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Several works have studied clustering strategies that combine classical clustering algorithms and deep learning methods. These strategies generally improve clustering performance, however deep autoencoder setting issues impede the robustness of these approaches. To alleviate the impact of hyperparameters setting, we propose a model which combines spectral clustering and deep autoencoder strengths in an ensemble framework. Our proposal does not require any pretraining and includes the three following steps: generating various deep embeddings from the original data, constructing a sparse and low-dimensional ensemble affinity matrix based on anchors strategy and applying spectral clustering to obtain the common space shared by multiple deep representations. While the anchors strategy ensures an efficient merging of the encodings, the fusion of various deep representations enables to mitigate the deep networks setting issues. Experiments on various benchmark datasets demonstrate the potential and robustness of our approach compared to state-of-the-art deep clustering methods.

Introduction

Learning from large amount of data is a very challenging task. Several dimensionality reduction and clustering techniques that are well studied in the literature aim to learn a suitable and simplified data representation from original dataset; see for instance [START_REF] Yamamoto | A general formulation of cluster analysis with di-565 mension reduction and subspace separation[END_REF][START_REF] Allab | A semi-NMF-PCA unified framework for data clustering[END_REF][START_REF] Allab | Simultaneous spectral data embedding and clustering[END_REF]. While many approaches have been proposed to address the dimensionality reduction and clustering tasks, deep learning-based methods recently demonstrate promising results. Motivated by the keen interest in deep learning, many authors tackle the objective of data representation and partitioning using jointly the autoencoders [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF] and clustering approaches.

Deep Autoencoder: challenges and issues

Deep learning is a field of machine learning that is based on multi-level learning of data representations and where one passes from low level features to higher level features through the different layers. These deep architectures can automatically learn important features from images, sound or text data and have made significant progress in the field of computer vision. The autoencoder (AE) algorithm and its deep version (DAE), like the traditional methods of dimensionality reduction, has been a great success in recent years.

An autoencoder [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF][START_REF] Bengio | Generalized denoising autoencoders as generative models[END_REF] is a neural network which is trained to replicate its input at its output. Training an autoencoder is unsupervised in the sense that no labeled data is needed. The training process is still based on the optimization of a cost function. Autoencoders can be used as tools to train deep neural networks [START_REF] Bengio | Greedy layer-wise training of deep networks[END_REF]. For the purpose of dimensionality reduction, an autoencoder can learn a representation (or encoding) for a set of data. If linear activations are used, or only a single sigmoid hidden layer, then the optimal solution to an autoencoder is strongly related to Principal Component Analysis (PCA). With appropriate dimensionality and sparsity constraints, autoencoders can learn data projections that are more interesting than other basic techniques such as PCA which only allows linear transformation of data vectors. By contrast, the autoencoders are non-linear by nature, and can learn more complex relations between visible and hidden units. Moreover, they can be stacked, which makes them even more powerful.

Recently, a number of works have studied clustering strategies that combine classical clustering algorithms and deep learning methods. These approaches follow either a sequential way, where a deep representation is learned using a deep autoencoder before obtaining clusters using a clustering technique (e.g. k-means) [START_REF] Tian | Learning deep representations for graph clustering[END_REF][START_REF] Leyli-Abadi | Denoising autoencoder as an effective dimensionality reduction and clustering of text data[END_REF][START_REF] Banijamali | Fast spectral clustering using autoencoders and landmarks[END_REF][START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF], or a simultaneous way, where deep representation and clusters are learned jointly by optimizing a single objective function [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF][START_REF] Tian | Deepcluster: A general clustering framework based on deep learning[END_REF][START_REF] Yang | Modularity based community detection with deep learning[END_REF].

Both strategies improve clustering performance. However, when dealing with real-world data, existing clustering algorithms based on deep autoencoders suffer from different issues which impede their robustness and ease-to-use, such as,

• the weights initialisation, as mentioned in [START_REF] Seuret | PCA-initialized deep neural networks applied to document image analysis[END_REF], the training of a Deep Neural Network (DNN) still suffers from two major drawbacks, among which the weights initialisation. Indeed, initializing the weights with random values clearly adds randomness to the obtained results. The DNN pretraining [START_REF] Erhan | Why does unsupervised pre-training help deep learning?[END_REF], which is strongly related to the initialisation issue, has been used in an increasing number of studies [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF][START_REF] Guo | Improved deep embedded clustering with local structure preservation[END_REF][START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF]. While pretraining helps to improve clustering performance, it is usually computationally intensive and thus raises supplementary training issues.

• the architecture (or structure), the architecture (i.e., number of layers and their width) forces the network to seek a different representation of the data while preserving the important information. However, we observe that in almost all recent papers on deep clustering [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF][START_REF] Tian | Deepcluster: A general clustering framework based on deep learning[END_REF][START_REF] Yang | Modularity based community detection with deep learning[END_REF][START_REF] Banijamali | Fast spectral clustering using autoencoders and landmarks[END_REF][START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF][START_REF] Ji | Deep subspace clustering networks[END_REF], a different structure is recommended by the authors for each studied dataset.

In some studies, the DAE architecture can even lack of technical rationales.

Most importantly, the clustering performance of the proposed methods usually strongly depends on a particular DAE structure.

Spectral clustering: limitations and strengths

Spectral clustering is a popular clustering method that uses eigenvectors of a symmetric matrix derived from the distance between datapoints. It has the advantage of being applicable to a wide variety of data types and similarity functions, and requires weak assumptions for the cluster shapes [START_REF] Verma | A comparison of spectral clustering algorithms[END_REF][START_REF] Filippone | A survey of kernel and spectral methods for clustering[END_REF]. By contrast, the standard k-means algorithm, which can be shown to be a version of the classification EM algorithm [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF], considers the uniform spherical Gaussian mixture model with equal proportions. Thereby, when one departs from these assumptions and when clusters are not easily separable, k-means has difficulty to detect the underlying clusters. Despite its advantages, the spectral clustering is limited in practice due to its computational complexity of O(n 3 ). Recently, the anchor strategy has been proposed [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF][START_REF] Liu | Large graph construction for scalable semisupervised learning[END_REF] to enable an efficient and scalable spectral clustering approach.

Our paper's contribution and structure

To address the above mentioned deep learning challenging issues, we propose a Spectral Clustering via Ensemble Deep Autoencoder's algorithm (SC-EDAE) which combines the advantages and strengths of spectral clustering, deep embedding models and ensemble paradigm. Ensemble learning has been considered in different machine learning contexts where it generally helps in improving results by combining several models. The ensemble approach allows a better predictive performance and a more robust clustering as compared to the results obtained with a single model [START_REF] Vega-Pons | A survey of clustering ensemble algorithms[END_REF][START_REF] Berikov | Ensemble clustering based on weighted coassociation matrices: Error bound and convergence properties[END_REF][START_REF] Hanczar | Ensemble methods for biclustering tasks[END_REF]. In SC-EDAE, the anchor strategy [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF][START_REF] Liu | Large graph construction for scalable semisupervised learning[END_REF] mitigates the computational complexity issue of spectral clustering and bridges the gap between large-scale spectral clustering and deep learning in an ensemble approach.

Following the ensemble paradigm, we first used several DAE with different hyperparameters settings to generate m encodings. In a second step, each encoding is projected in a higher features space based on the anchors strategy to construct m graph affinity matrices. Finally, we apply spectral clustering on an ensemble graph affinity matrix to have the common space shared by all the m encodings, before we run k-means in this common subspace to produce the final clustering (see Fig. 1 for a summary diagram). The fusion of m different encodings enables to alleviate the above-mentioned deep neural networks challenges. Besides, the common space shared by the m encodings is obtained without any heavily time-consuming pre-training. Furthermore, the anchors strategy ensures an efficient merging of all the encodings. All in all, SC-EDAE results in a effective and robust deep ensemble clustering method.

The outline of the paper is as follows. In Section 2 we present the related work. In Section 3, some notations and preliminaries are given. In Section 4, we present and discuss our approach in full details. In Section 5, the evaluations of the proposed method and comparisons with several related approaches available in the literature are presented. The conclusion of the paper is given in Section 6.

Related Work

Despite their success, most existing clustering methods are severely challenged by the data generated with modern applications, which are typically high-dimensional, noisy, heterogeneous and sparse. This has driven many researchers to investigate new clustering models to overcome these difficulties.

One promising category of such models relies on data embedding. Within this framework, classical dimensionality reduction approaches, e.g., Principal Component Analysis (PCA), have been widely considered for the embedding task. However, the linear nature of such techniques makes it challenging to infer faithful representations of real-world data, which typically lie on highly non-linear manifolds. This motivates the investigation of deep learning models (e.g., autoencoders, convolutional neural networks), which have been shown so far to be successful in extracting highly non-linear features from complex data, such as text, images or graphs [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF][START_REF] Baldi | Autoencoders, unsupervised learning, and deep architectures[END_REF][START_REF] Bengio | Generalized denoising autoencoders as generative models[END_REF].

The deep autoencoders (DAE) have proven to be useful for dimensionality reduction [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF] and image denoising. In particular, the autoencoders (AE) can non-linearly transform data into a latent space. When this latent space has lower dimension than the original one [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF], this can be viewed as a form of nonlinear PCA. An autoencoder typically consists of an encoder stage, that can provide an encoding of the original data in lower dimension, and a decoder part, to define the data reconstruction cost. In clustering context, the general idea is to embed the data into a low dimensional latent space and then perform clustering in this new space. The goal of the embedding here is to learn new representations of the objects of interest (e.g., images) that encode only the most relevant information characterizing the original data, which would for example reduce noise and sparsity.

Several interesting works have recently combined embedding learning and clustering. The proposed methods generally conduct both clustering and deep embedding in two different ways. First, some works proposed to combine deep embedding and clustering in a sequential way. In [START_REF] Tian | Learning deep representations for graph clustering[END_REF] the authors use a stacked autoencoder to learn a representation of the affinity graph, and then run kmeans on the learned representations to obtain the clusters. In [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF], it has been proposed to train a deep network by iteratively minimizing a Kullback-Leibler (KL) divergence between a centroid based probability distribution and an auxiliary target distribution.

More recently, in [START_REF] Guo | Improved deep embedded clustering with local structure preservation[END_REF] the authors propose to incorporate an autoencoder into the Deep Embedded Clustering (DEC) framework [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF]. Then, the proposed framework can jointly perform clustering and learn representative features with local structure preservation. A novel non-linear reconstruction method which adopt deep neural networks for representation based community detection has been proposed in [START_REF] Yang | Modularity based community detection with deep learning[END_REF]. The work presented in [START_REF] Ji | Deep subspace clustering networks[END_REF] combines deep learning with subspace clustering such that the network is designed to directly learn the affinities matrix. Finally, a novel algorithm was introduced in [START_REF] Banijamali | Fast spectral clustering using autoencoders and landmarks[END_REF] that uses landmarks and deep autoencoders, to perform efficient spectral clustering.

Since the embedding process is not guaranteed to infer representations that are suitable for the clustering task, several authors recommend to perform both tasks jointly so as to let clustering govern feature extraction and vice-versa. In [START_REF] Tian | Deepcluster: A general clustering framework based on deep learning[END_REF], the authors propose a general framework, so-called DeepCluster, to integrate the traditional clustering methods into deep learning models and adopt Alternating Direction of Multiplier Method to optimize it. In [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF], a joint dimensionality reduction and k-means clustering approach in which dimensionality reduction is accomplished via learning a deep neural network is proposed.

Beyond the joint and sequential ways to combine clustering and deep embedding, it appears that the connection between autoencoder and ensemble learning paradigm has not been explored yet. In this paper, we aim to fill the gap between ensemble deep autoencoders and spectral clustering in order to propose a robust approach that takes simultaneously advantage of several deep models with various hyperparameter settings. In particular, we apply spectral clustering on an ensemble of fused encodings obtained from m different deep autoencoders. To our knowledge, the adoption of deep learning in an ensemble learning paradigm has not been adequately investigated yet. The goal of this work is to conduct investigations along this direction.

Preliminaries

Notation

Throughout the paper, we use bold uppercase characters to denote matrices, bold lowercase characters to denote vectors. For any matrix M, m j denotes the j-th column vector of M, y i means the i-th row vector of Y, m ij denotes the (i, j)-element of M and T r[M] is the trace of M whether M is a square matrix;

M denotes the transpose matrix of M. We consider the Frobenius norm of a

matrix M ∈ R n×d : ||M|| 2 = n i=1 d j=1 m 2 ij = T r[M M].
Furthermore, let I be the identity matrix with appropriate size.

Spectral clustering

Several spectral clustering algorithms have been proposed in the literature [START_REF] Verma | A comparison of spectral clustering algorithms[END_REF][START_REF] Filippone | A survey of kernel and spectral methods for clustering[END_REF], each using the eigenvectors in slightly different ways [START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Meila | Learning segmentation by random walks[END_REF].

The partition of the n datapoints of X ∈ R n×d into k disjoint clusters is based on an objective function that favors low similarity between clusters and high similarity within clusters. In its normalized version, the spectral clustering algorithm exploits the top k eigenvectors of the normalized graph Laplacian L that are the relaxations of the indicator vectors which provide assignments of each datapoint to a cluster. In particular, it amounts to maximize the following relaxed normalized association, max

B∈R n×k T r(B SB) s.t. B B = I (1) 
with S = D -1/2 KD -1/2 ∈ R n×n is the normalized similarity matrix where K ∈ R n×n is the similarity matrix and D ∈ R n×n is the diagonal matrix whose (i, i)-element of X is the sum of X's i-th row. The solution of ( 1) is to set the matrix B ∈ R n×k equal to the k eigenvectors corresponding to the largest k eigenvalues of S. After renormalization of each row of B, a k-means assigns each datapoint x i of X to the cluster that the row b i of B is assigned to.

As opposed to several other clustering algorithms (e.g. k-means), spectral clustering performs well on arbitrary shaped clusters. However, a limitation of this method is the difficulty to handle large-scale datasets due to the high complexity of the graph Laplacian construction and the eigendecomposition.

Recently, a scalable spectral clustering approach, referred to as Landmarkbased Spectral Clustering (LSC ) [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF] or AnchorGraph [START_REF] Liu | Large graph construction for scalable semisupervised learning[END_REF], has been proposed.

This approach allows to efficiently construct the graph Laplacian and compute the eigendecomposition. Specifically, each datapoint is represented by a linear combination of p representative datapoints (or landmarks), with p n. The obtained representation matrix Ẑ ∈ R p×n , for which the affinity is calculated between n datapoints and the p landmarks, is sparse which in turn ensures a more efficient eigendecomposition as compare to the above mentioned eigendecomposition of S (Eq. 1).

Deep autoencoders

An autoencoder [START_REF] Hinton | Autoencoders, minimum description length and Helmholtz free energy[END_REF] is a neural network that implements an unsupervised learning algorithm in which the parameters are learned in such a way that the output values tend to copy the input training sample. The internal hidden layer of an autoencoder can be used to represent the input in a lower dimensional space by capturing the most salient features.

Specifically, we can decompose an autoencoder in two parts, namely an encoder, f θ , followed by a decoder, g ψ . The first part allows the computation of a feature vector 

y i = f θ (x i )
J AE (θ, ψ) = n i=1 L(x i , g ψ (f θ (x i ))). (2) 
The encoder and decoder parts can have several shallow layers, yielding a deep autoencoder (DAE) that enables to learn higher order features. The network architecture of these two parts usually mirrors each other.

It is remarkable that PCA can be interpreted as a linear AE with a single layer [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF]. In particular, PCA can be seen as a linear autoencoder with W ∈ R d×k

where k ≤ d. Taking f θ (X) = XW and g ψ f θ (X) = XWW we find the objective function ||X -XWW || 2 optimized by PCA. 

Spectral Clustering via

Deep embeddings generation

The cost function of an autoencoder, with an encoder f θ and a decoder g ψ , measures the error between the input x ∈ R d×1 and its reconstruction at the output x ∈ R d×1 . The encoder f θ and decoder g ψ can have multiple layers of different widths. To generate m deep representations or encodings

{Y } ∈[1,m] ,
the DAE is trained with different hyperparameter settings (e.g., initialisation, layer widths) by optimizing the following cost function.

||X -g ψ f θ (X) || 2 (3) 
where g ψ and f θ are learned with the hyperparameter setting , and Y = 220 f θ (X) (Fig. 1, (a)).

Graph matrix construction

To construct the graph matrix S , we use an idea similar to that of Landmark Spectral Clustering [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF] and the Anchor-Graphs [START_REF] Liu | Large graph construction for scalable semisupervised learning[END_REF], where a smaller and sparser representation matrix Z ∈ R n×p that approximates a full n × n affinity matrix is built between the landmarks {u j } j∈ [1,p] and the encoded points {y i } i∈ [1,n] (Fig. 1,(a)). Specifically, a set of p points (p n) are obtained through a kmeans clustering on the embedding matrix Y . These points are the landmarks which approximate the neighborhood structure. Then a non-linear mapping from data to landmark is computed as follows,

z ij = Φ(y i ) = K(y i , u j ) j ∈N (i) K(y i , u j ) ; j ∈ N (i) (4) 
where N (i) indicates the r (r < p) nearest landmarks around y i . As proposed in [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF], we set z ij to zero when the landmark u j is not among the nearest neighbor of y i , leading to a sparse affinity matrix Z . The function K(.) is used to measure the similarity between data y i and anchor u j with L 2 distance in Gaussian kernel space K(x i , x j ) = exp(-||x i -x j || 2 /2σ 2 ), and σ is the bandwidth parameter. The normalized matrix Ẑ ∈ R n×p is then utilized to obtain a low-rank graph matrix,

S ∈ R n×n , S = Z Σ -1 Z where Σ = diag(Z 1).
As the Σ -1 normalizes the constructed matrix, S is bi-stochastic, i.e. the summation of each column and row equal to one, and the graph Laplacian becomes,

S = Ẑ Ẑ where Ẑ = Z Σ -1/2 . (5) 

Ensemble of affinity matrices

Given a set of m encodings {Y } ∈[1,m] obtained using m DAE trained with different hyperparameters setting , the goal is to merge the m graph similarity matrices S in an ensemble similarity matrix which contains information provided by the m embeddings. To aggregate the different similarity matrices, we use an Ensemble Clustering idea analogous to that proposed in [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF][START_REF] Vega-Pons | A survey of clustering ensemble algorithms[END_REF] where a co-association matrix is first built as the summation of all basic similarity matrices, and where each basic partition matrix can be represented as a block diagonal matrix. Thus, the SC-EDAE ensemble affinity matrix is built as the summation of the m basic similarity matrices using the following formula,

S = 1 m m =1 S . (6) 
Note that the obtained matrix, S is still bi-stochastic. For many natural problems, S is approximately block stochastic matrix, and hence the first k eigenvectors of S are approximately piecewise constant over the k almost invariant rows subsets [START_REF] Meila | A random walks view of spectral segmentation[END_REF].

In the sequel, we aim to compute, at lower cost, B that is shared by the m 

graph
Then, given SVD( Z), Z = UΣV and the optimal solution B * is equal to U.

Proof. From the second term of Eq. 9, one can easily show that M * = Z B.
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Plugging now the expression of M * in Eq. 9, the following equivalences hold min

B B=I,M || Z -BM || 2 F ⇔ min B B=I || Z -BB Z|| 2 F ⇔ max B B=I T r(B Z Z B) ⇔ max B B=I
T r(B SB).

On the other hand, SVD( Z) leads to Z = UΣV (with U U = I, V V = I)

and therefore to the eigen-decomposition of S as follows:

S = Z Z = (UΣV )(UΣV ) = UΣ(V V)ΣU = UΣ 2 U .
Thereby the left singular vectors of Z are the same as the eigenvectors of S.

The steps of our SC-EDAE algorithm are summarized in Algorithm 1 and illustrated by Figure 1. The SC-EDAE approach proposes a unique way to combine DAE encodings with clustering. It also directly benefits from the low complexity of the anchors strategy for both the graph affinity matrix construction and the eigen-decomposition.

Specifically, the computational cost for the construction of each Z affinity Output: Run k-means on B * to get the final clustering 

Experiments

Deep autoencoders settings

For our experiments, we trained fully connected autoencoders with an en- The autoencoder data are systematically L 2 normalized. We configure the autoencoders using the Keras tensorflow Python package, and compile the neural network with binary cross-entropy loss and Adam optimizer [START_REF] Reddi | On the convergence of adam and beyond[END_REF] with the default Keras parameters.

SC-EDAE ensemble strategy

The the ensemble affinity matrix Z (Eq. 8).

Synthetic datasets

As a first step, we focus on synthetic datasets to illustrate the SC-EDAE algorithm and show the class-separability information embedded in the left singular vectors matrix of Z, noted as B (Prop. 4.1 and Alg.1). We used generated synthetic data sets selected from the Fundamental Clustering Problem Suite (FCPS) 1 . FCPS yields some hard clustering problems, a short description of Tetra, Chainlink and Lsun FCPS data sets and the inherent problems related to clustering are given in Table 1. Following the experiments on synthetic data proposed by Yang et al. [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF], we transformed the low-dimensional FCPS data,

h i ∈ R 2 or R 3
, in high-dimensional datapoints, x i ∈ R 100 . Specifically, the x i are transformed based on the following equation,

x i = σ(Uσ(Wh i )) (10) 
where the entries of matrices W ∈ R 10×2 and U ∈ R 100×10 follow the zeromean unit-variance i.i.d. Gaussian distribution, and the sigmoid function σ(.) introduces nonlinearity. USPS The database is prepared as proposed in [START_REF] Guo | Improved deep embedded clustering with local structure preservation[END_REF] and contains 9, 298 images of size 16 × 16 pixels of the 10-digits (integers in range 0 -9)

rescaled within [0, 1].

The classes distribution for each dataset is given in Table 2. MNIST and PenDigits are balanced-class datasets while USPS has an imbalanced distribution. 

Baseline evaluations on real data

As baseline, we first evaluate k-means and LSC [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF] on the three real datasets. The kmeans ++ approach corresponds to the scikit-learn Python package k-means implementation with the default parameters and kmeans ++ initialisation scheme [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]. We implemented the LSC method in Python, following the Matlab implementation proposed in [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF], and kept the same default parameters. The LSC landmarks initialisation is done with k-means, which has been shown to provide better accuracy results than the random initialisation [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF][START_REF] Banijamali | Fast spectral clustering using autoencoders and landmarks[END_REF]. We consider landmarks number within 100 and 1000, by step of 100.

The evaluations are done either on the original datasets (Table 3, columns LSC and kmeans ++ ) or on the encodings ( Although the encodings generated by the deep autoencoder improve the clustering accuracy, finding a priori the most appropriate DAE structure remains a challenging task. The accuracy may also vary for different landmark and epoch numbers (Table 5, annexes Tables A.8 & A.9). As will be seen in the following sections, the ensemble strategy of SC-EDAE provides a straightforward way to alleviate these issues and avoid the fine tuning of the DAE hyperparameters.

SC-EDAE ensemble evaluations

The Table 4 summarizes the performance of our LSC -based ensemble approach in the two cases detailed in section 5.2. Specifically, the columns Ens.Init. The SC-EDAE ensemble strategy provides higher clustering accuracy as compare to the baseline evaluations (Table 3). In particular, the mean accuracy values obtained with the ensemble strategy for MNIST, PenDigits and USPS can reach, 95.33 ± 0.07, 87.28 ± 0.48 and 85.22 ± 2.14 respectively, vs. 91.54 ± 3.06, 85.59 ± 2.34 and 83.47 ± 7.40 (Table 3).

The SC-EDAE ensemble approach on the DAE structures (Ens.Struct.) enables also to reach higher accuracy as compare to the baseline evaluations for MNIST (93.23 ± 0.28 vs. 91.54 ± 3.06) and PenDigits (86.44 ± 1.42 vs.

85.59 ± 2.34), but with the added benefit of avoiding the fine tuning of a particular DAE structure, which is not possible in an unsupervised context. The SC-EDAE results for USPS with an ensemble on several structures are lower than our reference evaluations (81.78 ± 3.61 vs. 83.47 ± 7.40), yet the accuracy value remains fairly high with lower standard deviation.

While the SC-EDAE method aims at providing an ensemble strategy for the deep architecture settings (Ens.Init., Ens.Ep. and Ens.Struct., Table 4), it relies also on the LSC idea which depends on the number of landmarks. We studied the possibility of an ensemble on the number of landmarks (m = 5). As can be seen from Table 5, which provides mean accuracy on 10 replicates, the ensemble strategy enables again to reach high accuracy values as compared to our baseline evaluations. The results still remain dependent from the DAE structure type, in particular for MNIST and USPS, and we would therefore recommend to use SC-EDAE in its ensemble structure version (ie., Ens.Struct.). of clusters is high. To better appreciate the quality of our approach, in the sequel we retain two widely used measures to assess the quality of clustering, namely the Normalized Mutual Information [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF] and the Adjusted Rand Index [START_REF] Steinley | Properties of the Hubert-Arable Adjusted Rand Index[END_REF].

Intuitively, NMI quantifies how much the estimated clustering is informative about the true clustering, while the ARI measures the degree of agreement between an estimated clustering and a reference clustering. Higher NMI/ARI is better.

We report in Figure 3 The ensemble paradigm of SC-EDAE ensures high ARI and NMI results with low standard deviations for all real datasets, even for USPS which is an imbalancedclass dataset (Fig. 3, green boxplots). We also detail the ARI and NMI evaluations per DAE structure in annexes, Tables A. ing) [START_REF] Guo | Improved deep embedded clustering with local structure preservation[END_REF] and DCN (Deep Clustering Network) [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF]. Very recently, the DKM (Deep k-means) algorithm, which applies a k-means in an AE embedding space, outperformed these approaches [START_REF] Fard | Deep k-means: Jointly clustering with k-means and learning representations[END_REF].

We compare SC-EDAE to these three methods and summarise these evaluations in Table 6. The last six rows of Table 6 are directly extracted from the DKM authors study [START_REF] Fard | Deep k-means: Jointly clustering with k-means and learning representations[END_REF]. As can be seen from Table 6, while our SC-EDAE approach does not require any pretraining, it outperforms the DCN and IDEC methods in their pretrained version (Table 6, DCN p and IDEC p results). The DKM method performs well with and without pretraining. Yet, our SC-EDAE approach reaches higher accuracy and NMI results than the DKM approach with and without pretraining.

Visualization of latent space

We investigate the quality of the representation learned with SC-EDAE and in particular the positive influence of the left singular vectors matrix of Z, B 

Conclusion

We report in this paper a novel clustering method that combines the advan- 

ARI NMI

  for each input training sample, thus providing the encoding Y of the input dataset. The decoder part aims at transforming back the encoding into its original representation, xi = g ψ (y i ). The sets of parameters for the encoder f θ and the decoder g ψ are learned simultaneously during the reconstruction task while minimizing the loss, referred to as J , where L is a cost function for measuring the divergence between the input training sample and the reconstructed data,

Ensemble DAE 4 . 1 .

 41 Problem formulation Given an n × d data matrix X, the goal is to first obtain a set of m encodings {Y } ∈[1,m] using m DAE trained with different hyperparameters settings. In a second step, we construct a graph matrix S associated to each embedding Y , and then fuse the m graph matrices in an ensemble graph matrix S (equivalently named affinity or similarity matrix in the following) which contains information provided by the m embeddings. Finally, to benefit from the common subspace shared by the m deep embeddings, spectral clustering is applied to S. The challenges of the problem are threefold, 1. generate m deep embeddings, 2. integrate the clustering in an ensemble learning framework, 3. solve the clustering task in a highly efficient way. 215 Each of the above mentioned issues is discussed in the separate subsections 4.2, 4.3 and 4.4 respectively. Most importantly, the SC-EDAE approach is provided with an ensemble optimization which is detailed in subsection 4.5.

7 ) 4 . 5 .Proposition 4 . 1 ., where m j=1 j n, denoted as 1 √m [Z 1 |

 7454111 matrices S , and obtained by optimizing the following trace maximization problem max B T r(B SB) s.t. B B = I. (Proposed optimization and algorithm 235 The solution of Eq. 7 is to set the matrix B equal to the k eigenvectors corresponding to the largest k eigenvalues of S. However, as the computation of the eigen decomposition of S of size (n × n) is O(n 3 ), relying on proposition 4.1, we propose instead to compute the k left singular vectors of the concatenated matrix, Z = 1 √ m [ Ẑ1 | . . . | Ẑj | . . . | Ẑm ]. (8) Using the sparse matrix Z ∈ R n× m j=1 j with m j=1 j n, instead of S, which has a larger dimension, naturally induces an improvement in the computational cost of B (Fig. 1, (b)). Given a set of m similarity matrices S , such that each matrix S can be expressed as Z Z . Let Z ∈ R n× m j=1 j . . . |Z j | . . . |Z m ], be the concatenation of the Z 's, = 1, . . . , m. We first have, max B B=I T r(B SB) ⇔ min B B=I,M || Z -BM || 2 F .

Algorithm 1 :

 1 matrix amounts to O(np e(t + 1)) (Alg. 1, step (b)) , where n is the number of datapoints, p is the number of landmarks for the th DAE (p n), e is the size of the DAE encoding Y (e n) and t is the number of iterations for the k-means that is used to select the landmarks. It is worth noting that the computation of the Z matrices can be easily parallelized over multiple cores, thus limiting the computation time of the ensemble affinity matrix Z to the most time consuming Z . Furthermore, the eigen-decomposition of the sparse ensemble affinity matrix Z, which leads to the B embeddings (Alg. 1, step (c)), induces a computational complexity of O(p 3 + p 2n), where p is the sum of all landmarks numbers for the concatenated Z matrices, i.e. p = need additional O(nctk) for the last k-means on B ∈ R n×k (Alg. 1, output), where c is the number of centroïds, usually equal to k the number of eigenvectors, leading to O(ntk 2 ). The originality and efficiency of our ensemble method hinges on the replacement of a costly eigen-decomposition on S ∈ R n×n by an eigen-decomposition on a low-dimensional and sparse matrix Z ∈ R n× m j=1 j , with m j=1 j n (Alg. 1, step (c)). In particular, the sparsity of Z enables the use of fast iterative and partial eigenvalue decomposition. SC-EDAE algorithm Input: data matrix X; Initialize: m DAE with different hyperparameters setting; Do: (a) Generate m deep embedding {Y } l∈[1,m] (Eq. 3) (b) Construct the ensemble sparse affinity matrix Z ∈ R n× m j=1 j (Eq. 4, 8) (c) Compute B * ∈ R n×k by performing sparse SVD on Z (Eq. 9)

Figure 1 :

 1 Figure 1: Scheme of SC-EDAE. The SC-EDAE algorithm computes first m encodings from DAE with different hyperparameters settings (a), then generates m sparse affinity matrix, { Ẑ } ∈[1,m] , that are concatenated in Z (b), and finally performs a SVD on the ensemble graph affinity matrix Z (c).

270 coder f θ of

  three hidden layers of size 50, 75 or 100 for synthetic datasets (Tetra, Chainlink and Lsun; Section 5.3), and three hidden layers of size 500, 750 or 1000 for real datasets (MNIST, PenDigits and USPS; Section 5.4), as suggested by Bengio et al.[START_REF] Bengio | Greedy layer-wise training of deep networks[END_REF], in all possible orders. The decoder part g ψ mirrors the encoder stage f θ . For each DAE architecture (e.g., {750 -500 -1000}, {100 -50 -75}), 5 encodings were generated with 50, 100, 150, 200 and 250 epochs for real datasets and 200 epochs for synthetic datasets. The weights initialisation follows the Glorot's approach and all encoder/decoder pairs used rectified linears units (ReLUs), except for the output layer which requires a sigmoid function.

  ensemble strategy of SC-EDAE exploits the encodings {Y } ∈[1,m] vwhich are generated with either (i) m different DAE initialisations or m different DAE epochs number in association with one DAE structure (e.g. d-500-1000-750e, with d and e the input and encoding layers width resp.), or (ii) m DAE with different structures for the same number of landmarks and epochs. In both cases, the SC-EDAE strategy enables to compute the m different sparse affinity matrices { Ẑ } ∈[1,m] (Eq. 4) and, following Proposition 4.1, generate

5. 4 .

 4 Real datasets Our SC-EDAE algorithm (Alg.1) is fully evaluated on three image datasets, namely MNIST (Modified National Institute of Standards and Technology), PenDigits (Pen-Based Recognition of Handwritten Digits) and USPS (U.S. Postal Service) and their DAE encodings (see Section 5.1 for details). MNIST The database is loaded from the Keras Python package. The training and testing sets contain respectively 60, 000 and 10, 000 images of size 28 × 28 of the integers in range 0 -9. The images are of grayscale levels rescaled within [0, 1] by dividing by 255. PenDigits The training and testing sets contain respectively 7, 494 and 3, 498 images of size 16 × 16 of the integers in range 0 -9. The images with 16 numeric attributes rescaled within [0, 1] by dividing by 100.

5. 5 . Experiment results 5 . 5 . 1 .

 5551 Evaluation on synthetic data Synthetic data enable us to easily explore the separability capacity of the embeddings matrix B. For the experiments related to synthetic data, SC-EDAE is used in its ensemble structure version, with m = 6 encodings from different structures, and the number of landmarks is set to 100. Applying SC-EDAE on the data sets Tetra, Chainlink and Lsun, we note that the 2D representations of the obtained clusters reflect the real cluster structure (Fig. 2 a, b, c; projection on the two first components of the matrix B as computed in Alg.1, step c). The SC-EDAE accuracy is of 1.00 for Tetra and Chainlink, and 0.90 for Lsun. The colored labels correspond to the predicted clusters. Supplementary experiments with different transformation functions (Appendix A.1) and FCPS datasets (Appendix A.2) confirm this trend.

Figure 2 :

 2 Figure 2: Visualization of the SC-EDAE embeddings on Tetra, Chainlink and Lsun datasets The two first components of B (Alg.1, step (c)) gives a visualization of the datapoints separability with the SC-EDAE method. Colors indicate the predicted labels.

and

  Ens.Ep. indicate the clustering accuracy for the case (i) with an ensemble approach on the DAE weights initialisation (Ens.Init., m = 5) and the DAE training epoch numbers (Ens.Ep., m = 5). The clustering accuracy values for the ensemble approach on various DAE structures, i.e. case (ii), is provided in the column Ens.Struct. (m = 6).

  the ARI and NMI values for the three real datasets (MNIST, PenDigits and USPS). The ARI and NMI values are given for the baseline evaluations (DAE-kmeans ++ and DAE-LSC; average results over 10 runs), and the various ensemble versions of SC-EDAE (Ens.Init, Ens.Ep. and Ens.Struct.; average results over 10 runs for each of the 5 different encodings).

Figure 3 :

 3 Figure 3: Comparison of Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) for our SC-EDAE approach (ensemble on initialisation, epochs and structures; 10 runs) and baseline methods (combination of deep autoencoders and k-means or LSC ; 10 runs for each of the 5 encodings).

  The accuracy and NMI values of these six rows are an average over 10 runs. The other values correspond to our evaluations. Specifically, baseline results are given in the first four rows, and correspond to the clustering task via k-means ++ or LSC (average results over 10 runs), and via 435 a combination of DAE and k-means or LSC (average results over 10 runs for each of the 5 different encodings). The SC-EDAE rows gives the accuracy and NMI results for our ensemble method, with an ensemble over several initialisations (SC-EDAE Ens.Init.), epoch numbers (SC-EDAE Ens.Ep.) and DAE

Alg. 1 ,

 1 Figure 4: t-SNE Vizualization of the embeddings B from the SC-EDAE approach on MNIST, PenDigits and USPS datasets. The t-SNE approach provides clustering visualization of the datapoints from the B embeddings. we can observe clearly separated clusters. The ground truth labels nicely match the t-SNE datapoints gathering, highlighting the ability of SC-EDAE to separate data according to the underlying classes. As already noticed in [36], the t-SNE results obtained from the SC-EDAE ensemble affinity matrix reflects the local structure of the data, such as the orientation of the ones, by showing elongated clusters (e.g., Fig. 4, red cluster).

  tages of deep learning, spectral clustering and ensemble strategy. Several studies have proposed to associate, either sequentially or jointly, deep architecture and classical clustering methods to improve the partitioning of large datasets. However, these methods are usually confronted to important issues related to well known challenges with neural networks, such as weight initialisation or structure settings. Our SC-EDAE approach alleviates these issues by exploiting an ensemble procedure to combine several deep models before applying a spectral clustering; it is quite simple and can be framed in three steps: (i) generating m deep embeddings from the original data, (ii) constructing a sparse and low-dimensional ensemble affinity matrix based on anchors strategy, and (iii) applying spectral clustering to obtain the common space shared by the m encoding. Specifically, the proposed method enables the use of spectral clustering for large scale datasets by using anchors (or landmarks) that provide a sparse and low-dimensional ensemble affinity matrix. Although the spectral clustering is usually limited in practice due to its computational complexity, the use of landmarks lessen this issue in SC-EDAE and efficiently bridges the gap between large-scale spectral clustering and deep learning in an ensemble approach. It is also worth noting that the SC-EDAE procedure could easily benefits from the parallelization of the m encodings computation in the first step of the algorithm. The experiments on real and synthetic datasets demonstrate the robustness and high performance of SC-EDAE on image datasets. SC-EDAE can be used in different versions with an ensemble on weights initialisations, epoch numbers or deep architectures. These variants provide higher accuracy, ARI and NMI results than state-of-the art methods. Most importantly, the high performance of SC-EDAE is obtained without any deep models pretraining. Our experiments also show that the encoding ensemble strategy improves on average the evaluation metrics as compare to the deep non-ensemble approach. SC-EDAE takes advantage of the diversity from multiple DAE trained with various hyperparameters. By constrast, a model selection procedure would possibly ignore valuable information contained in unselected models. SC-EDAE improves the clustering by fusing these DAE encodings arising from various settings. Hence, the good performance of the SC-EDAE ensemble hinges on the diversity of DAE encodings, in combination with the good individual performance of each encoding.We expect that an ensemble of all the SC-EDAE variations -over initialisations, epochs and structures -would perform better than the splitted ensembles. Such SC-EDAE meta-model would indeed benefit from an increased diversity of individually good encodings and is an interesting continuation of the proposed work. Another perspective is to enable clusters number selection within SC-EDAE, as our approach is not primarily meant for this task. Selecting the number of clusters remains an open challenge and the literature is abundant

Table 1 :

 1 Description of the used FCPS data sets.

	Data sets			Characteristics
		Samples Features Clusters	Main Problem
	Tetra	400	3	4	inner vs inter cluster distances
	Chainlink	1000	3	2	not linear separable
	Lsun	400	2	3	different variances

Table 2 :

 2 Class distribution for MNIST, PenDigits and USPS datasets.

		0	1	2	3	4	5	6	7	8	9
	MNIST	5923 6742 5958 6131 5842 5421 5918 6265 5851 5949
	PenDigits	780	779	780	719	780	720	720	778	719	719
	USPS	1194 1005	731	658	652	556	664	645	542	644

Table 3 ,

 3 columns DAE-LSC and DAEkmeans ++ ). The accuracy reported for LSC and k-means ++ corresponds to the mean over 10 clustering replicates on the original datasets, over all epoch and landmark numbers. The accuracy reported for DAE-LSC and DAE-kmeans ++ corresponds to an average over 50 replicates (10 replicates on each of the 5 encodings per DAE structure), over all epoch and landmark numbers (see annexes for complementary results per DAE structure, Section Appendix A.4).As can be seen from Table3and already reported in[START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF], LSC outperforms kmeans ++ for the clustering task on the three datasets (bold values, columns LSC and kmeans ++ ), yet with larger standard deviations. The same trend is observed when applying LSC and kmeans ++ on encodings, with standard deviations of similar magnitude for both clustering methods (bold values, columns DAE-LSC and DAE-kmeans ++ ).

Table 3 :

 3 Mean clustering accuracy for LSC and k-means on original real datasets and encodings: Evaluations on MNIST, PenDigits, USPS data and their encodings. Bold values highlight the higher accuracy values. Data LSC kmeans ++ DAE structure DAE-LSC DAE-kmeans ++ MNIST 68.55 ±2.25 55.13 ±0.05 ++ ). In particular, the average accuracy for the MNIST and USPS datasets varies within [87.06; 91.54] and [79.72; 83.47] respectively for DAE-LSC and within [77.70; 79.98] and [72.41; 74.07] respectively for DAE-kmeans ++ .

The results from Table

3

demonstrate that the simple combination of DAE and LSC or k-means already reaches higher accuracy and smaller standard deviations than without the autoencoder step. These results also show the advantage of associating the DAE encodings with the landmark-based representation over the k-means approach for the clustering task (columns DAE-LSC and DAE-kmeans

Table 4 :

 4 Mean clustering accuracy for SC-EDAE, ensemble on initialisations, epochs number and structures: Bold values highlight the higher accuracy values.

	Dataset	DAE structure	Ens.Init.	Ens.Ep.	Ens.Struct.
		500-750-1000	89.19 ±0.41	85.54 ±4.30	
		500-1000-750	95.33 ±0.07 94.34 ±2.68	
	MNIST	750-500-1000 750-1000-500	92.15 ±0.25 92.65 ±0.13	92.03 ±3.87 92.26 ±3.71	93.23 ±2.84
		1000-500-750	94.28 ±0.20	94.57 ±1.48	
		1000-750-500	93.87 ±0.38 95.25 ±0.59	
		500-750-1000	86.80 ±0.74 87.08 ±1.10	
		500-1000-750	85.95 ±0.73	86.69 ±1.33	
	PenDigits	750-500-1000 750-1000-500	86.69 ±0.87 86.48 ±1.09	87.27 ±0.60 86.91 ±1.01	86.44 ±1.42
		1000-500-750	86.75 ±0.64	86.96 ±0.81	
		1000-750-500	86.66 ±0.95 87.28 ±0.48	
		500-750-1000	80.07 ±1.95	81.36 ±5.09	
		500-1000-750	80.54 ±0.77	82.06 ±3.54	
	USPS	750-500-1000 750-1000-500	79.49 ±1.19 79.29 ±1.05	81.10 ±3.86 79.88 ±2.69	81.78 ±3.61
		1000-500-750	84.12 ±1.80	81.89 ±3.21	
		1000-750-500	85.22 ±2.14 84.96 ±3.29	

Table 5 :

 5 Mean clustering accuracy for SC-EDAE, ensemble on landmarks: Bold values highlight the higher accuracy values. the number of true clusters, {y i } and {ŷ i } the ground truth and predicted label.

		DAE structure		MNIST	PenDigits	USPS
		500-750-1000		88.84 ±1.22 87.31 ±1.13 82.17 ±3.79
		500-1000-750		95.35 ±0.20 87.21 ±0.36	81.96 ±2.74
		750-500-1000		92.48 ±1.27	87.16 ±0.99	80.61 ±3.46
		750-1000-500		92.53 ±0.76	87.09 ±0.95	80.30 ±1.26
		1000-500-750		93.76±1.14	86.67 ±1.40	86.35 ±2.62
		1000-750-500		95.08 ±0.17	87.13 ±1.26 87.32 ±4.85
	5.6. Evaluation in terms of NMI and ARI
	395	Evaluating clustering results is not a trivial task. The clustering accuracy 2 is
	not always a reliable measure when the clusters are not balanced and the number
		2 accuracy is defined as max p∈P	1 n	n i=1	1(y i = ŷi ) , with P the set of all permutations in [1; K],
	K			

Table 6 :

 6 Mean clustering accuracy and NMI comparison with deep k-means variants: Mean accuracy and NMI for MNIST and USPS over 10 replicates with SC-EDAE and comparison to baselines and state-of-the-art approaches. Bold values highlight the higher

	accuracy values.						
	Model	ACC	MNIST	NMI	ACC	USPS	NMI
			baselines		
	kmeans++	55.13 ±0.05 52.89 ±0.02	68.36 ±0.08 65.67 ±0.10
	LSC	68.55 ±2.25 70.54 ±0.83	77.20 ±1.49 79.48 ±0.90
	DAE+kmeans++	78.40 ±6.09 71.97 ±4.13	73.17 ±3.27 70.48 ±1.84
	DAE+LSC	89.78 ±5.14 83.06 ±4.38	81.62 ±6.25 80.44 ±3.39
		no pretraining required	
	SC-EDAE Ens.Init.	92.91 ±0.24 87.65 ±0.18	81.46 ±1.48 82.88 ±0.59
	SC-EDAE Ens.Ep.	92.33 ±2.77 87.72 ±2.42 81.88 ±3.62 83.03 ±1.88
	SC-EDAE Ens.Struct. 93.23 ±2.84 87.93 ±2.27 81.78 ±3.61 83.17 ±1.96
	Deep clustering approaches without pretraining (Fard et al. 2018) [35]
	DCN np	34.8 ±3.0	18.1 ±1.0	36.4 ±3.5	16.9 ±1.3
	IDEC np	61.8 ±3.0	62.2 ±1.6	53.9 ±5.1	50.0 ±3.8
	DKM a	82.3 ±3.2	78.0 ±1.9	75.5 ±6.8	73.0 ±2.3
	Deep clustering approaches with pretraining (Fard et al. 2018) [35]
	DCN p	81.1 ±1.9	75.7 ±1.1	73.0 ±0.8	71.9 ±1.2
	IDEC p	85.7 ±2.4	86.4 ±1.0	75.2 ±0.5	74.9 ±0.6
	DKM p	84.0 ±2.2	79.6 ±0.9	75.7 ±1.3	77.6 ±1.1

architectures (SC-EDAE Ens.Struct.).

Table A . 8 :

 A8 Mean clustering Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) for LSC and k-means on original real datasets and encodings. Evaluations on MNIST, PenDigits, USPS datasets. Bold values highlight the higher results -1000 78.16 ±10.26 63.58 ±8.14 80.88 ±6.58 70.29 ±5.38 500-1000-750 82.84 ±6.65 67.66 ±6.36 84.04 ±4.25 73.21 ±4.02 750-500-1000 79.20 ±8.42 65.32 ±7.36 81.57 ±5.55 71.50 ±4.64 750-1000-500 82.23 ±6.33 66.75 ±6.48 83.52 ±4.13 72.32 ±4.10 1000-500-750 83.66 ±4.23 67.48 ±5.80 84.29 ±2.80 72.80 ±3.52 1000-750-500 83.15 ±4.81 65.28 ±4.78 84.07 ±2.99 71.69 ±3.09 -1000 74.12 ±2.53 59.62 ±3.79 81.06 ±1.43 69.33 ±2.11 500-1000-750 73.18 ±3.55 58.97 ±3.41 80.46 ±1.85 69.14 ±1.99 750-500-1000 73.47 ±3.12 58.23 ±3.73 80.55 ±1.48 68.56 ±2.25 750-1000-500 73.30 ±3.17 58.82 ±3.73 80.38 ±1.62 68.74 ±2.07 1000-500-750 73.07 ±2.97 58.92 ±3.35 80.23 ±1.79 69.53 ±2.23 1000-750-500 73.40 ±3.17 58.16 ±3.12 80.66 ±1.60 68.83 ±1.90 USPS 72.09 ±1.52 57.70 ±0.12 79.48 ±0.90 65.67 ±0.10 500-750-1000 76.12 ±8.45 63.62 ±3.02 80.32 ±4.89 70.35 ±2.25 500-1000-750 77.34 ±7.71 64.22 ±3.34 80.69 ±4.30 70.37 ±2.16 750-500-1000 73.66 ±6.38 63.34 ±2.67 78.77 ±3.81 70.11 ±1.77 750-1000-500 75.17 ±5.23 64.87 ±2.66 80.13 ±3.11 70.94 ±2.03 1000-500-750 76.15 ±4.29 64.63 ±2.02 80.98 ±2.12 70.80 ±1.36 1000-750-500 77.75 ±5.02 63.88 ±2.07 81.74 ±2.12 70.33 ±1.45 References Table A.9: Mean clustering Adjusted Rank Index (ARI) and Normalized Mutual Information (NMI) for the SC-EDAE algorithm. The ensemble is done on initialisations, epochs number and structures. Bold values highlight the higher results.

	ARI	NMI	ARI	NMI
	Data LSC kmeans ++ LSC kmeans ++ DAE structure	DAE-LSC	DAE-kmeans ++	DAE-LSC	DAE-kmeans ++
	MNIST 500-750PenDigits 54.86 ±1.69 39.98 ±0.03 70.54 ±0.83 52.89 ±0.02 68.58 ±3.79 57.58 ±2.61 79.78 ±1.42 69.72 ±0.58 500-750			

The suite can be downloaded from the website of the author: http://www.unimarburg.de/fb12/datenbionik/data

with approaches that can be applied to the embedding matrix B, as exemplify by the R package NbClust which provides 30 indices [START_REF] Charrad | Package 'nbclust[END_REF]. The Bayesian information criterion (BIC) was also successfully used with the mixture approach to the problem of determining the components number in a model [START_REF] Fraley | How many clusters? which clustering method? answers via model-based cluster analysis[END_REF]. We detailed in Appendix A. [START_REF] Allab | Simultaneous spectral data embedding and clustering[END_REF] promising results for the clusters number selection within SC-EDAE. Finally, future works will also focus on the joint optimization of the feature extraction and clustering tasks, for which benefits have been reported

for clustering [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF] or anomaly detection [START_REF] Zong | Deep autoencoding gaussian mixture model for unsupervised anomaly detection[END_REF]. A joint optimization within the ensemble framework of SC-EDAE will most likely lead to further improvements.

Appendix A. Appendix

Appendix A.1. Supplementary data transformations on synthetic data As proposed in [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF], we provide two complementary examples of clustering with SC-EDAE that demonstrate the ability of the B embeddings to correctly recover the underlying classes of a given dataset. We first consider the following two transformations, x i = σ(σ(Wh i )) 2 and x i = tan(σ(Wh i )). The Figure A.5 shows the two first embeddings of B obtained with the transformed data. This representation highlights the separability power of SC-EDAE. The corresponding accuracy is 1.00 for Tetra, Chainlink and Lsun. For both supplementary transformation, we can observe patterns that are similar to clusters presented in the main text (Fig. 2).

Appendix A.2. Supplementary experiments on FCPS synthetic datasets

We highlight the good separability capacity of SC-EDAE on supplementary 

. SC-EDAE ensemble evaluations

The Table A.9 provides complementary results for the ensemble evaluations