
HAL Id: hal-03824987
https://hal.science/hal-03824987

Submitted on 26 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Terahertz plasmons in doped HgTe quantum well
heterostructures: dispersion, losses, and amplification

V. Ya. Aleshkin, A. Dubinov, V. Gavrilenko, F Teppe

To cite this version:
V. Ya. Aleshkin, A. Dubinov, V. Gavrilenko, F Teppe. Terahertz plasmons in doped HgTe quantum
well heterostructures: dispersion, losses, and amplification. Applied optics, 2021, 60 (28), pp.8991-
8998. �10.1364/AO.438501�. �hal-03824987�

https://hal.science/hal-03824987
https://hal.archives-ouvertes.fr


Terahertz plasmons in doped HgTe quantum 
well heterostructures: dispersion, losses and 
amplification 

V.YA. ALESHKIN,1,2 A.A. DUBINOV, 1,2,* V.I. GAVRILENKO1,2 AND F. TEPPE 3 

1Institute for Physics of Microstructures RAS, GSP-105, Nizhny Novgorod, 603950, Russia 
2Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., Nizhny Novgorod, 603950,Russia 
3Laboratoire Charles Coulomb, Université de Montpellier, Centre National de la Recherche Scientique, 

Montpellier, 34095, France 

*sanya@ipmras.ru 

Abstract: We have calculated two-dimensional plasmon energy spectra in HgTe/CdHgTe 

quantum wells with normal, gapless and inverted energy spectra with different electron 

concentrations and taking into account spatial dispersion of electron polarizability and plasmon 

interaction with the optical phonons. The spectra of the absorption coefficients of two-

dimensional plasmons are found. It is shown that an increase of electron concentration in a 

quantum well leads to a decrease in the plasmon absorption coefficient. We have calculated the 

probabilities to recombine via the plasmon emission for nonequillibrium holes. The threshold 

concentrations of the nonequillibrium holes, above which the plasmon amplification is possible, 

have been calculated for various electron concentrations. It is shown that the presence of 

equilibrium electrons can significantly reduce the threshold hole concentration required for 

amplification of plasmon in the terahertz wavelength region. The dependencies of threshold 

hole concentration on electron concentration for different quantum wells are discussed. Gain 

spectra of the two-dimension plasmon are calculated.  

© 2021 Optical Society of America  

1. Introduction 

In the last decade, the possibility of amplifying two-dimensional plasmons in graphene has 

been intensively studied [1-6]. The attractiveness of this idea is due to the possibility of 

generating and amplifying plasmons in the terahertz frequency range, in the absence of any 

special waveguides, and at high mode gain factors (~ 105 cm-1). The latter opens up possibilities 

for creating compact radiation sources with a size of the order of several microns. Despite the 

fact that the first experimental evidence has already been obtained on the possibility of 

amplifying plasmons in grapheme [4], there are serious difficulties in the way of realizing this 

possibility. First of all, these are very short lifetimes of nonequilibrium carriers in graphene, 

which lie in the picosecond time range [7], and therefore high excitation powers are required 

to create the inverse population of the bands, which is necessary for amplifying plasma 

oscillations. In addition, to date, the technology of creating graphene with high electron 

mobility, which is required for the plasmon generation, is poorly developed. 

On the contrary, the technology of molecular beam epitaxy of quantum wells (QWs) in 

HgTe/CdHgTe material system is currently well developed and makes it possible to obtain 

QWs with a band gap from zero to several hundreds of meV [8]. This system has more 

flexibility for creating of the desired electronic spectrum compared to graphene structures. In 

addition, the lifetimes of nonequilibrium charge carriers in HgTe quantum wells are orders of 

magnitude longer than in graphene (see, for example, [9,10]), which is another advantage of 

this system. The authors of Ref. 11 drew attention to these advantages and proposed to use 

these structures to amplify 2D plasmons. However, the authors of Ref. 11 considered the case 

of undoped quantum wells only (i.e., the concentration of nonequilibrium electrons was equal 

to that of nonequilibrium holes), neglected the frequency dispersion of polarizability, and did 



not consider the interaction of plasmons with longitudinal optical (LO) phonons. In this work, 

we study the influence of the listed factors on the properties of two-dimensional plasmons: the 

equilibrium electron concentration in the QW, the frequency dispersion of the electronic 

polarizability, and the interaction with optical phonons. 

In our previous work [12], an important role in the recombination of nonequilibrium charge 

carriers in undoped HgTe QW processes with the emission of plasmons was shown. However, 

for doped structures, this issue has not been practically studied to date. 

The article is organized as follows. In the first part of the work, the model that was used to 

describe plasmons is presented, the results of calculations of the spectra of the coupled 

plasmon-LO phonon modes and the absorption coefficients for QWs with normal and inverted 

band structures, as well as for a gapless QW for various equilibrium electron concentrations in 

the QW, are presented. 

In the next section, the processes of recombination of nonequilibrium holes with the 

emission of plasmons are considered. In the third part of the work, the question of the influence 

of the concentration of equilibrium electrons on the value of the threshold concentration of 

holes, above which amplification and generation of plasmons is possible, is studied. The main 

results of this work are summarized in Conclusions. 

2. Dispersion laws of plasmons 

The dependence of the frequency of a two-dimensional plasmon  on its wave vector q can be 

found from the relation [13]:  
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where ( )   is the dielectric constant of the barrier layers, ( , )q   is the polarizability of the 

electron gas in the QW, and c is the light velocity in the free space. Generalizing the Lindhard 

formula [14], we can obtain the following expression for the polarizability of a two-dimensional 

electron-holes system (see the appendix in Ref. 15):  
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where ħ is Planck's constant, indices s and s` denote the number of the subband, including the 

spin index, ( )s k is the energy of an electron with a wavevector k in the s-th subband, ( )sf k

is the electron distribution function, -e is the electron charge, ' ; ,s s k +q k are the phase relaxation 

frequency for the density matrix component ' ; ,s s k +q k . If the wave function of an electron in 

the s-th subband is represented as: , ,( ) ( )exp( ) /s s z i S k kr kr
 
, where z is the coordinate 

of the normal to the QW, S is the area of the QW, then the last factor in the integrand (2) takes 

the form: , ' , , ' ,| | | ( ) ( ) |s s s sdz z z     k+q k k+q k . 

In calculating the polarizability, the electron distribution function in the s-th subband was 

assumed to be as follows:  
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where Fjs is the chemical potential in the s-th subband (js = c if s belongs to the conduction 

subbands and js =v if  s belongs to the valence subbands), kB is the Boltzmann constant, T is the 



temperature. The values Fc,v were found from the given concentrations of electrons and holes, 

correspondingly. In the case when there are nonequilibrium holes in the system, the chemical 

potential for all subbands of the valence band was assumed to be the same and equal to Fv, two 

upper holes subbands being taken into when summed in the expression (2). The corresponding 

distribution (3) in these hole subbands was characterized by the effective temperature Th, which 

could be different from the electron temperature. 

In what follows, we will assume that the barriers are formed by the Cd0.7Hg0.3Te solid 

solution, that is typical for the experimentally studied samples (see e.g. Ref. 8-10). In addition, 

for this composition of the solid solution, there is an approximation of the dielectric constant 

obtained from the fitting to the measured reflection spectrum [16]:  
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In our calculations we used values of κ∞, , ,  from Ref. 16. 

The spectra of electrons in the quantum well were calculated using the 4-band Kane model 

(Hamiltonian 8x8) with allowance for deformation effects. For simplicity, we did not take into 

account the effects due to the absence of an inversion center in the crystal lattice and a decrease 

in symmetry at heterointerfaces, which remove the spin degeneracy. Therefore, in our model, 

the energy subbands are twofold degenerate in spin. Note that experimental measurements of 

the spectrum of electronic levels in the conduction band in almost gapless QWs did not reveal 

spin splitting [17], despite theoretical predictions [18]. Details of the calculations of the 

electronic spectrum can be found in Ref. 19. We consider the HgTe/Cd0.7Hg0.3Te structures 

grown on the (013) plane, since just in these structures the stimulated emission in the mid and 

far IR/THz ranges has been studied experimentally [20-22]. 
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Fig. 1. Energy spectra in 3 HgTe/Cd0.7Hg0.3Te QWs of 5, 6.2 and 8 nm width. k||[100]. 
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We will consider plasmons in narrow-gap quantum wells 5 nm, 6.2 nm, and 8 nm wide. The 

temperature of the lattice and electrons in the conduction band was everywhere assumed to be 

4.2 K. The band gap in the 5 nm QW is 35 meV, QW 6.2 nm wide is gapless, and an 8 nm QW 

has an indirect-gap "inverted" band structure (the band gap at k = 0 is 31 meV) [19]. Fig. 1 

shows the calculated electronic spectra in these three wells. 

When calculating the polarizability by formula (2), we took into account the two ground 

subbands differing in spin in the conduction band, and the two ground subbands differing in 

spin in the valence band. We did not take into account the transitions between the ground and 

excited electron subbands in the conduction band, since the distances between the ground and 

excited subbands are large (236 meV at k = 0 for 8 nm QW, 321 for 6.2 nm QW, and 374 for 5 

nm QW). For this reason, transitions of electrons between the ground and excited electronic 

subbands in the conduction band with the participation of the considered plasmons are 

impossible. Hole transitions between the ground and excited subbands in the valence band were 

also disregarded, since they are insignificant for the problems considered below. 

It is well known (see Problem 6.10 in Ref. 23) that as a result of the interaction of a bulk 

plasmon and a longitudinal optical phonon, two coupled plasmon-LO phonon modes appear. 

The frequency of the low-frequency mode is lower than that of the transverse optical (TO) 

phonon [23], and the frequency of the high-frequency mode is higher than the frequency of the 

LO phonon. A similar picture takes place for two-dimensional plasmons. Fig. 2 shows the 

dependences of the energy of the high-frequency plasmon-LO phonon mode on the wave vector 

for the three considered QWs and three electron concentrations. The figure shows that the 

dispersion dependences of the modes are very close for all considered wells. With an increase 

in the QW width from 5 nm to 6.2 nm, the mode frequency slightly increases, and with further 

growth from 6.2 nm to 8 nm, it slightly decreases. Similar patterns are valid for the low-

frequency mode (see Fig. 3). Note that, due to the weak anisotropy of the electron energy in the 

conduction band, the spectrum of the plasmon-LO phonon modes is also practically isotropic, 

i.e. does not depend on the direction of the wave vector.  
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Fig. 2. Dependence of the energy of the high-frequency plasmon-LO mode on the wave vector 

for three electron concentrations in 5, 6.2 and 8 nm wide QWs. T = 4.2 K, ħνs’k+q;s,k = 1 meV. 

 

For calculations, we used two values of ħνs’k+q;s,k = 1 meV and ħνs’k+q;s,k = 0.1 meV. If we 

assume that ' ; ,s s k +q k corresponds to the scattering frequency of the electron momentum, then 

the corresponding electron mobilities should be in the range 3.6104 – 3.6105 cm2/Vs, which 

is in reasonable agreement with the experimentally measured values of the mobility in similar 



structures (see, for example, Ref. 24). Note that the dependences of the real part of the 

frequency on the wave vector for both high-frequency and low-frequency plasmon-LO phonon 

modes are practically the same for the two values ħνs’k+q;s,k used. 

Intraband absorption of plasmons (Landau damping) leads to their strong decay and, where 

this absorption is possible, plasmons are poorly defined. Landau damping begins when the most 

energetic electrons can absorb a plasmon with a wave vector parallel to the electron momentum. 

At low temperatures, these are electrons at the Fermi level. The wavevector of the plasmon-LO 

phonon mode for the intraband absorption of the plasmon must satisfy the condition [11]: 

( ) ( ) ( )F Fk q k q    h      (5), 

where is the wave vector of the electron at the Fermi level. 
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Fig. 3. Dependence of the energy of the low-frequency plasmon-LO mode on the wave vector 

for three electron concentrations in 5, 6.2 and 8 nm wide QWs. T = 4.2 K, ħνs’k+q;s,k = 1 meV. 

 

The right edges of the end of the dependence of the mode energy on the wave vector in 

Figs. 2,3 correspond to the beginning of Landau damping. It can be seen from the figures that 

for the high-frequency mode the wavevector corresponding to the onset of Landau damping 

increases with the electron concentration. This is due to an increase in the phase velocity of the 

mode with the electron concentration. For the low-frequency mode, another regularity is 

observed: with increasing concentration, the wave vector corresponding to the onset of Landau 

damping decreases. 

Let us now consider the spectra of the absorption coefficients. As is known, the absorption 

coefficient is equal to the doubled imaginary part of the wavevector. In general, frequency is a 

complex analytical function of a complex wavevector. When solving (1), we find the complex 

frequency as a function of the real wave vector q. Let us show how to find the imaginary part 

of the wavevector for the real frequency from this dependence. In a small neighborhood of the 

real wavevector q0, the following expansion is valid: 

0 0 0( ) ( ) ( )( ), ( )g g

d
q q v q q q v q

dq


         (6), 

where ( )gv q is the complex group velocity. In the neighborhood of q0 on the complex plane, 

we find a point q at which the following condition is satisfied: the frequency is equal to the real 

part 0( )q , i.e. 0( ) Re( ( ))q q  . Note that the imaginary part of the frequency at a point q0 

is small compared to the real part of the frequency (the difference is more than an order of 

magnitude). 

Fk



From the above condition imposed on q and from (6) it follows that 

0 0 0( )( ) Im( ( ))gv q q q i q   . From this equality we find  1

0 0Im( ) Im( ( ))Re ( )gq q v q   . 

Since the absorption coefficient is equal to the doubled imaginary part of the wave vector, the 

absorption coefficient as a function of the real frequency can be written as:  

 1

0 0 0(Re( ( ))) 2Im( ( ))Re ( )gq q v q         (7). 

Fig. 4 shows the spectra of the absorption coefficients of the plasmon-LO phonon modes. Solid 

lines correspond to ħνs’k+q;s,k = 1 meV, and dashed lines to 
 
ħνs’k+q;s,k = 0.1 meV. Red lines 

correspond to n = 21011 cm-2, blue - to n = 41011 cm-2, magenta - to n = 81011 cm-2.  
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Fig. 4. Spectra of absorption coefficients of plasmon-LO modes in three QWs. Solid lines 

correspond to  ħνs’k+q;s,k = 1 meV, and dashed lines to  ħνs’k+q;s,k = 0.1 meV . Red lines 

correspond to n = 21011 cm-2, blue - n = 41011 cm-2, magenta - n = 81011 cm-2. T = 4.2 K. 

 

The absorption of low-frequency mode, with the exception of the region close to the 

Reststrahlen band, is completely determined by absorption on free carriers even in a gapless 

QW 6.2 nm wide and therefore drops with decreasing ħνs’k+q;s,k. Absorption due to interband 

transitions is impossible here because of the Burstein-Moss effect. In the vicinity of the 

Reststrahlen band for both the high-frequency and the low-frequency modes, phonon 

absorption plays a significant role in absorption; therefore, here the change in ħνs’k+q;s,k is not 

as significant as far from the the Reststrahlen band. Comparing Fig. 2,3 and Fig. 4 one can see 

that the free carrier absorption increases with a decrease in the group velocity of the plasmon-



LO phonon modes. For the low-frequency mode, the group velocity decreases with increasing 

mode energy, and for the high-frequency mode, with decreasing mode energy. 

For high-frequency mode, the increase in the absorption coefficient at high energies is due 

to the contribution from the transitions of electrons from the valence band to the conduction 

band (except for the 5 nm QW at n = 21011 cm-2). The threshold energy corresponding to the 

switching on the interband absorption, increases with the electron concentration, what is due to 

the Burstein-Moss effect. As easy to see from Fig. 4, the increase in the absorption coefficient 

due to the contribution of the interband transitions can be by an order of magnitude. Note that 

for both types of modes, absorption decreases with an increase in the electron concentration. 

 

3. Electron-hole recombination with plasmon emission 

In narrow-gap QWs, the rate of recombination with the emission of plasmons can exceed those 

of radiative and Auger recombinations [12]. Hereinafter, for brevity, we will use the term 

plasmon recombination to denote recombination with the excitation of the plasmon-LO phonon 

modes. Plasmon recombination processes for undoped HgTe QWs were considered in Ref. 12. 

In this section, we will consider the plasmon recombination of nonequilibrium holes (generated, 

say, by interband optical excitation) in doped HgTe QWs with a high concentration of 

equilibrium electrons. To find the probability of such a recombination, it is necessary to 

quantize the plasmon-LO phonon modes. For this, we will use the results of Ref. 12 in which 

this quantization was carried out. The expression for the operator of the vector potential of the 

electromagnetic field of the plasmon-LO phonon mode has the form [12]: 
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    (8), 

where cq, cq
+ are the plasmon creation and annihilation operators. Using (8) and the Fermi 

golden rule, we can obtain the following expression for the probability of transition of an 

electron with the wavevector k+q from the i-th subband of the conduction band to the empty 

state with the wavevector k of the j-th subband of the valence band with the emission of a 

plasmon with the wavevector q:  
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    (9), 

where ,i jv is the matrix element of the velocity operator between the initial and the final 

electron states. The meaning of Wi,j(k) is the probability of recombination of a hole with the 

wave vector –k with the emission of a plasmon. 

The total rate of the considered recombination can be represented as:  
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where p is the concentration of nonequilibrium holes, W(p) is the ensemble average probability 

of plasmon recombination, and the summation is carried out over all the initial and final states 

of the electron. Since in this work we will consider low concentrations of nonequilibrium 

carriers (less than 31010 cm-2), they practically do not affect the dependence ω(q). In addition, 

due to the low concentration of holes and their low effective temperature (in what follows we 

will assume that it does not exceed 77 K), they occupy a small vicinity of the point k = 0, where 

the hole spectrum is almost isotropic. Therefore, we can introduce the probability of 



recombination of holes with wave vector k, averaged over the initial and final spin states and 

over the direction of k:  

,

,

1
( ) ( )

4
k i j

i j

w k d W
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  k     (11), 

where is the angle between the k direction and the x axis [100]. 

In a QW with an inverted band structure and indirect band gap under consideration, holes 

occupy side valleys. For them, plasmon recombination is forbidden by the energy and 

momentum conservation laws; therefore, in this section, we do not consider such wells. 

Let's start with the recombination in a 5 nm wide QW. Since in this well the band gap is 

greater than the energy of the low-frequency plasmon-LO phonon mode, only the high-

frequency mode can participate in the plasmon recombination. Fig. 5 shows the dependences 

W(p) for different electron concentrations at two effective temperatures of nonequilibrium holes 

Th = 4.2 K and Th = 77 K. 

 

Fig. 5. Hole concentration dependence of ensemble average probability of the plasmon 
recombination W(p) in a 5 nm wide QW. 

 

It can be seen from the Fig.5 that at an effective hole temperature Th = 4.2 K (solid lines), 

W(p) increases with the hole concentration for electron concentrations of 21011 cm-2 and 41011 

cm-2 and decreases for the electron concentration of 81011 cm-2. At Th = 77 K, the 

recombination probability W weakly depends on the hole concentration. Note that as Th changes 

from 4.2 K to 77 K, the probability W(p) for low hole concentrations increases by four orders 

of magnitude. 

In order to explain such regularities, let us consider the dependences of the recombination 

probability on the hole wave vector w(k) shown in Fig. 6. As easy to see from Fig. 6, for electron 

concentrations of 21011 cm-2 and 41011 cm-2, at Th = 4.2 K holes with small wave vectors (low 

kinetic energies) cannot participate in the plasmon recombination. With increasing the hole 

concentration p (and therefore hole Fermi energy), the fraction of holes involved in 

recombination increases giving rise to a sharp increase in the recombination probability. On the 

contrast, at Th = 77 K, the hole gas is practically non-degenerate. In this case, the difference 

between the distribution functions of electrons in the conduction and valence bands can be set 

equal to:  
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and it can be seen from (10) that for a nondegenerate hole gas W(p) should not depend on p 

since the only p-dependent factor exp(-Fv/kBTh) ~ p can be taken off the integral (10). 

 

Fig. 6. Dependence of the hole recombination probability w(k) in a 5 nm wide QW at Th=4.2K. 

 

A completely different situation at Th = 4.2 K takes place for n = 81011 cm-2. In this case, 

the maximum w(k) is at k = 0 (see Fig. 6), and therefore, at Th = 4.2 K, the probability W(p) 

decreases with increasing hole concentration p (Fig. 5). This is also the reason that W(p) at Th 

= 77 K is less than at Th = 4.2 K for this electron concentration since the hole distribution 

function at k ≈ 0 drops with the effective temperature increase. 

As easy to see from Fig. 6, with a decrease in the electron concentration, the interval of 

wave vectors in which holes can recombine narrows. When the electron concentration is less 

than 1.11011 cm-2, this interval vanishes and plasmon recombination becomes impossible. The 

reason for this is the impossibility of fulfilling the energy-momentum conservation law because 

the plasmon energy is less than the effective band gap ( )eff q  (see Ref. 12). 

Let us now consider plasmon recombination in a 6.2 nm wide QW. In this case, both high- 

and low-frequency plasmon-LO phonon modes can participate in the recombination. Fig. 7 

shows the dependences of average probability of plasmon recombination W on the hole 

concentration p for a 6.2 nm wide QW. It can be seen that at Th = 4.2 K, W increases with an 

increase in the hole concentration and decreases with an increase in the electron concentration. 

To explain these regularities, let us consider the w(k) dependences for the high-frequency (main 

figure) and low-frequency (inset) modes shown in Fig. 8. As easy to see, only the low-frequency 

plasmon-LO phonon mode can participate in the recombination of holes with small wave 

vectors. On the contrary, only the high-frequency mode can participate in the recombination of 

holes with k > 0.05 nm– 1. 

Note that the value of the minimum wave vector of the hole, at which the recombination 

with the participation of the high-frequency mode is activated, increases with an increase in the 

electron concentration. This pattern can be understood by graphically analyzing the energy-

momentum conservation laws, taking into account the dependence of the high-frequency mode 

on the wave vector and the linear dispersion law of electrons and holes in a gapless QW. As in 

the 5 nm wide QW at Th = 77 K, the probability W weakly depends on the concentration of 

nonequilibrium holes p. 

0.0 0.1 0.2
10

8

10
9

10
10

10
11

10
12

10
13

10
14

 

 

w
(k

),
 s

-1

k, nm
-1

 n=2*10
11

 cm
-2

 n=4*10
11

 cm
-2

 n=8*10
11

 cm
-2



 

 

Fig. 7. Hole concentration dependence of ensemble average probability of plasmon 
recombination W(p)  in a 6.2 nm wide QW. 

 

 

Fig. 8. Dependence of the hole recombination probability w(k) in in a 6.2 nm wide QW at Th = 

4.2 K for high-frequency plasmon-LO mode. In the insert: w(k) dependence for low-frequency 
plasmon-LO mode. 

 

4. Amplification of plasmons in doped quantum wells under condition of 
population inversion 

Let us now consider the possibility of amplifying the plasmon-LO phonon modes in the 

structures under consideration. Amplification of plasmons is possible under conditions when 

the concentration of nonequilibrium carriers is high enough to create an inverted band 

population. In this case, the amplification of plasmons occurs due to the transitions of electrons 

from the conduction band to the valence band with the emission of a plasmon. In undoped 

structures this issue was studied in Ref. 11,15. As mentioned in the Introduction, there are two 

advantages of coherent generation of plasmons over the generation of waveguide modes. The 

first advantage is that there is no need to create a special waveguide, which is usually created 
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in the terahertz quantum-cascade lasers with the help of metal coatings, which lead to additional 

losses (see, e.g., Ref. 25). The second advantage consists in large (~ 104-105 cm-1) mode gain 

[11,15], which opens the way to the creation of micron-sized terahertz lasers. 

An important characteristic of a structure intended for the coherent generation of plasmons 

is the threshold concentration of nonequilibrium carriers. Upon reaching this concentration, the 

amplification of plasmons is equal to the losses. When the concentration of nonequilibrium 

carriers exceeds the threshold concentration, amplification and coherent generation of plasmons 

is possible. Since lasing is possible only in direct-gap structures, in this section we will consider 

only 6.2 and 5 nm wide quantum wells. 

To find the threshold concentration, it is necessary to calculate the spectrum of the 

absorption coefficient at various concentrations of nonequilibrium carriers. The threshold 

concentration corresponds to the appearance of zero absorption in the spectrum. Fig. 9 shows 

the threshold hole concentrations for 5 nm and 6.2 nm wide QWs for three electron 

concentrations. It can be seen from the figure that amplification of both high-frequency and 

low-frequency modes is possible in a gapless 6.2 nm QW. For the two values ħνs’k+q;s,k 

considered, the generation of the low-frequency mode is possible only for ħνs’k+q;s,k = 0.1 meV; 

the threshold hole concentrations being lower than those for the high-frequency mode.  
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Fig. 9. Threshold concentrations of nonequilibrium holes for three values of electron 

concentration. The squares correspond to the high-frequency mode in the 5 nm wide QW, and 

the circles correspond to the high-frequency mode in the 6.2 nm wide QW. The triangles 
correspond to the low-frequency mode in the 6.2 nm wide QW. Red symbols correspond to 

ħνs’k+q;s,k = 1 meV, black ones – to ħνs’k+q;s,k = 0.1 meV. Filled symbols correspond to Th = 4.2 

K, empty ones – to Th = 77 K. Connecting lines are drawn for the convenience of perception. 

It can be seen from Fig. 9 that with an increase in the electron concentration in the 6.2 nm 

wide QW, the threshold hole concentrations increase. Indeed the absorbed power of the 

plasmon wave is proportional to the sum of the real parts of the intraband and interband 

conductivities. At the threshold hole concentration, the negative contribution of the real part of 

the interband conductivity becomes equal to the positive contribution of the intraband one 

(Drude conductivity) at some frequency. The intraband conductivity is proportional to the 

concentration of electrons and therefore it grows with an increase in the concentration of 

electrons. To compensate for the growth of the real part of the intraband conductivity, an 

increase in the absolute value of the real part of the interband conductivity is required. This can 

be achieved by increasing the concentration of nonequilibrium holes. For the low-frequency 

mode, the figure shows data only for ħνs’k+q;s,k = 0.1 meV. Due to the limitation of the frequency 

of this mode and, accordingly, the density of states of electrons and holes in the corresponding 



energy range, its amplification is possible at ħνs’k+q;s,k less than a certain value. So at ħνs’k+q;s,k 

= 1 meV amplification is impossible. 
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Fig. 10. Gain spectra of the high-frequency plasmon-LO mode in a 5 nm wide QW; n = 41011 

cm-2. Solid line: p = 6109 cm-2, Th = 4.2 K; dashed line: p = 21010 cm-2, Th = 77 K; ħνs’k+q;s,k = 

1 meV. 
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Fig. 11. Gain spectra of the plasmon-LO modes in a 6.2 nm wide QW; n = 41011 cm-2. Solid 

and dash-dotted lines: p = 3109 cm-2, Th = 4.2 K, dashed line p = 91010 cm-2, Th = 77 K. 

ħνs’k+q;s,k = 1 meV for the solid and dashed lines and ħνs’k+q;s,k = 0.1 meV for the dash-dotted 

line. 

 

For the high-frequency mode, there is one more factor that leads to an increase in the 

threshold hole concentration with an increase in the electron concentration. One can see in Fig. 

8 that at small wave vectors of holes, transitions from the conduction band to the valence band 

do not occur due to the impossibility of fulfilling the energy-momentum conservation laws for 

such transitions. In addition, the size of the vicinity of the point k = 0, where such transitions 

are forbidden, increases with increasing electron concentration. Thus, with an increase in the 



electron concentration in the 6.2 nm QW, the number of holes that cannot take part in the 

amplification of plasmons increases. 

In a 5 nm wide QW, only the high-frequency plasmon-LO phonon mode could be amplified, 

because the band gap in this structure exceeds the maximum quantum energy of the low-

frequency mode. Fig. 9 clearly shows that, in contrast to the 6.2 nm wide QW in the 5 nm wide 

QW, an increase in the concentration of equilibrium electrons leads to a decrease in the 

threshold concentration of nonequilibrium holes. This is explained by a decrease the region of 

the k-space of holes near k = 0 where the electron-hole recombination with the plasmon 

emission is impossible with an increase in the electron concentration (see Fig. 6). And at 

electron concentration of 81011 cm-2, such a region is completely absent. Therefore, with an 

increase in the electron concentration in the 5 nm wide QW, in contrast to the 6.2 nm wide QW, 

the fraction of holes that can take part in the amplification of plasma oscillations increases. 

Note that for an undoped 5 nm wide QW, the threshold concentration under the considered 

conditions is 1011 cm–2 at ħνs’k+q;s,k = 1 meV for the conduction band and ħνs’k+q;s,k = 2 meV for 

the valence band. Since there are much fewer holes than electrons, their relaxation times (as 

well as polarizability) practically do not affect the properties of the plasmons under 

consideration. Therefore, in a 5 nm QW, doping makes it possible to reduce the threshold 

concentration of nonequilibrium carriers by about 4 to 30 times as compared to an undoped 

QW. 

Calculated gain spectra for 5 and 6.2 nm wide QWs at various concentrations of 

nonequilibrium holes are given in Fig. 10, 11. It can be seen that the gain reach values 104 - 105 

cm–1. Fig. 11 also demonstrates that the gain of the low-frequency mode is significantly lower 

than that of the high-frequency one. 

Probably, the generation of plasmons can be observed, for example, using the plasmon 

resonator described in [26]. 

 

5. Conclusions 

We found the spectra of the plasmon-LO phonon modes in a 6.2 nm wide HgTe gapless QW, 

a 5 nm wide QW with a normal band structure, and an 8 nm wide QW with an inverted band 

structure at three concentrations of equilibrium electrons. It is shown that, in the three 

considered QWs, the spectra of the plasmon-LO phonon modes differ slightly, provided that 

the electron concentrations in the QWs are equal. The spectra of the absorption coefficients of 

two-dimensional plasmons are found. It is shown that an increase in the concentration of 

electrons in a quantum well leads to a decrease in the absorption coefficients. The rates of 

recombination of nonequilibrium holes, caused by the emission of plasmon-LO phonon modes, 

are found. The threshold concentrations of holes, above which the plasmon amplification is 

possible, are calculated for various electron concentrations. It is shown that in a 5 nm wide QW, 

the presence of equilibrium electrons significantly reduces the threshold hole concentration 

required for amplification of the plasmon-LO phonon modes. It is shown that with an increase 

in the concentration of equilibrium electrons in the range from 2  1011 to 8 1011 cm-2 in a 

structure with a gapless quantum well, the threshold concentration of holes necessary for 

plasmon gain increases. 
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