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We propose a simulation-based technique for the verication of structural parameters in Ordinary Dierential Equations. This technique is an adaptation of Statistical Model Checking, often used to verify the validity of biological models, to the setting of Ordinary Dierential Equations systems. The aim of our technique is to search the parameter space for the parameter values that induce solutions that best t experimental data under variability, with any metrics of choice. To do so, we discretize the parameter space and use statistical model checking to grade each individual parameter value w.r.t experimental data. Contrary to other existing methods, we provide statistical guarantees regarding our results that take into account the unavoidable approximation errors introduced through the numerical resolution of the ODE system performed while simulating. In order to show the potential of our technique, we present its application to two case studies taken from the literature, one relative to the growth of a jellysh population, and another concerning a prey-predator model.

Introduction

All scientic branches share the common concept of modeling. When a scientist studies a real-life system, the rst step he or she goes through is to build a model that gathers all the existing knowledge of the target system. This model is then used as a proxy of the system it represents in order to analyze it, perform simulation or predictions. In several elds, such as Biology, Chemistry, Physics or Engineering, models do not represent a single system but are instead an abstraction for a family of systems that share common traits but might exhibit some internal variability. This internal variability can either be left out by considering that the model represents the average individual in the family, or taken into account inside of the model through the use of non-determinism, probabilities or parametricity.

When considering parametric models, scientists have to go through a phase of parameterization, which consists in confronting the model with experimental observations of the (family of ) system(s) it represents in order to nd the parameter values that best t this (family of ) system(s). In most cases, parameterization techniques are deterministic [START_REF] Ramsay | Parameter estimation for differential equations: A generalized smoothing approach[END_REF][START_REF] Varah | A spline least squares method for numerical parameter estimation in dierential equations[END_REF]. They lead to deterministic parameter values that best t the experimental data, i.e. producing the best t for the average individual. In this paper, we instead focus on a technique that allows to select parameter values that best t under variability, i.e. that produce the best probabilistic t for the whole family.

Parameterization, or parameter synthesis has been the topic of many works in the context of probabilistic systems [START_REF] Dehnert | Prophesy: A probabilistic parameter synthesis tool[END_REF][START_REF] Gainer | Accelerated model checking of parametric Markov chains[END_REF][START_REF] Gyori | Approximate probabilistic verication of hybrid systems[END_REF][START_REF] Han | Approximate parameter synthesis for probabilistic time-bounded reachability[END_REF][START_REF] Katoen | The probabilistic model checking landscape[END_REF]. Symbolic techniques such as parametric model checking [START_REF] Baier | Model checking probabilistic systems[END_REF][START_REF] Daws | symbolic and parametric model checking of discrete-time Markov chains[END_REF] are often dicult to use in practice because they require automata-based models while real-life models are often expressed either with computer programs or with dierential equation models. Statistical

Model Checking (SMC) [START_REF] Legay | Statistical model checking: An overview[END_REF], on the other hand, is a simulation-based technique that allows to estimate, with formal guarantees, the probability that a given (probabilistic) model satises a given property. Because it is simulationbased, it can be applied to any stochastic model for which simulations can be performed. SMC has been successfully applied to perform parameterization of real-life models expressed using several formalisms such as parametric Markov chains [START_REF] Bao | Parametric statistical model checking of UAV ight plan[END_REF], parametric Python programs [START_REF] Ramondenc | Probabilistic modeling to estimate jellysh ecophysiological properties and size distributions[END_REF], or even parametric Ordinary Differential Equation systems (ODEs) [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF]. Unfortunately, the formal guarantees obtained through SMC are linked to the simulation space (i.e. the produced traces) and not to the original model itself. When the model consists in sets of ODEs, as in [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF], numerical resolution methods are used in order to solve the ODEs and perform simulations, which means that the formal guarantees obtained through SMC cannot apply to the original ODE model.

In this paper, our main contribution is to bridge the gap between the original ODE model and the results of the parameterization procedure by combining the statistical guarantees of SMC with the global approximation error of standard numerical resolution methods. As in [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF], we consider ODE models with structural parameters. We assume that these models represent families of real-life systems that need to match some experimental data through simulation. We build on the logic proposed in [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF] to express our properties of interest and also consider expected reward properties that might be of interest in practice. We use SMC to grade parameter values by estimating the expectation of a given reward function for these values while taking internal variability into account. Contrarily to what is done in [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF], the accuracy of this estimation is guaranteed w.r.t. the original ODE model.

To illustrate our results, we perform the parameterization of two state-of-theart models taken from the literature using our technique. In this context, and because modelers are often interested by this information in practice, we propose a global evaluation of the parameter space that allows us to get a complete picture of the adequacy of the parameter values w.r.t. the given experimental data. This choice is done by interest only, since our results are generic and could be applied to any search technique, such as the local ones performed in [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF].

Intuition. To give an intuition of our contribution, we provide an informal summary of the method we present in this paper. Recall that, given a dataset relative to an experiment and a parametric ODE system, the objective is to nd a solution to a parametric ODE system (i.e. parameter values) that satises a property ϕ w.r.t. the dataset, which is, given a distance δ > 0, the solution stays in a tunnel of radius δ around the experimental data ; we also want to acquire statistical guarantees on said result. The main issue is that we can only simulate our model by solving the ODE system using numerical resolution methods. Hence, we cannot directly verify whether exact solutions (z) of the system satisfy ϕ and instead have to rely on approximate solutions (y). We therefore proceed as follows: we start by discretizing the set of parameter values into a grid; we then evaluate each point of this grid using the procedure detailed below;

nally, we use the resulting scores to select the best parameter values w.r.t ϕ.

The score of a given parameter value λ is computed as follows, and illustrated in Figures 1 and2 in the context of the case study presented in section 4.1.

1. We set the parameter value to λ. By a careful study of the ODE system, we give a bound on the distance ε between exact (z) and approximate (y) solutions. We emphasize that this bound depends on (1) the chosen resolution technique and (2) the chosen integration step. We show that this distance is uniformly stable w.r.t. internal variability around λ, but also that it can be uniformly bounded on the global set of solutions (i.e. independently of λ). 2. We propose two new properties ϕ 1 and ϕ 2 that will be veried on the approximate solutions y, and depend on the above distance. This amounts to changing the size of the tunnel around the experimental dataset. We compute (estimations of ) the respective probabilities p 1 and p 2 and prove that the probability p that z satises ϕ lies between p 1 and p 2 .

3. We provide statistical guarantees of our estimation, i.e. a condence interval for our estimation of p, and use this estimation as the score for parameter value λ. Fig. 2. ϕ-accepted, ϕ2-accepted and rejected solutions.

It is worth noting that the underlying theory is generic: the integration method as well as the statistical estimation method can be chosen arbitrarily as long as they provide the usual guarantees. In this paper, we use Runge-Kutta and Monte-Carlo for the sake of example.

Outline. In section 2, we introduce required preliminaries and notations for the rest of the paper. In section 3, we state the main result of the paper, i.e.

we compute the approximation error for ODE solutions, show that this error is uniformly stable, and provide the statistical guarantees for the estimation of the probabilities. In section 4, we illustrate our approach on two case studies taken from the literature. Finally, we conclude in section 5 and give perspectives for future work.

Background and notations

In this section, we present the basic notations and denitions that will be used throughout the paper. More precisely, we recall the denition of an ODE, and present the logic used in the paper. Finally, we extend this logic by introducing reward functions.

ODE preliminaries

First, we consider an evolution problem described by an Ordinary Dierential Equation (ODE) of the form

dz dt (t) = f z(t), λ , t > 0. (1) 
In eq. ( 1), the unknown function z is dened in R + with values in R n ; λ ∈ R m is a vector of parameters; f is a function dened on R n ×R m with values in R n , whose regularity will be detailed below; n, m are positive integers. In the following, we write z i (t), 1 ≤ i ≤ n, for the projection of z(t) on its ith component. As mentioned in our introduction, eq. ( 1) can model various real-world problems arising in life sciences. Our goal is to study some properties of the trajectories determined by eq. ( 1), by developing an innovative model-checking framework suitable for the continuous dynamics of ODEs.

Here and for the rest of the paper, we x an initial condition z 0 ∈ R n . Standard results of the theory of dierential equations (see for instance [START_REF] Perko | Dierential equations and dynamical systems[END_REF]) ensure that, for any value of the parameter λ ∈ R m , the Cauchy problem determined by eq. ( 1) and the initial value z(0) = z 0 admits a unique solution, provided f is C 1 on R n × R m ; we denote by z λ (t) the corresponding trajectory, which we assume to be dened on [0, T ] with T > 0. If the context is suciently clear, we may write z(t) for short. As before, we write z λ i (t) (resp. z i (t)), 1 ≤ i ≤ n, for the projection on its ith component. We assume that the component λ j of the parameter vector λ

∈ R m (1 ≤ j ≤ m) satises λ j ∈ [L λ j , U λ j ],
with real coecients L λ j < U λ j and we consider the compact sets W and INIT dened by

W = m j=0 [L λ j , U λ j ] (2) 
INIT = {z 0 } × W. We assume that the trajectories of eq. ( 1) starting from z 0 admit a rectangular invariant region, uniform w.r.t. the parameter λ, that is z

i (t, λ) ∈ [L i , U i ] for t ∈ [0, T ], with real coecients L i < U i , for all λ ∈ W and for 1 ≤ i ≤ n. The global invariant region for z is written V = n i=0 [L i , U i ].
Finally, we write TRAJ for the set of all potential trajectories of the solutions to our ODE system. Formally, TRAJ = {z λ (t) | λ ∈ W}.

It is well-known that eq. ( 1) determines time continuous trajectories, which moreover depend continuously on a variation of the initial condition z 0 and of the parameter λ ∈ W (see for instance [START_REF] Perko | Dierential equations and dynamical systems[END_REF]). In section 3, we will be interested in the variation of those trajectories under a variation of the parameter λ ∈ W.

We now move to the description of the properties for our models.

Bounded Linear Time Logic

As explained in the introduction, our aim is to nd the parameter values that allow our model to best t some given experimental data. In the following, we therefore assume that we are given a nite set of experimental observations that correspond to a nite set of time points and a tolerance value δ > 0 1 . We write

T = {0 = t 0 , t 1 , . . . , t N = T } (4)
for a set of time points and assume that we have a nite set of observations O t i = {o t i,1 , . . . , o t i,k } for each of them and for each coordinate i. We assume, in practice, that T indeed includes all the time points where experimental observations are available. Remark nonetheless that T is not necessarily limited to this set, as we could have O t = ∅ for a number of t ∈ T . In practice, since T = {t 0 , . . . t N } is nite, we abuse notations and substitute it, when convenient, with the integer set T = {0, . . . N }.

We start by recalling the logic dened in [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF], which allows to express our properties of interest, i.e. that a given solution agrees with the experimental observations available at given time points. This logic is a slightly modied version of Bounded LTL, where atomic propositions are of the form (i, l, u) with L i ≤ l ≤ u ≤ U i , where L i and U i are the bounderies of the set V dened above. The intuition is that, for q ∈ T , z satises the atomic proposition (i, l, u) at time point q if and only if l ≤ z i (q) ≤ u. Since there is a nite number of time points and a nite number of observations, we only consider the nite number of atomic propositions where

1 ≤ i ≤ n and l, u ∈ ∪ q∈T (O q i ∪ O q i -δ ∪ O q i + δ).
We also allow l, u = +∞, -∞ to account for timepoints q where O q = ∅.

The rest of the logic is dened as usual: every atomic proposition and the constants true, f alse are BLTL formulas, the negation and conjunction of BLTL formulas are BLTL formulas, if Ψ and Ψ are BLTL formulas, then Ψ U q Ψ and Ψ U ≤q Ψ are BLTL formulas for any positive integer q ∈ T , if Ψ is a BLTL formula, then X Ψ is a BLTL formula. 1 Note that the method does not depend on the value of δ. We assume its value is provided by the user.

The interpretation of Ψ U ≤q Ψ is standard, i.e. Ψ must happen before q time points have elapsed, while the interpretation of Ψ U q Ψ is that Ψ must hold for exactly q time points before Ψ holds. The interpretation of X Ψ is standard as well, i.e. X Ψ ⇔ true U 1 Ψ . We invite the interested reader to consult [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF] for the formal semantics of this logic.

Given a BLTL formula Ψ , we dene models(Ψ

) = {z ∈ TRAJ | z, 0 |= Ψ }.
Recall that the properties we want our models to verify are the following : the traces of the model need to agree with the given experimental data. One way to rephrase this property is as follows: at all time points where experimental data is available, the trace of our model needs to be between the lower and upper values taken from the experimental data with a given tolerance δ > 0. This is easily expressed in BLTL as the property

Ψ * = 1≤i≤m ψ 0 i ∧ X ψ 1 i ∧ X (ψ 2 i ∧ • • • ∧ X ψ N i ) . . . (5) 
where ψ q i = (i, min(O q i )-δ, max(O q i )+δ). Since our aim is to consider variability on the ODE models of interest, we may use statements of the form P ≥p (Ψ * ), whose interpretation is expressed as follows: the probability that a trajectory in TRAJ is in models(Ψ * ) is greater than p. In this regard, we need to dene a probability measure P over TRAJ.

We start by noticing that each parameter value λ completely determines the trajectory z λ ∈ TRAJ, since the initial condition z 0 ∈ R n has been xed. As a consequence, TRAJ can be completely identied with INIT (see eq. ( 3)). Formally, we dene Models(Ψ ) ⊆ INIT as the set

{(z 0 , λ) ∈ INIT | z λ (t) ∈ models(Ψ )} (6)
and consider the Σ-algebra B generated by the m-dimensional open intervals of INIT. As expected, it is shown in [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF] that B is an adequate support to prove the measurability of Models(Ψ ) for any BLTL formula Ψ .

In the following, we will consider a number of probability distributions P λ on B (one for each parameter value λ), and use these probability distributions to evaluate whether our ODE model meets a specication of the form P λ ≥p (Ψ ). This will amount to checking whether P λ (Models(Ψ )) ≥ p. We will refer to the formulas such as P λ ≥p (Ψ ) as PBLTL formulas. In our context, each parameter value λ in W will give rise to a probability distribution P λ taking into account internal variability. This probability distribution will be used for evaluating the model against the property Ψ * , which will yield a score grade(λ) that represents the adequacy of parameter value λ w.r.t. the given experimental data while taking into account internal variability. However, it might happen that many of the values λ in INIT have a maximal score grade(λ) = 1, i.e. satisfy the PBLTL property P λ ≥1 (Ψ * ). This could be the case for example if all the traces generated using P λ satisfy the property Ψ * . In this case, we will need to consider more complex properties to lter those values and rank them. To this purpose, we introduce the notion of reward function.

Reward function

The purpose of statistical model checking in general, and Monte-Carlo in particular, which will be presented in detail in section 3.2, is to estimate with formal guarantees the expected value of a given function on a measurable set. In the context of model checking, this procedure is used to estimate the probability that a given model satises a property. To do this, each sample of the system is checked against the property and a Boolean reward is computed accordingly (i.e.

1 if the property is satised and 0 otherwise). Statistical model checking then amounts to estimating the expected value of this particular reward function on the measurable set of traces of the model at hand.

In our case, this boils down to dening a reward function r Ψ * : TRAJ → {0, 1} that evaluates to 1 if the trajectory satises Ψ * and 0 otherwise. Statistical model checking will then compute an estimation of the expected value of r Ψ * on the set of traces TRAJ under the probability distribution P λ , which in the end will be an estimation of the measure of Models(Ψ * ) for the parameter value λ. Remark that this construction would work for any other BLTL property Ψ .

In order to grade the parameter values in a more discriminating way, we allow the use of non-Boolean reward functions. This will allow expressing more powerful properties than those that can be dened using the BLTL logic. For instance, one can use those reward functions in order to measure the number of time points for which the current trace does not agree with the given experimental data, or to measure the cumulative distance between the trace and the experimental data at all time points.

In the following, we will therefore consider a given reward function r : TRAJ → R and use statistical model checking to estimate its expected value on the trajectories of our model under a given probability distribution P. When convenient, we will identify a given BLTL property Ψ with its associated reward function obtained through the above construction r Ψ .

Global statistical guarantees

In this section, we state our main result, which provides statistical guarantees on the verication of specic properties. Namely, given a property Ψ (resp. the corresponding reward function r Ψ ) on the trajectories of eq. ( 1), we will establish condence intervals regarding the estimation of the probability of satisfaction of that property (resp. the expected value of r Ψ ), which shall be computed using approximate solutions to eq. ( 1), as well as a bound on the errors w.r.t. the exact probability corresponding to the exact solutions to eq. ( 1).

We start by recalling how ODE numerical resolution methods work, and we propose a denition for the approximation errors introduced in the process.

Next, we introduce a method for estimating the probability p that exact solutions of our ODE system satisfy a given property Ψ using an estimator p that takes the approximation error into account. Finally, we explain how those results along with their statistical guarantees can be extended to the estimation of the expected values of given reward functions.

Approximation method for the numerical integration of the ODE

We recall that an approximation method, which determines the approximate solution y λ to the ODE induced by parameter λ, can be written

y λ (0) = z 0 , y λ (τ j+1 ) = y λ (τ j ) + h Φ τ j , y λ (τ j ), λ, h , 0 ≤ j < J, ( 7 
)
where

Φ is a continuous function dened in [0, T ] × R n × W × R with values in
R n , τ j are the discrete points of denition of y λ , and h ∈ R. Intuitively, those methods compute each point thanks to the previous one. In this paper, we use the well-known Runge-Kutta 4 method, which is a standard method for ODE resolution.

For the sake of simplicity, we focus in the following on the theoretical study of 1-dimensional systems (n = 1), but our method can be adapted to larger systems (n ≥ 2) as shown in our second case study presented in section 4.2, mostly by adapting the denition of distance introduced below.

As explained in section 2, we consider a set γ of observation data samples, recorded at (N + 1) time points forming a set T (see eq. ( 4)) with values in R n (N > 0). We start by dening a notion of distance between functions that will, in the end, allow us to compare the solutions of our ODE model with the 

Note that d is rigorously only a pseudo-distance, since two functions y and ỹ dened on [0, T ], that are distinct on [0, T ], might coincide on the nite set T , thus could satisfy d(y, ỹ) = 0. Nevertheless, since our purpose is to measure the distance to the dataset γ, we do not need to distinguish such two functions.

Moreover, one may use any (pseudo-)distance of their choice, since all norms are equivalent in the nite-dimensional space R (R n in the general setting). In the rest of the paper, we will abuse notations and use d to compare a given function y ∈ F T to γ, even though γ is only dened on T and not on a continuous subinterval of R.

In most ODE resolution methods, the approximation error depends on an integration step. We therefore introduce a discretization D h of the time interval [0, T ], which we assume, for simplicity, to admit a constant step h > 0:

D h = {0 = τ 0 , τ 1 , τ 2 , . . . , τ J = T }, (9) 
with J > 0 and τ j+1 -τ j = h for all 0 ≤ j < J.

For each parameter value λ ∈ W, the chosen approximation method will compute an approximate solution to the ODE, which we denote y λ . Recall that the initial condition z 0 ∈ R (R n in the general setting) has been xed and that for any λ ∈ W, the exact solution to eq. ( 1) such that z(0) = z 0 is written z λ .

For the sake of measuring the approximation error between y λ and z λ , we use a ner notion of distance than the one proposed above. Indeed, standard resolution methods provide guarantees that depend on the integration step in the sense that choosing a ner integration step enhances the quality of the approximation. Our aim here is to be able to take advantage of this fact, which could not be captured if we used the distance d from eq. ( 8).

Denition 1 (Global approximation error). Let h > 0 be the integration step of the chosen resolution method. The global approximation error h (λ) between the approximate solution y λ and the exact solution z λ is dened as follows:

h (λ) = max τ ∈D h z λ (τ ) -y λ (τ ) . (10) 
In the rest of the paper, we make two important assumptions on the approximation method. First, we assume that the set T of time points given by eq. ( 4), at which the observation data γ are recorded, satises T ⊂ D h . This assumption is quite natural as there are a nite number of experimental data, therefore a suciently small h can always be chosen accordingly. Our second assumption is that the approximation method is convergent, which guarantees that for all λ ∈ W, the global approximation error h (λ) converges to 0 when h gets smaller. This latter assumption is directly satised for usual approximation methods (such as, e.g., Runge-Kutta; see for instance [START_REF] Butcher | Numerical methods for ordinary dierential equations[END_REF]).

Monte-Carlo method

We now move to our main result, i.e. providing an estimation of the probability that the original ODE system, with a given parameter value λ * , agrees with the experimental data with statistical guarantees. For the sake of simplicity, we focus in this section on standard BLTL properties as introduced in section 2.2. We then show in section 3.3 how these results can be extended to reward functions.

Let λ * ∈ W be a parameter value. In order to take the internal variability of our system into account, we will consider that λ * can slightly vary. In order to do this, we set a constant ρ > 0 and dene the open ball

B(λ * , ρ) = {λ ∈ R m | λ -λ * < ρ}, ( 11 
)
where • is the Euclidian norm dened in section 2.1.

We start by recalling the Monte Carlo procedure for estimation. This procedure aims at taking advantage of the Central Limit Theorem and the Law of Large Numbers. In order to estimate the probability that our system (where λ can vary inside of B(λ * , ρ)) satises the given BLTL property Ψ * (see eq. ( 5)), we will generate a set of n samples of values for λ inside of B(λ * , ρ), and use these values to provide n solutions to the ODE system. Each solution will be evaluated, yielding a score of 1 if it satises Ψ * and 0 otherwise. Informally, the Central Limit Theorem (Theorem 1) states that the mean value of the samples p is a good estimator for the probability p that our system (i.e. the ODE system, where the parameter value is set to λ * , with internal variability) satises Ψ * . Moreover, it also provides a condence interval that solely depends on the number of samplesprovided this number is large enoughand the variance of the initial distribution.

Theorem 1 (Central Limit Theorem [START_REF] Petrov | Sums of independent random variables[END_REF]). Let X 1 , X 2 , . . . be a sequence of independent and identically distributed random variables of mean µ and variance σ 2 . Then, the distribution of

n i=1 Xi-nµ σ √ n
tends to the standard normal distribution as n → ∞. That is, for any a ∈ R,

lim n→∞ P n i=1 X i -nµ σ √ n ≤ a = 1 √ 2π a -∞
e -x 2 /2 dx.

Because we cannot evaluate the exact solutions of the ODE system but instead have to rely on approximate solutions, we will dene two auxiliary properties ϕ ε 1 and ϕ ε 2 (not expressed in BLTL) that take into account the global approximation error dened above, use the Monte Carlo procedure to estimate two probabilities pε 1 and pε 2 using those properties and the approximate solutions, and nally propose an estimation of p that relies on pε 1 and pε 2 . We will nally use p in order to rate the chosen (central) parameter value λ * . Let T be a set of time points as described earlier. Let γ be the set of experimental data and δ > 0 be a precision (tolerance) w.r.t. γ. Let λ * ∈ W be a parameter value, let ρ > 0 be a variability setting. Consider the ball B λ * = B(λ * , ρ) and let P λ * be the uniform distribution on this ball.

Given a function g ∈ F T , we write ϕ(g) := d(g, γ) ≤ δ the property that means the distance between g and γ is less than δ. Note that this property can easily be written in BLTL (see eq. ( 5) above). For convenience, if y λ is an approximate solution to eq. ( 1) induced by the parameter λ ∈ B λ * , we will identify ϕ(λ) to ϕ(y λ ).

Given ε > 0, we introduce the properties:

ϕ(z λ ) := d(z λ , γ) ≤ δ, ϕ ε 1 (y λ ) := d(y λ , γ) + ε ≤ δ, ϕ ε 2 (y λ ) := d(y λ , γ) -ε ≤ δ.
The translation of ϕ in BLTL is the property of interest Ψ * dened in eq. ( 5). Our aim is to provide an estimation p for P λ * (Ψ * ). For convenience, we write P for P λ * in the rest of this section.

In order to do that, we show in Lemma 1 that for a small enough integration step h, we have h (λ) ≤ ε for all λ ∈ B λ * , and therefore

ϕ ε 1 (y λ ) ⇒ ϕ(z λ ) ⇒ ϕ ε 2 (y λ ). (12) 
Lemma 1. Let (h i ) i∈N ∈ R + be a sequence of integration steps, such that

lim i→∞ h i = 0.
Then for all ε > 0, there exists i * > 0 such that

hi (λ) < ε, ∀i ≥ i * , ∀λ ∈ B λ * . ( 13 
)
In other words, the global error h (λ) can be uniformly bounded in the closure B λ * of the open ball B λ * . The proof of this lemma is given in appendix A, along with a method to compute h i * . Now, we dene the probabilities

p = P ϕ(z λ * ) , p ε 1 = P ϕ ε 1 (y λ * ) , p ε 2 = P ϕ ε 2 (y λ * ) . ( 14 
)
Note that p, p 1 , p 2 implicitly depend on δ. However, we omit this dependence in order to lighten our notations. Next, it is straightforward that

p ε 1 ≤ p ≤ p ε 2 , ∀ε > 0. ( 15 
)
Estimators pε 1 , pε 2 of the probabilities p ε 1 and p ε 2 respectively can be determined using the Monte-Carlo procedure, involving a precision α and a risk θ. Our main result, given in Theorem 2 below, establishes a statistical guarantee on the probability p of interest with respect to these estimators pε 1 , pε 2 .

Theorem 2 (Main theorem). Let λ * ∈ W, ρ > 0, δ > 0, ε > 0. For any risk ξ ∈ (0, 1), we dene

θ = 1 - √ 1 -ξ.
Then, for any precision α > 0, the probabilities p ε 1 and p ε 2 dened in eq. ( 14) satisfy

P p ε 1 ∈ [p ε 1 -α, pε 1 + α] ≥ 1 -θ, P p ε 2 ∈ [p ε 2 -α, pε 2 + α] ≥ 1 -θ, (16) 
where the estimators pε 1 and pε 2 can each be determined after performing a number

N = log(2/θ) 2α 2
(and hence a total number N = 2× log(2/θ) 2α 2 ) of simulations of eq. ( 1) induced by parameter values λ sampled in B λ * .

Furthermore, there exist ε 0 > 0 and h 0 > 0 suciently small such that, for any integration step h ≤ h 0 and any ε < ε 0 , the following statements hold: the probability p dened in eq. ( 14) satises the estimation

P p ∈ [p ε 1 -α, pε 2 + α] ≥ 1 -ξ, (17) 
the distance between pε 1 and pε 2 satises:

P (|p ε 1 -pε 2 | ≤ 3α) ≥ 1 -ξ. ( 18 
)
We emphasize that estimations ( 17) and ( 18) imply a condence interval of width 5α for p and require a number of samples N = 2 × log(2/θ) 2α 2 . If the analysis was performed directly on the exact solutions of the ODE, we would have a condence interval of width 2α and only require log(2/ξ) 2α 2

samples.

The proof of Theorem 2, given in appendix B, is divided in three main steps.

First, using the Central Limit Theorem and the Law of Large Numbers, we determine estimators pε 1 and pε 2 of p ε 1 and p ε 2 , respectively. Then, eq. ( 14) and the independence of simulations lead to the condence interval of p. Finally, Lemma 1 guarantees that proper values of h and ε can be found, in order to control the distance between pε 1 and pε 2 . It is worth noting that, for some resolution methods (such as Runge-Kutta 4 for example), a value for h can be explicitly determined to guarantee Lemma 1 for a given ε and therefore eq. ( 17). However, the convergence speed of |p ε 1 -pε 2 | is not known in general, therefore we can only guarantee the existence of a suciently small value for ε to ensure eq. ( 18) but not compute it.

Model checking extension through reward functions

As explained in section 2.3, our method can be extended to non-Boolean reward functions. Indeed, these functions may provide not only qualitative results does the property hold? but also quantitative ones how well does the property hold? . In our case, this allows to distinguish the good parameters that induce a suitable solution from the best ones that induce the solutions closest to the data.

To use such a real-valued reward function r, some conditions are required. First, it must be assumed that two other reward functions r 1 and r 2 can be found, such that the following estimation holds for any λ ∈ B λ * :

r 1 (λ) ≤ r(λ) ≤ r 2 (λ). (19) 
Second, the law of the unconscious statistician must be applicable to these lower and upper reward functions, i.e. the computation of the expected value 2 must be applicable, so that estimators r1 and r2 of r 1 and r 2 respectively, can be computed.

Moreover, and most importantly, the reward function must be compatible with the global error dened in eq. [START_REF] Gyori | Approximate probabilistic verication of hybrid systems[END_REF]. Indeed, since we compute score based on approximated solutions, said computations must take this approximation into account to provide any signicance to the resulting score. It is worth noting that these conditions are satised by all the reward functions we have considered in this work, such as the total accumulated/maximal/average distance to γ or the number of time points where γ is not respected.

Similarly to eq. ( 18), the distance between r1 and r2 must be controlled.

Depending on the order of the approximation method used to compute approximate solutions to the ODEs, this may be easy to ensure. For instance, in our case the integration method Runge-Kutta 4 ensures that the approximation error and thus, the global error as dened in eq. ( 10)is of order 5: all derivatives of the integration functions converge at most linearly w.r.t. h 5 , where h is the integration step.

Case studies

In this section, we apply our method to two case studies [START_REF] Melica | Logistic density-dependent growth of an Aurelia aurita polyps population[END_REF][START_REF] Restrepo | Parameter estimation of a predator-prey model using a genetic algorithm[END_REF] taken from the literature to show its potential. After presenting the studies and their results, we will display our results and discuss them. We implemented our technique in C++ to validate the approach. The experiments were realized on a 2.1 GHz Intel Xeon Silver 4216 processor, running g++ version 7.5.0 on Ubuntu 18.04. The code is available at https://gitlab.com/davidjulien/smc_for_ode.git, and the experiments can be reproduced using the right branches, i.e. compute_aurelia to run the experiment from section 4.1 and compute_prey to run the experiment from section 4.2. We used the Runge-Kutta 4 method to compute approximate solutions, a SMC precision α = 0.05 and a risk ξ = 0.05. First, we briey recall the experiment. After discretizing the value space W dened in eq. ( 2) for the parameter λ, we will grade every value in order to 2 See eq. ( 27) in appendix B. select the best ones w.r.t. the experimental data γ. In order to take the internal variability of the model into account, each chosen parameter value λ * is associated with the open ball B λ * as dened in eq. [START_REF] Han | Approximate parameter synthesis for probabilistic time-bounded reachability[END_REF]. Once the SMC parameters α and ξ, as well as a small enough value for ε are chosen, we can compute an integration step h, as well as a required number N of samples such that theorem 2 holds. Then, we sample N values λ ∈ B λ * , compute the approximated solutions to the induced ODEs, and compare them with the experimental data γ. For each λ * ∈ W, we thus estimate the probabilities pε 1 and pε 2 dened in the previous section, and use them to dene grade(λ * ) =

pε 1 + pε 2 2 .
In order to better discriminate the best parameter values, we also estimate the expected value of the reward function r : λ → d(z λ , γ) that measures the distance between the ODE simulations and the experimental data.

4.1 Case study 1: a study on Aurelia Aurita population growth [START_REF] Melica | Logistic density-dependent growth of an Aurelia aurita polyps population[END_REF] In 2014, Melica et al. [START_REF] Melica | Logistic density-dependent growth of an Aurelia aurita polyps population[END_REF] published a paper studying the growth of Aurelia Aurita, a species of jellysh that is very common in Adriatic Sea. In this paper, they compared experimental data, resulting from the culture of Aurelia Aurita polyps, to simulation models based on the following ODE:

x (t) = ax(t)(1 -x(t)/b) (20) 
where t is time, x is the population density, a is the maximum rate of population growth, and b is the positive equilibrium. The authors show that the dynamics of a Aurelia Aurita polyps population can, indeed, be modeled by the densitydependent, or Verhulst [START_REF] Vandermeer | Population ecology. In: Population Ecology[END_REF] Remark 1. HD and LD represent the studies for High and Low Density, respectively, which were both ran by the original authors. Here, we focused on the High Density case.

In order to illustrate our method, we applied it to the same case study, using eq. ( 20) as the ODE system. We evaluated parameter values in the ranges a ∈ [0, 3], b ∈ [0, 9], and discretized this space with a parameter step of 0.01. We set the internal variability of the parameters ρ = 0.005 and performed N = 874

simulations for each parameter value on the discretized space, therefore ensuring a statistical precision of α = 0.05 and risk of ξ = 0.05. Heatmap of the score of the parameters. In g. 3, we represent the score of the best parameter values, where the white zones are zones where grade(λ * ) = 0. One can see that there is a small gradient in the area where the score is positive, but this is not enough to discriminate between the parameter values in this zone. In order to rene the result, we present in g. 4 the estimation of the expected value of the reward function r : λ → d(z λ , γ). Figure 4 shows a tighter area of values that induce solutions that are very close to the data (down to 0.50 polyps on average), plotted in red, which contains the parameter value estimated by [START_REF] Melica | Logistic density-dependent growth of an Aurelia aurita polyps population[END_REF]: it comforts us in saying that our method provides tangible results. The best parameter found using our method is the pair (a, b) = (0.19, 5.57). It induces the red curve in g. 5.

4.2 Case study 2: a prey-predator model for lynx and hares [START_REF] Restrepo | Parameter estimation of a predator-prey model using a genetic algorithm[END_REF] In 2010, Restrepo and Sánchez [START_REF] Restrepo | Parameter estimation of a predator-prey model using a genetic algorithm[END_REF] published a paper describing a genetic algorithm, which aimed at estimating the best parameters for prey-predator models.

The rst model, which we will study in the following, is a basic prey-predator interaction model dened by the following ODE system:

P = aP -bP D, D = -cD + dP D ( 21 
)
where t is time, P and D are the two time-dependent variables representing the quantity of individuals in each group: P (t) for prey and D(t) for predators; a, b, c, d are positive constants, a and c indicating the birth rate of prey and death rate of predators respectively, and b and d representing the rates of predation and reproduction of predators. Note that even if the model is a standard way to describe, on rst approximation, such an interaction between two populations, its simplicity might make it imprecise which is why other, more complex models are studied in [START_REF] Restrepo | Parameter estimation of a predator-prey model using a genetic algorithm[END_REF]. The best values for parameters (a, b, c, d) w.r.t. experimental data are given in [START_REF] Restrepo | Parameter estimation of a predator-prey model using a genetic algorithm[END_REF]: (a, b, c, d) = (0.55, 0.027, 0.83, 0.026).

Again, we applied our method to this case study, using eq. ( 21) as the ODE system. We evaluated parameter values in the ranges a ∈ [0. 21). ρ = 0.0005 and performed N = 874 simulations for each parameter value on the discretized space, therefore ensuring a statistical precision of α = 0.05 and risk of ξ = 0.05. Note that the parameter ranges have been tightened according to the paper results, since cyclic models can be very sensitive to parameter values.

We encountered two issues with this study. First, the adequacy of the model with the data was improvable, thus computing a tting solution was challenging.

We had to loosen the property we verify: instead of Ψ * , which enforces the solution to always stay in the tunnel, we veried a property Ψ † , which allows the solutions to step out of the tunnel a total of 5 times (for a total of 22 time points) before rejecting them. This explains why the best solution displayed in g. 8 does not perfectly t inside of the tunnel. Remark that Ψ † can easily be expressed in BLTL, and is therefore compatible with our theory. Second, since system eq. ( 21) involves 4 parameters, displaying the results with heatmaps is more dicult than in case study 1 (section 4.1). Nonetheless, locking a parameter value (here, c = 0.89) allows the plot of a 3-dimensional heatmap.

Figure 6 shows a local subset of solutions tting the data with a certain quality. Notice that the score only goes up to 0.5; because of the internal variability we impose and the sensitivity of the model, very few simulations stayed in the inner tunnel (corresponding to ϕ ε 1 in section 3), yielding pε 1 = 0 in most cases. That said, g. 7 displays the distance for the same subset. We notice that some solutions are, at most, at a 10 individuals distance from the data. The subset contains our best candidate (a, b, c, d) = (0.52, 0.027, 0.89, 0.027), whose corresponding curve is displayed in g. 8. We see that the general shape of the curve is satisfying but does not perfectly t inside of the tunnel. This may be explained by the fact that cyclic ODE systems like prey-predator models can be very sensitive to the non-linear terms, i.e. bP D and dP D. Again, our goal here was to prove the concept rather than describe a phenomenon with the upmost precision: while this is satisfying as far as we are concerned, a more thorough study of the parameters, along with a better quality of the data (with e.g. several observations for each time point t, allowing for more robust data and observable data tunnels) would help getting results closer to the actual experiments.

Conclusion

In this paper, we have proposed a statistical method for synthesizing the best parameter values w.r.t. given experimental data for an ODE system with internal variability, while providing formal statistical guarantees that for the rst time (to the best of our knowledge) take into account the approximation error introduced through the numerical resolution of the ODEs. To do that, we discretize the parameter space and dene balls around the resulting (nite) set of parameter values to take internal variability into account. We then use the Monte-Carlo technique to estimate the probability that exact solutions of the ODE system are close to the experimental data for each resulting parameter ball, and use the result of this estimation to select the best (central) parameter values. Our main contribution is Theorem 2 which guarantees the precision of our estimation despite the fact that it is performed using numerical resolution techniques that do not give us access to exact solutions of the ODE system. In contrast with other existing works on parameter estimation for ODE systems, like [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF], where this problem is left aside, we show that the number of simulations required for a given precision and risk of the statistical estimation is (more than) twice the one needed when working with exact solutions. We also show that an upper bound on the integration step of the chosen integration technique exists (and can be computed for standard integration techniques) in order to make sure that a given statistical precision and risk are respected.

One of the limitations of our work is that, in order to prove our results and perform parameter synthesis in practice, we rely on a setting ε that represents the maximal admissible distance between exact and approximate solutions to the ODE system. Although it is possible, for most integration techniques 3 , to com- pute an integration step that will guarantee that a given value for ε is respected, our results only show the existence of a suitable value for ε for any statistical setting, but do not provide any method to compute this value in practice. This is due to our lack of guarantees on the convergence speed of the distance between the two estimators pε 1 and pε 2 that appear in eq. ( 17) and eq. ( 18). What we do in practice is that we set small values for ε, perform experiments and then estimate the value of |p ε 1 -pε 2 |. If the resulting value is too large, then we start over the experiment with a smaller value for ε.

Although the only BLTL property that we verify in this paper is the property Ψ * dened in eq. ( 5), we believe that our reasoning can be easily extended to other BLTL property following the denition given in section 2.2. This is, in our opinion, a straightforward extension that we will address in the near future.

As said in the introduction, our results are generic and could therefore be combined with any exploration strategy for the parameter space. The global exploration we perform in this paper is obviously costly but yields global information that is precious when analysing a complex system. In the future, we plan on combining a coarse global exploration to identify interesting zones in the parameter space with more ecient and detailed search algorithms (such as the one from [START_REF] Liu | Statistical model checking-based analysis of biological networks[END_REF]) limited to those zones.
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 1 , ODE presented above and compute the values for a and b that ensure the best tting w.r.t. the experimental data. These values are recalled in table 1. Estimation of parameters of the logistic curve tting the laboratory experimental data[START_REF] Melica | Logistic density-dependent growth of an Aurelia aurita polyps population[END_REF].

		HD	LD
	b	5.35 ± 0.11( * * * p < 0.001)	1.81 ± 0.08( * * * p < 0.001)
	x(0) 7.59 ± 0.21( * * * p < 0.001)	0.081 ± 0.017( * * * p < 0.001)
	a	0.130 ± 0.033( * * p = 0.002) 0.137 ± 0.012( * * * p < 0.001)
	χ 2	0.775	0.056

Appendices

In these appendices, we provide the complete proofs of Lemma 1 and Theorem 2.

A Proof of Lemma 1

First, we recall the denition of stability of an approximation method.

Denition 2 (Method stability). We say that the approximation method determined by eq. ( 7) is stable if there exists a constant K > 0, called stability constant, such that, for any two sequences (y k ) 0≤k≤J and ( y k ) 0≤k≤J dened as y k+1 = y k + h Φ(τ k , y k , λ, h) and y k+1 = y k + h Φ(τ k , y k , λ, h) + η k respectively, (0 ≤ k < J), with λ ∈ W and η k ∈ R, we have

It is well-known that if Φ is κ-Lipschitz w.r.t. y, i.e. ∀t ∈ [0, T ], ∀y, y ∈ R, ∀λ ∈ W and ∀h ∈ R, |Φ(t, y, λ, h) -Φ(t, y, λ, h)| ≤ κ |y -y 2 |, then stability is ensured (see for instance [START_REF] Butcher | Numerical methods for ordinary dierential equations[END_REF] or [START_REF] Crouzeix | Analyse numérique des équations diérentielles[END_REF]). Now, we x λ * ∈ W and λ 1 , λ 2 ∈ B λ * , and we consider the approximate solutions y λ1 , y λ2 to eq. ( 1) relative to λ 1 and λ 2 and starting from z 0 .

We recall that the exact solutions to eq. ( 1) relative to λ 1 and λ 2 and starting from z 0 are denoted z λ1 and z λ2 respectively. For i ∈ {1, 2} and 0 ≤ k ≤ J, we introduce the consistency error on y λi at step k:

The consistency errors satisfy h (λ i ) = max 0≤k≤J h,k (λ i ), for i ∈ {1, 2}, where h (λ i ) is the global approximation error (dened by eq. ( 10)). The proof of Lemma 1 can be derived from the following theorem.

Theorem 3 (Stability with respect to consistency error). Assume that the function Φ dened in eq. ( 7) is κ 1 -Lipschitz w.r.t. λ and κ 2 -Lipschitz continuous w.r.t. y. Then the approximation method is stable w.r.t. the consistency error, i.e. there exists K > 0 such that

where • is the Euclidean norm dened in section 2.1.

Proof (of Theorem 3). By assumption, Φ is κ 1 -Lipschitz continuous w.r.t. λ:

It follows that

Applying the discrete Gronwall lemma (see for instance [START_REF] Demailly | Analyse numérique et équations diérentielles[END_REF], VIII.2.3), we deduce

since y λ1 0 = y λ2 0 = z 0 and h J = T . Furthermore, it is proved in [START_REF] Crouzeix | Analyse numérique des équations diérentielles[END_REF] that if Φ is Lipschitz continuous w.r.t. λ, then the exact solution z λ is also Lipschitz continuous w.r.t. λ that is, there exists Proof (of Lemma 1). Let (h i ) i≥0 be a sequence of discretization steps such that lim i→∞ h i = 0. Since the approximation method given by ( 7) is assumed to be convergent, each function hi (•) dened in eq. ( 23) is pointwise convergent to 0.

Furthermore, we recall that Φ is Lipschitz continuous w.r.t. λ ∈ W. Hence, Theorem 3 implies that the functions hi (•) i≥0 dened in eq. ( 23) are also Lipschitz continuous, with uniform Lipschitz constant K:

Consequently, the functions hi (•) i≥0 are uniformly equicontinuous. Hence, ArzelàAscoli Theorem [START_REF] Dunford | Linear operators. 1. General theory[END_REF] implies that the sequence hi (•) i≥0 converges uni- formly to 0 on B λ * , thus ∀ε > 0, ∃i * ∈ N, ∀i ≥ i * , ∀λ ∈ B λ * , hi (λ) < ε, and Lemma 1 is proved.

Remark 2 (Computation of a suciently small integration step). We emphasize that Lemma 1 can be supplemented by an explicit choice of a suciently small integration step h, provided the integration method comes with appropriate estimates of their global error. Notably, the accuracy of the Runge-Kutta 4 method, which we use for the numerical treatment of our case studies, has been thoroughly studied (see [START_REF] Lotkin | On the accuracy of Runge-Kutta's method[END_REF] for instance), and it is known that its inherent error can be bounded in terms of the successive derivatives of the function f involved in eq. ( 1), up to order 4.

B Proof of Theorem 2

First step. We begin the proof of Theorem 2 by showing how to compute an estimator pε 1 of the probability p ε 1 dened in (14).

Let (λ i ) N be a sequence of values in the ball B λ * . We write B i the random variable corresponding to the test ϕ ε 1 (λ i ) holds : all the B i are i.i.d. variables and follow a Bernoulli's law of parameter p ε 1 . We write b i the evaluation of B i . We introduce the transfer function g 1 :

where f X is dened by a uniform distribution, that is, f X (x) = 1 |B λ * | , x ∈ B λ * . We produce a sample (x 1 , x 2 , . . . , x N ) of the variable X in B λ * , and use it to compute the Monte-Carlo estimator G. By virtue of the Law of Large Numbers, the sample mean satises:

approximately follows a Standard Normal Distribution N (0, 1); hence, for a risk θ, we can bound the error |α N | of swapping G with g N by building condence intervals:

where χ 1-θ 2 is the quantile of the Standard Normal Distribution N (0, 1) and σ g1 is the variance of g 1 .

Since we are interested in nding p ε 1 with a certain condence, we can perform this process after setting the desired target error α and risk θ, knowing how many simulations must be ran using Hoeding's inequality [START_REF] Hoeding | Probability inequalities for sums of bounded random variables[END_REF]:

Here, it is worth emphasizing that N can be chosen independently of ε.

Further, the variance of g N can be expressed with the variance of g 1 (X):

We consider i.i.d. samples, hence σ 2 g1 can be estimated with the variance S 2 g1 :

.

It follows that σ g1 can be estimated with its empirical counterpart σg1 = S 2 g1 , which shows that the error displays a 1/ √ N convergence. Finally, after estimating σ g1 , we can nd pε 1 using the variance of Bernoulli's law σ2 g1 = pε 1 × (1 -pε 1 ). We conclude that the probability that ϕ ε 1 (λ) holds is estimated by pε 1 = 1 2 1 ± 1 -4σ 2 g1 , with an error α and a risk θ, provided we perform N ≥ log(2/θ) 2α 2

simulations. It follows that

Similarly, we determine an estimator pε 2 of p ε 2 by running N ≥ log(2/θ) 2α 2 additional simulations, and obtain a condence interval satisfying

Second step. Now, let us show how a condence interval for the probability p can be derived from the condence intervals given in (29), (30), involving the estimators pε 1 and pε 2 respectively. The independence of the samples used to determine the estimators pε 1 , pε 

Third step. Finally, let us prove how Lemma 1 guarantees that proper values of h and ε can be found, in order to control the distance between p1 and p2 . Indeed, the continuity of the probability measure P ensures that there exists ε 0 > 0 such that |p ε 1 -p ε 2 | ≤ α, for ε < ε 0 . Next, we write

hence we have, for ε < ε 0 :

In parallel, Lemma 1 guarantees that for h suciently small, the global stability error can be uniformly bounded on B λ * by ε 0 . The proof is complete.