

1

B − u
⇐⇒ u ≥ u+(F ) .
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If u ≥ u+(F ), then EF
[
B−u
B−X

]
≤ 1, hence λ+

? (F, u) = 1
B−u by Theorem 5 in [18]. Assume

that there exists u < u+(F ), such that λ+
? (F, u) = 1

B−u . Then, by equation (40), we obtain that

1 = EF
[

1
1−X−uB−u

]
= EF

[
B−u
B−X

]
. This condition can be rewritten as u = u(F ), hence contradicting

u < u+(F ). Therefore, we have shown λ+
? (F, u) = 1

B−u implies that u ≥ u+(F ).

Lemma 50. The function u 7→ K+
inf(F, u) is strictly convex on (m(F ), B]. The function u 7→

K−inf(F, u) is strictly convex on [0,m(F )).

Proof. We prove the result for K+
inf . The proof for K−inf is similar.

Using Lemma 47, u 7→ K+
inf(F, u) is strictly convex for u > m(F ) if and only if λ+

? (F, u) is
increasing for u > m(F ).

Using (39), λ+
? (F, u) is null for u ≤ m(F ). Therefore, u 7→ K±inf(F, u) is not strictly convex on

those intervals.

Using (41), we obtain directly that λ+
? (F, u) is increasing for u ≥ u+(F ).

Suppose towards contradiction that u 7→ λ+
? (F, u) is not increasing for (m(F ), u+(F )). There-

fore, there exists an open O ⊆ (m(F ), u+(F )), such that u 7→ λ+
? (F, u) is constant on O,

i.e. there exists cO ∈
[
0, 1

B−infu∈O u

]
such that λ+

? (F, u) = cO. Using (39-41), we know that

cO ∈
(

0, 1
B−infu∈O u

)
. On O, u 7→ λ+

? (F, u) is constant, hence it is continuously differentiable

with null derivative. Since O ⊆ (m(F ), u+(F )), (40) defines implicitly λ+
? (F, u) as satisfying

EF
[

1

1− λ+
? (F, u)(X − u)

]
= 1 .

Since O ⊆ (m(F ), u+(F )), we have λ+
? (F, u) ∈

(
0, 1

B−infu∈O u

)
. Therefore, the function

(u, x) 7→ 1
1−λ+

? (F,u)(x−u)
is bounded on [0, B] × O, hence integrable, and the function u 7→

1
1−λ+

? (F,u)(x−u)
is continuously differentiable. Moreover, the function x 7→ 1

(1−λ+
? (F,u)(x−u))

2 is

strictly positive and bounded on [0, B], hence integrable with strictly positive integrable. Having
checked all the conditions to interchange the derivative with the expectation, differentiating the above
yields

0 = EF

[
−
λ+
? (F, u) + (u−X)

∂λ+
? (F,u)
∂u(

1− (X − u)λ+
? (F, u)

)2
]

= −cOEF

[
1

(1− (X − u)cO)
2

]
< 0 ,

where the strict inequality is obtained since we show that cO > 0 and EF
[

1
(1−(X−u)cO)2

]
> 0.

This is a contradiction, hence such O ⊂ (m(F ), u+(F )) doesn’t exist. Therefore, u 7→ λ+
? (F, u) is

increasing on (m(F ), u+(F )).

Since the convexity already gave that u 7→ λ+
? (F, u) is increasing on (m(F ), B]. The fact that

u 7→ λ+
? (F, u) is increasing on (m(F ), u+(F )) and on [u+(F ), B], yields that u 7→ λ+

? (F, u) is
increasing on (m(F ), B].

Lemma 51. u 7→ K+
inf(F, u) is equal to zero on [0,m(F )] and increasing on (m(F ), B].

Proof. We already proved that K+
inf(F, u) is equal to zero on [0,m(F )]. Since K+

inf(F,m(F )) = 0,
K+

inf is nonnegative and strictly convex for u > m(F ), then u 7→ K+
inf(F, u) is increasing on

(m(F ), B].

Lemma 52. For all F,G ∈ F with means m(F ) ≤ m(G) and for all w ∈ R2
+.

• If max{w1, w2} > 0, then µ 7→ w1K+
inf(F, µ) + w2K−inf(G,µ) is strictly convex on

[m(F ),m(G)].
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• If min{w1, w2} > 0, then µ 7→ w1K+
inf(F, µ) + w2K−inf(G,µ) is strictly convex on [0, B].

Proof. For µ ≤ m(F ), the function is equal to w2K−inf(G,µ), which is strictly convex unless w2 = 0.
For µ ≥ m(G), the function is equal to w1K+

inf(F, µ), which is strictly convex unless w1 = 0. In
the interval (m(F ),m(G)), it is the sum of two convex functions, one of which is strictly convex.
Furthermore, the function is continuous at m(F ) and m(G).

F.3.1 More continuity, using convexity
Lemma 53. Let F,G ∈ F with means m(F ) ≤ m(G) in (0, B) and w ∈ R2

+. Then

inf
µ∈[0,B]

(w1K+
inf(F, µ) + w2K−inf(G,µ)) = inf

µ∈[m(F ),m(G)]
(w1K+

inf(F, µ) + w2K−inf(G,µ)) .

Proof. On [0,m(F )], K+
inf(F, µ) is constant equal to 0 and K−inf(G,µ) is non-increasing, hence the

minimum over that interval is attained at m(F ). We argue similarly for the interval [m(G), B].

Lemma 54. Let F,G ∈ F with means in (0, B) and w ∈ R2
+. Then

1. (F,G,w) 7→ infµ∈[0,B](w1K+
inf(F, µ) + w2K−inf(G,µ)) is continuous on F × F × R2

+.

2. If max{w1, w2} > 0, µ?(F,G,w) = arg minµ∈[0,B](w1K+
inf(F, µ) + w2K−inf(G,µ)) is

unique and continuous on F × F × R2
+.

Proof. We can restrict the inf to [µF , µG] by Lemma 53.

We will apply Berge’s Maximum theorem [9, page 116]. Let

ϕ(µ, F,G,w) = −w1K+
inf(F, µ)− w2K−inf(G,µ) ,

Γ(F,G,w) = [µF , µG] ,

M(F,G,w) = max{ϕ(µ, F,G,w) | µ ∈ Γ(F,G,w)} ,
Φ(F,G,w) = arg max{ϕ(µ, F,G,w) | µ ∈ Γ(F,G,w)} .

We verify the hypotheses of the theorem:

• ϕ is continuous on [µF , µG]×F ×F × C, by Theorem 4 since µF , µG ∈ (0, B).

• Γ is nonempty, compact-valued and continuous (since constant).

We obtain that M is continuous on F × F × R2
+ and that Φ is upper hemicontinuous.

Now since ϕ is a strictly concave function of µ (by Lemma 52) and Γ is convex, we can argue as in
[40, Theorem 9.17] to prove that Φ is a single-valued upper hemicontinuous correspondence, hence a
continuous function.

Lemma 55. Let F,G ∈ F with means m(F ) < m(G) in (0, B) and w ∈ R2
+ such that

min{w1, w2} > 0. The value µ?(F,G,w) = arg minµ∈[0,B](w1K+
inf(F, µ) + w2K−inf(G,µ))

(unique by Lemma 54) belongs to the interval (m(F ),m(G)) and is such that both Kinf are positive.

Proof. We know by Lemma 53 that the minimum is attained inside [m(F ),m(G)]. We only need to
exclude the boundaries.

The function µ 7→ w1K+
inf(F, µ) + w2K−inf(G,µ) is differentiable on (m(F ),m(G)) with derivative

w1λ
+
? (F, µ)−w2λ

−
? (G,µ). If we show that this derivatives takes the value zero in the open interval,

then we prove the result.

For µ > m(F ) in a neighborhood of m(F ), λ+
? (F, µ) tends to 0 by continuity (Lemma 46) and

λ−? (G,µ) > λ−? (G, m(F )+m(G)
2 ) > 0. We get that close to m(F ), the derivative is negative.

Similarly, we get that the derivative is positive close to m(G). We conclude that the infimum is
indeed attained inside the open interval.

Lemma 56. Let F,G ∈ F with means m(F ) < m(G) in (0, B) and w1 > 0. Then w2 7→
minµ∈[0,B](w1K+

inf(F, µ) + w2K−inf(G,µ)) is increasing on R+.
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Proof. Let w′2 > w2 ≥ 0. Then by Lemma 55, since w′2 > 0, there exists µ′ ∈ [0, B]
with K−inf(G,µ

′) > 0 such that minµ∈[0,B](w1K+
inf(F, µ) + w′2K−inf(G,µ)) = w1K+

inf(F, µ
′) +

w′2K−inf(G,µ
′). Then we have

min
µ∈[0,B]

(w1K+
inf(F, µ) + w′2K−inf(G,µ)) = w1K+

inf(F, µ
′) + w′2K−inf(G,µ

′)

> w1K+
inf(F, µ

′) + w2K−inf(G,µ
′)

≥ min
µ∈[0,B]

(w1K+
inf(F, µ) + w2K−inf(G,µ)) .

Lemma 57. Let F,G, F1, . . . , FK ∈ F with means in (0, B).

The function w 7→ minµ∈[0,B](w1K+
inf(F, µ) + w2K−inf(G,µ)) is concave on R2

+.

The function w 7→ minj 6=1 minµ∈[0,B](w1K−inf(F1, µ) + wjK+
inf(Fj , µ)) is concave on RK+ .

Proof. These functions are minimums of linear functions, hence concave.

F.4 Properties of the characteristic time
Let F ∈ FK and i? = i?(F ), supposed unique. Recall that

T ?(F )−1 = sup
w∈4K

min
i 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}
,

w?(F ) = arg max
w∈4K

min
i 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}
,

T ?β (F )−1 = sup
w∈4K
wi?=β

min
i 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}
,

w?β(F ) = arg max
w∈4K
wi?=β

min
i 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}
.

Lemma 58. The functions T ?−1 and T ?β
−1 are continuous on FK . The correspondences w? and

w?β are upper hemicontinuous on FK with compact convex values.

Proof. Let FKi =
{
F ∈ FK | i ∈ i?(F )

}
. Since

⋃
i∈[K] FKi = FK , it is enough to show the

property for all FKi for i ∈ [K]. Let i? ∈ [K].

First, the function (w,F ) 7→ mini 6=i? infu∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi? , u)
}

is continuous
on4K ×FK by Lemma 54 and the fact that a minimum of continuous functions is continuous. It is
concave in w by Lemma 57.

The correspondence (w,F ) 7→ 4K is nonempty compact-valued and continuous (since constant).
By Berge’s maximum theorem, we get that T ?(F )−1 is continuous on FKi? and that w?(F ) is upper
hemicontinuous with compact values. By [40, Theorem 9.17], the concavity of the function being
maximized implies that w?(F ) is convex-valued.

The correspondence (w,F ) 7→ 4K ∩{wi? = β} is nonempty compact-valued and continuous (since
constant). By Berge’s maximum theorem, we get that T ?β (F )−1 is continuous on FKi? and that w?β(F )
is upper hemicontinuous with compact values. By [40, Theorem 9.17], the concavity of the function
being maximized implies that w?β(F ) is convex-valued.

Lemma 59. If i?(F ) is a singleton and β ∈ (0, 1), then T ?(F )−1 > 0 and T ?β (F )−1 > 0.
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Proof.

T ?(F )−1 = sup
w∈4K

min
i 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}

≥ min
i 6=i?

inf
u∈[0,B]

{
1

K
K−inf(Fi? , u) +

1

K
K+

inf(Fi, u)

}
> 0 ,

since we proved that the inner infimum is positive for nonzero coefficients and µi < µi? . The proof
for T ?β is similar.

Lemma 60. If i?(F ) is a singleton and β ∈ (0, 1), then for all i ∈ [K], w?i (F ) > 0 and w?β,i(F ) >
0.

Proof. We proceed by contradiction. If i?(F ) is unique and there exists j with w?j (F ) = 0, then we
show T ?(F )−1 = 0, which is absurd by Lemma 59. If j = i? we have

T ?(F )−1 = min
i6=i?

inf
u∈[0,B]

w?iK+
inf(Fi, u) ≤ min

i 6=i?
w?iK+

inf(Fi, Fi) = 0 .

If j 6= i?,

T ?(F )−1 = min
i6=i?

inf
u∈[0,B]

{
w?i?K−inf(Fi? , u) + w?iK+

inf(Fi, u)
}

≤ inf
u∈[0,B]

{
w?i?K−inf(Fi? , u) + w?jK+

inf(Fj , u)
}

= inf
u∈[0,B]

w?i?K−inf(Fi? , u) = 0 .

A similar proof holds for T ?β .

Lemma 61. If i?(F ) is a singleton and β ∈ (0, 1), then

• for all i 6= i?(F ), infu∈[0,B]

{
w?i?(F )K−inf(Fi? , u) + w?i (F )K+

inf(Fi, u)
}

= T ?(F )−1 ,

• for all i 6= i?(F ), infu∈[0,B]

{
βK−inf(Fi? , u) + w?β,i(F )K+

inf(Fi, u)
}

= T ?β (F )−1 ,

• w?(F ) and w?β(F ) are singletons: the optimal allocations are unique.

Proof. At the optimal allocations, all wi are positive. Suppose w.l.o.g. that 1 is the best arm. By
dividing by w1 and defining

Gj(x) = inf
u∈[0,B]

(
K−inf(Fi? , u) + xK+

inf(Fj , u)
)
,

we obtain directly that

T ?(F )−1 = max
w∈4K ,w1>0

w1 min
j 6=1

Gj

(
wj
w1

)
.

Let w? ∈ w?(F ). Then, using the above result, we obtain

w? ∈ arg max
w∈4K

w1 min
j 6=1

Gj

(
wj
w1

)
Introducing x?j =

w?j
w?1

for all j 6= 1, using that
∑
j∈[K] w

?
j = 1, one has

w?1 =
1

1 +
∑K
j=2 x

?
j

and, for j ≥ 2, w?j =
x?j

1 +
∑K
j=2 x

?
j

.

If x? is unique, then so is w?.

Since it is optimal, {x?j}Kj=2 ∈ RK−1 belongs to

arg max
{xj}Kj=2∈RK−1

minj 6=1Gj (xj)

1 +
∑K
j=2 xj

(42)
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Let’s show that all the Gj
(
x?j
)

have to be equal. Let O ={
i ∈ [K] \ {1} | Gi (x?i ) = minj 6=1Gj

(
x?j
)}

and A = [K] \ ({1} ∪ O). Assume that A 6= ∅. For
all a ∈ A and b ∈ O, one has Gj

(
x?j
)
> Gi (x?i ). Using the continuity of the Gj functions and the

fact that they are increasing (Lemma 56), there exists ε > 0 such that

∀j ∈ A, i ∈ O, Gj
(
x?j − ε/|A|

)
> Gi (x?i + ε/|O|) > Gi (x?i ) .

We introduce x̄j = x?j − ε/|A| for all j ∈ A and x̄i = x?i + ε/|O| for all i ∈ O, hence
∑K
j=2 x̄j =∑K

j=2 x
?
j . There exists i ∈ O such that minj 6=1Gj (x̄j) = Gi (x?i + ε/|O|), hence

minj 6=1Gj (x̄j)

1 + x̄2 + . . . x̄K
=

Gi (x?i + ε/|O|)
1 + x?2 + · · ·+ x?K

>
Gi (x?i )

1 + x?2 + · · ·+ x?K
=

minj 6=1Gj
(
x?j
)

1 + x?2 + · · ·+ x?K
.

This is a contradiction with the fact that x? belongs to (42). Therefore, we have A = ∅.
We have proved that there is a unique value by y? ∈ R+, such that for all j 6= 1, Gj

(
x?j
)

= y?. Now
since Gj is increasing, this defines a unique value for x?j , equal to G−1

j (y?).

For y in the intersection of the ranges of all Gj , let xj(y) = G−1
j (y). y? belongs to

arg max
y∈[0,minj 6=1 lim+∞Gj(x))

y

1 +
∑
j 6=1 xj(y)

. (43)

For β ∈ (0, 1), the same results (and proof) hold for w?β(F ) by noting that

T ?β (F )−1 = max
w∈4K :w1=β

βmin
j 6=1

Gj

(
wj
β

)
.

Let wβ ∈ w?β(F ), since we have equality at the equilibrium, we obtain for all j 6= 1,

βGj

(
wβj
β

)
= T ?β (F )−1 ,

Using the inverse mapping xj , we obtain for all j 6= 1,

wβj = βxj

(
1

T ?β (F )β

)
.

Therefore, we have shown that w?β(F ) = {wβ}, where

wβi =

{
βxi

(
1

T?β (F )β

)
if i 6= i?

β else
.

Lemma 62. T ?1/2(F ) ≤ 2T ?(F ) and with β? = w?i?(F ),

T ?(F )−1

T ?β (F )−1
≤ max

{
β?

β
,

1− β?

1− β

}
.

Proof. Define for each non-negative vector ψ ∈ RK+ ,

f(ψ) := min
i 6=i?(F )

inf
u∈[0,B]

{
ψi?K−inf(Fi? , u) + ψiK+

inf(Fi, u)
}
.

T ?(F )−1 is the maximum of f(ψ) over probability vectors ψ. Here, we instead define f for all non-
negative vectors, and proceed by varying the total budget of measurement effort available

∑
a∈[K] ψa.
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f is non-decreasing in ψi for all i. f is homogeneous of degree 1. That is f(cψ) = cf(ψ) for all
c ≥ 1. For each c1, c2 > 0 define

g (c1, c2) = max

f(ψ) | ψ ∈ RK+ , ψi?(F ) = c1,
∑

i 6=i?(F )

ψi ≤ c2,


The function g inherits key properties of f ; it is also non-decreasing and homogeneous of degree 1 .
We have

T ?β (F )−1 = max

f(ψ) | ψ ∈ RK+ , ψi?(F ) = β,
∑
i∈[K]

ψi = 1


= max

f(ψ) | ψ ∈ RK+ , ψi?(F ) = β,
∑

i6=i?(F )

ψi ≤ 1− β


= g(β, 1− β)

where the second equality uses that f is non-decreasing. Similarly, T ?(F )−1 = g (β?, 1− β?) where
β? = w?i?(F )(F ). Setting

r := max

{
β?

β
,

1− β?

1− β

}
implies rβ ≥ β? and r(1− β) ≥ 1− β?. Therefore

rT ?β (F )−1 = rg(β, 1− β) = g(rβ, r(1− β)) ≥ g (β?, 1− β?) = T ?(F )−1 .

Taking β = 1
2 , yields that T ?(F )−1 ≤ 2 max{β?, 1− β?}T ?1/2(F )−1 ≤ 2T ?1/2(F )−1.

Lemma 63. Let Gi(x) = infu∈[0,B]

(
K−inf(Fi? , u) + xK+

inf(Fi, u)
)

for x ∈ [0,+∞) and i 6= i?.
Then,

lim
x→+∞

Gi(x) = K−inf(Fi? ,m(Fi)) .

Proof. Let ui(x) ∈ arg minu∈[0,B]

(
K−inf(Fi? , u) + xK+

inf(Fi, u)
)
. It is easy to see that Gi(0) = 0

and ui(0) = m(F1). Likewise, we have ui(x) =+∞ m(Fi) + o(1) by considering (wi? , wi) instead
of xi = wi

wi?
. By continuity of u 7→ K−inf(Fi? , u) and using the definition of ui(x)

lim
x→+∞

Gi(x) = K−inf(Fi? ,m(Fi)) + lim
x→+∞

xK+
inf(Fi, ui(x)) .

Using the deviations bounds on the u 7→ K−inf(F, u) (e.g. Lemma 6 in [19]), we obtain that

0 < xK−inf(Fi, ui(x)) ≤ x (m(Fi)− ui(x))2

2
.

Therefore, a sufficient condition to obtain limx→+∞ xK+
inf(Fi, ui(x)) = 0 is to show that

ui(x) =+∞ m(Fi) + o
(

1√
x

)
. The first order condition of optimality on ui(x) can be expressed as

x
∂K+

inf(Fi, ui(x))

∂u
= −

∂K−inf(Fi? , ui(x))

∂u
⇐⇒ xλ+

? (Fi, ui(x)) = λ−? (Fi? , ui(x)) ,

where we used Lemma 47 for the equivalent formulation.

Using that u 7→ λ−? (F, u) is decreasing for u < m(Fi?) (Lemma 50 and Lemma 47) yields

xλ+
? (Fi, ui(x)) = λ−? (Fi? , ui(x)) ≤ λ−? (Fi? ,m(Fi)) ≤

1

m(Fi)
.

Using that λ+
? (Fi, u) ≥ u−m(Fi)

u(B−u) (Lemma 12 in [18]) and denoting y(x) = ui(x) −m(Fi) =+∞

o(1), we obtain

1

m(Fi)
≥ xλ+

? (Fi, ui(x)) ≥ xy(x)

(m(Fi) + y(x))(B −m(Fi)− y(x))
.
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Suppose towards contradiction that y(x) = O( 1
x ) doesn’t hold, i.e. lim+∞ xy(x) = +∞. Using that

y(x) =+∞ o(1) and taking the limit in the above inequality yields

1

m(Fi)
≥ lim+∞ xy(x)

m(Fi)(B −m(Fi))
= +∞ ,

which is a direct contradiction. Therefore, we have shown that y(x) = O( 1
x ). We showed above

that a sufficient condition to conclude was y(x) =+∞ o
(

1√
x

)
. Therefore, we have obtained that

lim+∞ xK−inf(Fi, ui(x)) = 0, which concludes the proof.

G Boundary crossing probability bounds
In order to analyze the algorithms presented in this paper, we need to quantify probabilities of the
form P(θ1 ≥ θ2) for θ1 and θ2 two independent real random variables. We first show how such
bounds can be obtained by quantifying the individual deviations P(θi ≥ u) and P(θi ≤ u) for all
u ∈ R (the so-called Boundary Crossing Probabilities). Then we prove upper and lower bounds on
those probabilities when θ1 and θ2 are obtained from a Dirichlet sampler.

G.1 From one arm to two
As remarked in Appendix D.2.1, studying BAI randomized algorithms require to control probability
of the form P(θ1 ≥ θ2) where θ1 and θ2 are two independent real random variables. Thanks to
Lemma 64, it is possible to obtain those by using Boundary Crossing Probability (BCP) bounds,
which are extensively studied in the regret minimization literature. Therefore, while it is based on
simple calculations, Lemma 64 is a powerful result of independent interest.

Lemma 64. Let θ1 and θ2 be two independent real random variables with cdf F1 and F2. Let
x ∈ arg maxu∈R P(θ2 ≥ u)P(θ1 ≤ u). Then

P(θ2 ≥ x)P(θ1 ≤ x) ≤ P(θ2 ≥ θ1) ≤ g
(
P(θ2 ≥ x)P(θ1 ≤ x)

)
.

where g(u) = u(1− log(u)) for all u ∈ [0, 1].

Proof. To ease the notation, we introduce the cdfs F1(u) = P(θ1 ≤ u) and F2(u) = P(θ2 ≤ u).
We can suppose that there exists u ∈ R with (1− F2(u))F1(u) > 0. Otherwise the probability of
θ2 ≥ θ1 is 0, and both bounds are 0 as well. We start by proving the upper bound.

P(θ2 ≥ θ1) =

∫
u

∫
v

1{u ≥ v}dF1(v)dF2(u)

=

∫
u≤x

∫
v≤x

1{u ≥ v}dF1(v)dF2(u) +

∫
u≤x

∫
v>x

1{u ≥ v}dF1(v)dF2(u)

+

∫
u>x

∫
v≤x

1{u ≥ v}dF1(v)dF2(u) +

∫
u>x

∫
v>x

1{u ≥ v}dF1(v)dF2(u)

The second of those four integrals is equal to zero. We now bound integrals 1, 3, and 4.

1. For x such that F2(x) < 1,∫
u≤x

∫
v≤x

1{u ≥ v}dF1(v)dF2(u) =

∫
u≤x

F1(u)dF2(u)

=

∫
u≤x

1

1− F2(u)
(1− F2(u))F1(u)dF2(u)

≤
(

sup
u≤x

(1− F2(u))F1(u)

)∫
u≤x

1

1− F2(u)
dF2(u)

= − log(1− F2(x)) sup
u≤x

(1− F2(u))F1(u) .

3. ∫
u>x

∫
v≤x

1{u ≥ v}dF1(v)dF2(u) = F1(x)(1− F2(x)) .
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4. For x such that F1(x) > 0,∫
u>x

∫
v>x

1{u ≥ v}dF1(v)dF2(u) =

∫
v>x

(1− F2(v))dF1(v)

=

∫
v>x

F1(v)(1− F2(v))
1

F1(v)
dF1(v)

≤
(

sup
v>x

F1(v)(1− F2(v))

)∫
v>x

1

F1(v)
dF1(v)

= − log(F1(x)) sup
v>x

F1(v)(1− F2(v)) .

Putting things together:

P(θ2 ≥ θ1) ≤ − log(1− F2(x)) sup
u≤x

(1− F2(u))F1(u) + F1(x)(1− F2(x))

− log(F1(x)) sup
v>x

F1(v)(1− F2(v)) .

Taking for x the argmax over R (which verifies F1(x) > 0 and F2(x) < 1), we get

P(θ2 ≥ θ1) ≤ (1− F2(x))F1(x) [1− log((1− F2(x))F1(x))]

We now prove the lower bound. For x ∈ R, by independence of θ1 and θ2,

P(θ2 ≥ θ1) ≥ P(θ2 ≥ x ≥ θ1) = P(θ2 ≥ x)P(θ1 ≤ x) = (1− F2(x))F1(x) .

G.2 Upper bounds
Theorem 5 gives a tight upper bound on the BCP.

Theorem 5. Let X = (X1, . . . , Xn) ∈ [0, B]n, let F̂n be the corresponding empirical distribution
and let µ ∈ R. Then

PL∼Dir(1n)(L
>X ≥ µ) ≤ exp

(
−nK+

inf(F̂n, µ)
)
,

PL∼Dir(1n)(L
>X ≤ µ) ≤ exp

(
−nK−inf(F̂n, µ)

)
.

Proof. We first prove the bound involving K+
inf . This proof is extracted from the proof of Lemma 15

of [36].

Let R1, . . . , Rn be independent exponential random variables with parameter 1.

PL∼Dir(1n)(L
>X ≥ µ) = P(

n∑
i=1

Ri∑
j Rj

Xi ≥ µ) = P(

n∑
i=1

Ri(Xi − µ) ≥ 0) .

For t ≥ 0, we can compose with exponentials and use Markov’s inequality to obtain

PL∼Dir(1n)(L
>X ≥ µ) = P(exp t

n∑
i=1

Ri(Xi − µ) ≥ 1) ≤ Eet
∑n
i=1 Ri(Xi−µ) .

By independence, this last expression is equal to
∏n
i=1 Eet(Xi−µ)Ri . By a simple computation (See

[36]) we get, for t ∈ [0, 1
Xi−µ ) if Xi ≥ µ and for t ≥ 0 otherwise,

Eet(Xi−µ)Ri =
1

1− t(Xi − µ)
.

We have proved that for all t ∈ [0, 1
B−µ ),

PL∼Dir(1n)(L
>X ≥ µ) ≤ exp

(
−n 1

n

n∑
i=1

log(1− t(Xi − µ))

)
.
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This is then also true for t minimizing the right-hand side.

It remains to show that supt∈[0, 1
B−µ )

1
n

∑n
i=1 log(1− t(Xi − µ)) = K+

inf(F̂n, µ) .

From [18], Theorem 8, for any distribution F with support in [0, B],
K+

inf(F, µ) = sup
t∈[0, 1

B−µ ]

EX∼F [log(1− t(X − µ))] .

Applying this to F̂n gives K+
inf(F̂n, µ) = supt∈[0, 1

B−µ ]
1
n

∑n
i=1 log(1 − t(Xi − µ)). The only

difference with our target is that the supremum is over the closed interval and not the right-open
interval, but either the sup is the same by continuity if there is no Xi equal to B, or the value at
1/(B − µ) is −∞ and hence not equal to the sup.

We now prove the bound involving K−inf . Let F̂B−Xn be the empirical distribution corresponding to
(B −X1, . . . , B −Xn).

PL∼Dir(1n)(L
>X ≤ µ) = PL∼Dir(1n)(L

>(B −X) ≥ B − µ)

≤ exp
(
−nK+

inf(F̂
B−X
n , B − µ)

)
= exp

(
−nK−inf(F̂n, µ)

)
.

The last equality follows from Lemma 38.

Corollary 2. Let X = (X1, . . . , Xn) ∈ [0, B]n, and let Y = (Y1, . . . , Ym) ∈ [0, B]m. let F̂n,X be
empirical distribution corresponding to X (and define F̂m,Y similarly). Then

PLX∼Dir(1n),LY ∼Dir(1m)(L
>
XX ≥ L>Y Y ) ≤ f

(
− inf
µ∈[0,B]

(
nK+

inf(F̂n,X , µ) +mK−inf(F̂m,Y , µ)
))

.

where f(x) = (1 + x)e−x.

Proof. Combine the two bounds of Theorem 5 using Lemma 64.

G.3 Lower bounds
Lemma 65 gives a first, coarse lower bound on the BCP under a Dirichlet sampler. This result
crucially relies on the fact that {0, B} have been added to the support.

Lemma 65. Let X = (B, 0, X1 . . . , Xn) ∈ [0, B]n+2 and u ∈ (0, B). Then,

PL∼Dir(1n+2)[L
>X ≥ u] ≥

(
1− u

B

)n+1

and PL∼Dir(1n+2)[L
>X ≤ u] ≥

( u
B

)n+1

.

Proof. We consider X̃ = (B, 0, 0 . . . , 0) ∈ [0, B]n+2, use that the marginals of Dirichlet are Beta
distributions and the Beta-Binomial trick (e.g. [2]) to obtain

PL∼Dir(1n+2)[L
>X ≥ u] ≥ PL∼Dir(1n+2)[L

>X̃ ≥ u] = Pw∼Beta(1,n+1)

[
w ≥ u

B

]
= Pk∼Bin(n+1, uB )[k ≤ 0]

=
(

1− u

B

)n+1

.

Similarly, considering X̃ = (B, 0, B . . . , B) ∈ [0, B]n+2, we obtain

PL∼Dir(1n+2)[L
>X ≤ u] ≥ PL∼Dir(1n+2)[L

>X̃ ≤ u] = Pw∼Beta(1,n+1)

[
w ≥ 1− u

B

]
= Pk∼Bin(n+1,1− u

B )[k ≤ 0]

=
( u
B

)n+1

.

In the rest of this section, we derive a tighter lower bound on the BCP which leads to a tight lower
bound on the probability that one Dirichlet sample exceeds another (Theorem 8). These result rely on
a discretization argument and on deriving lower bounds for multinomial distributions.
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G.3.1 Multinomial distributions
Theorem 6 gives a tight lower bound on the BCP for multinomial distributions.

Theorem 6. Let X1, . . . , XM ∈ [0, B] with XM = B and let β ∈ NM with βi > 0 for all i. Define
n =

∑M
i=1 βi. For all µ ∈ [0, B] and q ∈ 4M such that q>X ≥ µ,

PL∼Dir(β)(L
>X ≥ µ) ≥ MM/2

2(8π)
M−1

2

1

n
M+1

2

exp

(
−nKLM

(
β

n
, q

))
.

where KLM(p, q) is the Kullback-Leibler divergence between multinomial distributions with proba-
bility vectors p and q.

Proof. The proof is strongly inspired by the works of [18] and [7] who use lower bound on the BCP
for analyzing regret minimization algorithms.

Let Sq = {p ∈ 4M | ∀i ∈ [M − 1], pi ≤ qi}. For p ∈ Sq, we necessarily have pM ≥ qM and
p>X ≥ q>X ≥ µ. From that inequality we get

PL∼Dir(β)(L
>X ≥ µ) ≥ PL∼Dir(β)(L ∈ Sq) .

We now quantify that probability, using the pdf of a Dirichlet distribution,

PL∼Dir(β)(L ∈ Sq) =
Γ(n)∏M
i=1 Γ(βi)

∫
x∈Sq

M∏
i=1

xβi−1
i dx

≥ Γ(n)∏M
i=1 Γ(βi)

qβM−1
M

M−1∏
j=1

∫ qj

xj=0

x
βj−1
j dxj

=
Γ(n)∏M
i=1 Γ(βi)

qβM−1
M

M−1∏
j=1

q
βj
j

βj

=
Γ(n)∏M
i=1 Γ(βi)

βM
qM

M∏
j=1

q
βj
j

βj

≥ Γ(n)∏M
i=1 Γ(βi)

M∏
j=1

q
βj
j

βj
.

The last line uses that since βM ≥ 1 and qM ≤ 1, βM/qM ≥ 1. We transform that last expression to
exhibit the Kullback-Leibler divergence between multinomial distributions.

PL∼Dir(β)(L ∈ Sq) ≥
Γ(n)∏M
i=1 Γ(βi)

M∏
j=1

q
βj
j

βj

=
1

nM
Γ(n)∏M
i=1 Γ(βi)

M∏
j=1

(
qj
βj/n

)βj M∏
j=1

(
βj
n

)βj−1

=
1

nM
Γ(n)∏M
i=1 Γ(βi)

M∏
j=1

(
βj
n

)βj−1

exp

(
−nKL(

β

n
, q)

)
.

We now simplify the factor in front of the exponential.

1

nM
Γ(n)∏M
i=1 Γ(βi)

M∏
j=1

(
βj
n

)βj−1

=
1

n

n!∏M
i=1 βi!

M∏
j=1

(
βj
n

)βj
=

1

n

n!

nn

M∏
j=1

β
βj
j

βj !
.
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We use the following bound on the Stirling approximation of the factorial: n!√
2πn(n/e)n

∈ [1, 2] for
all n ≥ 1. A tighter approximation is possible, but this one is sufficient for our purpose.

1

n

n!

nn

M∏
j=1

β
βj
j

βj !
≥ 1

n

√
2πnen

M∏
j=1

1

2
√

2πβjeβj
=

1

n

√
2πn

M∏
j=1

1

2
√

2πβj

≥ 1

n

√
2πn

M∏
j=1

1

2
√

2πn/M

=
MM/2

2(8π)
M−1

2

1

n
M+1

2

.

Lemma 66 links KLM with K±inf .

Lemma 66. Let F be a multinomial distribution supported on points X1, . . . , XM ∈ [0, B] and let
p ∈ 4M be the corresponding probability vector.

If there exists i ∈ [M ] with Xi = B and pi > 0, then for all µ ∈ [0, B],

K+
inf(F, µ) = inf

q∈4M :q>X≥µ
KLM(p, q) .

If there exists i ∈ [M ] with Xi = 0 and pi > 0, then for all µ ∈ [0, B],

K−inf(F, µ) = inf
q∈4M :q>X≤µ

KLM(p, q) .

Proof. As remarked in [18], the probability measure that realizes the infimum (which exists by
Lemma 41) in theK+

inf problem for distributions with finite support has mass on the same points and on
B. Under the hypothesis that there exists i ∈ [M ] with Xi = B and pi > 0, we get that that infimum
is also a multinomial with same support. Hence there exists qF such that K+

inf(F, µ) = KLM(p, qF )

and we get infq∈4M :q>X≥µ KLM(p, q) ≤ K+
inf(F, µ). The reverse inequality comes from the

definition of K+
inf as an infimum over all probability distributions (which is a larger set than the

multinomial distributions).

The proof for K−inf is similar.

Theorem 7. Let X1, . . . , XM ∈ [0, B] with XM = B and let β ∈ NM with βM > 0. Define
n =

∑M
i=1 βi. Let Fn be the multinomial distributions over the Xi with weights β/n. For all

µ ∈ [0, B],

PL∼Dir(β)(L
>X ≥ µ) ≥ MM/2

2(8π)
M−1

2

1

n
M+1

2

exp
(
−nK+

inf(Fn, µ)
)
.

Proof. If βi > 0 for all i ∈ [M ], this is the result of a supremum over the lower bounds of Theorem 6,
to which we apply the equality of Lemma 66. Now if there are some i for which βi = 0, we have for
some M0 < M ,

PL∼Dir(β)(L
>X ≥ µ) ≥ M

M0/2
0

2(8π)
M0−1

2

1

n
M0+1

2

exp
(
−nK+

inf(Fn, µ)
)
.

But since the leading factor is non-increasing inM0, we recover the result withM instead ofM0.

Corollary 3. Let X1, . . . , XM ∈ [0, B] with XM = 0 and let β ∈ NM with βM > 0. Define
n =

∑M
i=1 βi. Let Fn be the multinomial distributions over the Xi with weights β/n. For all

µ ∈ [0, B],

PL∼Dir(β)(L
>X ≤ µ) ≥ MM/2

2(8π)
M−1

2

1

n
M+1

2

exp
(
−nK−inf(Fn, µ)

)
.
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Proof. Remark that PL∼Dir(β)(L
>X ≤ µ) = PL∼Dir(β)(L

>(B−X) ≥ B−µ) and apply Theorem 7
and Lemma 38.

G.3.2 Lower bound for bounded distributions
Lemma 67. Let X1, . . . , Xn ∈ [0, B]. Let θ = L>X , where L is a Dirichlet random variables, with
L ∼ Dir(1, . . . , 1) (n ones). Let Y1, . . . , YM ∈ [0, B], among which are the values 0 and B. For all
i, let X+

i = min{Yk | k ∈ [M ], Yk ≥ Xi}. Let F+
n be the empirical distribution corresponding to

points X+
i .

If 0 ∈ {X1, . . . , Xn}, then for all µ ∈ [0, B],

P(θ ≤ µ) ≥ MM/2

2(8π)
M−1

2

1

n
M+1

2

exp
(
−nK−inf(F

+
n , µ)

)
.

If B ∈ {X1, . . . , Xn}, then for all µ ∈ [0, B],

P(θ ≥ µ) ≥ MM/2

2(8π)
M−1

2

1

n
M+1

2

exp
(
−nK+

inf(F
−
n , µ)

)
.

Proof. We have θ = L>X ≤ L>X+ and θ = L>X ≥ L>X−. Those scalar products can be
written as scalar products of Dirichlet random variables with Y . We now apply Theorem 7 and its
corollary.

For a probability distribution with cdf F on [0, B] and points 0 = x0 < x1 < . . . < xM < xM+1 =
B we define two discretized distributions with cdf given by, for x ∈ [xm, xm+1),

F−(x) = lim
y→xm+1,y≤xm+1

F (y) ,

F+(x) = F (xm) .

Lemma 68. For all ε > 0 and all probability distributions F supported on [0, B], there exists a
discretization over at most 2 + b1/εc points (counting points 0 and B) such that ‖F− − F‖∞ ≤ ε
and ‖F+ − F‖∞ ≤ ε.

Proof. Let M = b1/εc. For m ∈ {0, . . . ,M}, let xm = inf{x ∈ [0, B] | F (x) ≥ mε}. Let
xM+1 = B.

‖F− − F‖∞ ≤ max
0≤m≤M

| lim
y→xm+1,y≤xm+1

F (y)− F (xm)|1{xm+1 6= xm}

≤ max
0≤m≤M

|(m+ 1)ε−mε| ≤ ε .

The computation for F+ is similar.

Lemma 69. For all F,G ∈ P(R) with support in [0, B] and all finite discretizations,

‖F− −G−‖∞ ≤ ‖F −G‖∞ ,

‖F+ −G+‖∞ ≤ ‖F −G‖∞ .

Proof. For all x ∈ [xm, xm+1), F−(x) = limy→xm+1,y≤xm+1
F (y).

‖F− −G−‖∞ ≤ max
0≤m≤M

| lim
y→xm+1,y≤xm+1

F (y)− lim
y→xm+1,y≤xm+1

G(y)| ≤ ‖F −G‖∞ .

Lemma 70. Let F ∈ P(R) with support in [0, B]. For all ε > 0, there exists a discretization of
[0, B] into 2 + b2/εc points such that for all G with ‖G−F‖ ≤ ε/2, we have ‖G− −F‖∞ ≤ ε and
‖G+ − F‖∞ ≤ ε.
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Proof. Let ε > 0. For a discretization of F verifying the result of Lemma 68 for ε/2,

‖G− − F‖∞ ≤ ‖G− − F−‖∞ + ‖F− − F‖∞ ≤ ‖G− F‖∞ + ‖F− − F‖∞ ≤ ε .

Same computation for G+.

Lemma 71 gives a tight lower bound on the BCP for bounded distributions.

Lemma 71. Let a > 0 and b < B. Let F be a probability distribution with support in [0, B].

For points X, . . . ,Xn ∈ [0, B]. let θ = L>X , where L is a Dirichlet random variable, with
L ∼ Dir(1, . . . , 1) (n ones). Let Fn be the empirical distribution corresponding to points (Xi)i∈[n].

For all ε > 0, there exists η > 0 such that for all such empirical distributions (and in particular for
all n), if ‖Fn − F‖∞ ≤ η then for all u ∈ [a, b],

if B ∈ {X1, . . . , Xn} then P(θ ≥ u) ≥ MM/2

2(8π)
M−1

2

1

n
M+1

2

exp
(
−nK+

inf(F, µ)− nε
)
,

if 0 ∈ {X1, . . . , Xn} then P(θ ≤ u) ≥ MM/2

2(8π)
M−1

2

1

n
M+1

2

exp
(
−nK−inf(F, µ)− nε

)
.

with M = 2 + b2/ηc.

Proof. The function (F, µ) 7→ K−inf(F, µ) is continuous on D × (0, B) by Theorem 4. The function
(F, µ) 7→ K−inf(F, µ) is then uniformly continuous on D × [a, b] (since D is compact). In particular,
there exists η > 0 such that if ‖G− F‖∞ ≤ η then for all µ ∈ [a, b],

K−inf(G,µ) ≤ K−inf(F, µ) + ε .

We have a similar property for K+
inf .

We now build a discretization such that F+
n and F−n verify that condition under the hypothesis

‖F (1)
n − F (1)‖∞ ≤ η and ‖Fn − F‖∞ ≤ η, using Lemma 70. The result is a combination of this

continuity inequality and Lemma 67.

Theorem 8 gives a tight lower bound on probabilities of the form P(θ2 ≥ θ1) for bounded distribu-
tions.

Theorem 8. Let F (1) and F (2) be two probability distributions with means in (0, B).

For points X(1)
1 , . . . , X

(1)
n1 , X

(2)
1 , . . . , X

(2)
n2 ∈ [0, B] such that X(1)

1 = 0, X
(2)
n2 = B, let θ1 =

(L(1))>X(1) and θ2 = (L(2))>X(2), where L(1) and L(2) are independent Dirichlet random vari-
ables, with L(1) ∼ Dir(1, . . . , 1) (n1 ones) and L(2) ∼ Dir(1, . . . , 1) (n2 ones). Let F (1)

n be the
empirical distribution corresponding to points X(1)

i and F (2)
n be the empirical distribution corre-

sponding to points X(2)
i .

For all ε > 0, there exists η > 0 such that for all such empirical distributions (and in particular for
all n1 and n2), if ‖F (1)

n − F (1)‖∞ ≤ η and ‖F (2)
n − F (2)‖∞ ≤ η then

P(θ2 ≥ θ1)

≥ MM

4(8π)M−1

1

(n1n2)
M+1

2

exp

(
− inf
µ∈[0,B]

(
n1K−inf(F

(1), µ) + n2K+
inf(F

(2), µ)
)
− (n1 + n2)ε

)
with M = 2 + b2/ηc.

Proof. By Lemma 64,

P(θ2 ≥ θ1) ≥ sup
µ∈[µ2,µ1]

P(θ2 ≥ µ)P(θ1 ≤ µ)

We now use Lemma 71 for both probabilities. This is valid since by hypothesis the interval [µ2, µ1] is
a subset of (0, B). We get the wanted result, except that the infimum is over µ ∈ [µ2, µ1] instead of
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µ ∈ [0, B]. But by the monotonicity of K±inf in µ and the fact that K+
inf(F

(2), µ) (resp. K−inf(F
(1), µ))

is 0 for µ ≤ µ2 (resp. for µ ≥ µ1), we get that

inf
µ∈[0,B]

(
n1K−inf(F

(1), µ) + n2K+
inf(F

(2), µ)
)

= inf
µ∈[µ2,µ1]

(
n1K−inf(F

(1), µ) + n2K+
inf(F

(2), µ)
)

and the theorem is proved.

H Single parameter exponential families
In this section, we explain how our analysis can be used to analyze Top Two algorithms for Single
Parameter Exponential Families (SPEF). More precisely, our results apply to SPEF of sub-exponential
distributions. We recall below the definition of a sub-exponential distribution, which applies to several
typical examples of SPEF: Bernoulli distribution, Gaussian distributions with known variances,
exponential and Poissson distributions [42].

Definition 4. A distributionX is sub-exponential with constantC if it satisfies P(|X| ≥ x) ≤ 2e−Cx.

Preliminaries Let P(0) be a sub-exponential probability distribution and let ϕ be the cumulant
generating function of P(0), defined by ϕ(λ) = logEX∼P(0)eλX . Let I(n) ⊆ R be the open interval
on which it is defined (set of natural parameters).

The single parameter exponential family (SPEF) associated to a probability measure P(0) is the set of
probability measures {P(λ) | λ ∈ I(n)}, where P(λ) is the probability measure absolutely continuous
with respect to P(0), with density x 7→ eλx−ϕ(λ) with respect to P(0). That is, log dP(λ)

dP(0) (x) =

λx− ϕ(λ) . Using that the reference probability measure P(0) is assumed sub-exponential, we can
verify that that for all λ ∈ I(n), P(λ) is also sub-exponential.

ϕ is an analytic, strictly convex function on I(n). The distribution P(λ) has mean ϕ′(λ). Let
I = ϕ′(I(n)) be the open interval of means of the SPEF. Let ϕ∗ be the convex conjugate of ϕ, which
is also a strictly convex function. Recall that (ϕ∗)′ = (ϕ′)−1. Let dϕ be the Bregman divergence
associated to ϕ and dϕ∗ be the Bregman divergence associated ϕ∗. We have, for λ, η ∈ I(n),

dϕ(λ, η) = ϕ(λ)− ϕ(η)− (λ− η)>ϕ′(η) = dϕ∗(ϕ
′(η), ϕ′(λ)) .

We write Pm for the unique member of the SPEF with meanm (if it exists, that is ifm ∈ I). It verifies
Pm = P(ϕ′−1(m)). For two distributions in the SPEF with means m1 and m2, the Kullback-Leibler
divergence between the corresponding distributions Pm1

and Pm2
is

KL(Pm1
,Pm2

) = dϕ∗(m1,m2) .

In the following, we write simply d(m1,m2) for dϕ∗(m1,m2), the Kullback-Leibler divergence
between the distributions in the SPEF with means m1 and m2.

The Kinf minimization problem for exponential families In a SPEF, the quantity K+
inf , infimum

of the KL from a member of the SPEF to the subset of the family with mean larger that µ ∈ I
becomes

K+
inf(Pm, µ) := inf{KL(Pm, Q) | Q ∈ {Pm′ | m′ ∈ I}, EQ[X] ≥ µ}

= inf{KL(Pm,Pm′) | m′ ∈ I, m′ ≥ µ}
= inf{d(m,m′) | m′ ∈ I, m′ ≥ µ}
= d(m,max{m,µ}) .

Similarly for all m,µ ∈ I, K−inf(Pm, µ) = d(m,min{m,µ}). We abuse notations and write
K+

inf(m,µ) = K+
inf(Pm, µ).

Properties of Kinf in a SPEF The following properties are well-known in the bandit literature, see,
e.g. [11]:

1. µ 7→ K+
inf(m,µ) is differentiable on I \ {m}.

2. µ 7→ K+
inf(m,µ) is zero for µ ≤ m and finite, increasing and strictly convex on [m,+∞)∩I .

3. limµ→sup I K+
inf(m,µ) = +∞.
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4. (m,µ) 7→ K+
inf(m,µ) is jointly continuous on I2.

The transportation cost is

Ci,j(T (F ), w) = inf
u∈I
{wid(mi,min{mi, u}) + wjd(mj ,max{mj , u})} .

The infimum can equivalently be taken over [mj ,mi]. That transportation cost is jointly continuous
on IK ×4K by Berge’s Maximum theorem: Property 7 is verified.

Concentration results The following result is the counterpart of Lemma 35 for sub-exponential
distributions.

Lemma 72. Suppose that (Xn)n≥1 are sub-exponential random variables with constants (Cn), such
that c := infn Cn > 0. Then supn(Xn/ log(e+ n)) is sub-exponential.

Proof. This is due to a simple union bound:

P(| sup
n
Xn/ log(e+ n)| ≥ x) ≤

+∞∑
n=1

P(|Xn| ≥ x log(e+ n))

≤ 2

+∞∑
n=1

e−cx log(e+n) .

We now use that for x ≥ 4/c, we have cx/2 ≥ 2 and 2 log(e + n) ≥ 2, hence cx log(e + n) ≥
cx/2 + 2 log(e+ n): for x ≥ 4/c,

P(| sup
n
Xn/ log(e+ n)| ≥ x) ≤ 2

(
+∞∑
n=1

1

(e+ n)2

)
e−cx/2 .

This shows that the random variable is sub-exponential.

Lemma 73. There exists a sub-exponential random variable Wd such that almost surely, for all
i ∈ [K] and all n such that Nn,i ≥ 1,

Nn,id(µn,i, µi) ≤Wd log(e+Nn,i) .

There exists a sub-exponential random variable Wµ such that almost surely, for all i ∈ [K] and all n
such that Nn,i ≥ 1,

Nn,i|µn,i − µi| ≤Wµ log(e+Nn,i) .

In particular, any random variable which is polynomial in Wd or Wµ has a finite expectation.

Proof. We start with the proof of the concentration inequality on the divergence. Since the maximum
of a finite number of sub-exponential random variables is sub-exponential, it suffices to show that
supn

Nn,id(µn,i,µi)
logNn,i

is sub-exponential. Let then i ∈ [K]. Let µ̂n,i be the average of the first n

samples from arm i. It suffices to show that supn
nd(µ̂n,i,µi)
log(e+n) is sub-exponential. By [32, Lemma 4],

we have that for any n,

P(nd(µ̂n,i, µi) ≥ α) ≤ 2e−α .

That is, for a fixed n, nd(µ̂n,i, µi) is sub-exponential. We then apply Lemma 72 to obtain than
supn

nd(µ̂n,i,µi)
log(e+n) is sub-exponential.

By hypothesis, the distribution Fi is sub-exponential. Hence at any n, n|µ̂n,i − µi| is as well. We
then apply Lemma 72 to obtain than supn n|µ̂n,i − µi|/ log(e+ n) is sub-exponential. We finally
obtain that the maximum over the finitely many arms has the same property.
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H.1 Proof of the leader and challenger properties for EB, TC and TCI
We prove, in the case of a sub-exponential SPEF, that Properties 2 and 5 hold for the EB leader and
that Properties 3 and 6 hold for the TC and TCI challengers.

For SPEF, Property 7 is a known result from the literature [38]. For sub-exponential SPEF, Property 8
is shown in Lemma 73. In [29], stopping threshold have been derived for general SPEF. Thanks to their
dependency in (n, δ), those thresholds are also asymptotically tight. Therefore, applying Corollary 1
yields that β-EB-TC and β-EB-TCI are asymptotically β-optimal algorithms for sub-exponential
SPEF with the corresponding threshold.

Rates for empirical transportation costs

Lemma 74. Let F ∈ FK with m(Fj) < m(Fi). There exists L with E[|L|α] < +∞ for all α > 0
and DF > 0 such that for Nn,i ≥ L and Nn,j ≥ L, Wn(i, j) > LDF .

Proof. Suppose that Nn,i ≥ L and Nn,j ≥ L, for some L to be determined. First we get

Wn(i, j) = inf
u∈I

{
Nn,iK−inf(T (Fn,i), u) +Nn,jK+

inf(T (Fn,j), u)
}

≥ L inf
u∈I

{
K−inf(T (Fn,i), u) +K+

inf(T (Fn,j), u)
}
,

where T (Fn,i) = µn,i is simply the mean.

For any compact interval IC ⊆ I, the function defined by T (F ) 7→
infu∈IC

{
K−inf(T (Fi), u) +K+

inf(T (Fj), u)
}

is continuous on T (FK).

ForL greater than someL1 with finite moments, the means µn,i and µn,j belong to [µj−ε, µi+ε] ⊆ I
for some ε > 0. Furthermore, for L greater than some L2 with finite moments, T (Fn,i) is ε-close to
Fi (and same thing for Fj). The continuity then gives that there exists L with finite moments such
that

inf
u∈I

{
K−inf(T (Fn,i), u) +K+

inf(T (Fn,j), u)
}
≥ 1

2
inf
u∈IC

{
K−inf(T (Fi), u) +K+

inf(T (Fj), u)
}
.

This is positive since m(Fj) < m(Fi) by an analogue of Lemma 55, which holds for exponential
families due to the continuity and strict convexity properties detailed earlier.

Lemma 75. Let SLn and I?n as in (19). There exists L4 with EF [(L4)α] < +∞ for all α > 0 such
that if L ≥ L4, for all n such that SLn 6= ∅,

∀(i, j) ∈ I?n ×
(
SLn \ I?n

)
, Wn(i, j) ≥ LDF ,

where DF > 0 is a problem dependent constant.

Proof. Let SLn and I?n as in (19). Assume that SLn 6= ∅. If SLn \ I?n is empty, then the statement
is not informative. Assume SLn \ I?n is not empty. Let (i, j) ∈ I?n ×

(
SLn \ I?n

)
. We can now use

{i, j} ⊆ SLn and Lemma 74.

Lemma 76 gives an upper bound on the transportation costs between a sampled enough arm and an
under-sampled one.

Lemma 76. Let SLn as in (19). There exists L5 with EF [(L5)α] < +∞ for all α > 0 such that for
all L ≥ L5 and all n ∈ N,

∀(i, j) ∈ SLn × SLn , Wn(i, j) ≤ L(2Wd +D1 +D2Wµ) ,

where D1 > 0 and D2 > 0 are problem dependent constants and Wd,Wµ are the random variables
defined in Lemma 73.

Proof. Let (i, j) ∈ SLn × SLn (i is sampled more than L times, j is not). Taking u = µn,i yields

Wn(i, j) = inf
u∈R

{
Nn,iK−inf(T (Fn,i), u) +Nn,jK+

inf(T (Fn,j), u)
}

≤ Nn,jK+
inf(T (Fn,j), µn,i) ≤ LK+

inf(T (Fn,j), µn,i) ,
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where we used that j ∈ SLn .

By definition of Wd and Wµ, we have
µn,j ≤ µj +Wµ log(e+Nn,j)/Nn,j ,

d(µn,j , µj) ≤Wd log(e+Nn,j)/Nn,j .

The same is true for i. Then the Kinf is bounded by

K+
inf(T (Fn,j), µn,i) = d(µn,j , µn,i) ≤ d

(
µn,j , µi +Wµ

log(e+Nn,i)

Nn,i

)
= d(µn,j , µj) + d

(
µj , µi +Wµ

log(e+Nn,i)

Nn,i

)
+

∣∣∣∣(µn,j − µj)((ϕ′)−1(µj)− (ϕ′)−1

(
µi +Wµ

log(e+Nn,i)

Nn,i

))∣∣∣∣
≤Wd

log(e+Nn,j)

Nn,j
+ d

(
µj , µi +Wµ

log(e+Nn,i)

Nn,i

)
+Wµ

log(e+Nn,j)

Nn,j

∣∣∣∣(ϕ′)−1(µj)− (ϕ′)−1

(
µi +Wµ

log(e+Nn,i)

Nn,i

)∣∣∣∣ .
Since x 7→ log(e+x)

x is decreasing on R?+, we have log(e+Nn,j)
Nn,j

≤ 2 for Nn,j ≥ 1 and log(e+Nn,i)
Nn,i

≤
log(e+L)

L for Nn,i ≥ L. For ε > 0 and L ≥ Lε where Lε ≥Wµ log(e+ Lε)/ε, we have

K+
inf(T (Fn,j), µn,i) ≤ 2Wd + d(µj , µi + ε) + 2Wµ|(ϕ′)−1(µj)− (ϕ′)−1(µi + ε)| .

Since the means belong to the interior of the interval I, there exists a ε > 0 such that d(µj , µi + ε)
and |(ϕ′)−1(µj)− (ϕ′)−1(µi+ ε)| are finite. We take the corresponding L, which is sub-exponential,
and obtain the result.

H.1.1 EB leader
The proof of Properties 2 and 5 is almost identical to that for bounded distributions. Only the lower
bound on Wn(i, j) is used, which has the same form for SPEFs and bounded distributions.

H.1.2 TC challenger
Conditioned on Fn and given a leader Bn+1, the Transportation Cost (TC) challenger is defined in
(26) as the arm with smallest transportation cost compared to the leader

CTC
n+1 ∈ arg min

j 6=Bn+1

Wn(Bn+1, j) , P|n[CTC
n+1 = j|Bn+1 = i] =

1
(
j ∈ arg mink 6=iWn(i, k)

)
| arg mink 6=iWn(i, k)|

,

and ĈTC
n+1 ∈ arg minj 6=B̂n+1

Wn(B̂n+1, j).

Property 3 We prove Property 3 for CTC
n+1 in Lemma 77 by comparing the rates at which Wn

increases.

Lemma 77. Let Bn+1 be a leader satisfying Property 2. Let (CTC
n+1, Ĉ

TC
n+1) as in (26). Let ULn and

V Ln as in (20) and J ?n = arg max
i∈V Ln

µi. There exists L6 with EF [L6] < +∞ such that if L ≥ L6,

for all n such that ULn 6= ∅, B̂n+1 /∈ V Ln implies ĈTC
n+1 ∈ V Ln ∪

(
J ?n \

{
B̂n+1

})
.

Proof. The proof proceeds similarly to the one of Lemma 19. The difference is the bounds on
Wn(i, j) that we get. For all L bigger than some random variable with finite expectation,

B̂n+1 ∈ J ?n ,

∀(i, j) ∈ J ?n ×
(
V Ln \ J ?n

)
, Wn(i, j) ≥ L3/4DF ,

∀(i, j) ∈ ULn × ULn , Wn(i, j) ≤
√
L(2Wd +D1 +D2Wµ) .

For all L ≥ L7 := (2(2Wd +D1 +D2Wµ)/DF )
4,

L3/4DF >
√
L(2Wd +D1 +D2Wµ) .

We now conclude that at least one under-sampled arm has transportation cost lower than all the ones
that are much sampled, and proceed as in the proof of Lemma 19.
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Property 6 Lemma 78 shows that the Property 6 is satisfied by CTC
n+1.

Lemma 78. Assume Property 4 holds. Let ε > 0. Let Bn+1 be a leader satisfying Property 5 and
CTC
n+1 as in (26). There exists N7 with EF [N7] < +∞ such that for all n ≥ N7 and all i 6= i?(F ),

Ψn,i

n
≥ wβi + ε =⇒ P|n[CTC

n+1 = i | Bn+1 = i?(F )] = 0 . (44)

Proof. This proof proceeds very similarly to the proof of lemma 20. Let ε > 0 and i? = i?(F ).
Using the definition of CTC

n+1 in (26), we have

P|n[CTC
n+1 = i | Bn+1 = i?] = 0 ⇐⇒ 1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
> 0 .

Let N1 as in Property 4, then Nn,i ≥
√

n
K for all n ≥ N1. Since i? is unique, we have ∆′ :=

minj 6=i? |µi? − µj | > 0. Let u0 be the minimal distance from any mean µi to an end of the interval
of means I and let ∆ = min{∆′, u0}. Lemma 73 yields that there exists N8 = Poly(Wµ) such
that for all n ≥ max{N1, N8} and all i ∈ [K], we have |µn,i − µi| ≤ ∆

4 . Therefore, for all
n ≥ max{N1, N8}, arg maxi∈[K] µn,i = arg maxi∈[K] µi = i? and for all i ∈ [K], µn,i ∈ I.

Let ξ > 0. Since Property 4 holds and Bn+1 satisfies Property 5, we can use the results from
Lemma 11. Let N4 defined in Lemma 11. We have

∣∣∣Nn,i?n − β
∣∣∣ ≤ ξ for all n ≥ max{N1, N4}.

Let i 6= i? such that Ψn,i
n ≥ wβi + ε. Using Lemma 5, there exists N9 = Poly(W1), such that for all

n ≥ max{N1, N9}, we have Nn,i
n ≥ wβi + ε

2 . Therefore, for all n ≥ max{N1, N4, N8, N9}, as in
the proof of Lemma 20,

1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
≥ inf
β̃:|β̃−β|≤ξ

Gi(T (Fn), β̃)

where

Gi(m, β̃) = inf
u∈[0,B]

{
β̃K−inf(mi? , u) +

(
wβi +

ε

2

)
K+

inf(mi, u)
}

− sup
w∈4K :wi?=β̃

min
j 6=i?

inf
u∈I

{
wi?K−inf(mi? , u) + wjK+

inf(mj , u)
}
.

Since all the means belong to a compact subset of I for n ≥ max{N1, N4, N8, N9}, we can prove
continuity of the functions (m, β̃) 7→ Gi(m, β̃) andm 7→ inf β̃:|β̃−β|≤ξ Gi(m, β̃) in a similar way
as was done for bounded distributions in Lemma 31. Therefore, there exists N10 = Poly(W2) and
ξ0 such that for n ≥ N7 := {N1, N4, N8, N9, N10} and all ξ ≤ ξ0,

inf
β̃:|β̃−β|≤ξ

Gi(T (Fn), β̃) ≥ 1

2
inf

β̃:|β̃−β|≤ξ
Gi(T (F ), β̃) ≥ 1

4
Gi(T (F ), β) .

At the β-equilibrium all transportation costs are equal. Therefore, by definition of wβ ,

sup
w∈4K :wi?=β

min
j 6=i?

inf
u∈[0,B]

{
wi?K−inf(Fi? , u) + wjK+

inf(Fj , u)
}

= min
j 6=i?

inf
u∈[0,B]

{
βK−inf(Fi? , u) + wβj K

+
inf(Fj , u)

}
= inf
u∈[0,B]

{
βK−inf(Fi? , u) + wβi K

+
inf(Fi, u)

}
< inf
u∈[0,B]

{
βK−inf(Fi? , u) +

(
wβi +

ε

2

)
K+

inf(Fi, u)
}

where the strict inequality is obtained because the transportation costs are increasing in their allocation
arguments (proved in a similar way as Lemma 56). Therefore, we have Gi(T (F ), β) > 0. This
yields that Wn(i?, i) > minj 6=i?Wn(i?, j). As all moments of W1 and λWµ are finite, we have
EF [Ni] < +∞ for i ∈ {8, 9, 10}. Hence this is also the case for N7.
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H.1.3 TCI challenger
Showing Properties 3 and 6 for the TCI challenger uses the same arguments as for the proof of
Lemma 77 and 78. Coping for the penalization term logNn,j is done similarly as when we obtained
Lemmas 21 and 22 by adapting the proof of Lemmas 19 and 20. Since there is no new arguments, we
omit the proof.

I Implementation details and additional experiments
After presenting the implementations details in Appendix I.1, we display supplementary experiments
in Appendix I.2.

I.1 Implementation details
In non-parametric settings, the algorithms are inherently more costly than their counterpart in
parametric settings. First, the memory cost is linear in time as we need to maintain the whole history
Fn in memory. This a direct consequence of the lack of sufficient statistics to summarize Fn. In
contrast, the memory cost is constant for single-parameter exponential families settings. Second, the
computational cost per iteration of many algorithms is at least linear in time: a good algorithm should
leverage all the observations to make a decision.

We detail below the most relevant implementation details regarding the sampling rules and discuss
their computational cost. As mentioned above, the implemented algorithms for the bounded setting
are computational expensive by nature. However, we aim at promoting the algorithm(s) achieving
good empirical performance in terms of empirical stopping time at a reasonable computational
cost.

Stopping-Recommendation pair The recommendation rule ı̂n ∈ arg maxi∈[K] µn,i has a O(K)
computational cost. This is achieved by simply maintaining the cumulative sum of the observations∑
t≤n 1 (i = It)Xt,i for each arm.

In contrast to the recommendation rule, the stopping rule defined in (2) is computationally expensive.
At each time n, we need to compute K − 1 transportation costs Wn(̂ın, j) for j 6= ı̂n. While each
one can be evaluated efficiently for single-parameter exponential families (see below), this is not the
case for bounded distributions where

Wn(̂ın, j) = inf
x∈[µn,j ,µn,ı̂n ]

gn(̂ın, j, x) ,

gn(̂ın, j, x) = Nn,̂ınK−inf(Fn,̂ın , x) +Nn,jK+
inf(Fn,j , x) .

Using Lemmas 52 and 55, the function x 7→ gn(̂ın, j, x) is strictly convex and admit a unique
minimizer in [µn,j , µn,̂ın ]. Lemma 47 gives a formula for the derivatives of x 7→ K±inf(F, x).
Unfortunately, λ±? (F, x) are often defined implicitly (Lemma 49), hence we can’t leverage this
knowledge and use first-order optimization methods. Therefore, in order to compute Wn(̂ın, j), we
rely on a zero-order optimization algorithm designed to minimize a univariate function on a bounded
interval. In practice, we use Brent’s method, which is implemented in the Optim.jl package under
Julia 1.7.2.

To obtain gn(̂ın, j, x) for a given x, we need to compute K−inf(Fn,̂ın , x) and K+
inf(Fn,j , x). This is

made tractable thanks to their dual formulation. Taking K+
inf(Fn,j , x) as an example, Theorem 3

yields

Nn,jK+
inf(Fn,j , x) = sup

λ∈[0,1]

∑
k∈[Nn,i]

log

(
1− λXk,i − x

B − x

)
,

where (Xk,i)k∈[Nn,i] denotes the samples collected from arm i at time n. As the function is strictly
concave (Lemma 44), we will also use Brent’s method to compute it’s maximum. Each computation
requires to sum over the Nn,i samples collected by arm i. Therefore, the computational cost is at least
linear in time. Since we can compute the derivative, it would be possible to use first-order optimization
algorithms. While this will improve the number of iterations required to reach convergence, it is not
clear that the overall computational cost will be reduced since those gradient computations are also
linear in time.
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Top Two sampling rules We discuss the computational cost of the EB and TS leader, as well as
the TC and RS challenger.

The EB leader has virtually no computational cost since it uses the candidate answer ı̂n. Likewise,
the TC challenger can also leverage the computations from the stopping rule (2). When Bn+1 =
ı̂n, CTC

n+1 ∈ arg minj 6=ı̂nWn(̂ın, j) was already computed in (2). When Bn+1 6= ı̂n, we have
CTC
n+1 ∈ arg minj 6=Bn+1

Wn(Bn+1, j) =
{
j 6= Bn+1 | µn,j ≥ µn,Bn+1

}
, which contains at least ı̂n.

Therefore, the TC challenger has virtually no computational cost when paired with (2).

The TS leader and the RS challenger use a sampler Πn. In single-parameter exponential families,
Πn is a posterior distribution which can be computed in constant time by updating the posterior
O(K) parameters. However, for bounded distributions, the Dirichlet sampler relies on the whole
history Fn. Therefore, for each arm i, we need to define and sample from a Dirichlet distribution
with Nn,i + 2 parameters. This has linear computational cost per iteration. The TS leader requires
only one Dirichlet observation per arm, hence it has constant cost once the Dirichlet distributions are
defined (which is computationally expensive).

For the RS challenger, we re-sample until Bn+1 is not an arm with highest mean in the corresponding
vector of observations. The computational cost is proportional to the number of re-sampling steps
which is on average 1/(1− an,Bn+1

). Hence the computational cost can be very high when Πn has
converged, that is when an,i ≈ 0 for all i 6= i?. The analysis of the TS leader and the RS challenger
reveals that this convergence is exponential, with a rate close to T ?β (F ). Therefore, when Bn+1 = i?,
it is highly unlikely to observe a vector θ for which i? is not the best arm, and the average number of
re-sampling steps is exponential.

Based on extensive experiments, we also have empirical evidence that the RS challenger has higher
computational cost than the TC challenger. For Bernoulli instances, when using the stopping threshold
defined in (4), the maximum number of re-sampling steps (set arbitrarily to 106) was always reached
for large time n. As a direct consequence, the computational cost of the RS challenger explodes
in those cases, e.g. 104 times slower than the TC challenger. As we use a uniform sampling when
the maximum number of re-sampling steps is reached, the achieved empirical stopping time is also
higher than for the variant using the TC challenger. In Appendix I.2.1, we perform experiments with
the RS challenger for a heuristic stopping threshold defined in (46). This yields four times smaller
empirical stopping time compared to using (4), see Appendix I.2.

Other sampling rules In LUCB-based sampling rules, we need to compute upper and lower
confidence bounds based on the inversion of a distance function. For KL-LUCB, it requires inverting
the KL divergence of Bernoulli distributions. This can be done efficiently by using a binary search
algorithm. For Kinf -LUCB, we need to inverse K±inf , also by using a binary search. As explained
above, computingK±inf for the empirical cdfs yields a linear computation cost. Therefore,Kinf -LUCB
will be significantly worse than KL-LUCB in terms of computational cost. However, Kinf -LUCB
yields order of magnitude smaller empirical stopping time in the DSSAT instances compared to
KL-LUCB.

The sampling rule Kinf -DKM is inspired by DKM [13], with only one learner on4K instead of K
learners. We replace the KL divergences by K±inf as we are in the bounded setting, hence it will be
more costly than DKM for single-parameter exponential families. Given the allocation wn returned
by the learner (e.g. AdaHedge), computing the most confusing alternative parameter has the same
computational cost as evaluating the stopping rule (2). For bounded distributions, it is not clear how
to define the optimistic bonuses. Therefore, we replace it by forced exploration, which yields worse
empirical stopping times.

Adaptive choice of β Based on the theoretical lower bound, Top Two algorithms with a fixed
allocation can be at best asymptotically β-optimal, not asymptotically optimal (meaning reaching
T ?(F )). To achieve asymptotic optimality, the fixed allocation should match the optimal allocation
β? = arg minβ∈(0,1) T

?(F ). As β? is unknown, it should be learned from observations. Therefore,
this desired adaptive Top Two algorithm should use an adaptive choice of β which converges towards
β?. Proving optimality for adaptive Top Two algorithms is an interesting open problem, which is
still unsolved even for Gaussian bandits. The very recent paper [43] proposes an update mechanism
for β, but they study it only empirically and they don’t provide any theoretical guaranty for that
scheme.
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Optimal allocation oracles In the following, we consider bounded distributions F having a
discrete support. Computing the optimal allocation w?(F ) is computationally very expensive
for bounded setting. Even for single-parameter exponential families, this can be very demanding.
For more complex structure such as top-k identification or combinatorial bandits [26], advanced
saddle-point algorithms are needed to obtain efficient implementation, even for Gaussian distributions.
Therefore, Track-and-Stop algorithms computing w?(Fn) at each time n should not be used to
tackle the bounded distributions setting. While it is costly, we can still compute w?(F ) for the
true distribution F once. First, it allows to obtain a lower bound on the empirical stopping in
T ?(F )kl(δ, 1 − δ). Second, we can implement the oracle algorithm (referred to as “fixed” in the
experiments) which tracks the true optimal allocation w?(F ).

The strategy to compute w?(F ) is similar as done for single-parameter exponential families [16].
In the following, we describe the heuristic algorithm mimicking the behavior of the oracle in [16].
Let i? = i?(F ). Let Gj(x) defined in Lemma 61. Recall that xj(y) = G−1

j (y) and uj(x) is defined
as the minimizer yielding Gj(x). If xj and uj can be differentiated, we could directly derive (43)
in Lemma 61. Additional manipulations [16] yield the reformulation of the optimization problem
defining T ?(F ) as solving F (y) = 1 where

∀y ∈
[
0,min
j 6=i?
K−inf(Fi? , µj)

)
, F (y) =

∑
j 6=i?

K−inf(Fi? , uj(xj(y)))

K+
inf(Fj , uj(xj(y)))

(45)

is a strictly increasing increasing function such that F (0) = 0 and limy→minj 6=i? K−inf (Fi? ,µj)
F (y) =

+∞. We use nested binary searches to solve F (y) = 1. The outer binary search is done on
y ∈

[
0,minj 6=i? K−inf(Fi? , µj)

)
(see Lemma 63). The inner binary searches are done to compute

xj(y) for all j 6= i?. To compute uj(x), we use the same procedure than described in the stopping rule.
While proving that xj and uj are differentiable still eludes us, we conjecture it to be true. Therefore,
this heuristic optimal allocation algorithm gives a good estimate of T ?(F ) and w?(F ).

When F has a non-discrete support, computing numericallyK±inf by using the dual formulation would
require having access to an oracle outputting EFi [log(1−λ(X−u))] (resp. EFi [log(1+λ(X−u))])
for all i ∈ [K], u > µi and λ ∈

[
0, 1

B−u

]
(resp. λ ∈

[
0, 1

u

]
). For continuous distribution, those

integrals could be computed by numerical integration. Instead we adopt a Monte-Carlo approach
and use a discrete distribution F̂ sampled from F . By Lemma 14, taking a sufficiently large
number of samples ensures that maxi∈[K] ‖F̂i − Fi‖∞ is small. Intuitively, this should ensures
that w?(F̂ ) and T ?(F̂ ) are a good approximation of w?(F ) and T ?(F ). Formalizing this intuition
theoretically requires having access to a Lipschitz constant for the ‖ · ‖∞. To our knowledge, proving
that F 7→ w?(F ) and F 7→ T ?(F ) are Lipschitz is still an open problem, even for Gaussian
distributions.

Efficient implementation for Bernoulli For Bernoulli distributions, the computational cost is
greatly reduced. In the following kl denotes the KL divergence for Bernoulli distributions.

First, the stopping rule can be computed in O(K) since we have have closed form formulas for K±inf ,
i.e. K+

inf(Fn,i, u) = kl(µn,i,max{µn,i, u}) and K−inf(Fn,i, u) = kl(µn,i,min{µn,i, u}), and for the
closest alternative parameter, i.e.

arg min
x∈[µn,j ,µn,ı̂n ]

gn(̂ın, j, x) =
Nn,̂ınµn,̂ın +Nn,jµn,j

Nn,̂ın +Nn,j
.

By the same arguments, we have a more efficient computation of the optimal allocation w?(F ). As
the differentiability of xj and uj holds in this setting, the optimal allocation oracle is theoretically
validated.

Second, the sampler Πn can be rewritten as a Beta distribution with parameters (cn,i + 1, Nn,i −
cn,i + 1), where cn,i = |{t ∈ [n] | It = i,Xt,i = B}|. This leverages the fact that we can group the
observations into two values {0, B}, and a classic results on marginals of Dirichlet distributions.
While this reduces the cost of sampling observations from Πn, the computational cost of the re-
sampling procedure (discussed above) still remains.

For Bernoulli distributions, β-TS-TC coincide with T3C [39] and β-TS-RS coincide with TTTS
[38]. While the algorithms were already known in this setting, we are the first to prove they achieve

72



asymptotic β-optimality for Bernoulli distributions. In [39], the authors only provide a proof for
Gaussian distributions.

Decision Support System for Agrotechnology Transfer (DSSAT) DSSAT3 [22] is a crop model-
ing software that has been developed (mainly) to help agricultural production in developing countries.
This simulator provides a standardized way to generate realistic crop yield for different plants and
soil conditions, harnessing more than 30 years of historical field data on 42 different crops. Sim-
ulations are based on complex biophysical models, and take many parameters into account: local
soil conditions, genetics, and crop management policy (e.g planting date, fertilization policy). Our
experiment is inspired by the one proposed in [7]: we consider maize fields, and fixed challenging soil
conditions (poor water retention and fertility), that are close to the conditions endured by small-holder
farmers in Sub-Saharan Africa. As the biophysical models are fixed and the weather is sampled by the
environment, in this example the learner can play on human decisions such as the planting date and
fertilization policy. To simplify, we only consider the planting date, which already provides a difficult
problem as the distributions represented in Figure 3(b) and Figure 7 show. In those figures, each arm
corresponds to a yield distribution with all parameters fixed, except for the plantings that are ∼ 20
days apart from each other, ranging on two months. Our objective is to perform in sillico experiments
to compare the performance of different Best Arm Identification bandit algorithms, to help a potential
group of farmers to choose an algorithm to use for future real-world experiments.

As calling the simulator is computationally intensive and as we want to perform Monte-Carlo
simulations we used the code provided in [7] to generate 106 empirical data from each distribution
and store these points in a csv file that is provided with the code of this paper. We further re-scale the
distributions in [0, 1], which is equivalent as setting the known upper bound as the maximum value
sampled by the simulator in our data collection process. Then, a call to an arm simply consists in
sampling one of these points uniformly at random. We think this approximation is sufficient to reflect
the difficulty of the problem, while being less demanding in terms of computation time.

Remark 1. While this setting is simplified over a real-world experiment, it is an interesting and
highly non-trivial first step to build more realistic algorithms taking in account contextual information,
batch feedback, risk-aversion of farmers at a group and individual level (see [7]), . . . Furthermore, if
the asymptotic guarantees of bandit algorithms make them non-realistic for a single farmer (one data
point every 3-6 months), they may exhibit tremendous progress over uniform sampling for a group
of farmers (typically a few hundreds of data points every 3-6 months) conducting an experiment for
several years.

Reproducibility Our code is implemented in Julia 1.7.2, and the plots are generated with the
StatsPlots.jl package. Optimizations are performed based on the Brent’s method available in
the Optim.jl package. Other dependencies are listed in the Readme.md. The Readme.md file
also provides detailed julia instructions to reproduce our experiments, and we provide a script.sh
to run them all at once. The general structure of the code (and some functions) is taken from the
tidnabbil library.4

I.2 Supplementary experiments
As in Section 5, we consider a moderate confidence regime in which δ = 0.1 and Top Two algorithm
with β = 0.5.

Heuristic GK16 threshold While the stopping threshold defined in (4) ensures δ-correctness of the
stopping rule (2), it is conservative in practice. We denote it as TT (Theoretical Threshold). Aiming
at running large scale experiments, we consider the GK16 heuristic threshold defined in [16],

βGK16(n, δ) = log

(
1 + log(n)

δ

)
. (46)

Using GK16 yields an empirical error lower than δ, even if it has no δ-correctness guaranty. This
threshold was extensively used in the BAI literature to conduct experiments. This idealized de-
pendency in (n, δ) can be achieved for single-parameter exponential families [29]. In this work,
we show that log n can be achieved for bounded distributions. Whether it is possible to achieve

3DSSAT is an Open-Source project maintained by the DSSAT Foundation.
4This library was created by [13], see https://bitbucket.org/wmkoolen/tidnabbil. No license were available on

the repository, but we obtained the authorization from the authors.
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log log n for bounded distributions is an interesting open research question. As it would require more
sophisticated results on martingales to obtain such concentrations results for Kinf , we leave it for
future work.

Figure 5: Empirical stopping time on the easy, hard and 3rd-equal instances (left to right) for GK16
(top) or TT (bottom) thresholds.

On simple Bernoulli instances, we compare the performance of the algorithms from Section 5
for the stopping rule (2) using GK16 or TT. We consider three instances: the easy instance with
µ = (0.7, 0.5, 0.4, 0.3, 0.2), the hard instance with µ = (0.7, 0.6, 0.5, 0.4, 0.3) and the 3rd-equal
instance µ = (0.7, 0.6, 0.5, 0.5). While we average our results over 5000 runs for GK16, we only
perform 1000 runs for TT.

In Figure 5, the empirical stopping time when using GK16 is on average four times lower than when
using TT. As we discussed above, the computational cost of each iteration increases with the time n.
Therefore, this speed-up in stopping time naturally yields a speed-up in the averaged computational
time per iteration. In some of our experiments, the averaged computational time per iteration was
divided by 10.

In the following, all the experiments will be conducted with the GK16 heuristic threshold instead of
the TT threshold.

I.2.1 RS challenger
In addition of the Top Two algorithms from Section 5, we assess the empirical performance of
instances using the RS challenger. Moreover, we detail more on the lack of robustness of β-EB-TC
(large outliers), explained in Appendix D.3. As explained in Appendix I.1, the RS challenger is
computationally intractable for large n. The experiments with RS could be ran only because we used
GK16 instead of TT, hence dividing the empirical stopping time by four on average. Due to their
respective flaws, we do not recommend to use those algorithms in practice, even though they enjoy
the same theoretical guarantees as β-EB-TCI, β-TS-TC and β-TS-TCI.

Random Bernoulli instances For K ∈ {6, 8, 10}, we sample 5000 Bernoulli instances such that
µ1 = 0.6 and µi ∼ U([0.2, 0.5]) for all i 6= 1, where we enforce that ∆min ≥ 0.01. For all other
algorithms, Figure 6 delivers the same messages as Figure 4. Therefore, we refer the reader to
Section 5 for the corresponding comments.

Figure 6 confirms our theoretical intuition (Appendix D.3) hinting that β-EB-TC is not an empirically
robust algorithm, even for ∆min > 0. This is visible with the large number of outliers, which shift the
mean empirical stopping time away from the median empirical stopping time. Note that the y-axis
was cut to provided visibility, hence it hides the largest outliers observed for β-EB-TC.

In Figure 6, we see that β-EB-RS and β-TS-RS perform on par with β-EB-TCI, β-TS-TC and β-TS-
TCI, while having few outliers. This confirms our theoretical intuitions on the effect of randomization
in the leader and/or challenger (see Appendix D.3).
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Figure 6: Empirical stopping time on random Bernoulli instances for K ∈ (8, 10) (left to right).

Figure 7: Empirical stopping time (top) on scaled DSSAT instances for K ∈ (5, 6) (left to right) with
their density (bottom), where “Ki” stands for “Kinf”.

DSSAT instances We use the DSSAT real-world data forK ∈ (5, 6), which we scale by the overall
maximum so that B = 1. Their histograms define instances with bounded distributions, see the
bottom plots of Figure 7, on which we can sample. We average our results over 500 runs for K = 5
and 250 runs for K = 6. For all other algorithms, Figure 7 delivers the same messages as Figure 3.
Therefore, we refer the reader to Section 5 for the corresponding comments.

In Figure 7, we see that β-EB-RS and β-TS-RS perform on par with β-EB-TCI, β-TS-TC and
β-TS-TCI. For K = 5, we observe large outliers on β-EB-TC. This is a symptom of its empirical
lack of robustness, which would be more striking if more runs had been performed.

In Section 5, we mentioned that KL-LUCB was performing ten times worse than Kinf -LUCB on
DSSAT instances. With the same setting at Figure 7, KL-LUCB used on average (standard deviation)
a number of samples equal to 34635 (2860) for K = 5 and 57820 (5725) for K = 6.
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I.2.2 On the distinct means assumption
In Figure 5, the considered Top Two algorithms have good empirical performance on the 3rd-equal
instance. This instance violates Assumption 2, i.e. ∆min = mini 6=j |µi − µj | > 0, under which we
can prove sufficient exploration for the Top Two algorithms. We empirically study instances where
∆min = 0 in order to confirm our intuition that some Top Two algorithms have good guarantees in
this case (Appendix D.3).

The most difficult instances having ∆min = 0 are the ones where the arms having the same mean
are in second position. We consider four toy Bernoulli instances with three arms µi = (µ1, µ1 −
∆i, µ1 −∆i), where ∆i > 0. The smaller ∆i, the harder the identification problem is. Therefore,
with smaller values of ∆i, it will be easier to see if Top Two algorithms are failing when ∆min = 0.
In the experiments below, we consider µ1 = 0.5 and ∆i ∈ {0.1, 0.075, 0.05} and average our results
over 5000 runs.

Since we aim at observing whether the algorithms get stuck (at least momentarily) without paying an
infinite computational cost, we set a maximum number of iterations Tmax for each run. In our plots,
the quantity T ?(µ) log (1/δ) acts as a lower bound. Therefore, we set Tmax = 15T ?(µ) log (1/δ).
Having an algorithm using more than Tmax samples is a symptom of being stuck (at least momentar-
ily).

We observe that Table 3(a) and Table 3(b) are very similar. Reaching Tmax is a symptom of failing to
identifying the best arm i?. As there is no δ-correctness guaranty when reaching Tmax, it is expected
that the algorithm recommend an arm different from i?. In Table 3(a), we see that β-EB-TC is the
only algorithm reaching Tmax over the 5000 runs. Empirically, this is the only Top Two algorithms
that seem to fail on instances with ∆min = 0. In Table 3(b), all algorithms (except β-EB-TC) have
an empirical error lower than δ = 1%.

Figure 8: Empirical stopping time on Bernoulli with µi = (µ1, µ1 −∆i, µ1 −∆i) for µ1 = 0.5 and
∆i ∈ (0.1, 0.075, 0.05) (left to right).

Table 3: Percentage (in %) of runs (a) achieving Tmax and (b) failing at identifying i? = 1 on
Bernoulli with µi = (µ1, µ1 −∆i, µ1 −∆i) for µ1 = 0.5 and ∆i ∈ (0.1, 0.075, 0.05) for δ = 1%.

∆1 ∆2 ∆3

β-EB-TC 6.66 7.62 9.56
β-EB-RS 0 0 0
β-EB-TCI 0 0 0
β-TS-TC 0 0 0
β-TS-RS 0 0 0
β-TS-TCI 0 0 0
Kinf -DKM 0 0 0
KL-LUCB 0 0 0

Fixed 0 0 0
Uniform 0 0 0

∆1 ∆2 ∆3

EB-TC 6.74 7.66 9.54
EB-RS 0.02 0.02 0.02
EB-TCI 0.04 0.04 0.06
TS-TC 0.04 0.06 0.1
TS-RS 0.02 0.04 0.04
TS-TCI 0.04 0.08 0.08
Kinf -DKM 0.06 0.12 0.1
KL-LUCB 0.02 0.02 0.06

Fixed 0.02 0.02 0.06
Uniform 0.04 0.02 0.02

Lack of robustness of β-EB-TC Figure 8 confirms our theoretical intuition (Appendix D.3) hinting
that β-EB-TC is not empirically robust and can fail when ∆min = 0. This is visible with the large
number of outliers, which shift the mean empirical stopping time away from the median empirical
stopping time. In Table 3, we see observe that β-EB-TC is the only algorithm reaching Tmax and it
does it frequently, i.e. between 6% and 10% in our experiments.

76



TCI challenger Figure 8 confirms our theoretical intuition (Appendix D.3) that β-EB-TCI copes
for the limitations of β-EB-TC, and that it should work when ∆min = 0. Based on the comparison
of β-EB-TC and β-EB-TCI in Figure 8 and Table 3, we see that adding the log(Nn,j) term has a
stabilization effect, hence reducing the number of outliers.

The difference between β-TS-TC and β-TS-TCI is milder. However, based on Figure 8, it seems that
adding the log(Nn,j) term slightly reduces the number of large outliers. This effect is less visible than
when comparing β-EB-TC and β-EB-TCI due to the stabilization effect ensured by the randomization
in the TS leader.

Randomized leader or challenger Figure 8 confirms our theoretical intuition (Appendix D.3) that
randomized mechanisms have a stabilization effect, and that they should work when ∆min = 0.
Based on Figure 8 and Table 3, the TS leader or the RS challenger appear to prevent large outliers.
For the TS leader, this effect is particularly striking when comparing the performance of β-EB-TC
and β-TS-TC. For the RS challenger, the effect is striking when comparing β-EB-TC and β-EB-RS,
and milder between β-TS-TC and β-TS-RS.

Symmetric instances When the two sub-optimal arms have the same mean, we have w?(µ)2 =
w?(µ)3 = (1 − w?(µ)1)/2 by symmetry of the characteristic time T ?(µ). Therefore, the optimal
allocation is close to the uniform allocation (1/3, 1/3, 1/3). Experimental results (Figure 4(b) and
Figure 8) show that the uniform sampling performs on par with the fixed oracle algorithm tracking
w?(µ). Therefore, it is not surprising that KL-LUCB performs worse than uniform sampling.

I.2.3 On larger sets of arms
Another interesting question that arises as regards our algorithms is to assess whether their perfor-
mance scales with the number of arms. We consider the three problem scenarios from Jamieson and
Nowak [24] with varying size of arms. The underlying distributions are Gaussian with mean µ ∈ RK
and hardness H1 :=

∑
i 6=i?

1
(µi?−µi)2

. The “1-sparse” scenario sets µ1 = 1/4 and µi = 0 for all
i ∈ [K] \ {1}, resulting in an hardness H1 ≈ 4K. The “α = 0.3” and “α = 0.6” scenarios consider

µi = 1 −
(
i−1
K−1

)α
for all i ∈ [K], with respective hardness H1 ≈ 3K/2 and H1 ≈ 6K1.2. We

only consider algorithms whose computational cost scales nicely with the number of arms, namely
β-EB-TCI, β-TS-TC, LUCB and uniform sampling. We choose δ = 0.01, β = 1/2 and average our
results over 100 runs.

Figure 9: Empirical stopping time for the Gaussian benchmarks (left) “1-sparse”, (middle) “α = 0.3”
and (right) “α = 0.6”.

In Figure 9, we observe that the performances of β-EB-TCI, β-TS-TC and LUCB scale proportionally
to the hardness H1 when the number of arms increase, while it is worsening for the uniform sampling.
Surprisingly, the performance gap between β-EB-TCI and LUCB is diminishing with the number
of arms. For larger experiments, LUCB seems to slightly outperform β-EB-TCI. Finally, β-TS-TC
significantly outperforms all the other algorithms when the number of arms increase.
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