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Abstract

This research gauges the capabilities of deep reinforcement learning (DRL) techniques for direct
optimal shape design in computational fluid dynamics (CFD) systems. It uses Policy Based Opti-
mization, a single-step DRL algorithm intended for situations where the optimal policy to be learnt
by a neural network does not depend on state. The numerical reward fed to the neural network
is computed with an in-house stabilized finite elements environment combining variational multi-
scale (VMS) modeling of the governing equations, immerse volume method, and multi-component
anisotropic mesh adaptation. Several cases are tackled in two and three dimensions, for which
shapes with fixed camber line, angle of attack and cross-sectional area are generated by varying a
chord length and a symmetric thickness distribution (and possibly extruding in the off-body direc-
tion). At zero incidence, the proposed DRL-CFD framework successfully reduces the drag of the
equivalent cylinder (i.e., the cylinder of same cross-sectional area) by 48% at a Reynolds numbers
in the range of a few hundreds. At an incidence of 30○, it increases the lift to drag ratio of the equiv-
alent ellipse by 13% in two dimensions and 5% in three dimensions at a chord Reynolds numbers
in the range of a few thousands. Although the low number of degrees of freedom inevitably con-
strains the range of attainable shapes, the optimal is systematically found to perform just as well
as a conventional airfoil, despite DRL starting from the ground up and having no priori knowledge
of aerodynamic concepts. Such results showcase the potential of the method for black-box shape
optimization of practically meaningful CFD systems. Since the resolution process is agnostic to
details of the underlying fluid dynamics, they also pave the way for a general evolution of reference
shape optimization strategies for fluid mechanics and any other domain where a relevant reward
function can be defined.
Keywords: Deep Reinforcement Learning; Artificial Neural Networks; Shape optimization;
Computational fluid dynamics; Policy Based Optimization.

1. Introduction1

Shape optimization is ubiquitous in engineering applications ranging from magnetostatics [1],2

acoustics [2], image restoration and segmentation [3], composite material identification [4] to nano-3

optics [5], just to name a few. Shape optimization in fluid mechanics dates back to the pioneering4

work of Pironneau on the minimization of energy loss in Stokes and Navier–Stokes flows [6, 7].5

Since then, it has become an increasingly important research topic in the attempt to enhance drag6

reduction capabilities, which is due to the ever growing concerns on aerodynamic energy efficiency7

(to give a taste, reducing the overall drag by just a few percent while maintaining lift can help8

reducing fossil fuel consumption and CO2 emission while saving several billion dollars annually9

in ocean shipping or airline traffic [8]). In the following, the focus is essentially on airfoil shape10

optimization, a key component of aircraft flight mechanics that has come into prominence in a va-11

riety of other applications such as acoustic noise reduction [9] or energy harvesting [10]. One of the12

major challenges in the field is that the majority of flows of engineering interest are time-dependent13
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and even turbulent (e.g., fluttering, buffeting, dynamic stall), and therefore require sophisticated14

unsteady methods and optimization techniques, thus drastically increasing the computational cost.15

Shape optimization has historically been tackled by two main classes of approaches, namely16

gradient-based and gradient-free methods. Gradient-based methods rely on the evaluation of the17

gradient of the objective function with respect to the design parameters. They have proven effec-18

tive in large optimization spaces when said gradient is computed by the adjoint method [11–13],19

whose cost is comparable to that of solving the governing equation (unlike more computationally20

expensive alternatives such as variance-based and regression-based methods, in which the govern-21

ing equations need to be solved repeatedly, up to a hundred times). Nonetheless, gradient-based22

algorithms are easily trapped in local optima, meaning that the solution optimality can be very23

sensitive to the initial guess, all the more so when applied to stiff nonlinear problems [14]. Gradient-24

free methods are better equipped in this regard, but can be more complex to implement and to25

use. Among the available methods, genetic algorithms [15], particle swarm optimization [16] or26

metropolis algorithms [17] feature good global optimization capabilities, but they can be highly27

sensitive to heuristically chosen meta-parameters, plus their cost is usually higher and can easily28

exceed the available computational budget, thus limiting the number of design parameters [18]. It29

should be noted that both classes of methods can make use of cheap-to-evaluate surrogate models30

to approximate expensive objective and constraint functions without resorting systematically to31

numerical simulations [19]. Several approaches exist for building such surrogate models, e.g., poly-32

nomial response surfaces, radial basis functions, kriging, or supervised artificial neural networks33

[20], for which geometric parametrization plays a determinant role, in terms of both the attainable34

geometries and the tractability of the optimization process [21].35

The premise of this research is that the related task of selecting an optimal subset of design36

parameters can alternatively be assisted using deep reinforcement learning (DRL). DRL is the37

advanced branch of machine learning that couples deep neural networks (DNNs, a family of versatile38

tools that can learn how to hierarchically extract informative features from data, and have gained39

traction as efficient computational processors for performing a variety of tasks, from exploratory40

data analysis to qualitative and quantitative predictive modeling) and reinforcement learning, a41

class of decision-making algorithms that can autonomously learn effective policies for sequential42

decision problems. In practice, DRL involves DNNs learning how to behave in an environment so43

as to maximize some notion of long-term reward, a task compounded by the fact that each action44

taken affects both immediate and future rewards. The feature extraction capabilities of DNNs, as45

well as their ability to handle quasi-arbitrary nonlinear input/output mappings, have lifted several46

major obstacles that hindered classical reinforcement learning and has led unprecedented efficiency47

in the context of nonlinear optimal control problems with high-dimensional state spaces. Several48

notable works using DRL in mastering games (e.g., Go, Poker) have stood out for attaining super-49

human level [22, 23], but the approach has also breakthrough potential for practical applications50

such as robotics [24, 25], computer vision [26], finance [27], autonomous cars [28, 29], or data center51

cooling [30].52

The efforts for applying DRL to fluid mechanics are ongoing but still at an early stage, as53

recently reviewed in [31]. Nonetheless, the domain has undergone a large inflow of contributions54

with clear focus on drag reduction problems [32–44]. This enthusiasm is likely due to the increasing55

number of open-source initiatives [32, 45, 46], that has led to an accelerated diffusion of the methods56

in the community, and to the sustained commitment from the machine learning community, that57

has allowed concurrently expanding the scope from computationally inexpensive, low-dimensional58

reductions of the underlying fluid dynamics to complex Navier–Stokes systems [47, 48], all the59

way to experimental set-ups [49]. A handful of studies have recently provided insight into the60

performance improvements to be delivered in shape optimization, but it is worth emphasizing that61

figuring out a fixed shape that best meets a set of required criteria (e.g., high lift-to-drag ratio, low62

pressure loss) requires optimizing state-independent parameters, which is not per se the original63

purpose of DRL. Nonetheless, two main classes of methods have emerged in the community, namely64

the direct and incremental approaches. The incremental approach uses the state-to-action mapping65

as a way to incrementally modify an initial shape into an optimal one [50–53], which exploits66

the capabilities of the DRL paradigm (in which network updates are performed after multi-step67

episodes) in performing active flow control. The direct approach [46] conversely relies on single-step68

DRL, a subset of DRL in which network updates are performed after one-step episodes (hence the69
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stateless moniker), and builds on recent efforts to assess the relevance of DRL in the context of70

open-loop control [41, 54].71

This research introduces a novel framework combining single-step reinforcement learning with72

immersed methods for fluid flow shape optimization, that exploits both the ability of neural net-73

works to learn to approximate arbitrarily well the mapping function between input and output74

spaces, and the dynamic programming built in the reinforcement learning algorithm. It is a follow-75

up on to our contribution showcasing the first application of DRL to direct shape optimization [46].76

It uses Policy Based Optimization (PBO [55]), a novel single-step algorithm developed in-house,77

that improves the convergence rate of the previously used single-step Proximal Policy Optimiza-78

tion (PPO [24]) algorithm by adopting several key heuristics from the covariance matrix adaptation79

evolution strategy (CMA-ES). In short, PBO learns the mean, variance and correlation parameters80

of a multivariate normal search distribution from three separate neural networks, while single-step81

PPO updates the mean and variance (the same for all variables) from a single network, which82

can prematurely shrink the exploration variance. The objective is twofold: first, to further shape83

the capabilities of PBO for fluid mechanics applications (as it has so far been limited to textbook84

problems of analytic functions minimization), to help narrow the gap between DRL and advanced85

numerical methods for multi-scale, multi-physics computational fluid dynamics (CFD). Second, to86

gauge the feasibility of learning optimal designs from a low, yet suitable number of design pa-87

rameters, for which Bézier curves, B-splines and NURBS are good candidates. We believe this88

is chief to mitigate the computational burden without deteriorating the geometric accuracy, since89

the parametrization in the direct approach provides a complete description of the shape itself,90

not that of a perturbation to a reference shape. The PBO agent is trained on high-fidelity CFD91

simulations, in contrast to most aforementioned studies about incremental shape optimization, in92

which a pre-trained surrogate or a simplified model is used for full agent training, or to perform93

an initial learning phase before re-training on a CFD environment using transfer learning. This is94

because the uncertainty of surrogate models cannot be quantified during optimization, which may95

misguide policy updating. We insist that it lies out of the scope of this paper to provide exhaus-96

tive performance comparison data against state-of-the art optimization techniques (e.g., evolution97

strategies or genetic algorithms). This would indeed require a tremendous amount of time and98

resources even though the efforts for developing the method remain at an early stage. Nonetheless,99

it is worth mentioning that PBO is shown in [55] to compare well against standard CMA-ES and100

to significantly outperform our previous PPO-based single-step algorithm, even though new algo-101

rithms cannot be expected to reach right away the level of performance of their more established102

counterparts.103

The organization is as follows: section 2 introduces PBO (together with the baseline principles104

of DRL and single-step DRL), and outlines the main features of the finite element CFD environment105

used to compute the numerical reward fed to the neural networks. Section 3 revisits the classical106

problem of finding the two-dimensional shapes minimizing drag in a uniform flow for the purpose107

of validation and assessment part of the method capabilities. In section 4, PBO is applied to more108

meaningful aerodynamic optimization problems consisting of finding the two-dimensional shapes109

maximizing the lift to drag ratio in the context of turbulent flows at moderately large Reynolds110

number (in the range of a few thousands). Finally, an extension to three-dimensional shapes is111

proposed in section 5.112

2. Methodology113

2.1. Deep reinforcement learning114

Reinforcement learning (RL) is a process by which an agent learns to earn rewards through115

trial-and-error interaction with its environment. At each turn, the agent observes the state st of116

the environment and takes an action at, that prompts both the transition to the next state st+1 and117

the reward received rt. This repeats until some termination state is reached, the core objective of118

the agent being to learn the succession of actions maximizing its cumulative reward over an episode119

(this is the reference unit for agent update, best understood as one instance of the scenario in which120

it takes actions). In a deep reinforcement learning context (deep RL or DRL), the agent is a deep121

neural network (DNN) patterned after the neural circuits formed by neurons in human brains.122
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Figure 1: Policy networks used in PBO to map states to policy. Three networks trained separately are used for
the prediction of mean, standard deviation, and correlation parameters. Orthogonal weights initialization is used
throughout the networks, with a unit gain for all layers except the output layers, for which the gain is set to 10−2.

The most general form of neural network architecture is the fully connected DNN, in which the123

processing units (the artificial neurons) are stacked in layers and information propagates forward124

from the input layer to the output layer via “hidden” layers. Each neuron performs a weighted sum125

of its inputs to assign significance with regard to the task the algorithm is trying to learn, adds a126

bias to figure out the part of the output independent of the input, and feeds an activation function127

that determines whether and to what extent the computed value should affect the outcome. The128

neural network learns to represent the relation between input (action) and output (reward) data129

by repeatedly adjusting the weights and biases by back-propagation, from the output layer back130

through the hidden layers to the input layer (a process known as training).131

2.2. Single-step deep reinforcement learning132

Single-step DRL is a subset of DRL that has recently emerged from the premise that tweaked133

versions of regular DRL algorithms can be used as black-box optimizers. The underlying idea is134

that it may be enough for the agent to interact only once per episode with its environment (hence,135

single-step episodes, and by extension, single-step DRL) if the optimal behavior to be learnt is136

independent of state, as is notably the case in optimization and open-loop control problems. The137

novelty of the approach can be summed up as follows: in DRL, a DNN learns the optimal set of138

observation-based actions a⋆ yielding the largest possible reward. In single-step DRL, it learns139

instead the optimal mapping fθ⋆ such that a⋆ = fθ⋆(s0), where s0 is some input state (usually140

a constant vector) repeatedly fed to the agent for the optimal policy to eventually embody the141

transformation from s0 to a⋆. A direct consequence is that single-step DRL algorithms can use142

much smaller networks (compared to the usual agent architecture used in other DRL contributions),143

because the agent is not required to learn a complex state-action relation, but only a transformation144

from a constant input state to a given action.145

2.3. Policy based optimization146

The present research relies on policy-based optimization (PBO) a single-step, model free, off-147

policy gradient RL algorithm whose key features are summarized as follows:148

• the agent interacts with the environment itself, not a surrogate model of the environment149

(model free, hence no assumptions about the fluid dynamics of the problems to be solved),150

• its behavior is modeled after a parametrized probability distribution of actions πθ(a), opti-151

mized by gradient ascent (policy gradient),152

• the agent is not required to sample the training data with the current policy (off-policy),153
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PBO draws actions from a d-dimensional multivariate normal distribution (with d the dimension of154

the action required by the environment). A full co-variance matrix is used to improve the balance155

between exploration and exploitation (the single-step PPO algorithm used in [46] conversely as-156

sumes all variables to have the same variance and to be uncorrelated, which can prematurely shrink157

the exploration variance). The co-variance matrix also accelerates convergence to the optimum by158

aligning the contour of the sampling distribution with the contour lines of the objective function159

and thereby the direction of steepest ascent.160

As shown in figure 1, three independent neural networks output the necessary mean, standard161

deviation, and correlation information, using hypersphere decomposition [56, 57] to generate valid162

symmetric, positive semidefinite covariance matrices. Different meta-parameters and architectures163

can be used for each network, which is shown in [55] to substantially impact the convergence164

rate. Actions drawn in [−1; 1]d are then mapped into relevant physical ranges, a step deferred165

to the environment as being problem-specific. Finally, the Adam algorithm [58] runs stochastic166

gradient ascent by computing adaptive learning rates (i.e., the step sizes to be taken in the gradient167

direction) for each policy parameter, using the gradient of the loss function168

L(θ) = E
a∼πθ

[max(r̃,0) logπθ(a)] . (1)

In 1, r̃ is the whitened reward normalized to zero mean and unit variance, considered a suit-169

able advantage estimator. The rationale for this choice is as follows: as is customary in DRL,170

the discounted cumulative reward is approximated by the advantage function, that measures the171

improvement (if positive, otherwise the lack thereof) associated with taking action a in state s172

compared to taking the average over all possible actions. Because a single-step trajectory consists173

of a unique state-action pair, the discount factor adjusting the trade-off between immediate and174

future rewards can be set to unity, in which case the advantage reduces to the reward; see [41].175

Substituting the whitened reward for r introduces bias but reduces variance, and thus the number176

of actions needed to estimate the expected value. Finally, the max allows discarding negative-177

advantage actions, that may destabilize learning when performing multiple mini-batch gradient178

steps using the same data (as each step drives the policy further away from the sampled actions).179

2.4. Computational fluid dynamics environment180

At the core of the CFD resolution framework is the in-house, CimLIB CFD parallel finite181

element library [59], whose main ingredients are as follows:182

-. the variational multiscale approach (VMS) is used to solve a stabilized weak form of the governing183

equations using linear approximations (P1 elements) for all variables, which otherwise breaks the184

Babuska–Brezzi condition. The approach relies on an a priori decomposition of the solution into185

coarse and fine scale components [60–62]. Only the large scales are fully represented and resolved at186

the discrete level. The effect of the small scales is encompassed by consistently derived source terms187

proportional to the residual of the resolved scale solution, hence ad-hoc stabilization parameters188

comparable to local coefficients of proportionality.189

-. in laminar regimes, velocity and pressure come as solutions to the Navier–Stokes equations. In190

turbulent regimes, the focus is on phase-averaged velocity and pressure modeled after the unsteady191

Reynolds averaged Navier–Stokes (uRANS) equations. In order to avoid transient negative tur-192

bulent viscosities, negative Spalart–Allmaras [63] is used as turbulence model, whose stabilization193

proceeds from that of the convection-diffusion-reaction equation [64, 65].194

-. two-dimensional airfoil sections with fixed camber line are generated by varying a chord length195

and a thickness distribution. The chord direction is constant, just as the angle of attack mea-196

suring the incidence relative to the oncoming flow. The upper (suction/leeward) and lower (pres-197

sure/windward) sides are discretized into np control points equally spaced in the camber line198

direction. All shapes are closed and symmetrical with respect to the chord line, as achieved forcing199

zero thickness at the edges and identical (half)-thicknesses at each forward and rearward facing200

points. Consecutive points are connected by a cubic Bézier curve using local position and curvature201
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Figure 2: Details of (a) an anisotropic adapted mesh and (b) successive refinement steps of the background mesh.
The blue line in (a) indicates the zero iso-contour of the level set function.

information. The final step consists of sampling all Bézier curves and in exporting a closed loop,202

to be either used as an immersed mesh in a two-dimensional (2-D) environment, or extruded in203

the off-body direction to serve as an immersed mesh in a three-dimensional (3-D) environment.204

-. the immersed volume method (IVM) is used to immerse and represent all geometries inside205

a unique mesh. The approach combines level-set functions, using the zero-iso value of a signed206

distance function to localize the solid/fluid interface, and anisotropic mesh adaptation, to align207

the mesh element edges with the interface and refine the mesh interface under the constraint of a208

fixed, number of edges. This ensures that the quality of all actions taken over the course of a DRL209

optimization is equally assessed, even though the interface is action-dependent.210

Substantial evidence of the flexibility, accuracy and reliability of the numerical framework211

for the intended ammplication is documented in several papers to which the reader is referred for212

exhaustive details regarding the shape generation using Bézier curves [46, 66], the level-set and mesh213

adaptation algorithms [67, 68], the VMS formulations, stabilization parameters and discretization214

schemes used in laminar and turbulent regimes [69–72], and the mathematical formulation of the215

IVM in the context of finite element VMS methods [73, 74].216

2.5. Numerical implementation217

At each episode, actions drawn from the current policy are distributed to nenv environments218

running in parallel, each of which executes a self-contained MPI-parallel numerical simulation219

(here, all simulations are performed on a few tens of cores on a workstation of Intel Xeon E5-2640220

processors) and feeds the reward associated to its input action to the DRL algorithm. There are thus221

two levels of parallelism related to the environment and the computing architecture. This simple222

parallelization technique is key to use DRL in the context of CFD applications, as a large number223

of actions drawn from the current policy must be evaluated to accurately compute the expected224

value of the policy loss (1). Even though, the high CPU cost of performing massive, unsteady225

numerical simulations involving hundreds of thousands (even millions) of degrees of freedom caps226

the number of environments that can efficiently run in parallel, and thus the number of state-227

action-reward triplets that can be sampled from the current policy (which also makes intractable228

the common practice in DRL studies to gain insight into the performances of the selected algorithm229

by averaging results over multiple independent training runs with different random seeds, as it230

would trigger a prohibitively large computational burden. The same random seeds are thus used231

for all computations to ensure a minimal level of performance comparison between cases.) PBO232

therefore improves the reliability of the loss evaluation by incorporating the reward data available233

from several previous episodes, using an empirical decay parameter that exponentially decreases234

the advantage history (to give recent episodes more weight) while retaining a longer memory of the235

previous episodes as the problem dimensionality increases (in accordance with the idea that more236

state-action-triplets are then needed to build a coherent covariance matrix). The remainder of the237

practical implementation details are as follows:238
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Mean Variance Correlation Neural network
5 × 10−3

≫ 10−3 Learning rate
128 8 ≫ Nb. epochs
1 8 16 Nb. learning episodes
1 4 8 Nb. mini-batches

[2,2,2] ≫ ≫ Architecture

Table 1: Details of the PBO meta-parameters and network architectures. For the architectures, only the sizes of
the hidden layers are provided.

-. the environment consists of CFD simulations of incompressible flows described in a Cartesian239

coordinate system with drag (resp. lift) positive in the +x (resp. +y) direction. All equations are240

discretized on 2-D and 3-D rectangular grids whose side lengths documented in the coming sections241

have been checked to be large enough not to have a discernible influence on the results (with the242

exception of the 3-D case in section 5, for which we favor computing all numerical solutions at243

affordable CPU cost using a limited transverse dimension). Open flow conditions are used, that244

consist of a uniform inflow in the x direction, together with symmetric lateral, advective outflow245

and no-slip interface conditions. In turbulent regime, the ambient value of the Spalart–Allmaras246

variable is three times the molecular viscosity, as recommended to lead to immediate transition.247

Typical adapted meshes of the interface and wake regions are shown in figure 2, the latter also248

being accurately captured via successive refinement of the background elements.249

-. optimal surface shapes subject to a target cross-sectional area Sref are determined by maximizing250

a compound reward function251

r = J − β∣S − Sref ∣ , (2)

where J is the objective function associated to performance, S is the cross-sectional area (also252

abbreviated as CSA in the following) of the shape, the overline indicates time-averaging, and β is253

a weighting coefficient that increasingly penalizes the shape when its area strays away from the254

target value. In practice, the cross-sectional area is computed as255

S =
1
L
∫

Ω
Hε(φ)dΩ (3)

where Hε is the smoothed Heaviside function introduced in [75], and L is the extrusion length in256

the off-body direction (hence equal to unity in 2-D). Moving average rewards and actions are also257

computed as the sliding average over the 50 latest values (or the whole sample if it has insufficient258

size). Time averages are performed over an interval [ti; tf ] with edges large enough to dismiss the259

initial transient and achieve convergence to statistical equilibrium. In the following, we take J to260

be a function of the drag and lift coefficients per unit span in the transverse direction, denoted261

by D and L, respectively, whose instantaneous values are computed with a variational approach262

featuring only volume integral terms, reportedly less sensitive to the approximation of the body263

interface than their surface counterparts [76, 77].264

-. the agent consists of three identical fully connected networks with 3 hidden layers, each of265

which holds 2 neurons (this is by design, as we recall that the PBO networks can theoretically use266

different architectures). The only difference lies in the activation function applied to the output267

layer, namely the first network uses hyperbolic tangent to output the mean of the d-dimensional268

multivariate normal distribution in [−1; 1]d, the second network uses sigmoid to output the standard269

deviations in [0; 1]d, and the third network also uses sigmoid to output a set of coefficients in [0,1]d,270

eventually assembled into a full correlation matrix by hypersphere decomposition [56, 57]. As to the271

meta-parameters, the number of parallel environments used to collect rewards before performing272

the network updates is set from the well-established heuristics of CMA-ES (that similarly relies on273
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full co-variance matrices and uses an evolution path to add information about correlations across274

consecutive generations [78] to275

nenv = ⌊4 + 3 lnd⌋ , (4)

where ⌊⋅⌋ denotes the floor function. Each network is updated for ne epochs (the number of full276

passes of the algorithm over the entire data set) using a learning rate λ (the size of the step taken in277

the gradient direction for policy update) and a history of nep episodes, shuffled and organized in nb278

mini-batches (whose sizes are in multiples of nenv). The values used in this study are documented279

in table 1 to ease reproducibility.280

3. Validation281

3.1. Test case description282

We assess first the relevance of the proposed numerical framework by revisiting the classical283

problem of finding the 2-D shape minimizing the drag force induced by a surrounding uniform flow284

at zero incidence. A sketch of the configuration is provided in figure 3. The origin of the coordinate285

system is at the half chord length. Several laminar cases at Reynolds number Re = U∞
√
Sref /ν286

are modeled after the Navier–Stokes equations, where U∞ is the inflow velocity, ν the kinematic287

viscosity, and we have used the square root of the target cross-sectional area (set to Sref = 1 in our288

implementation) as reference length. The objective function is simply289

J = −D , (5)

and the weighing coefficient is set empirically to β = 8. All CFD environments use the simulation290

parameters documented in table 2, found to offer a good compromise between numerical accuracy291

and computational effort since numerical tests carried out at two other grid resolutions and spatial292

extents yield limited variations within 2% − 3%.293

The control points used to parametrize the shape are labeled clockwise from 0 at the leading294

edge. All inner (i.e., non-end) curvature radii are set to 0.4 to provide sufficient smoothness (as295

this is a tad below the value 0.5 required for maximal smoothness). This leaves np +1 independent296

design variables, the chord length c, two end curvature radii ρj∈{0,np−1} and np−2 inner thicknesses297

ek∈{1,...,np−2}. The network action output consists accordingly of values (ĉ, ρ̂j , êk) in [−1; 1]np+1,298

mapped into the actual physical quantities using299

c =
1 − ĉ

2
cmin +

1 + ĉ
2

cmax , ρj =
1 − ρ̂j

2
ρmin +

1 + ρ̂j
2

ρmax , ek = ek,max −
1 − ê

2
δe , (6)

for the chord to vary in [cmin; cmax] with cmin = 1 and cmax = 4, the curvature radii to vary in300

[ρmin;ρmax] with ρmin = 0.1 and ρmax = 0.4, and the thickness to vary in [ek,max − δe; ek,max]301

with δe = 0.4 and ek,max a maximum value tuned locally for each problem. At each episode, the302

position of the inner points is adjusted to the current chord length to maintain equal spacing.303

Unless specified otherwise, all results documented hereafter are for np = 5, for which DRL evolves304

six design parameters, the chord length, two end curvature radii and three inner thicknesses.305

3.2. Results306

Several Reynolds numbers have been considered up to Re = 100, for which random shapes307

collected over the course of the optimization, are presented in figures 4-7, together with their308

respective iso-contours of vorticity. Because the aspect ratio (as defined from the ratio of the309

maximum thickness to the chord length) barely exceeds unity, all solutions at Re ≲ 50 relax to310

steady state regardless of the DRL action (hence we do not report a proper averaging span for311

these cases in table 2, as we simply evaluate reward at a final time chosen large enough to flush out312

the transient behavior). Meanwhile, a small number of shapes with aspect ratio close to unity have313

been found to exhibit vortex shedding at Re = 100, for which we pay attention to performing the314

necessary time averages. Figures 4-7 also provide exhaustive convergence history for the reward,315

the objective function, the ratio of actual to target CSA and the design parameters. The moving316

average reward especially decreases almost monotonically and reaches a plateau after a few ten317
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Figure 3: Schematic diagram of the minimum drag test case. The DRL agent optimizes the chord length, the
curvature radius at the edge control points marked in yellow, and the thickness at the inner control points marked
in blue. The thickness at the inner control points marked in grey deduces by symmetry.

episodes. At this point, the optimal CSA exhibits near-perfect agreement with the target value,318

hence evidencing the relevance of the reward penalty approach.319

At Re = 1, the minimum drag body in figure 4 is that of a perfectly front-rear symmetric320

rugby ball, with chord length 1.95 ± 0.6% and aspect ratio 0.369 ± 1.1%. These values have been321

obtained by averaging over the 10 latest episodes (with associated variance interval computed322

from the root-mean-square over the same interval, a simple yet robust criterion that will be used323

systematically to assess convergence for all cases reported in the following). They are close to324

the creeping flow optimal, whose chord length (relative to a unit target surface) and aspect ratio325

derived analytically in [80] are 1.88 and 0.40, respectively. The only noticeable difference lies in326

the fact that the DRL optimal has a pointed rear end with wedge angle about 90○, and a slightly327

more rounded front end with wedge angle ∼ 120○, while the creeping flow optimal has two pointed328

ends with wedge angle about 100○. As the Reynolds number increases, the optimal chord length329

increases but the thickness decreases, hence the aspect ratio of the optimal body decreases (likely330

because the increasing adverse pressure gradient at the front needs to be counterbalance to avoid331

flow separation). At Re = 20, the optimal shape in figure 5 has chord length 2.40 ± 0.8% and332

aspect ratio 0.228 ± 1.5%, and remains almost front-rear symmetric, although the rear section is333

slightly more streamlined. Similar results are obtained at Re = 50 (figure 6), with chord length334

2.65±0.7% and aspect ratio 0.204±1.0%. At Re = 100, the front-rear symmetry is lost as we obtain335

a streamlined shape with chord length 2.46 ± 0.4% and aspect ratio 0.235 ± 0.8%; see figure 7. At336

Re = 1, the optimal drag (13.10±0.02%) cuts down that of the equivalent cylinder (i.e., the cylinder337

of diameter 2
√
Sref /π, for the area to be equal to Sref ) by 6%, which is small but simply reflects338

that the ratio of drags on any two bodies tends to 1 in the limit where the Reynolds number tends339

to 0. In comparison, the achieved reduction is by 22% at Re = 20 (optimal drag 1.83±0.04%), 24%340

at Re = 50 (1.10 ± 0.05%), and 48% at Re = 100 (0.71 ± 4%).341

Other than that, it is difficult to accurately validate the results because, although the search342

for optimal profiles of minimum drag in Navier–Stokes flows having received substantial interest in343

the literature, there is a wide variability in the problem formulation, especially in terms of design344

constraints (some authors specify a target surface, others impose only a lower bound, plus the345

values can vary from one reference to another), and the exact geometrical properties of the optimal346

(e.g., length, aspect ratio) are rarely documented. The closest study to our work is from Kondoh347

et al. [79], who tackle similar drag minimization problems via topology optimization, using a body348

force to model the effect of classical no-slip boundary conditions at the fluid/solid interface. It has349

not been possible to assess the convergence rate of DRL in the absence of any reference information350

in this regard, and it is not entirely clear whether the exact same optimization problem is solved351

due to inconsistent statements in the study regarding the nature of the design constraint, but352

even so, the reported optimal shapes and drags turn to be in good agreement with the present353

DRL results. One minor difference is that the shapes look pointed in [79] (but the blending of354

the interface makes it difficut to see in the original images), while the present ones are generally355

rounded at both ends, with little to no effect on the reward. On this point, we note that the356

end radii can vary substantially even after the reward has converged (as is the case for instance357

in figure 6(d) at Re = 50), which evidences a general lack of sensitivity to these specific design358

parameters). At Re = 1, the optimal drags differ by approximately 7%, which may seem large at359
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Case setup
1 20 50 100 Reynolds number
5 ≫ ≫ ≫ Nb. points
6 ≫ ≫ ≫ Nb. design variables

CFD
2 ≫ ≫ ≫ Dimensionality

0.2 ≫ 0.125 ≫ Time-step
[50;50] ≫ ≫ ≫ Averaging time span

8 ≫ ≫ ≫ Penalty coeff.
[−10; 20]×[−10; 10] ≫ ≫ ≫ Mesh dimensions

100000 ≫ 110000 ≫ Nb. mesh elements
0.0005 ≫ ≫ ≫ Interface ⊥ mesh size

PBO
100 120 115 ≫ Nb. episodes
10 12 11 ≫ Nb. environments

3mn 3mn 5mn 10mn CPU time†‡

5h 6h 10h 18h Resolution time‡

Parameter ranges
[1;4] ≫ ≫ ≫ Chord length

[0.1;0.4] ≫ ≫ ≫ LE curv. radius
[0.072;0.472] ≫ ≫ ≫

[0.152;0.552] ≫ ≫ ≫ Thickness
[0.072;0.472] ≫ ≫ ≫

[0.1;0.4] ≫ ≫ ≫ TE curv. radius
Optimal

1.95 2.41 2.64 2.46 Chord length
0.309 0.300 0.186 0.344 LE curv. radius
0.297 0.246 0.223 0.290
0.362 0.273 0.270 0.267 Thickness
0.299 0.227 0.199 0.166
0.115 0.366 0.258 0.395 TE curv. radius
1.000 1.000 1.000 1.001 Ratio of actual to target CSA
13.1 1.83 1.10 0.71 Drag (present)

12.10 1.81 1.10 0.76 Drag [79]

Table 2: Case setup, simulation parameters and convergence data for the drag minimization problem, as computed
by averaging over the 10 latest learning episodes. Leading-edge (front end) and trailing edge (rear end) data are
labeled LE and TE, respectively. † All CPU times provided per episode and per environment. ‡ All values obtained
averaging over 5 independent runs using 12 cores.

first sight but is actually fair given the high sensitivity of drag to small changes in the Reynolds360

number in this regime. The drags and chord lengths are nearly identical at Re = 20 and 50, as we361

find the ratio of the chord length at the current Reynolds number to its Re = 1 counterpart to be362

1.24 at Re = 20 and 1.35 at Re = 50 using DRL, while extracting data from the reference figures363

using a graph digitizer software yields values of 1.26 at Re = 20 and 1.33 at Re = 50 (it has not been364

possible to similarly extract the aspect ratio due to blurred and/or mixed pixels). At Re = 100,365

the shapes somewhat differ as the optimal in [79] is more elongated and less streamlined in the366

rear section. Meanwhile the optimal drags differ by only 6%, which raises the possibility that the367

objective function has either a unique flat minimum, or several nearly equivalent minima. Figure 7368

constitutes a favorable presumption in this regard, as the objective function exhibits surprisingly369

low variations over the course of optimization, and most shapes in figure 7(b) actually are within370
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Figure 4: Maximum lift to drag ratio test case at Re = 1 under constant area constraint Sref = 1. (a) Evolution per
episode of the instant (black line) and moving average (over episodes, light orange line) reward (in absolute value).
(b-f) Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual to target cross-sectional areas, (d)
chord, (e) edge curvature radii and (f) inner thicknesses. All labels in (e-f) are ordered clockwise from the leading
edge. The horizontal dashed lines in (d-f) mark the admissible values. (g) Shapes generated over the course of
optimization for random episodes marked by the circle symbols in (a-c), together with corresponding iso-contours
of vorticity. The last three shapes pertain to episodes 40, 70 and 100, respectively.

the 6% variance interval marked by the grey shade.371

3.3. Discussion372

We believe the above results assess the relevance of the proposed DRL-CFD framework for373

optimal shape design. Relying on low-dimensional parametrization of the body shape is one key374

parameter in this regard, as it improves the tractability of the optimization process and avoids the375

oscillations between points that have been found to occur when using a larger (about 10) number376

of control points. Nonetheless, we believe important to discuss the impact on robustness, and the377

extent to which decreasing the number of control points exaggerates (or not) the sensitivity to the378

curvature radii. This is because using different curvature radii to connect the same set of control379
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Figure 5: Maximum lift to drag ratio test case at Re = 20 under constant area constraint Sref = 1. (a) Evolution per
episode of the instant (black line) and moving average (over episodes, light orange line) reward (in absolute value).
(b-f) Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual to target cross-sectional areas, (d)
chord, (e) edge curvature radii and (f) inner thicknesses. All labels in (e-f) are ordered clockwise from the leading
edge. The horizontal dashed lines in (d-f) mark the admissible values. (g) Shapes generated over the course of
optimization for random episodes marked by the circle symbols in (a-c), together with corresponding iso-contours
of vorticity. The last three shapes pertain to episodes 40, 80 and 120, respectively.

points can yield two slightly different cross-sectional areas, that in turn can earn two substantially380

different reward via the penalization term (this is not on the Bézier parametrization itself, though,381

only on the need to smoothly connect a discrete set of control points. For instance, one must also382

specify tangency at both endpoints of a spline).383

As a first insight into this issue, we report here results obtained at Re = 1 using three alternative384

parametrizations:385

• a case with np = 7 control points evolving the chord length, five inner thicknesses and two386

end curvature radii (which amounts to replicating the above reference case, but with two387

additional inner thicknesses, hence 8 independent design parameters),388
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Figure 6: Maximum lift to drag ratio test case at Re = 50 under constant area constraint Sref = 1. (a) Evolution per
episode of the instant (black line) and moving average (over episodes, light orange line) reward (in absolute value).
(b-f) Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual to target cross-sectional areas, (d)
chord, (e) edge curvature radii and (f) inner thicknesses. All labels in (e-f) are ordered clockwise from the leading
edge. The horizontal dashed lines in (d-f) mark the admissible values. (g) Shapes generated over the course of
optimization for random episodes marked by the circle symbols in (a-c), together with corresponding iso-contours
of vorticity. The last three shapes pertain to episodes 40, 70 and 120, respectively.

• a case with np = 5 points evolving the chord length, three inner thicknesses, two end cur-389

vature radii, plus an additional radius common to all inner control points (which amounts390

to replicating the reference case, but with one additional inner curvature radius, hence 7391

independent design parameters),392

• a case with np = 7 points whose thickness distribution is frozen, as obtained interpolating393

from the reference np = 5 optimal (for which it suffices to sample the connecting Bezier394

curves at the relevant positions), after which a dedicated DRL agent restores the proper395

cross-sectional area by evolving two end curvature radii, plus an additional radius common396
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Figure 7: Maximum lift to drag ratio test case at Re = 100 under constant area constraint Sref = 1. (a) Evolution
per episode of the instant (black line) and moving average (over episodes, light orange line) reward (in absolute
value). (b-f) Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual to target cross-sectional areas,
(d) chord, (e) edge curvature radii and (f) inner thicknesses. The grey shade in (b) marks the 6% variance interval
with respect to the average over the 10 latest learning episodes. All labels in (e-f) are ordered clockwise from the
leading edge. The horizontal dashed lines in (d-f) mark the admissible values. (g) Shapes generated over the course
of optimization for random episodes marked by the circle symbols in (a-c), together with corresponding iso-contours
of vorticity. The last three shapes pertain to episodes 40, 70 and 120, respectively.

to all inner control points (hence, 3 independent design parameters) with reward397

r = −∣S − Sref ∣ , (7)

formally identical to (2) with J = 0 and β = 1.398

The results reported in table 3 exhibit limited discrepancy with respect to the reference (reproduced399

from table 2 in the first column), as the maximum deviation on the chord and the inner thicknesses400

is by 4%. All runs converge to similar curvature radii at the front. The value at the rear is401

noticeably different, but with little to no effect on the reward, objective function and shape (as402

shown in figure 8), which simply reflects the smallness of the reward gradients with respect to the403
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Case setup
5 5 7 7 Nb. points
× × Inner curv. radius
6 7 8 3 Dimensionality

Optimal
1.95 1.96 1.87 1.95 Chord length
0.4 0.332 0.4 0.398 Inner curv. radius

0.309 0.359 0.310 0.394 LE curv. radius
0.297 0.284 0.233 0.206
0.362 0.367 0.340 0.324 Thickness
0.299 0.303 0.369 0.359

- - 0.341 0.331
- - 0.258 0.227

0.115 0.159 0.392 0.389 TE curv. radius
1.00 1.00 1.00 1.00 Ratio of actual to target CSA

13.10 13.09 13.09 13.09 Drag

Table 3: Sensitivity of the drag minimization problem at Re = 1 to the discretization parameters. Leading-edge
(front end) and trailing edge (rear end) data are labeled LE and TE, respectively. The first column is reproduced
from table 2.

Figure 8: (a) Reference optimal shape for the minimum drag test case at Re = 1 with np = 5 control points and fixed
inner curvature radius. (b) Same as (a) with np = 7 control points and fixed inner curvature radius. (c) Same as (a)
with np = 5 control points and variable inner curvature radius. (d) Reference optimal shape discretized with np = 7
control points, after DRL has adjusted the end and inner curvature radii to restore the proper cross-sectional area.

control variables in the vicinity of the optimal. Although the impact needs to be assessed on a case404

to case basis, this suggests that the method ability to provide robust optima may not be strained405

by the use of low-end geometrical parametrizations.406

4. Application to optimal aerodynamic design407

4.1. Test case description408

We apply now the method to more meaningful aerodynamic shape optimization problems, as we409

seek the shape maximizing the lift to drag ratio (used as an indicator of the aerodynamic efficiency)410

induced by a surrounding uniform flow at angle of attack of α = 30○. A sketch of the configuration411

is provided in figure 9. A Cartesian coordinate system is used with origin at quarter chord length412

from the leading edge. The target cross-sectional area is set to Sref = 0.0822, which corresponds to413

the CSA of a NACA (National Advisory Committee for Aeronautics) 0012 airfoil. The objective414

function is415

J =
L

D
, (8)

and the weighing coefficient is set to β = 100. Two time-dependent flow regimes are modeled416

after either the Navier–Stokes or the uRANS equations, for which all CFD environments use the417

numerical simulation parameters provided in table 4.418

As has been done for the drag minimization test case, we simplify the parametrization by419

setting all inner curvature radii to 0.4. Additionally, we fix the chord length to c = 1 for the420

chord Reynolds number Re = U∞c/ν to remain constant over the course of optimization (which421

we believe is necessary to meaningfully compare the performances). This leaves np independent422
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Figure 9: Schematic diagram of the maximum lift to drag ratio test case.

design variables, two end curvature radii ρj∈{0,np−1} and np − 2 inner thicknesses ek∈{1,...,np−2}.423

The network action output consists accordingly of values (ρ̂j , êk) in [−1; 1]np , converted into the424

actual physical quantities using the same mapping (6), only we set δe = 0.03 to account for the425

smaller target CSA. All results in the following are for np = 5, for which DRL evolves five design426

parameters, two end curvature radii and three inner thicknesses.427

4.2. Laminar regime at Re = 250428

We consider first a 2-D laminar case at Re = 250 modeled after the Navier–Stokes equations,429

for which the dimensions of the computational domain provided in table 4 yield a blockage ratio of430

2.5%. All mesh adaptations are performed under the constraint of a fixed total number of elements431

nel = 100000. A total of 100 episodes has been run for this case, that yield the variety of shapes432

illustrated in figure 10, together with their respective iso-contours of (instantaneous) vorticity. The433

general picture is that all shapes exhibit an oscillating pattern of leading- and trailing-edge vortex434

shedding following the shedding of the initial leading-edge vortex. This stems from the interaction435

between the (lower) negative vorticity sheet, that separates at the leading edge and then rolls up436

into a large clockwise vortex, and the (upper) positive vorticity sheet, that remains attached to437

the windward side and rolls up counter-clockwise from the trailing edge (in average, this yields a438

massive separation originating at the leading edge and extending on the leeward side, all the way439

to the trailing edge; not shown here). The Strouhal number for vortex shedding frequency built440

from the windward width is St = fc sinα/u∞ ∼ 0.13 (regardless of the shape), which is identical to441

experimental measurements performed on a high-aspect ratio NACA 0012 airfoil under the same442

incidence at Re = 100 [81].443

The moving reward in figure 10(a) increases almost monotonically and reaches a plateau after444

about 40 episodes. The optimal lift to drag ratio computed as the average over the 10 latest445

episodes is 1.24 ± 1.0%, at which point the cross-sectional area is equal to its target value down to446

the fifth decimal place. We note that 40 episodes is actually the number of episodes needed for the447

end radii to converge, as the thickness distribution exhibits excellent convergence after as little as448

20 episodes. Interestingly, the agent has generated a wing-like optimal shape representative of a449

high-lift configuration without any priori knowledge of aerodynamic concepts: the optimal features450

a rounded leading edge to help maintain a smooth airflow (with curvature radius 0.394 ± 0.01%451

close to maximum) and a sharp trailing edge to generate lift (with curvature radius 0.156 ± 0.02452

close to minimum). The optimal lift to drag ratio exceeds that of the equivalent ellipse (i.e., of453

major diameter c and minor diameter 2Sref /πc, for the area to be equal to Sref ) by 6% and that454

of a NACA 0012 airfoil by 1%, as has been estimated from dedicated in-house calculations. This455

is small but consistent with the overall lack of sensitivity, as the objective function in figure 10(c)456

actually remains within 3% of the optimal over the course of optimization, as indicated by the grey457

shade delimiting the related variance interval.458

4.3. Turbulent (transitional) regime at Re = 5000459

We consider now a case at Re = 5000 corresponding to the ultra-low Reynolds number regime,460

that has assumed greater significance in the last few decades due to relevance for micro air vehicles461

and micro-turbines [82, 83]. We believe this constitues a valuable first step towards applying462
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Case setup
250 5000 ≫ Reynolds number

5 ≫ ≫ Nb. points
5 ≫ 3 Nb. design variables

CFD
2 ≫ 3 Dimensionality
- RANS ≫ Turb. model

0.125 0.05 ≫ Time-step
[100;150] [150;200] [100;150] Averaging time span

100 ≫ 90 Penalty coeff.
[−10; 20]×[−10; 10] [−6; 15]×[−7; 7] [−5; 10]×[−5; 5]×[0; 5] Mesh dimensions

100000 120000 500000 Nb. mesh elements
0.0005 ≫ 0.001 Interface ⊥ mesh size

PBO
100 100 80 Nb. episodes
14 14 12 Nb. environments

20mn 2h45mn 9h30mn CPU time†‡

35h 275h 760h Resolution time‡

Parameter ranges
- - - Chord length

[0.1;0.4] ≫ - LE curv. radius
[0.024;0.084] ≫ ≫

[0.03;0.09] ≫ ≫ Thickness
[0.024;0.084] ≫ ≫

[0.1;0.4] ≫ - TE curv. radius
Optimal

1 1 1 Chord length
0.394 0.398 0.3 LE curv. radius

0.0638 0.0549 0.0420
0.0514 0.0627 0.0536 Thickness
0.0253 0.0252 0.0454
0.156 0.104 0.1 TE curv. radius
1.00 1.00 0.996 Ratio of actual to target CSA
1.24 1.54 1.34 Lift to drag ratio

Table 4: Case setup, simulation parameters and convergence data for the lift to drag ratio maximization problem,
as computed by averaging over the 10 latest learning episodes. † All CPU times provided per episode and per
environment. ‡ All values obtained averaging over 5 independent runs using 12 cores.

the method to more prototypal aerodynamic applications in which airfoils operate at Reynolds463

numbers of ∼ 106 and exhibit some degree of stochastic dynamics (as they carry turbulent energy464

distributed over a wide range of scales with varying degrees of spatial and temporal coherence),465

which might lead to high variance gradient estimates and hamper learning. Here, at the high value466

of angle of attack considered, the flow is expected to be transitional, for instance, transition in467

the wake of a NACA 0012 has been shown to occur in the separated shear-layer, shortly after468

the leading edge, at a location strongly dependent on the level of external noise [84]. This has469

been confirmed vetting preliminary Navier–Stokes simulations for which the built-in small-scale470

component of the VMS solution acts as an implicit large eddy simulation. While the solutions471

(not reported here for the sake of conciseness) are dominated by the large-scale component, with472

small-scale turbulence noticeably absent downstream, intermittent small-scale fluctuations develop473

on the leeward side, that prompt asymmetric vortex street (at least is the trailing edge is not too474
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Figure 10: Maximum lift to drag ratio test case at Re = 250 under constant area constraint Sref = 0.0822. (a)
Evolution per episode of the instant (black line) and moving average (over episodes, light orange line) reward. (b-f)
Same as (a) for the (b) averaged (over time) lift to drag ratio, (c) ratio of the actual to target cross-sectional areas,
(d) chord (fixed), (e) edge curvature radii and (f) inner thicknesses. The grey shade in (b) marks the 3% variance
interval with respect to the average over the 10 latest learning episodes. All labels in (e-f) are ordered clockwise
from the leading edge. The horizontal dashed lines in (e-f) mark the admissible values. (g) Shapes generated over
the course of optimization for random episodes marked by the circle symbols in (a-c), together with corresponding
iso-contours of vorticity. The last three shapes pertain respectively to episodes 40, 70 and 100.

sharp for the separation point to be free to move) with vortices convected downstream along an475

axis inclined upward with respect to the streamwise direction, similar to the behavior observed in476

2-D LES simulations of the transitional flow past a circular cylinder [85].477

Accordingly, the case is modeled here after the uRANS equations, using negative Spalart–478

Allmaras as turbulence model. Such an approach is not without shortcomings (namely RANS is479

inherently designed to damp out the small-scales, and Spalart–Allmaras assumes fully turbulent480

behavior), but given the cost of accurately resolving the complex, unsteady vortex interaction481

described above, we believe the deficiencies are more than offset by the tremendous gain in compu-482

tational efficiency derived from the relatively coarse meshes necessary to predict the most important483
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Figure 11: Maximum lift to drag ratio test case at Re = 5000 with negative Spalart–Allmaras turbulence model,
under constant area constraint Sref = 0.0822. (a) Evolution per episode of the instant (black line) and moving
average (over episodes, light orange line) reward. (b-f) Same as (a) for the (b) averaged (over time) lift to drag
ratio, (c) ratio of the actual to target cross-sectional areas, (d) chord (fixed), (e) edge curvature radii and (f) inner
thicknesses. All labels in (e-f) are ordered clockwise from the leading edge. The horizontal dashed lines in (d-f)
mark the admissible values. (g) Shapes generated over the course of optimization for random episodes marked by
the circle symbols in (a-c), together with corresponding iso-contours of vorticity. The last three shapes pertain
respectively to episodes 40, 70 and 100.

large scale features of the flow. In practice, a scaled-down computational domain is used, whose484

dimensions reported in table 4 yield a blockage ratio of 3.5%. All mesh adaptations are performed485

under the constraint of a fixed total number of elements nel = 120000. A total of 100 episodes has486

been run, for which the selected iso-contours of vorticity documented in figure 11 are reminiscent of487

their laminar counterparts, with in-line vortex shedding (since the effect of the intermittent small-488

scale fluctuations has been lumped into the eddy viscosity model) and robust shedding frequency489

St = 0.15.490

The moving average reward in figure 11(a) is seen to converges within about 50 episodes but491

the thickness distribution again converges faster (within roughly 40 episodes). As was already the492

19



Figure 12: Anisotropic adapted mesh around an immersed three-dimensional unswept, rectangular wing. (a) Three-
dimensional view. (b) Front view. (c) Side view.

case at Re = 250, the optimal resembles the airfoil of an airplane wing, with a rounded leading493

edge and a sharp trailing edge. The end radii are nearly identical to their laminar counterparts,494

but the shape is streamlined differently, namely it is a tad thinner in the front (0.0549 ± 0.2%495

at Re = 5000 vs. 0.0638 ± 0.2% at Re = 250) but slightly thicker in the center (0.0627 ± 0.4% at496

Re = 5000 vs. 0.0514 ± 0.25% at Re = 250). The optimal lift to drag ratio (1.54 ± 0.3%) exceeds497

that of the equivalent ellipse by 13% but is ultimately identical to that of a NACA 0012, despite498

the objective function exhibiting substantial variations in figure 11(b). The inability to outperform499

a conventional airfoil should not be interpreted as failure of the method, though, as aerodynamic500

shape design classically requires fine-tuning of the local geometry for a gain that often adds up501

to a few percent. This is not manageable here because the low number of degrees of freedom502

inevitably constrains the underlying space of shapes, and the expected gain is comparable to the503

typical convergence threshold of a DRL run. We believe the results should rather be considered504

proof that DRL can start from the ground up and generate shapes that perform just as well as505

a conventional airfoil. Actually, there is ample room for improvement if the optimization is to be506

tailored to airfoil shape optimization problems (which it is not here for the sake of generality),507

one may seek for instance to locally refine the DRL optimal by repeating the same analysis, but508

clustering the control points in specific regions of interest (e.g., the leading-edge, or the rear-end509

of the leeward side), or to rely on alternative parametrizations better suited to airfoils, such as510

CST [86].511

5. Extension to 3-D shape optimization.512

The ultra low-Reynolds number case at Re = 5000 is extended here to 3-D to assess the extent513

to which the approach carries over to three-dimensional shape optimization. All shapes generated514

over the course of optimization are unswept, rectangular wings, whose cross-section is set up from515

the DRL outputs following the exact same process as in sections 3 and 4. The span aspect ratio516

(relative to the chord length) is set to 3 in our implementation. A Cartesian coordinate system is517

used with origin in the mid-span plane, at quarter chord length from the leading edge. The number518

of control points remains set to np = 5, but we force the leading and trailing edge curvature radii519

to 0.3 (round edge) and 0.1 (sharp edge) to keep the computational cost manageable, which leaves520

np − 2 = 3 independent design variables corresponding to the inner thicknesses. In practice, only a521

half-span wing body is simulated with symmetry boundary condition prescribed at the mid-span.522

The computational domain shown in figure 12 is a rectangular prism, whose dimensions reported523

in table 4 yield a blockage ratio of 5%. All mesh adaptations are performed under the constraint524

of a fixed total number of elements nel = 500000. This is likely insufficient to claim true numerical525

accuracy, but given the numerical cost (960 3-D simulations total, each of which is performed on526

12 cores and lasts about 10h, hence 9600h of total CPU cost), we believe this is a reasonable527

compromise to assess feasibility while producing qualitative results to build on.528

A total of 80 episodes has been run for this case, using a slighly lower weighing coefficient β = 90529

(to take into account that the coarser mesh yields a small loss in accuracy in the computation of530
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Figure 13: Maximum lift to drag ratio test case in 3-D at Re = 5000 with negative Spalart–Allmaras turbulence
model, under constant area constraint Sref = 0.0822. (a) Evolution per episode of the instant (black line) and
moving average (over episodes, light orange line) reward. (b-f) Same as (a) for the (b) averaged (over time) lift to
drag ratio, (c) ratio of the actual to target cross-sectional areas, (d) chord (fixed over the course of optimization),
(e) edge curvature radii (also fixed) and (f) inner thicknesses. (g) Shapes generated over the course of optimization
for random episodes marked by the circle symbols in (a-c), together with corresponding iso-contours of vorticity.
The last three shapes pertain respectively to episodes 40, 70 and 100.
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the cross-sectional area). Several representative flow patterns computed over the course of opti-531

mization are illustrated in figure 13 to display the increased degree of complexity due to transverse532

inhomogeneities. All solutions exhibit vortex shedding, which is because the span aspect ratio is533

large enough for the tip vortex to remain relatively steady. Conversely, preliminary simulations534

carried out at lower aspect ratios of order 1 systematically relaxed to steady-state, due to the535

strong tip-vortex induced downwash over the entire span (the same behavior has been reported in536

laminar flows at Reynolds numbers of about in the range of a few hundreds [87], and is ascribed537

here to the RANS damping of the small-scale transverse motion, that should otherwise strengthen538

the unsteadiness). The moving averager reward in figure 13 plateaus after about 35 episodes. The539

3-D distribution is almost front-rear symmetric but the shape itself surprisingly slightly thinner540

in the front than in the rear, although the rear is ultimately more streamlined due to the smaller541

trailing edge curvature radius. Compared to its 2-D counterpart, the 3-D optimal is thinner in the542

front and in the center, but much thicker in the rear. The optimal lift to drag ratio (1.34 ± 0.5%)543

exceeds that of the equivalent ellipse by 5% and is identical to that of a NACA 0012. This is544

consistent with the above findings, in the sense that the DRL optimal performs at the level of a545

conventional airfoil, and that the limited improvement with respect to the equivalent ellipse should546

not be taken as an indictment of the method, just a consequence of the flow regime considered547

(precisely because a similar improvement is achieved using a NACA 0012).548

6. Conclusion549

Shape optimization in computational fluid dynamics systems is achieved here training fully550

connected networks with PBO, a recently introduced deep reinforcement algorithm at the crossroad551

of policy gradient methods and evolution strategies. PBO is single-step, meaning that the DRL552

agent gets only one attempt per learning episode at finding the optimal. The numerical reward553

fed to the PBO agent is computed with a finite elements CFD environment solving stabilized554

weak forms of the governing equations (Navier–Stokes, otherwise uRANS with negative Spalart–555

Allmaras as turbulence model) with a combination of variational multiscale approach, immersed556

volume method and anisotropic mesh adaptation.557

Several cases are documented, for which shapes with fixed camber line, angle of attack and cross-558

sectional area are generated by varying a chord length and a symmetric thickness distribution (and559

possibly extruding in the off-body direction), connecting consecutive points by a cubic Bézier curve560

using local position and curvature information. The classical problem of finding the 2-D shape of561

minimum drag in a uniform flow is revisited first to validate and assess the method capabilities.562

The method is also applied to the more practically meaningful problem of finding the shape of563

maximum lift to drag ratio (in 2-D or 3-D) at an incidence of 30○ and under constant chord564

Reynolds number. The DRL optimal increases the performance the equivalent ellipse (i.e., the565

ellipse of same cross-sectional area) by 13% in 2-D and 5% in 3-D. It is systematically found to566

perform just as well as a conventional airfoil, despite DRL starting from the ground up and having567

no priori knowledge of aerodynamic concepts. Exhaustive convergence and efficiency data are568

reported here with the hope to foster future comparisons, but it is worth emphasizing that we did569

not seek to optimize said effciency, neither by optimizing the PBO meta-parameters, nor by using570

pre-trained deep learning models (as is done in transfer learning).571

Fluid dynamicists have just begun to gauge the relevance of DRL and its application to opti-572

mal shape design. This research weighs in on this issue and shows that the proposed single-step573

method holds a high potential as a reliable, go-to black-box optimizer for complex CFD problems.574

Moreover, the optimization process is entirely domain-agnostic, meaning that the proposed frame-575

work allows for easy application to any domain in which shape optimization may be beneficial. We576

believe further work should now focus on the challenges specific to fluid mechanics that still pre-577

vent DRL capabilities from meeting the requirements for practical deployment, e.g., stochasticity,578

sampling efficiency (CFD environments are resource expensive as they routinely involve numerical579

simulations with tens or hundreds of millions of degrees of freedom, while classical RL methods580

have low sample efficiency, i.e., many trials are required for the agent to learn a purposive behav-581

ior), the need to leverage experience from multiple agents learning concurrently (multi-agent DRL)582

or to train an agent in reasoning about several weighted objectives (multi-objective reward).583
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Figure 14: Shape generation using cubic Bézier curves. Each subfigure illustrates one of the consecutive steps used in
the process. (a) Compute angles between points and compute an average angle θ∗i around each point. (b) Compute
supplemental control points coordinates from averaged angles and generate cubic Bézier curve. (c) Sample all Bézier
lines and export for mesh immersion.
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590

Appendix A. Shape generation using Bézier curves591

This section describes the process followed to generate shapes from a set of np control points.592

Once the position has been reconstructed from the agent outputs, the angles between consecutive593

points are computed. An average angle is then computed around each point (see Fig. 14(a)) as594

θ∗i = rθi−1,i + (1 − r)θi,i+1 , (A.1)

where r ∈ [0; 1] is the curvature radius that control the local sharpness of the curve. Then, each595

pair of points is joined using a cubic Bézier curve, defined by four points: the first and last points,596

pi and pi+1 belong to the curve, while the second and third ones, p∗i and p∗∗i , are supplemental597

control points that define the tangent of the curve at pi and pi+1. The tangents atpi and pi+1 are598

respectively controlled by θiand θi+1 (Fig. 14(b)). A final sampling of the successive Bézier curves599

leads to a boundary description of the shape (Fig. 14(c)). Using this method, a wide variety of600

shapes can be attained.601
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