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On a family of holomorphic self-maps of the unit

disk

M. Ounaies and J.-M. Sac-Épée*

August 25, 2022

Abstract

We give a characterization of the sets Dp (1 < p < 2) of complex
numbers c such that z 7→ 1+z

2
+ c

(
1−z
2

)p
is a self-map of the closed unit

disk and we show that these sets are increasing with respect to p.

1 Introduction

We will denote by D the open unit disk, by D the closed unit disk and by
C = D \ D the unit circle. For p ≥ 0 and c ∈ C, let fp,c be the map, analytic
over D and continuous over D defined by

fp,c(z) =
1 + z

2
+ c

(
1− z

2

)p
, (1.1)

where the principal branch of the logarithm on C \R− is used to define the p’th
powers. Note that for z ∈ D \ {1}, <

(
1−z

2

)
> 0. In [3], Mortini and Rhin raised

the question of determining precisely the set

Dp = {c ∈ C : fp,c is a self-map of D}

for p > 1. They proved that [0, 1] ⊆ Dp for p ≥ 1.
The case 0 ≤ p ≤ 1 was settled in [2], where the authors showed the following

results:

� D0 = {z ∈ C : |z + 1
2 | ≤

1
2},

� D1 = [−1, 1],

� For all 0 < p < 1, Dp = {−
(

1−a
2

)1−p
, a ∈ D}.

� The regions {Dp}0≤p<1 are decreasing.
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In another paper (see [1]), Mortini and Sac-Épée showed that

D2 =

{
z ∈ C :

∣∣∣∣z − 1

4

∣∣∣∣ ≤ 3

4

}
(1.2)

and they made the conjecture, based on numerical results, that the regions
{Dp}p>1 are increasing.
In the present work, we will focus on the case where 1 < p ≤ 2. In section 1, we
will prove that the regions {Dp}1<p≤2 are increasing and in section 2, we will
give a description of Dp for 1 < p < 2.

Throughout this paper, we will use the function gp,c defined as follows for
p ≥ 0, c ∈ C and t ∈ R,

gp,c(t) = (1 + t2)p −
∣∣c+ it(1 + it)p−1

∣∣2 . (1.3)

We will extensively make use of the next proposition which is contained in [1].
We include here a short proof for the sake of completeness.

Proposition 1.1. Let p ≥ 0. Then c ∈ Dp if and only if for all t ∈ R,
gp,c(t) ≥ 0.

Proof. Thanks to the maximum principle applied to the analytic function fp,c
and the fact that 1 is a fixed point of fp,c, we see that c ∈ Dp if and only if for
all z ∈ C \ {1}, |fp,c(z)| ≤ 1.
For all z ∈ C \ {1}, we write z = −e−2iθ with θ ∈]− π

2 ,
π
2 [ and we put t = tan θ.

Thus we have

1− z
2

=
1 + e−2iθ

2
= cos θe−iθ = (1 + it)−1,

1 + z

2
=

1− e−2iθ

2
= i sin θe−iθ = it(1 + it)−1,

1 + z

2
+ c

(
1− z

2

)p
= (1 + it)−p

(
c+ it(1 + it)p−1

)
.

With this setting, c ∈ Dp if and only if for all t ∈ R,

(1 + t2)−
p
2

∣∣c+ it(1 + it)p−1
∣∣ ≤ 1

which is equivalent to gp,c(t) ≥ 0. �

We will denote by

D+
p = Dp ∩ {z ∈ C : =z ≥ 0}; D−p = Dp ∩ {z ∈ C : =z ≤ 0}.

Remark 1.2. Clearly, for all c ∈ C and for all t ∈ R, gp,c(t) = gp,c̄(−t), thus

c ∈ D+
p ⇐⇒ c̄ ∈ D−p .

From now on for a complex number c 6= 0, we will denote by θc ∈] − π, π]
the principal argument of c.
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2 The regions {Dp}1<p≤2 are increasing.

Theorem 2.1. If 1 < p < q ≤ 2, then Dp ⊂ Dq.

Before proving this theorem, we need two lemmas.

Lemma 2.2. Let 1 < p < 2. Then c ∈ D+
p if and only if the two following

conditions are satisfied:

a) θc ∈ [0, (p− 1)π2 ];

b) For all t ∈
[
0, tan

(
θc
p−1

)]
, gp,c(t) ≥ 0.

In particular, Dp ∩ R = [0, 1].

Proof. Recall that by definition (1.3), gp,c(t) = (1 + t2)p −
∣∣c+ it(1 + it)p−1

∣∣2.
Let us prove the following formula:

gp,c(t) = (1 + t2)p−1 − |c|2 − 2t(1 + t2)
p−1
2 |c| sin (θc − (p− 1) arctan t) . (2.1)

Note that

|c+it(1+it)p−1|2 = |c|2+t2(1+t2)p−1+2t(1+t2)
p−1
2 |c| cos(θc−(p−1) arctan t−π

2
).

In the previous line, the expression inside the cosine comes from the fact that
(p−1) arctan t is the principal argument of (1+it)p−1, so that (p−1) arctan t+ π

2
is the principal argument of i(1 + it)p−1.

Thus

gp,c(t) = (1 + t2)(1 + t2)p−1 − |c+ it(1 + it)p−1|2

= (1 + t2)p−1 − |c|2 − 2t(1 + t2)
p−1
2 |c| cos(θc − (p− 1) arctan t− π

2
),

and (2.1) follows. Assume that c ∈ D+
p . Then by definition of D+

p , 0 ≤ θc ≤ π.
Since 1 < p < 2, we deduce that

−π
2
≤ −(p− 1)

π

2
≤ θc − (p− 1)

π

2
≤ θc ≤ π.

Now we multiply (2.1) by t−p for t > 0, and we observe that

t−pgp,c(t) = t−(2−p)(t−2+1)p−1−|c|2t−p−2(t−2+1)
p−1
2 |c| sin(θc−(p−1) arctan t).

We have
lim

t→+∞
t−pgp,c(t) = −2|c| sin

(
θc − (p− 1)

π

2

)
. (2.2)

By Proposition 1.1, sin
(
θc − (p− 1)π2

)
≤ 0 which implies condition a).

The necessity of condition b) is obvious by Proposition 1.1.
Reciprocally, assume that conditions a) and b) are satisfied.

Let t ≥ tan
(
θc
p−1

)
. Then −π2 ≤ θc − (p− 1) arctan t ≤ 0 which means that

gp,c(t) ≥ (1 + t2)p−1 − |c|2 ≥ 1− |c|2 = gp,c(0) ≥ 0.
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Now we only need to verify that for t < 0, gp,c(t) ≥ 0.
If t < 0, a simple computation shows that

gp,c(t)− gp,c(−t) = −4t(1 + t2)
p−1
2 |c| sin θc cos ((p− 1) arctan t) .

Since −π2 < (p− 1) arctan t < 0, we have cos ((p− 1) arctan t) ≥ 0. Thus

gp,c(t) > gp,c(−t) ≥ 0.

Hence gp,c(t) ≥ 0 for all t ∈ R and so, by Proposition 1.1, c ∈ D+
p . �

Remark 2.3. In the case where p = 2, (2.2) is replaced by

lim
t→+∞

t−pg2,c(t) = 1 + 2<c,

and we retrieve the fact that D2 ⊂ {<z ≥ − 1
2} but we don’t get the necessity

of condition (a). However, it is easy to deduce from the proof of Lemma 2.2 the
following:
Assume that θc ∈ [0, π2 ], then c ∈ D2 if and only if for all t ∈ [0, tan θc],
g2,c(t) ≥ 0.

Lemma 2.4. Let 1 < p < q ≤ 2 and c ∈ C such that θc ∈ [0, (p − 1)π2 ]. Then

for all t ∈
[
0, tan

(
θc
q−1

)]
,

gq,c(t) ≥ (1 + t2)q−pgp,c(t).

Proof. For all t ∈ R we have

gq,c(t)− (1 + t2)q−pgp,c(t) =
(
(1 + t2)q−p − 1

)
|c|2+

+ 2t(1 + t2)
q−1
2 |c|

(
(1 + t2)

q−p
2 sin (θc − (p− 1) arctan t)− sin (θc − (q − 1) arctan t)

)
.

Now for all 0 ≤ t ≤ tan
(
θc
q−1

)
,

0 ≤ θc − (q − 1) arctan t ≤ θc − (p− 1) arctan t ≤ θc ≤
π

2

and consequently

0 ≤ sin (θc − (q − 1) arctan t) ≤ sin (θc − (p− 1) arctan t)

≤ (1 + t2)
q−p
2 sin (θc − (p− 1) arctan t) .

The desired result follows immediately.
�

Proof of Theorem 2.1. Consider p and q such that 1 < p < q ≤ 2 and let c ∈ Dp.
In view of Remark 1.2, we may assume that c ∈ D+

p . Then by Lemma 2.2 we
have

0 ≤ θc ≤ (p− 1)
π

2
≤ (q − 1)

π

2
.

Let t ∈
[
0, tan

(
θc
q−1

)]
. Then by Proposition 1.1 and Lemma 2.4, we have

gq,c(t) ≥ (1 + t2)q−pgp,c(t) ≥ 0.

Now we use Lemma 2.2 (case q < 2) and Remark 2.3 (case q = 2) to conclude
that c ∈ D+

q .
�
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Figure 1: hp(t) = (p− 1)t tan
(
(2− p) arctan t−1 + arctan(pt)

)
lp(t) = 1 + (2− p)t2.

3 Description of Dp, 1 < p < 2.

We know from Lemma 2.2 that Dp ∩ R = [0, 1]. Our next theorem gives an
explicit expression of the remaining elements of Dp.

Theorem 3.1. Let 1 < p < 2. Then c ∈ Dp if and only if either c ∈ [0, 1] or c
is of the form

c = (1 + it)p−2(1− ipt)−1(α+ i(p− 1)t)

where t 6= 0 and α are such that

(p− 1)t tan
(
(2− p) arctan t−1 + arctan(pt)

)
≤ α ≤ 1 + (2− p)t2. (3.1)

In order to carry out the proof of this theorem, we need two preliminary lemmas.

Lemma 3.2.
Let 1 < p ≤ 2 and assume that θc ∈ [0, (p− 1)π2 ]. Then the following properties
are satisfied:

(i) gp,c(t)→ +∞ as |t| → +∞,

(ii) gp,c has a unique critical point tp,c on R,

(iii) If θc = 0, then tp,c = 0 and if θc > 0, then 0 < tp,c < tan
(
θc
p−1

)
.

Obviously, (i) and (ii) imply that gp,c attains its minimum at tp,c.

Proof. Property (i) follows from (2.1) and

sin
(
θc − (p− 1)

π

2

)
≤ 0, sin

(
θc + (p− 1)

π

2

)
≥ 0.

Recall that by definition (1.3), for all t ∈ R,

gp,c(t) = (1 + t2)p −
∣∣c+ it(1 + it)p−1

∣∣2 .
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To prove (ii) and (iii), let us compute the derivative of gp,c:

g′p,c(t) = 2
(
pt(1 + t2)p−1 + <

(
i(c+ it(1 + it)p−1)(1− it)p−2(1− ipt)

))
= 2(1 + t2)p−2

(
pt(1 + t2) + <

(
i(c+ it(1 + it)p−1)(1 + it)2−p(1− ipt)

))
= 2(1 + t2)p−2

(
pt(1 + t2)−=

(
c(1 + it)2−p(1− ipt)

)
− t< ((1 + it)(1− ipt))

)
= 2(1 + t2)p−2

(
(p− 1)t−=

(
c(1 + it)2−p(1− ipt)

))
= 2(1 + t2)p−2

(
(p− 1)t+ |c|(1 + t2)

2−p
2 (1 + p2t2)

1
2 sin (φp,c(t))

)
,

(3.2)

where we have denoted by

φp,c(t) = arctan(pt)− (2− p) arctan t− θc.

Observe that whenever t < 0, one has the inequalities

−π < arctan(pt)− θc ≤ φp,c(t) ≤ (p− 1) arctan t− θc < 0,

thus g′p,c(t) < 0.
Now we compute the derivative of φp,c :

φ′p,c(t) = (p− 1)
2 + p(p− 1)t2

(1 + t2)(1 + p2t2)
≥ 0.

Note that for all t ≥ 0,

−π
2
≤ −θc ≤ φp,c(t) ≤ arctan(pt) ≤ π

2
.

We conclude that the function t 7→ sin (φp,c(t)) is increasing on [0,+∞[ and
so is the function t 7→ (1 + t2)2−pg′p,c. Therefore, g′p,c has at most one zero in
[0,+∞[.
Now let us prove the existence of a zero tp,c of g′p,c.
If θc = 0 then obviously g′p,c(0) = 0 and we put tp,c = 0.
If θc ∈]0, (p− 1)π2 ], then g′p,c(0) = −2=c < 0. Since gp,c(t)→ +∞ as t→ +∞,
the derivative g′p,c has to vanish at some point tp,c > 0.

Besides, if θc ∈]0, (p− 1)π2 [, let us put T = tan
(
θc
p−1

)
. Then by (2.1),

gp,c(T ) = (1 + T 2)p−1 − |c|2 > 1− |c|2 = gp,c(0).

We deduce that 0 < tp,c < T .
�

Remark 3.3. In the case where p = 2, we may solve explicitely the equation
g′2,c(t) = 0, which gives

t2,c =
=c

1 + 2<c
Lemma 3.4. Let 1 < p ≤ 2.

(i) Let t ∈ R. Then g′p,c(t) = 0 if and only if c is of the form

c = (1 + it)p−2(1− ipt)−1(α+ i(p− 1)t), α ∈ R. (3.3)

6



(ii) For all t > 0, 0 < (2− p) arctan t−1 + arctan(pt) < π
2 .

(iii) Assume that c is of the form (3.3) with t > 0 and α > 0. Then θc ≥ 0
and we have the following equivalences:

gp,c(t) ≥ 0⇐⇒ α ≤ 1 + (2− p)t2; (3.4)

θc ≤ (p− 1)
π

2
⇐⇒ (p− 1)t tan

(
(2− p) arctan t−1 + arctan(pt)

)
≤ α.

(3.5)

Proof. (i) is an obvious consequence of formula (3.2).
For t > 0, define hp(t) = (2− p) arctan t−1 + arctan(pt). Then the derivative

h′p(t) =
(p− 1)(2 + p(p− 1)t2)

(1 + t2)(1 + p2t2)

is obviously positive, which implies (ii).
Finally, let us prove (iii). Assume that c is of the form (3.3) with t > 0 and
α > 0. The argument of c is given by

θc = arctan(pt)− (2− p) arctan t+ arctan

(
(p− 1)t

α

)
Clearly

θc ≥ arctan(pt)− arctan t > 0.

To prove (3.5), it is sufficient to observe that

θc = (p− 1)
π

2
+ (2− p) arctan t−1 + arctan(pt)− arctan

(
α

(p− 1)t

)
.

(1 + t2)2−p(1 + p2t2)gp,c(t) = (1 + t2)2 − (α+ (p− 1)t2)2.

Now since c = (1 + it)p−2(1− ipt)−1(α+ i(p− 1)t), we have

c+ it(1 + it)p−1 = (1 + it)p−2(1− ipt)−1(α+ i(p− 1)t+ it(1 + it)(1− ipt)
= (1 + it)p−2(1− ipt)−1

(
α+ (p− 1)t2 + ipt(1 + t2)

)
Thus∣∣c+ it(1 + it)p−1

∣∣2 = (1 + t2)p−2(1 + p2t2)−1
(
(α+ (p− 1)t2)2 + p2t2(1 + t2)2

)
= (1 + t2)p−2(1 + p2t2)−1

(
(α+ (p− 1)t2)2 − (1 + t2)2

)
+ (1 + t2)p.

By the definition (1.3) of gp,c,

gp,c(t) = (1 + t2)p −
∣∣c+ it(1 + it)p−1

∣∣2
= (1 + t2)p−2(1 + p2t2)−1

(
(1 + t2)2 − (α+ (p− 1)t2)2

)
.

and we readily deduce (3.4).
�
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Proof of Theorem 3.1.
Necessity:
Thank to Remark 1.2 we may assume that c ∈ D+

p .
If θc = 0, then by Lemma 2.2, c ∈ [0, 1].
If θc > 0, then by Lemma 2.2, θc ∈]0, (p− 1)π2 ]. Consider t = tp,c > 0 given by
Lemma 3.2. Lemma 3.4 gives a real number α such that

c = (1 + it)p−2(1− ipt)−1(α+ i(p− 1)t).

Thus we have

α = <
(
c(1 + it)2−p(1− ipt)

)
= |c|(1 + t2)

2−p
2 (1 + p2t2)

1
2 cos (θc + (2− p) arctan t− arctan(pt)) .

Thanks to the inequalities

−π
2
< − arctan(pt) ≤ θc+(2−p) arctan t−arctan(pt) ≤ θc+(1−p) arctan t < θc ≤

π

2
,

we deduce that α > 0.
Condition (3.1) follows from Lemma 3.4.
Sufficiency:
We know from Lemma 2.2 that Dp ∩ R = [0, 1].
Assume that c = (1+ it)p−2(1− ipt)−1(α+ i(p−1)t) with t 6= 0 and α satisfying
(3.1). Observe that α > 0. Again thanks to Remark 1.2 we may assume that
t > 0. Using lemma 3.4 we know that g′p,c(t) = 0, θc ∈ [0, (p − 1)π2 ] and
gp,c(t) ≥ 0.
By lemma 3.2, we necessarily have t = tp,c which means that the minimum of
gp,c on R is attained at t. Using Proposition 1.1, we deduce that c ∈ Dp.

�

Remark 3.5. In the case where p = 2, we may repeat the proof of Theorem 3.1
and use Remark 2.3 to obtain the following:

D2 ∩ {<z ≥ 0} = {(1− 2it)−1(α+ it), (t, α) ∈ R2 : 2t2 ≤ α ≤ 1}

=

{
z ∈ C :

∣∣∣∣z − 1

4

∣∣∣∣ ≤ 3

4

}
∩ {<z ≥ 0}.

The second equality comes from (1.2) but may also be proved directly by the
following formal equivalences for α, t, a, b ∈ R and c = a+ ib:

c =
α+ it

1− 2it
⇐⇒ 1

2c+ 1
=

1− 2it

2α+ 1

by taking real and imaginary parts, we obtain

1

2α+ 1
=

2a+ 1

|2c+ 1|2
and

t

2α+ 1
=

b

|2c+ 1|2

⇐⇒ α =
2|c|2 + a

2a+ 1
= 1 + 2

|c− 1
4 |

2 − 9
16

2a+ 1
and t =

b

1 + 2a
.

Note that

c =
α− 2t2

1 + 4t2
+ i

t(1 + 2α)

1 + 4t2
.
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(a) p = 1.25 (b) p = 1.5 (c) p = 1.75

Figure 2: Dp for three particular values of p

4 Numerical illustration

For illustrating purposes, we use the characterization given by Theorem 3.1 to
draw the sets Dp for three particular values of p (Figure 2). The circle with
center 1

4 and radius 3
4 , which is the boundary of D2, appears in red. We also

provide a hyperlink to an animated image showing the evolution of the Dp’s for
p varying from 1.01 to 1.99 with a step of 0.007 ([4]).

We may point out that our Figure 2 and Figure 2 in [1] show a discrepancy
when p is close to 2. This is due to the fact that, while our graphs are based on
theoretical results, those in [1] are obtained experimentally in the following way:
many complex numbers c have been randomly drawn, and each of them has been
tested and kept only if it survives a test consisting in verifying that |fp,c(z)| ≤ 1
for numerous random values of z (thanks to the maximum principle, one takes
random z such that |z| = 1). The experimental results obtained in [1] for p close
to 2 are not validated by the present theoretical study.
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[1] R. Mortini, J.-M. Sac-Épée, Complex inequalities involving sums of
holomorphic selfmaps of the unit disk and some experimental conjec-
tures. Complex Anal. Synerg. 5 (2019), no. 2-4, Paper No. 12, 4 pp.
https://doi.org/10.1007/s40627-019-0037-1

[2] R. Mortini, R. Rupp, Sums of holomorphic selfmaps of the unit disk, An-
nales Univ. Mariae Curie-Sk lodowska 61 (2007), 107-115.

[3] R. Mortini, G. Rhin, Sums of holomorphic selfmaps of the unit disk II.
Comput. Methods Funct. Theory 11 (2011), no. 1, 135-142

[4] M. Ounaies, J.-M. Sac-Épée
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