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1

1 Introduction

1.1 Parkinson disease

Parkinson’s disease (PD) is a neurodegenerative disease (see subsection 6.1) involv-
ing painful and disabling symptoms for the patient. Today, although known and
widespread, its diagnosis at the earliest stages is very complicated. On the one
hand, patients often consult only when they start experiencing motor symptoms
and those appear late in the disease resulting in a late diagnosis. On the other
hand the lesions in the brain due to Parkinson’s disease remain very slight in de
novo (newly diagnosed) patients. Moreover, these lesions are often located in very
fine regions of the brain such as the Substantia Nigra (see Figure 1). The challenge
is therefore to determine new biomarkers that would allow the characterization of
Parkinson’s disease at its earliest stage.

Figure 1: Neuromelanin-sensitive magnetic resonance images of the Substancia Nigra of a
healthy control (a), a de novo PD patient (b) and a 2–5 year PD patient (c). [28]

In this study, we are interested in finding biomarkers in medical MRI images of de
novo PD patients. This work follows that of a former PhD student Verónica Muñoz
Ramírez [19] and aims at solving some of the issues encountered in this previous
work. In particular, we propose and implement a solution to deal with the large
quantity of data that prevented the use of some of the proposed methods. Indeed,
it turns out that MRI images can be very heavy in terms of memory, which often
implies problems of loading and exceeding the capacity of the RAM.

1.2 Unsupervised Anomaly Detection

For early PD diagnosis from MRI, we investigate the possibility to detect subtle
brain lesions. The main difficulty is that such lesions are often not visible to the
human eye and are very small in general. In contrast to brain tumors that can
be quite large, de novo PD lesions are very unlikely to be detected via traditional
segmentation or classification methods which require each class to be represented
enough. Instead, they can be more reliably identified as abnormal tissues or in other
words as brain anomalies.

To address the problem of detecting anomalies in MRI images of de novo PD
patients, we will place ourselves in the context of unsupervised anomaly detection
(UAD). Indeed, we consider a case where no ground truth or labeled images are
available and the only information we have is whether a given image is coming from
a PD patient or an healthy control.

UAD can be described in two main steps, the first one consists in the estimation
of a reference model, computed from data without abnormalities. In our case, the
reference model is computed from healthy subjects images. The second step is the
detection step per se. In our case, the goal is to detect abnormal voxels (3D version

Unsupervised scalable anomaly detection: application to medical imaging 4



1.3 Learning a reference model 2

of a pixel), abnormal meaning far enough or not well explained by the reference
model. Such a decision rule thus requires a notion of distance to the reference
model developed in subsection 5.1.

1.3 Learning a reference model

In order to learn a reference model from healthy data, the choice was made to
consider a mixture of multi-scale t-distributions [10] (see section 2). This model
allows a richer variety of distribution shapes than standard Gaussian mixtures or
more generally mixtures of elliptic distributions without requiring a too large number
of components. In addition, the MRI modalities considered in this work often clearly
exhibit non-Gaussian clusters as in Figure 20.

This type of mixtures has been already successfully used in previous work on
lesions detection, see [2] and [19]. As often for mixtures, the algorithm used to learn
the model was the EM algorithm [17]. Unfortunately, the standard EM implemen-
tation is greatly limited by the number of data points it can handle at once. As
a consequence, in the previous works mentioned above only small (brain rat) im-
ages or a limited amount of larger human brain images were used. For human PD
studies, this may limits the generality of the conclusions we can draw. The goal of
this work is therefore to derive a version of the EM algorithm able to process the
data online or sequentially in minibatches of smaller sizes than the entire available
data set. More specifically, we will consider EM in the context of online learning
using stochastic approximation [29] (see also [18] for a recent book covering related
topics).

1.4 Common thread of the study

This study contains four parts:

1. The first one consists in presenting the multi-scale t-distribution.

2. The second part consists in explaining, implementing and testing on simulated
data the online version of the EM algorithm for mixtures of multi-scale t-
distributions.

3. The third one consists in designing an anomaly detection rule.

4. Finally, the last part is entirely dedicated to the medical application of UAD
using mixtures of multi-scale t-distributions.

2 Mixture of heavy tailed distributions
In this short part, we introduce a generalization of the multivariate t-distribution
which leads to a richer family of distributions referred to in [10] as the multi-scale
t-distribution. We will then consider mixtures of those to build a reference model.

Unsupervised scalable anomaly detection: application to medical imaging 5



2.1 Multi-scale t-distribution (MST ) 2

2.1 Multi-scale t-distribution (MST )

To begin with, we recall the representation of the t-distribution as a infinite scaled
mixture of Gaussians. It has the form:

p(y;µ,Σ,θ) =

∞∫
0

NM(y;µ,Σ/w)fW (w,θ)dw, (2.1)

with fW the probability density function (p.d.f) of an one dimensional positive
scaling variable W, and NM(µ,Σ/w) the M ∈ N∗ dimensional multivariate scaled
Gaussian distribution, of mean µ ∈ RM , scaled covariance matrix Σ/w ∈ RM×M ,
and the scaling factor w ∈ R.

When θ = ν/2 ∈ R and fW = G the p.d.f of the Gamma distribution, we recover
the standard M-dimensional t-distribution of mean µ, covariance Σ and degree of
freedom (dof) ν:

tM(y;µ,Σ, ν) =

∞∫
0

NM(y;µ,Σ/w)G(w; ν/2, ν/2)dw

=
Γ((ν +M)/2)

|Σ|1/2Γ(ν/2)(πν)M/2
[1 + δ(y;µ,Σ)/ν]−(ν+M)/2 ,

with Γ the gamma function, δ the Mahalanobis distance between y and µ with
covariance Σ.

The generalization proposed in [10], is to insert more scaling factors by using the
positive definiteness of the covariance matrix Σ. Indeed, we have by the spectral
theorem that Σ = DADT , with D orthogonal matrix of size M and A a diagonal
matrix of size M [5]. Then we can naturally introduce multiple scaling factors as
∆w = diag(w−11 , . . . , w−1M ), w = [w1 . . . wM ] ∈ RM , such that the scaled covariance
matrix becomes D∆wADT . Then the proposed generalization is as follows:

p(y;µ,Σ,θ) =

∞∫
0

NM(y;µ,D∆wADT )fW(w1, . . . , wM ;θ)dw1 . . . dwM . (2.2)

In addition by considering independent scaling variables, the parameter θ =
[θ1 . . . θM ] ∈ RM , Equation 2.2 becomes:

p(y;µ,Σ,θ) =
M∏

m=1

∞∫
0

N1([D
T (y − µ)]m; 0, Amw

−1
m )fWm(wm; θm)dwm, (2.3)

with the notation A = diag(A1, . . . , AM) and [x]m being the mth element of the
vector x ∈ RM . Then taking ν = [ν1 . . . νM ] ∈ RM and setting fWm(wm; θm) to
G(wm; νm/2, νm/2) we finally get a generalization of the multivariate t-distribution,
notedMST for multi-scale t-distribution:

Unsupervised scalable anomaly detection: application to medical imaging 6



2.2 Mixture of multi-scale t-distribution (MMST ) 2

MST (y;µ,A,D,ν) =
M∏

m=1

Γ((νm + 1)/2)

Γ(νm/2)
√
Amνmπ

(
1 +

[DT (y − µ)]2m]

Amνm

)−((νm+1)/2)

.

(2.4)
Like in the Gaussian case [5], we can give an interpretation of the following

parameters:

• A corresponds to the spread or the volume of the distribution around the
mean, the higher the coefficients of A, the bigger is the spread.

• D gives the orientation of the distribution.

• ν relates to the heaviness of the tail, the higher the coefficients of ν, the lighter
the tail. An illustration is given in Figure 2.

• µ represents the common mean.

Figure 2: MST plot for different parameters.

2.2 Mixture of multi-scale t-distribution (MMST )

In this report, the goal is to be able to make a clustering of a set of points using a
finite mixture of the previously introduced multi-scale t-distributions. We can then
simply define a finite mixture of such a distribution as:

MMST (y;π,
:=µ,Σ,ν︷ ︸︸ ︷

(µk,Ak,D,νk)1≤k≤K) =
K∑
k=1

πkMST (y;µk,Σk,νk), (2.5)

with π ∈ [0, 1]K such that
K∑
k=1

πk = 1.

In contrast to Gaussian mixtures, this kind of mixtures will be really useful to
model non elliptic clusters and to be more robust to extreme values. As illustrated in
Figure 20 our data sets (see subsubsection 6.4.1) can exhibit non Gaussian clusters.

Unsupervised scalable anomaly detection: application to medical imaging 7



2.3 Sampling from aMST distribution 3

2.3 Sampling from a MST distribution

Simulating data that follows aMST distribution is relatively easy [10]. Indeed, we
can see the construction of elements following Equation 2.4, in a generative way, by
first constructing a Gaussian vector X = [X1 . . . XM ]T with X ∼ NM(0M , IM) and
generating a vector of W = [W1 . . .WM ]T with Wi ∼ fWi

, to finally get:

Y = µ+DA1/2

[
X1√
W1

. . .
XM√
WM

]T
. (2.6)

In particular, simulations will be used in section 4 to assess the quality of our
estimation algorithm.

3 Online estimation of the reference model as a mix-
ture

To build a reference model, from a reference data set we consider the previous
family of distribution from which we need to learn the parameters. For mixtures
models, estimation is usually made with the EM algorithm. [8] [17] This model has
already been used in [19] in a similar context, but, in contrast to [19], we are going
to use an online version of the EM algorithm for mixture of MST distributions.
This is motivated by the fact that in [19], only two controls subjects (meaning
healthy subjects) have been studied, this limitation was due to the number of data
available but also by the amount of data contained in just two subjects that results
in exploding the time complexity and RAM issues for the standard EM algorithm.
Having an online version of the EM algorithm forMST distributions will enable us
to process more data by passing the data point-by-point avoiding memory problems.

3.1 General online EM algorithm

The idea of online estimation algorithms is to be able to estimate the parameters
of a model as the data comes, meaning that we don’t need to pass all the data in
one shot. An online version of the EM algorithm have been introduced in [4] for
distributions that follow some restrictions.

Let’s first define the observations, suppose that we have a sequence of n iid
(independent and identically distributed) random variables, where Yi ∈ Y ⊂ RM

is the visible component of XT
i = (YT

i ,Z
T
i ) for i = 1 . . . n, and where Zi ∈ Z ⊂ Rl

is a latent variable. In addition, we suppose that Y is a random variable following
the distribution we aim to estimate, with θ ∈ T ⊂ Rp the parameter. In the
context of online learning, the Yi is one observation, we note that in the standard
EM algorithm the considered pair is XT = (YT ,ZT ), with Y = (Y1, . . . ,Yn) and
Z = (Z1, . . . ,Zn) containing all the observations.

In [4], some restrictions need to be verified before applying the proposed algo-
rithm. The first condition is that the complete data likelihood (Meaning the one
related to the pair X) needs to be of the exponential family form:

f(x,θ) = h(x) exp
(
s(x)Tϕ(θ)− ψ(θ)

)
, (3.1)

Unsupervised scalable anomaly detection: application to medical imaging 8



3.2 The exponential form of theMST distribution 3

with h : RM+l 7→ [0,+∞[, ψ : Rp 7→ R, s : RM+l 7→ Rq, and ϕ : Rp 7→ Rq, for
q ∈ N.

In addition the function s̄(y;θ) = Eθ[s(X)|Y = y] is well-defined for all y ∈ Y
and θ ∈ T. Finally, there exists a convex subset S ⊂ Rq such that ∀γ ∈ [0, 1], s ∈
S, y ∈ Y, and θ ∈ T

(1− γ)s+ γs̄(y;θ) ∈ S, (3.2)

and such that ∀s ∈ S,

Q(s;θ) = sTϕ(θ)− ψ(θ), (3.3)

has a unique maximizer on T denoted by θ̄(s).
We recall the goal of the EM algorithm that is to find a maximum likelihood

estimator (MLE) of θ, the basic idea here is then to maximize f with respect to
θ that can be done by maximizing Q only. Now the basic idea is to replace the
expectation step, in this case, the estimation of s̄, by a stochastic approximation
step [18]. And, by introducing a sequence of learning rates (γi)i∈N ∈ [0, 1]N, θ0 ∈ T,
the sequences:

si = γis̄(Yi; θ
i−1) + (1− γi)si−1, (3.4)

and
θi = θ̄(si) (3.5)

Cappé and Moulines in [4] proved that (θi)i∈N converges to a stationary point of the
likelihood.

Now that we have seen the general algorithm for the online EM algorithm, we
still need to apply and verify the feasibility of this algorithm for a mixture ofMST
distributions (MMST). Namely, we need:

• To find, if it exists, an exponential form for the complete-data likelihood for
theMMST model.

• Find a tractable form of s̄ for the E-step.

• Find a way to maximize Q for the M-step.

3.2 The exponential form of the MST distribution

It is easy to check that a mixture of exponential form distributions has an exponential
form [21], therefore in our case, it is enough to exhibit an exponential form for a
simple MST.

We recall the complete likelihood of aMST distribution Equation 2.3:

f(x;θ) = NM(y;µ,D∆WADT)
M∏

m=1

G
(
wm;

νm
2
,
νm
2

)
. (3.6)

We note that the Gamma distribution belongs to the exponential family, and it can
be written as,

Unsupervised scalable anomaly detection: application to medical imaging 9



3.2 The exponential form of theMST distribution 3

G
(
wm;

νm
2
,
νm
2

)
= hWm(wm) exp(sWm(wm)ϕWm(νm)− ψWm(νm)), (3.7)

with hWm(wm) = 1
wm

, sWm = log(wm) − wm, ϕWm(νm) = νm
2

, and ψWm(νm) =

log
(
Γ(νm

2
)
)
− νm

2
log
(
νm
2

)
. Therefore, the product Equation 3.6 of Gamma laws can

be easily written with:

• hW(w) = hW1(w1)× · · · × hWM
(wM)

• sW(w) = (sW1(w1) . . . sWM
(wM))T

• ϕW(ν) = (ϕW1(ν1) . . . ϕWM
(νM))T

• ψW(ν) =
M∑

m=1

ψWm(νm).

We also notice that

NM(y;µ,D∆WADT) =
M∏

m=1

N1([D
T (y − µ)]m; 0, Amw

−1
m )

, with N1([D
T (y − µ)]m; 0, Amw

−1
m ) = 1√

2πAmw−1
m

exp
(
− [DT (y−µ)]2m

2Amw−1
m

)
. By using the

notation [DT (y−µ)]2m = vec(dmd
T
m)

Tvec(yyT )+vec(dmd
T
m)

Tvec(µµT )−2µTdmd
T
my,

with D = (d1 . . .dM)T , and vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]
T .

We can finally find after some calculations, the exponential form of the MST dis-
tribution as

f(x,

:=θ︷ ︸︸ ︷
µ,A,D,ν) = h(y,w) exp

(
s(y,w)Tϕ(µ,D,A,ν)− ψ(µ,D,A,ν)

)
, (3.8)

with:

h(y,w) =
(w1 . . . wM)1/2
√
2π

M
hW(w) (3.9)

s(y,w) =



w1y
w1vec(yy

T )
w1

logw1
...

wMy
wMvec(yyT )

wM

logwM


(3.10)
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3.3 Online EM for a singleMST component 3

ϕ(µ,D,A,ν) =



d1dT
1 µ

A1

−vec(d1dT
1 )

2A1

−vec(d1dT
1 )vec(µµT )

2A1
− ν1

2
1+ν1
2...

dMdT
Mµ

AM

−vec(dMdT
M )

2AM

−vec(dMdT
M )vec(µµT )

2AM
− νM

2
1+νM

2


(3.11)

ψ(θ) =
M∑

m=1

(
logAm

2
+ log Γ

(νm
2

)
− νm

2
log
(νm

2

))
(3.12)

For future computations, it will be useful to write s as:

s =



s11
vec(S21)
s31
s41
...

s1M
vec(S2M)
s3M
s4M


, (3.13)

with s1m ∈ RM , S2mRM×M , and s3m, s4m scalars for each m ∈ {1 . . .M}.

3.3 Online EM for a single MST component

As developed in [10] EM can already be used for a single MST, we give below the
online EM version according to [4].

3.3.1 Maximization step

We recall that the Maximization step consists in finding the maximum of Q(s;θ) =
sTϕ(θ) − ψ(θ) with respect to θ. To do so, we can find a stationary point of Q by
solving:

∂ϕ

∂θ
s− ∂ψ

∂θ
(θ) = 0. (3.14)

After some computation and derivation, we find:

µ = DS−13 v, (3.15)

with S3 = diag(s31 . . . s3M), and vT = (dT
1 s11 . . .d

T
Ms1M).
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3.3 Online EM for a singleMST component 3

For each m ∈ {1 . . .M} we also have

Am = dT
mS2mdm −

(dT
ms1m)

2

s3m
, (3.16)

with the notation D = [d1, . . . ,dM ]. Equation 3.16 has been obtained by using
the formula of the optimal µ found in Equation 3.15. And using the previous two
equations, we also find an optimization for D:

D = argmin
DDT=IM

M∑
m=1

log

(
dT
m

(
S2m −

s1ms
T
1m

s3m

)
dm

)
. (3.17)

This problem of finding D is tricky, the problem is not convex and the constraints
are that we need D to be orthogonal, this is why in subsubsection 3.3.2, we will
discuss of a efficient method to find D.

Finally the last parameter ν can be optimized separately by solving, for each
m ∈ {1 . . .M} the equation:

s4m − s3m −Ψ(0)(
νm
2
) + log(

νm
2
) + 1 = 0, (3.18)

with Ψ(0) the digamma function (first derivative of the log-gamma function).

3.3.2 Details on the M-step for D

During the M step of the online EM for aMST , we face the optimization problem,
with D = [d1, . . . ,dM ],

D = argmin
DDT=IM

M∑
m=1

log

(
dT
m

(
S2m −

s1ms
T
1m

s3m

)
dm

)
. (3.19)

Problem Equation 3.19 can be seen as an orthogonality constrained optimization
over the set of matrices of size M ×M . Another view consists in approaching this
issue by seeing the problem as a minimization over the Stiefel manifold St(M,M).

To solve Equation 3.19, we use optimization on manifolds, and a version of the
conjugate gradient algorithm designed for manifolds Algorithm 2 with the Polak-
Ribiere line search Equation 7 computing the Stiefel gradient using Equation A.9.

All the details and references are given in Appendix A.

3.3.3 Expectation step

Now that we developed the maximization step, we still need to update the statistics
at each iteration as in Equation 3.4, the computations are very similar to [10]. To
do so, we need to compute at each iteration s̄(y; θ) = Eθ[s(X)|Y = y].

Given the relation find in Equation 3.10, we need to compute Eθ[Wm|Y = y]
and Eθ[logWm|Y = y]. We then denote:

ui−1im = Eθi−1 [Wm|Y = yi] =
α
(i−1)
m

β
(i−1)
m

(3.20)

and
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ũ
(i−1)
im = Eθ(i−1) [logWm|Y = yi] = Ψ(0)(α(i−1)

m )− log β(i−1)
m , (3.21)

where

α(i−1)
m =

ν
(i−1)
m + 1

2
(3.22)

and

β(i−1)
m =

ν
(i−1)
m

2
+

(
d
(i−1)T
m (yi − µ(i−1))

)2
2A

(i−1)
m

(3.23)

Finally, the update for the statistics given the notation introduced in Equa-
tion 3.13, we obtain:

s
(i)
1m = γiu

(i−1)
1m yi + (1− γi)s(i−1)1m (3.24)

S
(i)
2m = γiu

(i−1)
im yiy

T
i + (1− γi)S(i−1)

2m (3.25)

s
(i)
3m = γiu

(i−1)
im + (1− γi)s(i−1)3m (3.26)

s
(i)
4m = γiũ

(i−1)
im + (1− γi)s(i−1)4m , (3.27)

with:

s
(i)
1m = u

(0)
1my1 (3.28)

S
(i)
2m = u

(0)
1my1y

T
1 (3.29)

s
(i)
3m = u

(0)
1m (3.30)

s
(i)
4m = ũ

(0)
1m, (3.31)

for initialization.

The mini-batch version Previously we have seen an update method that only
use one observation per iteration. Implementing this in Python sometimes gives us
some overflow errors due to some high values. The idea is then to derive a mini-
batch version of the online version. This derivation is very simple (e.g [22]), and
given a mini-batch of size B, the new statistics update is:

s(i) = γi
1

B

B−1∑
b=0

s̄(yB×i+b;θ
i−1) + (1− γi)s(i−1) (3.32)

3.4 Online EM for mixture of MST (MMST )

So far, we have seen an algorithm capable of estimating the parameters of aMST
distribution, but our final goal is to estimate the parameters of a finite mixture of
MST distributions. General formulas for a Gaussian mixture is given in [23].
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3.4 Online EM for mixture ofMST (MMST ) 3

3.4.1 Maximization step

For a mixture of K components, we note Z the random variable taking values in
{1 . . . K} such that P{Z = k} = πk, and we denote by θM the parameters of the
mixture containing the pairs (θk, πk), with θk = (µk,Ak,Dk,νk), and the mixture
p.d.f is then:

p(y;θM) =
K∑
k=1

πkMST (y;θk). (3.33)

In the same idea that with aMST distribution, we consider this time the pairs
XT

i = (YT
i ,W

T
i , Zi), and after a small computation, the complete-data likelihood

for the mixture is then [23]:

fc(x,θM) = h(y,w) exp

(
K∑
k=1

1z=k

[
log πk + s(y,w)Tϕ(µk,Dk,Ak,νk)− ψ(µk,Dk,Ak,νk)

])
,

(3.34)
which is well written in the exponential family form, then the online EM applies

with hM(x) = h(y,w), ψM(θ) = 0,

sM(x) =


1z=1

1z=1s(y,w)
...

1z=K

1z=Ks(y,w)

 ,

and

ϕM(θM) =


log π1 − ψ(θ1)

ϕ(θ1)
...

log πK − ψ(θK)
ϕ(θK)

 .

For simplicity, we introduce, the notation sTM = (s01, s
T
M1
, . . . , s0K , s

T
MK

), and
sTMk

= (s1k, . . . , sqk), with q the dimension of the previous vector s for a simple
MST distribution, and k ∈ {1 . . . .K}.

The new function to maximize with respect to θM is this time, QM(sM,θM) =
sTMϕM(θM), to simplify the maximization process, we can optimize each term of
θM separately, and the maximization with respect to πk yields

πk(sM) =
s0k

K∑
ζ=1

s0ζ

. (3.35)

In addition, as we previously said, we can optimize with respect to each θk

separately giving:
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∂QM
∂θk

(sM,θM) = −s0k
∂ψ

∂θk

(θk) + Jϕ(θk)sMk = s0k
∂Q

∂θk

([
sMk

s0k

]
,θk

)
(3.36)

.
The Equation 3.36 means that for each k ∈ {1 . . . K}, the maximization of QM

with respect to θk is the same as maximizing Q(
[
sMk

s0k

]
, .). Hence with previous

notations (the ones for theMST distribution), we have:

θ̄M(sM) =


π̄1(sM)

θ̄(sM1/s01)
...

π̄K(sM)
θ̄(sMK

/s0K)

 . (3.37)

3.4.2 Expectation step

In this step, we need to compute the relevant statistics s̄M(y;θM) = EθM [sM(X)|Y = y].
To do so, we need to compute,

rik = EθM [1Z=k|Y = yi] = P{Z = k|yi} =
πkMST (yi;θk)

p(yi;θM)
,

EθM [1Z=ks(Y,W)|Y = yi] = rikEθM [s(Y,W)|Y = yi, Z = k] .

The last expectation requires to compute for each m ∈ {1 . . .M} (M being the
dimension of the data), and k ∈ {1 . . . K}, uimk = EθM [Wm|Y = yi, Z = k] and
ũimk = EθM [logWm|Y = yi, Z = k]. And we have:

u
(i−1)
imk = E

θ
(i−1)
M

[Wm|Y = yi, Z = k] =
α
(i−1)
mk

β
(i−1)
mk

, (3.38)

ũ
(i−1)
imk = E

θ
(i−1)
M

[logWm|Y = yi, Z = k] = Ψ(0)(α
(i−1)
mk )− log β

(i−1)
mk ), (3.39)

with

αi−1
mk =

ν
(i−1)
mk + 1

2
, (3.40)

β
(i−1)
mk =

ν
(i−1)
mk

2
+

(
d
(i−1)T
mk (yi − µ

(i−1)
k )

)2
2A

(i−1)
mk

(3.41)

.
The update of the statistics is then very similar to the update for a MST

distribution, meaning that for each m ∈ {1 . . .M}, and each k ∈ {1 . . . K}:
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4

s
(i)
0k = γir

(i−1)
ik + (1− γi)s(i−1)0k

s
(i)
2mk = γiu

(i−1)
1mk yi + (1− γi)s(i−1)1mk

S
(i)
2mk = γiu

(i−1)
imk yiy

T
i + (1− γi)S(i−1)

2mk

s
(i)
3mk = γiu

(i−1)
im + (1− γi)s(i−1)3mk

s
(i)
4mk = γiũ

(i−1)
imk + (1− γi)s(i−1)4mk ,

4 Illustrations on simulated data
In order to assess the performance of the online EM algorithm, we just consider
simulated data, and we also compare results with the standard EM where the data
is in a single batch.

4.1 Code source and useful packages

The complete code in python is available on Github1, and we use Pymanopt for
automatic differentiation and calculation of Riemaniann gradient [30].

4.2 Results with the mini-batch version

To assess the online EM implementation, we chose to simulate data that follows a
MMST distribution using Equation 4.1. They are two points we can check:

• The convergence of the parameters: π, µ, A, D, ν.

• The clustering that can be assessed visually and by using some metrics such
as the accuracy and the F1-score.

For the tests, we choose to simulate data in 2 and 3 dimensions and to generate
a mixture of four components. In each case we chose random values for each of the
parameters, and we simulate 106 points.

For the initialization of µ, we use the Trimmed KMeans algorithm [6] which
seems more appropriate than the KMeans algorithm due to the heavy tail of a
MST distribution. We also compute D and A using the spectral decomposition of
the empirical covariance of the training set, and we finally set the ν coefficients to
20.

The learning rate defined in Equation 3.4 is chosen as in [4] with γn = n−0.6.
In addition, in order to accelerate the convergence of the stochastic approxima-

tion made for the EM algorithm, we choose to use Polyak-Ruppert averaging [25].
If we note by Θn the iterates of the updates, we average the iterates starting from
a chosen n0 > 1:

Θ̄n =
1

n− n0 + 1

n∑
k=n0

θn. (4.1)

1https://github.com/geoffroyO/OLEmMMST
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4.2 Results with the mini-batch version 4

This means can also be computed recursively as Θ̄n = (1 − 1
n−n0+1

)Θ̄n−1 +
1

n−n0+1
Θn. This solves some problems encountered with the Robbins-Monro update

giving "smoother" results. In [25], it has been demonstrated that we have indeed a
convergence of the iterates Θn towards the optimal value.

In addition, we should also remind that the decomposition of Σ in Equation 2.2,
gives a particular order for A1 . . . AM , and for the columns of D. But a permutation
of the eigenvalues and the eigenvectors of Σ in the decomposition will still gives
the same law, this is why after convergence, we will have to make the correction to
assess to convergence of the parameters. More specifically, we look at the output π
of the online EM algorithm and look for the permutation between the π we use to
simulate data and π output.

4.2.1 MMST in 2D with 4 components

Firstly, we generate 106 points of aMMST with random parameters as in Figure 3.
We can see that this example is not too hard because the centers of the components
are well separated, but it is not too simple either because of the superposition of
the tails of each component.
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Figure 3: MMST simulation in 2D with 4 components.

In a second part, we choose to assess the convergence of the parameters. For
each parameter, we compute at each iteration the distance between the current
estimation and the real value.

For instance for π, we simply compute ||πi−πtrue||2. But for µ = (µ1 . . .µK), A,
D, and ν = (ν1 . . .νK), we compute for each cluster its distance with its true value
and then we compute the mean of the distances. Namely, for D, with K clusters we

have to consider D1 . . .DK . Then we compute 1
K

K∑
k=1

||Di
k−Dk||fro at each iteration

i.
The results are in Figure 4, we use a batch size of 200 and we notice that con-

vergence appears around 500 iterations with a tolerance fixed to 10−2, it means that
we used 200 = 50000 points before convergence, this result will be considered when
we will compare the online EM with the standard EM algorithm. For information,
processing the 106 points with a batch size of 200 took 5 minutes, this measure
is simply informative mostly because it is very dependant on the implementation,
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nevertheless you can find in Table 1 some computation time results compare with
standard EM until convergence with a fixed tolerance at 10−2.
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(a) π sequence.
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(c) A curve.
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Figure 4: Convergence results for the parameters. (Iterations values in blue, Polyak averaging in
orange)

Now that we have illustrated the convergence result, it would be interesting to
assess the quality of the clustering. The clustering is an essential step of this report,
where we will have, in the application to cluster voxels in de novo Parkinsonian pa-
tients. In Figure 5, we can visually see the result of the clustering, each components
of the mixture seems well assigned, this is also verified with an overall 99% accuracy
and f1-score for each class. Note that here the number of components is fixed to
the true one.
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Figure 5: Clustering results with 4 components obtained with online EM.

In parallel and as an illustration, we have in Figure 6 the obtained clustering
using a Gaussian Mixture Model with 4 components initialized using the Trimmed
Kmeans too. We see that the algorithm performs really bad modelling the long tails
of eachMST component with infinite covariance.

4.2.2 MMST in 3D with 4 components

We will now display the results in three dimensions. In this case, we use the same
method as in the previous section: firstly we simulate 106 points, then we assess the
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Figure 6: Clustering with 4 components with a Gaussian mixture model.

convergence of the parameters and finally the performance of the clustering.
To simulate the 106 point, the same method is used as in Equation 2.2, giving

the 3D plot in Figure 7.

Figure 7: Simulation of 106 points following aMMST in 3 dimensions with 4 components.

The next step is now to assess the convergence of the parameters. The results
are in Figure 8. As in two dimensions, we note that we attain convergence after
the 700th iteration, still with a tolerance fixed at 10−2, the same batch size of 200 is
used here. You can find computation time results in Table 1. We can notice that an
increased budget is needed for convergence compared to the two dimensional case

Finally the clustering in Figure 9 is as good as in 2 dimensions with 99% accuracy
and f1-score for each cluster.
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Figure 8: Convergence results for the parameters. (Iterations values in blue, Polyak averaging in
orange)

Figure 9: Clustering with 4 components obtained with online EM.

4.3 Comparison with standard EM

Now that we have illustrated some convergence results with the online version of
the EM algorithm, it could be interesting to compare the behaviour of the standard
EM algorithm forMMST described in [10] with the one of the online version.

Intuitively we can think that the standard EM algorithm will converge faster (in
term of number of iterations), and the convergence curves will be smoother than the
ones of the online version. Indeed, this is what we observed. In Figure 10, we have
sampled 5 million points from a predefined MMST , then we applied to this data
the standard EM algorithm along with the online one, and we plot the same curves
as in Figure 9.

The clustering in Figure 12 seems also as efficient between the standard and the
online EM, both have 99% accuracy on the test set. Finally, the main difference
we have between both implementations is in term of time complexity, the standard
EM is a slower than the online one before convergence as seen in Table 1, but this
is very dependent on the implementation, the real advantage of the online version
is that it avoids RAM issues when we have many data.
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Figure 10: MMST simulation in 2D with 4 components.
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Figure 11: Convergence results for the parameters. (Online EM iterations values in blue, Online
EM Polyak averaging in orange and Standard EM iterations values in green)

Standard EM Online EM
2D 30 sec 27 sec
3D 110 sec 53 sec

Table 1: Online EM vs standard EM computation time complexities in 2D and 3D with 4
components until convergence with fixed tolerance at 10−2.
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Figure 12: Standard EM (Left) vs online EM (Right) clustering result.
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5 Unsupervised anomaly detection: principle & meth-
ods

In this section, we explain the general framework of UAD and the different methods
that we test / use.

5.1 Measure of coherence

If we recall the context, we know have a reference model (MMST ) with trained
parameters (online EM). The idea here is, given a random point y, to be able to
answer to the question:

Is y an anomaly?

To do so, we need to find a sort of distance between y and the reference model,
that we will preferably call a measure of coherence towards the reference model.

Empirically the lower the likelihood the more abnormal is an observation, and
using Equation 3.6, we remark that the weights w of this mixture:

wy
m = E{wm|Y = y}

=
K∑
k=1

P{Z = k|Y = y}E{wm|Y = y, Z = k}

=
K∑
k=1

rykumk,

can be used as a measure of proximity of the mth dimension of the point y with
ryk and umk defined in subsubsection 3.4.2. We also note that the higher the weight
of a point, the better it is, this is why for the rest of the study we will assume that
if a point has a high weight in one dimension then it is a normal point so that our
final proximity measure is defined as:

wy = maxwy
1 . . . w

y
m.

Indeed as in Figure 13 we make the choice to characterize a point as a regular
point as soon as it is a regular point for one of the dimensions.

Figure 13: MST distribution with one outlier (1) and an extreme "regular" point (2).
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5.2 Design of an anomaly detection rule

Now that we have defined our coherence measure, we need to find a threshold for
this measure so that if wy < tresh then y is an anomaly. This can be defined by
fixing an acceptable False Positive Rate (FPR) α, and finding the 1−α quantile, of
the weights distribution on all the standard points used for the training such that
for any point p, P{wp ≤ tα} = α. Then we have the following rule for the abnormal
voxel detection:

Given a point y and its coherence value wy, y is abnormal if wy ≤ tα.

Another measure of coherence, the log-score: During our study, we also
tried to use what we call the log-likelihood score, which is for a point y and with f,
the likelihood function obtained after the EM algorithm, log f(y). Intuitively, the
lower is this value, the better the chances are that y is an anomaly. Unfortunately,
in the application it appears that this measure gives worst results that the measure
based on the weights.

6 Application to anomaly detection in medical im-
ages

6.1 Parkinson disease (PD) Overview

Parkinson’s disease (PD) is an ever-present neurodegenerative condition with a
prevalence of 66-1500 per 100,000 in Europe and 10,000,000 cases worldwide [13]. In
1817, James Parkinson described first the disease where patients have "Involuntary
tremulous motion, with lessened muscular power, in parts not in action and even
when supported; with a propensity to bend the trunk forward and to pass from
a walking to a running pace: the senses and intellects being uninjured" [11]. Age
is an important factor of the disease, which is tagged as rare before 50 years and
increasing prevalence after 60 years, and the disease affects more the male with a
3:2 ratio male-female [13]. For more than 200 years now, tremendous effort has
been made to make the life of PD patients easier lowering the symptoms burden
of the disease. The mortality has been dramatically reduced passing from a 3:1
ratio of deaths to a 1.52:1 ratio between 1990 and 2010. The motor symptoms of
the disease can appear 20 years after the first symptoms as depression, rapid eye
movement disorder that makes a very early diagnosis very hard to detect. Usually,
as in Figure 14, the diagnosis appears as the first motor symptoms appears. Today,
there is no way for radiologist or neurologist to detect PD patients before the early
stage stated in Figure 14. This is why a lot of effort is put in the ability to find new
biomarkers for the early detection of Parkinson’s disease so that the medical staff
can tackle the disease earlier. In our work, based on MR imaging, we aim to:

• Be able to diagnose early stage PD patients.

• To find new biomarkers (lesion location in the brain) for the early diagnosis
of Parkinson’s disease.
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Figure 14: Clinical symptoms and time course of Parkinson’s disease progression. [13]

6.2 Medical Imaging: MRI Qualitative Imaging

Anatomical MR images provide detailed information about the shape and size of
brain regions in vivo. The MRI has been possible thanks to the work of Paul
Lauterbur and Peter Mansfield that greatly contributed to it. The main steps of
MRI are illustrated in Figure 15.

Figure 15: MRI pipeline illustrated.

The acquisition part is not under study here. The processing part will be study
and the analysis is the core of this report.

The MRI data are quite complex and depend on a certain number of factors.
First, the data are liable of a number of artifacts as head movement during the
acquisition. There are also obviously a lot of brain anatomical variability between
individuals. The MRI data are also very large, indeed typically a voxel (the 3D
version of a pixel) represents a volume of order 1mm× 1mm× 1mm, hence for one
individual it is possible to have millions of voxels. A major part of MRI analysis is
to deal with those issues, including (none exhaustive list) [24]:

• Quality control: presence of artifacts

• Motion correction: realignment of scans for one individual

• Spatial normalization: Transport all the images of different individuals in
one common referential space where we can compare them all, and conduct a
group study.
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Figure 16: Subcortical structures. [31] Figure 17: MNI space.

• Spatial smoothing: Voluntary blurring of the data to reduce the noise in
the images and inter-individual variability.

MR images are made by the response to a magnetic field of protons of water
molecules present in the human body to particular excitation. Since protons from
different tissues will react differently, the different structures of the brain can be
contrasted.

What we call T1-weighted images differentiate tissues by their longitudinal relax-
ation times. Fat quickly realigns its longitudinal magnetization with the magnetic
field thus it appears bright, on the contrary, cerebrospinal fluid presents in sulci and
ventricules, has a much slower longitudinal magnetization realignment and therefore
appears dark. T1-weighted images are largely used for anatomical exploration since
the tissues and structures in the brain are clearly distinguishable.

However, subcortical structures, like the Substantia Nigra, the subthalamic nu-
cleus, the globus pallidus and the red nucleus (see Figure 16) that are areas of interest
for Parkinson’s Disease [26] are not really distinguishable in standard T1-weighted
images.

Diffusion Imaging monitors the displacement of water molecules in the brain,
again, the diffusion of water molecules depends on the histological properties of the
tissues [15]. It provides unique information about myelin fibers that constitute the
white matter.

What we call Diffusion Tensor Imaging (DTI) characterizes the direction of dis-
placement. DTI requires the acquisition of at least six diffusions weighted images,
each obtained with different orientations. From there, we can obtain two other
quantitative measures. The Mean Diffusivity (MD) which is a scalar value that
quantify the rotationally invariant magnitude of water diffusion. And the Fractional
Anisotropy (FA) that is also a scalar value describing the degree of anisotropy in
water displacements.

The MNI space
When we work on a group study, there are a lot of different individuals with all
their particularities that makes their brain unique. That is why all the images
are different, a voxel at position (x, y, z) is not necessarily belonging to the same
structures for every subject of the study. We thus need a way to normalize all those
images so that a particular voxel can be compared between all the subjects [3].
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To do so the MNI space has been computed by using 152 subjects, it is roughly a
representative image of the normal brain. Then given a potential subject, the idea
is to project the MRI image onto this MNI space, this often implies an interpolation
(to create a new image based on the deformation field computed to move the image
from the individual space to the MNI space) and thus, a loss of information. In
Figure 17, there is an illustration of one axial slice (fixed z coordinate) of the MNI
space, we note that it is quite blurred. Intuitively this blurring seems normal if we
interpret the MNI space as the average brain computed on 152 different brains.

6.3 Datasets

6.3.1 PPMI

The Progression Parkinson’s Marker Initiative (PPMI2) [16] is a landmark study
collaborating with partners around the world to create a robust open-access data
set and biosample library to speed scientific breakthroughs and new treatments. This
dataset contains 57 healthy subjects (named controls) and 130 de novo PD patients
(ie: Recently diagnosed) for each of the subject a diffusion image is available, from
which we can extract the Mean Diffusivity and the Fractional Anisotropy.

As we have seen each patient is unique, this is why so as to be able to compare the
subjects between them, we need to put all the subjects in the same space. We then
choose the MNI space for our study group, this way, we are now able to compare
each voxel value at the same common location in tissues or structures.

Figure 18: FA (Left) and MD (Right) for a subject from the PPMI dataset.

6.3.2 AGIR-Park study

This dataset is a lot smaller compared to PPMI with only 8 controls subjects and
20 patients. All images have been acquired on a Phillips 3T scanner at the IRMaGe
platform in Grenoble.

This study is composed of 11 females and 9 males de novo PD patients that are
between 53 and 92 years old, and 4 healthy females and males who are between 47
and 82 years old.

For each subject, we have:

• Anatomical T1 image

• DTI scan from which FA and MD features have been previously extracted
2https://www.ppmi-info.org/about-ppmi
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• Blood perfusion scan: defined as the volume of blood passing through a given
amount of brain tissue per unit of time.

As pre-processing we chose to co-register all individual images on the correspond-
ing T1 scan and we normalize the Neuromorphometric Atlas onto the T1 space of
each subject. An Atlas is simply a segmentation of the brain generally in the MNI
space delimiting its different structures.

Figure 19: T2 (Top Left), CBF (Top Right), FA (Bottom Left), and MD (Bottom Right) for a
subject from the Agir-Park dataset.

Note that the post-processing applied for the AGIR-Park data set is better than
the one applied for the PPMI data set since we do not bring all the subjects in
one common spatial space, we only transform the atlas to the spatial space of the
subject.

6.4 Unsupervised anomaly detection: proposed method

According to previous work as in [2], using mixtures of multivariate generalized
students distributions has been pretty successful in unsupervised detection of large
tumor in brain rats. But the case of large tumors is "easier" to detect in the sense
that the human eye can easily remark them. In [27], it has been shown that Diffusion
and Perfusions imaging contains good characteristics in detecting anomalies in the
brain of de novo Parkinsonian patients.

During her thesis [19] Veronica Munoz Ramirez, have been unable to use this
approach on large large data sets. Indeed, detecting anomalies using a mixture
model implies using the EM algorithm to estimate the mixture parameters. But in
the standard EM version all the data need to be passed throw the algorithm in one
shot. With a small number of subjects, this is achievable, but when the data grow
loading all the data into the RAM becomes difficult.

[19] also use a completely different method by using Variationnal Autoencoders
(VAE) [20]. By using VAE, [19] got compelling results with a good accuracy implying
that the network was indeed detecting lesion from PD in the brain.
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Now, given the sequential version of the EM algorithm we have seen previously
for MMST model, our work will be to use all the possible data of PPMI so as to
compute a mixture model, and this time we shouldn’t be annoyed by RAM issues
or memory complexity problems. Then we will be able to compare the results with
the VAE method.

6.4.1 Estimation of the reference model (PPMI)

For this step the goal is to estimate what we call an reference model. In the PPMI
dataset, we have two different kinds of subjects: the PD patients and the control
subjects (ie: healthy subjects).

Let’s denote a voxel v and VH the set of voxels that belong to control subjects.
We also note YH = {yv|v ∈ VH} as the set of features vectors of each voxel for each
control, with yv = (FAv,MDv) ∈ R2 .

When we refer to estimate a healthy model, it means estimating the parameters
of the supposed distribution of the yv.

A first visualization for a control in Figure 20 shows that we can’t simply model
the data with a Gaussian Mixtures mostly because of the high tail that appears in
this plot that would probably be seen as another cluster with a Gaussian mixtures
model.

Figure 20: FA - MD scatter plot for a control.

The observation in Figure 20 shows why we use mixture of MST distributions
to model the data. In addition we will be able to use the sequential version of the
EM algorithm.

The number of clusters that is an input parameter of the EM algorithm can be
determined by using the Bayesian Information Criterion (BIC) , that introduces a
penalty on the amount of data to the maximum log-likelihood value so as to prevent
overfiting.

After running the online EM algorithm we obtain the parameter θM that is the
maximum likelihood estimator so that the features vectors yv from healthy voxels
approximately follow a MMST distribution of parameter θM, we also have an
assigned cluster for each voxel.

For a control and for each voxel we can then assign a cluster resulting in a
complete segmentation of the brain as in Figure 21 , where we used KBIC = 9. We
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note that the segmentation highlights some structures of the brain as the ventricles
and some part of the white matter.

Figure 21: Segmentation result K = 9 on a control subject.

Finally, we have seen that the pre-processing done in the PPMI dataset can
greatly affect the boundaries of the structures, and empirically, we find that the
boundaries of the ventricles are often badly processed. But in Figure 21, it appears
that those boundaries form a specific class, hence they should not be detected as
anomalies in further steps.

Figure 22: Signatures of each controls from PPMI dataset used for training giving the
proportion of each class for each subject.

6.4.2 Anomalies detection by comparison to the healthy model (with
PPMI).

Now, we have a voxel-wise model trained on healthy subjects, and we would like to
discriminate PD subjects from the healthy ones. An idea is then to detect abnormal
voxels for each subject, then we will define a threshold counting the number of
abnormal voxels that will characterize PD subjects from healthy subjects.

First there is a need to define what is an abnormal voxel. To do so we use the
rule described in subsection 5.1.

Given the anomaly detection rule, for each test controls and patients, we can
count the number of abnormal voxels and find the best threshold Nab (in number
of anomalies) that maximize a chosen metric such that if a subject as N abnormal
voxels with N > Nab then the subject is classified as PD and vice-versa.

6.4.3 Validation and testing (PPMI)

To be able to compare our result with the VAE method in [20], we are going to
describe and use the exact same pipeline for the validation of the model.
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Figure 23: Weights map with K = 9 on a control subject.

The method is to validate the model using a 10-folds cross-validation. Since we
are using the exact same data as in [20], we are also going to use the exact same
folds. Then, for each fold we are using 42 controls to train the model and 15 controls
to test the model, finally all the patients are used for the testing part. Once the
model is trained, we compute for all the voxels and all the subjects their weights.

Then, knowing that we also want to possibly characterize structures that are
possibly more affected by PD (we already know that white matter and subcortical
structures as the Substantia Nigra, Red Nucleus are quite affected by PD), we are
going for each structure s to choose an appropriate threshold tαs , in our case for
a 9 class model, we choose αs = 0.25% = α for all structures and tα is computed
empirically on the training controls. We finally compute the number of abnormal
voxels for all the test controls and the patients.

Now, we note that we have a very imbalanced testing data set with a 15:130
test controls-patients ratio so we have to find metrics that will compensate this
imbalance, for instance choosing the accuracy will be a very bad choice. In ad-
dition, a good choice would be to choose the G-mean metric which is appropri-
ate for imbalance data sets [14], with gmean =

√
Sensitivity × Specificity and

Sensitivity = True Positive Rate, Specificity = True Negative Rate, the ROC-
AUC is also a good choice since it also takes into account the True Positive Rate
along with the False Positive Rate. Hence, those two metrics can gives us a good
intuition on how well our model can differentiate PD patients from control subjects.
The choice of Nab is done in accordance with the maximization of the g-mean met-
ric. In Figure 24 we got good result compared with the VAE method [20], with a
small increase given the g-mean metric and smaller boxes, meaning less variations
between the folds, but a small decrease concerning the AUC metric but still with
fewer variations between folds. The global results are as expected with some struc-
tures that stands out for PD detection as the Substantia Nigra, the White Matter
but also the parietal lobe, that is what the authors of [20] noticed also.

What we have seen is that our model can detect more or less PD patients from
healthy subjects. What we can do is then to look at the location of the detected
anomalies. Intuitively, we can suppose that the "anomalies" detected in the controls
are going to be edges of structures, but for the patients, we expect to find grouped
anomalies and not simply isolated voxels. This intuition is confirmed for some PD
subjects as it is illustrated in Figure 26 where The anomalies for control subjects
are detected on the edges of the structures but not for for PD subjects.
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Figure 24: Boxplots representing the results for
the g-mean and AUC metric by structures.
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Figure 25: Best ROC curve obtained
in the white matter.

Figure 26: Anomalies in red for a control (Left) and a PD patient (Right).

6.5 Results for AgirPark data set

In order to know if the method is generalisable, we used data from AgirPark study.
We have indeed a lot less of data for training and testing but we, this time have
another perfusion feature (the CBF). Then, we use the same pipeline as with PPMI,
by noting VH the set of voxels belonging to healthy subject, with YH the set of fea-
tures containing the yv = (FAv,MDv, CBFv) ∈ R3 for each voxel v. For validation
and testing, since we have less data we only did a 5-folds cross-validation, with 6
controls for the training, 2 for the testing and all the patients for the testing. The
results in Figure 27 suggests there is a great variability between the folds, controls
are often in the right class but it varies a lot for the patients.
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Figure 27: Binary classification results of the subjects from AgirPark (x-axis) over the 5 folds
(y-axis) for the entire brain (Left) and the white matter (Right). Red color means wrong

classification, blue color means good classification.

7 Conclusion

7.1 Future work

At the end of this report, many lines of thought to continue the work opened up.

Online EM Part of them consists in the improvement of the online EM algorithm.
Starting by exploring acceleration methods for convergence influencing on the choice
of the step size for the update of the statistics in Equation 3.2, but also by acting
on acceleration of the stochastic approximation using methods as ZAP [18]. Finally
it would also be interesting to study the influence of the batch size, and the way in
which to pass the data in the algorithm. Indeed, in our case we could think about
passing data several times by "working with epoch" in the algorithm.

Features improvement In our study, we only studied the data using the quanti-
ties FA, MD, CBF. However we could take advantage of the work done in [20] using
more complex features learned by the VAE to feed the EM algorithm.

Coherence measure improvement One of the problematic aspect in the notion
of measure of coherence developed in subsection 5.1 is that we are given a multi-
dimensional model and we reduce it to one scalar value that may not be a proper
distance. An idea we wish to elaborate on in the future is the notion of multivariate
quantile [12]. Indeed, using multivariate quantile regression [7] could help us to
define multivariate quantile regions so that we should loose less information than
with the current coherence measure.

Account for the spatial information As we have seen, the reference model is
currently calculated on all the voxels, without taking their locations into account.
However, the location of a voxel is an important information, as we have seen in
subsubsection 6.4.3, where we see that certain areas of the brain are more sensitive
to Parkinson’s disease than others. Taking into account the spatial dependency
between voxels could be done using patches of voxels as the items of interest rather
than each voxel alone. More traditionnaly, Hidden Markov Random Fields (HMRF)
models are also good candidates for this goal. In particular, it would be interesting
to generalize our use of online learning and stochastic approximation schemes in the
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Markov field context. This would both save time in parameter estimation and allow
larger data sets to be processed.

7.2 Contributions

This work allowed the implementation of the online EM algorithm based on the
exponential form of the MMST , and provided an efficient way to deal with the
M-step for the D parameters (orthogonal matrices). It also lifted the limit on the
amount of data that could be processed with the standard EM algorithm, dramati-
cally reducing computing time and memory management issues. Finally, it proposed
of an effective coherence measure for anomaly detection based on quantities that can
be computed from the mixture model and that can be interpreted as weights.

Data and Code availability: Data used in this report were obtained from
the Parkinson’s Progression Markers Initiative (PPMI) database (www. ppmi-
info.org/data). For up-to-date information on the study, visit www.ppmi-info.org.
PPMI - a public-private partnership - is funded by the Michael J. Fox Foundation
for Parkinson’s Research and funding partners, including Abbvie, Allergan, Avid
Radiopharmaceuticals, Biogen, BioLegend, Bristol-Myers Squibb, Celgene, Denali,
GE Healthcare, Genentech, GlaxoSmithKline, Lilly, Lundbeck, Merck, Meso Scale
Discovery, Pfizer, Piramal, Prevail Therapeutics, Roche, Sanofi Genzyme, Servier,
Takeda, Teva, UCB, Verily, Voyager Therapeutics and Golub Capital.

The code that supports the findings of this report are available at Github3.

3https://github.com/geoffroyO/OLEmMMST
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Appendices
A Details on the M-step

A.1 Optimization manifolds

In this part we introduce some tools and notions to be able to solve the following
problem:

min
x∈M

f(x), (A.1)

withM a manifold, and a function f :M 7→ R.
The main references used are [1] and [9]. The explicit definition of a manifold

will not be explained here and is given in [1].

A.1.1 Notions

Theorem 1. Rn×p (set of real matrix of size n × p, Sn(R) (set of real symmetric
matrices of size n × n), St(p, n) (set of real matrices of size n × p with orthogonal
columns) are manifolds.

In addition, we have

dim(St(p, n)) = np− 1

2
p(p+ 1). (A.2)

A simple proof can be done to show that St(p, n) is a manifold using the sub-
mersion theorem given in [1].

A.1.2 Tangent space and derivation

To solve Equation A.1 we are tempted to use a kind of gradient descent. In Rn, the
direction of the steepest descent if given by

η = lim
ϵ→0

1

ϵ
argmin

d∈Rn,||d||<ϵ

f(x+ d). (A.3)

The main issue with this definition is that x+ d makes no sense in St(p, n) since
it is not a vector space. This is why we need to investigate for a method to define
differentiability over a manifold.

The intuitive approach is to consider a smooth curve γ : [0, 1] 7→ M on a manifold
M through x (ie: γ(0) = x), and to generalize the directional derivative by using
d(f(γ(t)))

dt

∣∣
t=0

. We can now define the tangent space of a manifold at some point.

Definition 1. We define the tangent space of a manifoldM at x as the set,

TxM = {γ̇(0), such that γ is a smooth curve and γ(0) = x}. (A.4)

Now that we have define the tangent space of a manifold, we have to find a way
to define a metric in the tangent space so that we are able to solve the steepest
descent as in Equation A.3. This can be done by endowing the tangent space TxM
(x ∈ M)with an inner product < ., . >x. A manifold whose tangent spaces are all
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endowed with a smoothly varying inner product is called a Riemannian manifold,
and we note g =< ., . > the associated metric. Also remark that a vector space
endowed with an inner product is a Riemannian manifold called an Euclidian space.

We can now give a definition of the gradient of a function defined over a manifold,

Definition 2. The gradient at x ∈M of a scalar function f :M 7→ R defined over
a Riemannian manifold, (M, g) denoted by gradMf(x) is the only vector (Riesz
representation theorem) of TxM that satisfies:

< gradMf(x), ξ >= Df(x)[ξ] for all ξ ∈ TxM. (A.5)

Now, we have seen that St(p, n) is in fact a submanifold of Rn×p, its tangent
spaces can then simply inherits from the inner product of Rn×p, it’s say it the
Froebenius inner product < A,B >= tr(ATB), and it is possible to define for
each tangent spaces the orthogonal projection, for X ∈ St(p, n), PX : TXRn×p 7→
TXSt(p, n) such that for all ξ ∈ TXRn×p (we can also remark that TXRn×p = Rn×p):

< ξ − PX(ξ), PX(ξ) >x= 0. (A.6)

Proposition 1. We finally get using Equation A.6 and Definition Equation A.5
that:

gradSt(p,n)f(X) = PX(gradRn×pf(X)). (A.7)

Proposition 2. The orthogonal projection PX : TXRn×p 7→ TXSt(p, p) is given by

PX(Z) = (I−XXT )Z +Xskew(XTZ), (A.8)

with skew(M) = 1
2
(M −MT ).

Doing the computation as in [9], finally gives us, by denoting ∇̃ the gradient on
the Stiefel manifold the formula

∇̃Xf = ∇Xf −X∇Xf
TX. (A.9)

A.1.3 Retraction and Parallel transport

In the context of optimization we are now going to define two points of interest that
will help us to fully understand the concept of Riemaniann optimization:

• Retraction.

• Parallel transport of vector from a tangent space to another.

Definition 3 (geodesic). A geodesic of a manifold M is a smooth curve with zero
acceleration,

d2γ(t)

(dt)2
= 0. (A.10)

Without entering in the detail, we note the application that maps TxM 7→ M,
and which associate at ξ ∈ TxM the value γ(1), with γ being the geodesic such that
γ(0) = x and γ̇(0) = ξ, expx(ξ) = γ(1) and it is called the Riemaniann exponential.
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Retraction
So far we have seen that the standard steepest descent makes no sense in a Rie-
maniann manifold because it is not necessarily a vector space. But previously we
have been able to define a metric and a proper definition of the tangent space of
a manifold at a given point allowing us to define the gradient for scalar functions
defined on manifold. Given the gradient and a stepsize we could obtain the steepest
descent by using a retraction which is an application that maps vectors from TxM
to M. The natural retraction that we can use is the Riemaniann exponential, but
we have to be careful about the fact that computing geodesics can be very long.

Definition 4 (Retraction). A retraction is an application that maps a vector of the
tangent space at some point to an element of the manifold, it is noted Rx : TxM 7→
M.

Optimization
With what we have seen so far, we can now define the iterates of a Riemaniann
Gradient descent of a function f :M 7→ R, given a step ti > 0 as:

xk+1 = Rxk
(−tkgradMf(xk)). (A.11)

Parallel transport
In some optimization methods, we will sometimes need to compare the gradients of
previous iteration with the actual gradient. The issue here, with manifolds is that
those two gradients (the current and the previous ones) belongs to two different
tangent spaces, so ξxk+1

− ξxk
for ξxk+1

∈ Txk+1
M and ξxk

∈ Txk
M is ill defined. To

counter that, intuitively we would like to have an operation that brings ξxk
into the

current tangent space Txk+1
M.

Given the iterates in Equation A.11, we know that xk+1 is in fact equal to Rxk
(ξk),

we then only need to compare ξxk
with ξRxk

(ξk).
This is possible by using a vector transport for which we will not give a rigorous

definition that you can find in [1].

Definition 5 (Transport Vector). A Transport Vector is a smooth application T
that given a point x ∈M, and given two tangent vectors ξ, η ∈ TxM transport the
vector η into the tangent space of Rx(ξ).

A.2 Conjugate Gradient: the Euclidian case

In this paragraph we are considering the following problem:

min
x∈Rn

xTQx− bTx, (A.12)

with Q ∈ Rn×n positive definite.

Definition 6 (Q-conjugacy). Let Q be a symmetric matrix, (d1, ..., dk) a family of
non-zero vectors in Rn. This family is said to be Q-conjugate if for all i ̸= j we
have:

dTi Qdj = 0. (A.13)
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From this definition the most important property that makes the conjugate gra-
dient method very useful for this kind of problems comes out.

Proposition 3. If Q ≻ 0, and (d1, ...dk) with k ≤ n is a family of Q-conjugate
vectors then they are linearly independent.

Proof. We take α1, ...αk ∈ R, and we suppose that α1d1 + · · · + αkdk = 0, we then
have, multiplying by dT1Q, α1d

T
1Qd1 + · · · + αkd

T
1Qdk = α1d

T
1Qd1 by Q-conjugacy.

But Q is positive definite and d1 is non-zero vector so dT1Qd1 > 0, then necessarily
we have α1 = 0, doing the same for the other indices, we get α1, . . . , αk = 0 and the
family is linearly independent.

We now see why this definition of Q-conjugacy is useful. It is because we can
write the optimal solution x∗ of Equation A.12 as a linear combination of (d1, . . . , dn)
of Q-conjugate vectors that is also a basis of Rn.

Also, because Qx∗ = b (that comes from the fact that x∗ is a critical point then
the gradient is null), we have if x∗ = α1b1 + · · ·+ αnbn that αi =

dTi b

dTi Qdi
.

We remark that given a basis of Rn and Q − conjugate vectors that x∗ can be
construct in only n iterations.

Finally the remaining issue, is that we would like to be able to construct the
n Q-conjugate vectors step by step during the iterations. This gives algorithm
Algorithm 1. It still remains to show that the αk are the good ones for the dk
vectors and that the dk vectors form a Q-conjugate family.

Algorithm 1 Conjugate Gradient Algorithm Quadratic function
g0 ← b−Qx0
d0 = −g0
for k=0. . . n-1 do

αk = −
gTk dk
dTk Qdk

xk+1 = xk + αkdk
gk+1 = Qxk+1 − b
if k ̸= n− 1 then

βk =
gTk+1Qdk

qTk Qdk

dk+1 = −gk+1 + βkdk
end if

end for

Generalization of the Conjugate Gradient Algorithm

Our goal is now to solve the following problem, for a scalar function twice dif-
ferentiable:

min
x∈Rn

f(x). (A.14)

The function f may not be quadratic but we can make the approximation, using
the Taylor expansion:

Unsupervised scalable anomaly detection: application to medical imaging 37



A.3 Conjugate Gradient: the Riemanian case A

f(x) ≈ f(x0) +∇f(x0)T (x− x0) + (x− x0)T∇2f(x0)(x− x0). (A.15)

Then, we can derive an conjugate gradient version to solve this new problem as
in Algorithm 2. The issue being that the algorithm will not finish in n steps so what
we can do is to repeat Algorithm 2 as much as needed by replacing x0 ← xn for the
new initialization.

Algorithm 2 Conjugate Gradient Algorithm Generalization
g0 ← ∇f(x0)
d0 = −g0
for k=0. . . n-1 do

αk = −
gTk dk

dTk [∇2f(xk)]dk

xk+1 = xk + αkdk
gk+1 = ∇f(xk+1)
if k ̸= n− 1 then

βk =
gTk+1[∇

2f(xk)]dk

dTk [∇2f(xk)]dk

dk+1 = −gk+1 + βkdk
end if

end for

We can note that the conjugate gradient method is in between the steepest
descent and the second order Newton methods. The difference here with the Newton
methods is that we don’t need to compute the inverse of the Hessian.

There exists also some other rules for the iterates of β that are called the β-rules.
They give the exact results in the quadratic case and avoid the computation of the
Hessian.

Proposition 4 (Polak-Ribiere line search). The Polak-Ribiere β-rule gives the fol-
lowing update for the iterates of β:

βk =
(gk+1 − gk)Tgk+1

gTk gk
. (A.16)

A.3 Conjugate Gradient: the Riemanian case

A.3.1 The algorithm in the Riemanian case

With the previous notations and notions, we have introduced we are now able to
fully derive the Riemanian Conjugate Gradient algorithm. The main differences
compared to the Euclidian case is that for next iterate xk+1 we need to do a re-
traction, and the computation of the βk is also slightly different since it implies the
gradient of previous iterations which then lies on a different tangent space than the
current one.

Definition 7 (The Riemanian Conjugate Gradient). The iterates of the Riemanian
Conjugate Gradient are the following:
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xk+1 = Rxk
(δk), (A.17)

with δk = gradMf(xk) + βkδk−1.
By noting Pxk+1←xk

the parallel transportation a vector from Txk
M to Txk+1

M
we have the modified Polak-Ribiere line search:

βk =
< gradMf(xk+1), gradMf(xk+1)− Pxk+1←xk

gradMf(xk) >xk+1

||gradMf(xk)||2xk

(A.18)
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