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We give a characterization of the sets Dp (1 < p < 2) of complex numbers c such that z → 1+z 2 + c 1-z 2 p is a self-map of the closed unit disk and we show that these sets are increasing with respect to p.

Introduction

We will denote by D the open unit disk, by D the closed unit disk and by C = D \ D the unit circle. For p ≥ 0 and c ∈ C, let f p,c be the map, analytic over D and continuous over D defined by

f p,c (z) = 1 + z 2 + c 1 -z 2 p , (1.1) 
where the principal branch of the logarithm on C \ R -is used to define the p'th powers. Note that for z ∈ D \ {1},

1-z 2

> 0. In [START_REF] Mortini | Sums of holomorphic selfmaps of the unit disk II[END_REF], Mortini and Rhin raised the question of determining precisely the set D p = {c ∈ C : f p,c is a self-map of D} for p > 1. They proved that [0, 1] ⊆ D p for p ≥ 1.

The case 0 ≤ p ≤ 1 was settled in [START_REF] Mortini | Sums of holomorphic selfmaps of the unit disk, Annales[END_REF], where the authors showed the following results:

D 0 = {z ∈ C : |z + 1 2 | ≤ 1 2 }, D 1 = [-1, 1],
For all 0 < p < 1, D p = {-1-a 2 1-p , a ∈ D}.

The regions {D p } 0≤p<1 are decreasing.

D 2 = z ∈ C : z - 1 4 ≤ 3 4 (1.2)
and they made the conjecture, based on numerical results, that the regions {D p } p>1 are increasing.

In the present work, we will focus on the case where 1 < p ≤ 2. In section 1, we will prove that the regions {D p } 1<p≤2 are increasing and in section 2, we will give a description of D p for 1 < p < 2.

Throughout this paper, we will use the function g p,c defined as follows for p ≥ 0, c ∈ C and t ∈ R,

g p,c (t) = (1 + t 2 ) p -c + it(1 + it) p-1 2 .
(1.3)

We will extensively make use of the next proposition which is contained in [START_REF] Mortini | Complex inequalities involving sums of holomorphic selfmaps of the unit disk and some experimental conjectures[END_REF].

We include here a short proof for the sake of completeness. 

z ∈ C \ {1}, |f p,c (z)| ≤ 1.
For all z ∈ C \ {1}, we write z = -e -2iθ with θ ∈] -π 2 , π 2 [ and we put t = tan θ. Thus we have

1 -z 2 = 1 + e -2iθ 2 = cos θe -iθ = (1 + it) -1 , 1 + z 2 = 1 -e -2iθ 2 = i sin θe -iθ = it(1 + it) -1 , 1 + z 2 + c 1 -z 2 p = (1 + it) -p c + it(1 + it) p-1 .
With this setting, c ∈ D p if and only if for all t ∈ R,

(1 + t 2 ) -p 2 c + it(1 + it) p-1 ≤ 1
which is equivalent to g p,c (t) ≥ 0.

We will denote by

D + p = D p ∩ {z ∈ C : z ≥ 0}; D - p = D p ∩ {z ∈ C : z ≤ 0}. Remark 1.2.
Clearly, for all c ∈ C and for all t ∈ R, g p,c (t) = g p,c (-t), thus

c ∈ D + p ⇐⇒ c ∈ D - p .
From now on for a complex number c = 0, we will denote by θ c ∈] -π, π] the principal argument of c.

2 The regions {D p } 1<p≤2 are increasing.

Theorem 2.1. If 1 < p < q ≤ 2, then D p ⊂ D q .
Before proving this theorem, we need two lemmas. Lemma 2.2. Let 1 < p < 2. Then c ∈ D + p if and only if the two following conditions are satisfied:

a) θ c ∈ [0, (p -1) π 2 ]; b) For all t ∈ 0, tan θc p-1 , g p,c (t) ≥ 0.
In particular,

D p ∩ R = [0, 1]. Proof. Recall that by definition (1.3), g p,c (t) = (1 + t 2 ) p -c + it(1 + it) p-1 2 .
Let us prove the following formula:

g p,c (t) = (1 + t 2 ) p-1 -|c| 2 -2t(1 + t 2 ) p-1 2 |c| sin (θ c -(p -1) arctan t) . (2.1) Note that |c+it(1+it) p-1 | 2 = |c| 2 +t 2 (1+t 2 ) p-1 +2t(1+t 2 ) p-1 2 |c| cos(θ c -(p-1) arctan t- π 2 
).

In the previous line, the expression inside the cosine comes from the fact that (p-1) arctan t is the principal argument of (1+it) p-1 , so that (p-1) arctan

t+ π 2 is the principal argument of i(1 + it) p-1 . Thus g p,c (t) = (1 + t 2 )(1 + t 2 ) p-1 -|c + it(1 + it) p-1 | 2 = (1 + t 2 ) p-1 -|c| 2 -2t(1 + t 2 ) p-1 2 |c| cos(θ c -(p -1) arctan t - π 2 ),
and (2.1) follows. Assume that c ∈ D + p . Then by definition of

D + p , 0 ≤ θ c ≤ π. Since 1 < p < 2, we deduce that - π 2 ≤ -(p -1) π 2 ≤ θ c -(p -1) π 2 ≤ θ c ≤ π.
Now we multiply (2.1) by t -p for t > 0, and we observe that

t -p g p,c (t) = t -(2-p) (t -2 +1) p-1 -|c| 2 t -p -2(t -2 +1) p-1 2 |c| sin(θ c -(p-1) arctan t).
We have lim Reciprocally, assume that conditions a) and b) are satisfied.

t→+∞ t -p g p,c (t) = -2|c| sin θ c -(p -1) π 2 . ( 2 
Let t ≥ tan θc p-1 . Then -π 2 ≤ θ c -(p -1) arctan t ≤ 0 which means that g p,c (t) ≥ (1 + t 2 ) p-1 -|c| 2 ≥ 1 -|c| 2 = g p,c (0) ≥ 0.
Now we only need to verify that for t < 0, g p,c (t) ≥ 0. If t < 0, a simple computation shows that

g p,c (t) -g p,c (-t) = -4t(1 + t 2 )
p-1

2 |c| sin θ c cos ((p -1) arctan t) .

Since -π 2 < (p -1) arctan t < 0, we have cos ((p -1) arctan t) ≥ 0. Thus g p,c (t) > g p,c (-t) ≥ 0.

Hence g p,c (t) ≥ 0 for all t ∈ R and so, by Proposition 1.1, c ∈ D + p . Remark 2.3. In the case where p = 2, (2.2) is replaced by

lim t→+∞ t -p g 2,c (t) = 1 + 2 c,
and we retrieve the fact that D 2 ⊂ { z ≥ - 1 2 } but we don't get the necessity of condition (a). However, it is easy to deduce from the proof of Lemma 2.2 the following:

Assume that θ c ∈ [0, π 2 ], then c ∈ D 2 if and only if for all t ∈ [0, tan θ c ], g 2,c (t) ≥ 0. Lemma 2.4. Let 1 < p < q ≤ 2 and c ∈ C such that θ c ∈ [0, (p -1) π 2 ]. Then for all t ∈ 0, tan θc q-1 , g q,c (t) ≥ (1 + t 2 ) q-p g p,c (t).
Proof. For all t ∈ R we have

g q,c (t) -(1 + t 2 ) q-p g p,c (t) = (1 + t 2 ) q-p -1 |c| 2 + + 2t(1 + t 2 ) q-1 2 |c| (1 + t 2 ) q-p 2 
sin (θ c -(p -1) arctan t) -sin (θ c -(q -1) arctan t) .

Now for all 0 ≤ t ≤ tan θc q-1 ,

0 ≤ θ c -(q -1) arctan t ≤ θ c -(p -1) arctan t ≤ θ c ≤ π 2 and consequently 0 ≤ sin (θ c -(q -1) arctan t) ≤ sin (θ c -(p -1) arctan t) ≤ (1 + t 2 ) q-p 2 sin (θ c -(p -1) arctan t) .
The desired result follows immediately.

Proof of Theorem 2.1. Consider p and q such that 1 < p < q ≤ 2 and let c ∈ D p . In view of Remark 1.2, we may assume that c ∈ D + p . Then by Lemma 2.2 we have 0

≤ θ c ≤ (p -1) π 2 ≤ (q -1) π 2 .
Let t ∈ 0, tan θc q-1 . Then by Proposition 1.1 and Lemma 2.4, we have g q,c (t) ≥ (1 + t 2 ) q-p g p,c (t) ≥ 0. Now we use Lemma 2.2 (case q < 2) and Remark 2.3 (case q = 2) to conclude that c ∈ D + q .

Figure 1:

h p (t) = (p -1)t tan (2 -p) arctan t -1 + arctan(pt) l p (t) = 1 + (2 -p)t 2 .
3 Description of D p , 1 < p < 2.

We know from Lemma 2.2 that D p ∩ R = [0, 1]. Our next theorem gives an explicit expression of the remaining elements of D p .

Theorem 3.1. Let 1 < p < 2. Then c ∈ D p if and only if either c ∈ [0, 1] or c is of the form c = (1 + it) p-2 (1 -ipt) -1 (α + i(p -1)t)
where t = 0 and α are such that

(p -1)t tan (2 -p) arctan t -1 + arctan(pt) ≤ α ≤ 1 + (2 -p)t 2 . (3.1)
In order to carry out the proof of this theorem, we need two preliminary lemmas.

Lemma 3.2. Let 1 < p ≤ 2 and assume that θ c ∈ [0, (p -1) π 2 ]. Then the following properties are satisfied:

(i) g p,c (t) → +∞ as |t| → +∞, (ii) g p,c has a unique critical point t p,c on R, (iii) If θ c = 0, then t p,c = 0 and if θ c > 0, then 0 < t p,c < tan θc p-1 .
Obviously, (i) and (ii) imply that g p,c attains its minimum at t p,c .

Proof. Property (i) follows from (2.1) and

sin θ c -(p -1) π 2 ≤ 0, sin θ c + (p -1) π 2 ≥ 0.
Recall that by definition (1.3), for all t ∈ R,

g p,c (t) = (1 + t 2 ) p -c + it(1 + it) p-1 2 .
To prove (ii) and (iii), let us compute the derivative of g p,c :

g p,c (t) = 2 pt(1 + t 2 ) p-1 + i(c + it(1 + it) p-1 )(1 -it) p-2 (1 -ipt) = 2(1 + t 2 ) p-2 pt(1 + t 2 ) + i(c + it(1 + it) p-1 )(1 + it) 2-p (1 -ipt) = 2(1 + t 2 ) p-2 pt(1 + t 2 ) - c(1 + it) 2-p (1 -ipt) -t ((1 + it)(1 -ipt)) = 2(1 + t 2 ) p-2 (p -1)t - c(1 + it) 2-p (1 -ipt) = 2(1 + t 2 ) p-2 (p -1)t + |c|(1 + t 2 ) 2-p 2 (1 + p 2 t 2 ) 1 2 sin (φ p,c (t)) , (3.2) 
where we have denoted by

φ p,c (t) = arctan(pt) -(2 -p) arctan t -θ c .
Observe that whenever t < 0, one has the inequalities

-π < arctan(pt) -θ c ≤ φ p,c (t) ≤ (p -1) arctan t -θ c < 0,
thus g p,c (t) < 0. Now we compute the derivative of φ p,c :

φ p,c (t) = (p -1) 2 + p(p -1)t 2 (1 + t 2 )(1 + p 2 t 2 ) ≥ 0.
Note that for all t ≥ 0,

- π 2 ≤ -θ c ≤ φ p,c (t) ≤ arctan(pt) ≤ π 2 .
We conclude that the function t → sin (φ p,c (t)) is increasing on [0, +∞[ and so is the function t → (1 + t 2 ) 2-p g p,c . Therefore, g p,c has at most one zero in [0, +∞[. Now let us prove the existence of a zero t p,c of g p,c . If θ c = 0 then obviously g p,c (0) = 0 and we put t p,c = 0. If θ c ∈]0, (p -1) π 2 ], then g p,c (0) = -2 c < 0. Since g p,c (t) → +∞ as t → +∞, the derivative g p,c has to vanish at some point t p,c > 0.

Besides, if θ c ∈]0, (p -1) π 2 [, let us put T = tan θc p-1 . Then by (2.1),

g p,c (T ) = (1 + T 2 ) p-1 -|c| 2 > 1 -|c| 2 = g p,c (0). 
We deduce that 0 < t p,c < T .

Remark 3.3. In the case where p = 2, we may solve explicitely the equation g 2,c (t) = 0, which gives

t 2,c = c 1 + 2 c Lemma 3.4. Let 1 < p ≤ 2. (i) Let t ∈ R. Then g p,c (t) = 0 if and only if c is of the form c = (1 + it) p-2 (1 -ipt) -1 (α + i(p -1)t), α ∈ R. (3.3) 
(ii) For all t > 0, 0 < (2 -p) arctan t -1 + arctan(pt) < π 2 . (iii) Assume that c is of the form (3.3) with t > 0 and α > 0. Then θ c ≥ 0 and we have the following equivalences: 

g p,c (t) ≥ 0 ⇐⇒ α ≤ 1 + (2 -p)t 2 ; (3.4) θ c ≤ (p -1) π 2 ⇐⇒ (p -1)t tan (2 -p) arctan t -1 + arctan(pt) ≤ α. ( 3 

. 2 )

 2 By Proposition 1.1, sin θ c -(p -1) π 2 ≤ 0 which implies condition a). The necessity of condition b) is obvious by Proposition 1.1.

  + it) p-1 2 = (1 + t 2 ) p-2 (1 + p 2 t 2 ) -1 (α + (p -1)t 2 ) 2 + p 2 t 2 (1 + t 2 ) 2 = (1 + t 2 ) p-2 (1 + p 2 t 2 ) -1 (α + (p -1)t 2 ) 2 -(1 + t 2 ) 2 + (1 + t 2 ) p .By the definition (1.3) of g p,c ,g p,c (t) = (1 + t 2 ) p -c + it(1 + it) p-1 2 = (1 + t 2 ) p-2 (1 + p 2 t 2 ) -1 (1 + t 2 ) 2 -(α + (p -1)t 2 ) 2 .and we readily deduce(3.4).

		.5)
	Proof. (i) is an obvious consequence of formula (3.2).
	For t > 0, define h p (t) = (2 -p) arctan t -1 + arctan(pt). Then the derivative
	h p (t) =	(p -1)(2 + p(p -1)t 2 ) (1 + t

2 )(1 + p 2 t 2 )

is obviously positive, which implies (ii). Finally, let us prove (iii). Assume that c is of the form (3.3) with t > 0 and α > 0. The argument of c is given by

θ c = arctan(pt) -(2 -p) arctan t + arctan (p -1)t α Clearly θ c ≥ arctan(pt) -arctan t > 0.

To prove (3.5), it is sufficient to observe that

θ c = (p -1) π 2 + (2 -p) arctan t -1 + arctan(pt) -arctan α (p -1)t . (1 + t 2 ) 2-p (1 + p 2 t 2 )g p,c (t) = (1 + t 2 ) 2 -(α + (p -1)t 2 ) 2 . Now since c = (1 + it) p-2 (1 -ipt) -1 (α + i(p -1)t), we have c + it(1 + it) p-1 = (1 + it) p-2 (1 -ipt) -1 (α + i(p -1)t + it(1 + it)(1 -ipt) = (1 + it) p-2 (1 -ipt) -1 α + (p -1)t 2 + ipt(1 + t 2 ) Thus c + it(1

Proof of Theorem 3.1. Necessity: Thank to Remark 1.2 we may assume that c ∈ D + p . If θ c = 0, then by Lemma 2.2, c ∈ [0, 1]. If θ c > 0, then by Lemma 2.2, θ c ∈]0, (p -1) π 2 ]. Consider t = t p,c > 0 given by Lemma 3.2. Lemma 3.4 gives a real number α such that

Thus we have

Thanks to the inequalities

we deduce that α > 0. Condition (3.1) follows from Lemma 3.4.

Sufficiency:

We know from Lemma 2.2 that

t) with t = 0 and α satisfying (3.1). Observe that α > 0. Again thanks to Remark 1.2 we may assume that t > 0. Using lemma 3.4 we know that g p,c (t) = 0, θ c ∈ [0, (p -1) π 2 ] and g p,c (t) ≥ 0. By lemma 3.2, we necessarily have t = t p,c which means that the minimum of g p,c on R is attained at t. Using Proposition 1.1, we deduce that c ∈ D p . Remark 3.5. In the case where p = 2, we may repeat the proof of Theorem 3.1 and use Remark 2.3 to obtain the following:

The second equality comes from (1.2) but may also be proved directly by the following formal equivalences for α, t, a, b ∈ R and c = a + ib:

2α + 1 by taking real and imaginary parts, we obtain For illustrating purposes, we use the characterization given by Theorem 3.1 to draw the sets D p for three particular values of p (Figure 2). The circle with center 1 4 and radius 3 4 , which is the boundary of D 2 , appears in red. We also provide a hyperlink to an animated image showing the evolution of the D p 's for p varying from 1.01 to 1.99 with a step of 0.007 ( [4]).
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We may point out that our Figure 2 and Figure 2 in [START_REF] Mortini | Complex inequalities involving sums of holomorphic selfmaps of the unit disk and some experimental conjectures[END_REF] show a discrepancy when p is close to 2. This is due to the fact that, while our graphs are based on theoretical results, those in [START_REF] Mortini | Complex inequalities involving sums of holomorphic selfmaps of the unit disk and some experimental conjectures[END_REF] are obtained experimentally in the following way: many complex numbers c have been randomly drawn, and each of them has been tested and kept only if it survives a test consisting in verifying that |f p,c (z)| ≤ 1 for numerous random values of z (thanks to the maximum principle, one takes random z such that |z| = 1). The experimental results obtained in [START_REF] Mortini | Complex inequalities involving sums of holomorphic selfmaps of the unit disk and some experimental conjectures[END_REF] for p close to 2 are not validated by the present theoretical study.
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