
HAL Id: hal-03824873
https://hal.science/hal-03824873

Submitted on 21 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey on machine learning methods for churn
prediction

Louis Geiler, Séverine Affeldt, Mohamed Nadif

To cite this version:
Louis Geiler, Séverine Affeldt, Mohamed Nadif. A survey on machine learning methods for
churn prediction. International Journal of Data Science and Analytics, 2022, 14 (3), pp.217-242.
�10.1007/s41060-022-00312-5�. �hal-03824873�

https://hal.science/hal-03824873
https://hal.archives-ouvertes.fr


A survey on machine learning methods for churn prediction
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Abstract

The diversity and specificities of today’s businesses have leveraged a wide range of prediction tech-
niques. In particular, churn prediction is a major economic concern for many companies. The purpose
of this study is to draw general guidelines from a benchmark of supervised machine learning tech-
niques in association with widely used data sampling approaches on publicly available datasets in
the context of churn prediction. Choosing a priori the most appropriate sampling method as well as
the most suitable classification model is not trivial, as it strongly depends on the data intrinsic char-
acteristics. In this paper we study the behavior of eleven supervised and semi-supervised learning
methods and seven sampling approaches on sixteen diverse and publicly available churn-like datasets.
Our evaluations, reported in terms of the Area Under the Curve (AUC) metric, explore the influence
of sampling approaches and data characteristics on the performance of the studied learning methods.
Besides, we propose Nemenyi test and Correspondence Analysis as means of comparison and visu-
alization of the association between classification algorithms, sampling methods and datasets. Most
importantly, our experiments lead to a practical recommendation for a prediction pipeline based on an
ensemble approach. Our proposal can be successfully applied to a wide range of churn-like datasets.

Keywords: churn prediction, machine learning, ensemble technique

1 Introduction

Building a strong Customer Relationship Man-
agement (CRM) has become a crucial topic for
many companies in recent years. In particular,
management and marketing services are focus-
ing their attention on the customer retention, as
it clearly appeared that the acquisition costs of
a new customer can be much more higher than
the retention costs of an existing one [109, 119,
148]. Besides, retained customers can be of great
help for the company by spreading positive word
of mouth [108], which would subsequently lower
the marketing costs of new customers acquisi-
tion [17]. The ever-rising competition in industry

has therefore pushed forward companies to care-
fully control the switch of customers or subscribers
to another company, also known as customer
churn, customer attrition or customer defection.
The customer churn can be particularly damag-
ing for subscription-based service firms, such as
insurance [59], banking [82], online gambling [38],
online video games [77], music streaming [34],
online services [123] or telecommunication [1, 50,
72, 74]. As such companies are expecting fixed
and regular membership fees, customer switching
behavior should be tempered to ensure sustain-
able profit. Therefore, accurately predicting the
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customers who are prone to churn has become a
priority in industry.

In addition to the systematic prediction of
customers with switching intentions, firms also
seek to determine the causes of churn behav-
ior. Knowing the reasons for customers defection
would both provide support for the profiling of
defection-prone customers and help fostering effi-
cient pro-active campaigns for customers reten-
tion [85]. The customer data generally contains
service usage (e.g. frequency, duration), billing
information (e.g. regularity of payments, contract
term) and support service usage and satisfaction.
Among the most probable antecedents of customer
churn, several prior studies have reported the sat-
isfaction and the service quality [7, 152]. Finding
the most significant churn behavior causes (or fea-
tures) also bring a valuable technical advantage
for the prediction model formulation. Indeed, the
number of features in churn datasets is usually
large and dimentionality reduction helps reducing
overfitting and improving the generalization of the
prediction models.

Marketing and financial industry services pref-
erentially focused on statistic modeling methods
to tackle the churn analysis and prediction task.
A well-known approach is the survival analysis
that proposes to model the occurrence and timing
of events [14, 16, 107]. In the context of customer
attrition, the time to failure corresponds to the
churn behavior. The potential churner behavior
has also been analyzed using structural equation
modeling [54, 101, 134]. Such approach can be
of great interest for managerial decisions, as it
evaluates the effect of suspected influential fea-
tures on a specific customer decision, such as
churn. The analysis of variance was also widely
used in marketing and business areas to uncover
customer behavior [91, 94, 152]. Financial and
retail services also rely on T-test and Chi square
statistics to forecast customer behavior and per-
ceptions [70, 93, 106].

The proposed survey is not exploring these tra-
ditional approaches and rather focuses on machine
learning techniques that are being increasingly
encountered in the customer churn context. These
techniques include supervised and semi-supervised
approaches. K-nearest neighbors, Naive Bayes
classifiers, Linear Regression, Logistic Regression,

Linear Discriminant Analysis [146], Decision Tree
learning [63, 95] and Support Vector Machine
are among the widely used supervised algorithms
in the context of churn prediction. Algorith-
mic modifications [150] and cost-sensitive learning
variants [47, 151] of the aforementioned learning
methods have also been proposed in the context
of imbalanced classes, as encountered in churn
datasets. Finally, several studies proposed to rely
on ensemble approaches such as Random Forest,
AdaBoost [146], Gradient Boosting [84, 95] or
XGBoost [58] to tackle the churn prediction task.
Successful semi-supervised methods have been
proposed [86], as well as deep learning approaches
that offer promising results [58, 63, 95, 123].

The churn prediction problem relates to the
broader issue of class imbalance from which
the anomaly or outlier detection is an extreme
case [81]. Efficient anomaly detection systems
provide valuable information in a wide range
of diverse domains, such as medical diagnos-
tic systems [27], fraud detection [76] or indus-
trial fault detectors [145]. Many approaches
have been proposed to tackle the outlier detec-
tion task [5, 30, 103, 122]. In particular, semi-
supervised approaches regularly provide state-of-
the-art results [5, 135]. Among the well-known
semi-supervised techniques for anomaly detection,
one could cite Local Outlier Factor (LOF) [23],
One-Class SVM (ocSVM) [116], Isolation Forest
(iForest) [88] and Support Vector Data Descrip-
tion (SVDD) [126] methods. The deep learning
research field enabled also the emergence of a
large number of deep anomaly detection meth-
ods [105]. In particular, GEV-NN (Generalized
Extreme Value Neural Network) which proposes
to use Gumbel distribution as an activation func-
tion, reaches state-of-the-art results in the context
of imbalanced data [97]. DevNet (Deviation Net-
work) also demonstrates efficiency and competing
results for anomaly detection [104].

1.1 Related works

In recent years, churn prediction triggered novel
strategies for which machine learning approaches
were used and adapted. The strong interest in
churn prediction led to various surveys related
to machine learning in the fields of telecom-
munication industry, human resources, bank
subscription or financial services. Saradhi et al.
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reviewed three machine learning techniques in
the employee churn context [115], a problem sim-
ilar to customer churn prediction. They provide
comparative results on a private dataset using
a cross-validation procedure. Similarly, Sniegula
et al. compare three machine learning tech-
niques on a single churn dataset in the context
of telecommunication industry [120]. Keramati
et al. proposed a literature and comparative
experimental study with four models on a pri-
vate dataset. Other comparative studies based
on ensemble machine learning approaches were
also proposed [84, 111, 138]. Umayaparvathi et
al. literature survey [129], which focuses on cus-
tomer churn prediction in telecommunication,
provides a list of regularly encountered models in
churn analysis. The authors indicate four pub-
licly available churn datasets and briefly discuss
the possible metrics. A more thorough literature
review was proposed by Grac̀ıa et al. [55]. Sev-
eral steps of the churn prediction analysis are
discussed by the authors, among which the data
gathering, the features selection, the model imple-
mentation and the possible evaluation procedures
and metrics. Their survey concludes with rec-
ommendations based on literature. Several deep
learning approaches have been investigated for
churn prediction. In [118], Seymen et al. proposed
a novel deep learning model which is compared
to logistic regression and artificial neural network
models. Their study encloses a detailed litera-
ture review of deep learning methods in churn
prediction. Beyond this domain, several reviews
dedicated to anomaly detection, which can be
seen as an extreme case of churn prediction, have
been proposed. In [112], the authors highlight
connections between classic shallow and novel
deep approaches applied to anomaly detection. A
thorough deep anomaly detection review, recently
proposed by Pang et al. [105], provides a compre-
hensive taxonomy of deep learning techniques for
anomaly detection and discusses the associated
challenges and perspectives.

Although interesting, these surveys compare
very few machine learning techniques in the
churn context and hardly include any experimen-
tal study. Furthermore, comparative results usu-
ally involve private datasets, making the experi-
ments not reproducible and extrapolation to novel
datasets difficult. Beyond discussion on the models

themselves, these reviews typically omit the tech-
niques for classes rebalancing, which is an impor-
tant issue for churn prediction. Finally, churn
prediction surveys rarely raised the topic of eval-
uation procedures that impact the validity and
robustness of the evaluations.

1.2 Our contribution

In this survey, our primary goal is to compare
multiple alternatives within a machine learning
churn analysis pipeline that involves (i) a sam-
pling stage, (ii) a model fitting phase and (iii) a
robust evaluation procedure (Fig. 2). An exhaus-
tive analysis of all existing algorithmic variants
and cost-sensitive approaches within this pipeline
would not be reasonably feasible. Hence, we rather
focus on base learning algorithms in combination
with widespread sampling approaches to finally
propose a pipeline that is successful on a wide
range of churn-like datasets. In the churn con-
text, several data issues have been pointed out
in relation with classes imbalance [15, 90, 121],
among which the existence of small disjuncts [71,
140, 141], the overlap between classes [44, 56], the
noisy data [117] or the borderline instances [98].
For this study, we do not try to correct for these
specific issues and rather focus on the balancing
of the classes distribution as it was shown to play
a significant role in the performance of standard
classifiers [57]. Several deep learning approaches
were proposed to tackle the churn prediction prob-
lem [28, 46, 130, 147]. We propose to compare
traditional machine learning approaches to a sim-
ple feed-forward neural network and also to more
recent and sophisticated deep learning methods
which have been shown to be particularly efficient
for imbalanced data or in the context of out-
liers detection [97, 104]. Reviewing in depth the
wide range of features selection techniques would
require another survey and is out of the scope of
this review. We invite the reader to refer to the lit-
erature which is abundant with thorough surveys
and comparative studies [61, 132, 136].

Hence, we compare in this paper a range of
machine learning techniques in the context of
churn prediction and give practical recommen-
dations. We first provide an overview of publicly
available churn datasets (Section 2). Then, we
introduce the imbalance class distribution issue
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Table 1: Publicly available churn and churn-like (*) datasets with link

Link to Data #Instances #Features #Dum.Feat. #churn #non− churn %churn #churn
#non−churn

Fraud* 284, 807 29 29 492 284, 315 0.0017 0.0017
K2009 50, 000 230 1, 039 3, 672 46, 327 0.07 0.08
Thyroid* 7, 200 21 21 534 6, 666 0.07 0.08
KKbox 970, 960 49 56 87, 330 883, 630 0.09 0.10
UCI 5, 000 20 21 707 4, 293 0.14 0.16
Campaign* 41, 188 17 63 4, 640 36, 548 0.12 0.13
HR 1, 470 34 86 37 1, 233 0.16 0.19
TelE 190, 776 19 26 29, 884 160, 892 0.16 0.19
News 15, 855 18 307 3, 037 12, 818 0.19 0.23
Bank 10, 000 12 16 2, 037 7, 963 0.20 0.25
Mobile 66, 469 65 65 13, 907 52, 562 0.21 0.27
TelC 7, 043 20 34 1, 869 5, 174 0.27 0.37
C2C 71, 047 71 75 20, 609 50, 438 0.29 0.41
Member 10, 362 14 26 3, 143 7, 219 0.30 0.43
SATO 2, 000 13 29 1, 000 1, 000 0.50 1
DSN 1, 401 15 32 700 700 0.50 1

and describe seven widespread balancing tech-
niques (Section 3). The description of supervised,
ensemble supervised, semi-supervised and deep
learning techniques are given in Section 4. We also
discuss three evaluation procedures (Section 5)
and four metrics (Section 5.2) before provid-
ing the exhaustive experimental results of our
pipeline variants (Section 6). Our experiments are
performed on sixteen publicly available churn-
like datasets that range from human resources,
to telecommunication, internet subscription and
music streaming industry. Our results reveal
interesting complementary behaviors between
machine learning techniques (Section 6.2.1) and
ultimately indicate an advisable churn analy-
sis pipeline which can be successfully applied
to various churn-like datasets (Section 6.2.3).
We summarized our experimental findings with
Nemenyi tests and Correspondence Analysis visu-
alizations (Section 6.2.2). The overall conclusion
is given in Section 8.

All our experiments are performed with freely
accessible Python packages (Appendix B) and
publicly available datasets exclusively (Table 1 &
Appendix A). Thus, our results are fully repro-
ducible and the proposed procedure can be easily
applied to novel datasets.

2 Background

This section formalizes the churn prediction prob-
lem. It also introduces publicly available churn
datasets and discusses appropriate evaluation
metrics. Besides, this section introduces a machine
learning churn prediction pipeline and the associ-
ated variants that we review in this survey.

2.1 Notation and problem definition

Throughout the paper, we use bold uppercase
characters to denote vectors, uppercase characters
to denote random variable and lowercase charac-
ters to denote variable values. Let X = (xij) be a
data matrix of n × d dimension. We assume that
Y is the random variable indicating the class yi of
an observation xi = [xi1, . . . , xid]

> which denotes
the ith instance of X. The total number of obser-
vations is noted n, and G1 is the number of classes
C1, . . . , CG. The churn prediction problem can be
modeled as a standard binary classification task.
Formally, it is an assignment task that amounts
to estimate the conditional probability of Y = yi
given xi, P (Y = yi|xi), so-called class posterior.

1In a binary or churn prediction context, G = 2 and we
consider the two classes +,− that correspond to the churn and
non churn classes respectively.

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data
http://archive.ics.uci.edu/ml/datasets/thyroid+disease
http://www.wsdm-conference.org/2018/call-for-participants.html
https://cran.r-project.org/web/packages/modeldata/modeldata.pdf
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/raumonsa11/churn-telco-europa
https://www.kaggle.com/andieminogue/newspaper-churn
https://www.kaggle.com/shrutimechlearn/churn-modelling
https://www.kaggle.com/dimitaryanev/mobilechurndataxlsx
https://github.com/IBM/telco-customer-churn-on-icp4d
https://www.kaggle.com/jpacse/telecom-churn-new-cell2cell-dataset
https://www.kaggle.com/varshapandey/assignment-data
https://www.kaggle.com/mahreen/sato2015
https://www.kaggle.com/c/dsntelecomschurn2018
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Fig. 1: Datasets distribution on the two first PCA components of Table 1

2.2 Public datasets

Several studies have evaluated machine learn-
ing approaches for churn modeling on various
datasets. However, these studies typically include
private datasets that prevent from reproducibility
and extrapolation to novel datasets. In this survey,
we perform a comparative evaluation of multi-
ple churn analysis techniques on publicly available
datasets only. A churn dataset usually comprises
features of different types that reflect customers
behavior. It also generally exhibits a strong class
imbalance, as the proportion of churners is typ-
ically lower than the proportion of customers
that remain with the company. Our benchmark
datasets are also enriched with three datasets that
are usually found in anomaly detection contexts,
namely Fraud, Thyroid and Campaign.

Table 1 lists the public churn datasets that are
considered in this work and provides their online
access (see also Appendix A). These datasets
have diverse number of instances, number of fea-
tures and dummified features 2, and percentage
of churners. The Figure 1 gives the distribution
of these datasets in the 2D space obtained with
the two first PCA (Principal Component Analy-
sis) components based on the Table 1. Although

2Before fitting a model, categorical variables are converted
to their numerical representation through a dummification
process where each category becomes a binary variable.

the Figure 1 suggests similarities between sev-
eral datasets, it is important to remind that
multiple intrinsic data properties might impact
the prediction in the churn context, such as the
existence of small disjuncts, the overlap between
classes, the noisy data or the borderline instances
(see Section 1.2). Hence, directly drawing conclu-
sions on the most suitable machine learning based
on the general characteristics given in Table 1
remains challenging.

3 Data sampling

3.1 Churn prediction pipeline

This survey provides a comparative study that fol-
lows the analysis pipeline depicted in Figure 2.
This pipeline unfolds in three parts, namely
(i) Sampling, (ii) Model fitting and (iii) Eval-
uation, through which we sequentially com-
bine several techniques. Our prediction pipeline
uses only freely available Python packages (see
Appendix B). For the sampling, we explore
seven different approaches that either corre-
spond to oversampling, undersampling or hybrid
(Section 3). The sampling objective is to trans-
form the original churn dataset into a similar
dataset with a better class balance, either by
reducing the majority class, expanding the minor-
ity class or both. For the model fitting, we consider
eleven supervised and semi-supervised techniques,
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Fig. 2: Machine learning pipeline for churn prediction and analysis

some of which are ensemble approaches. Finally,
we discuss in the evaluation step three different
procedures and four evaluation metrics.

Customer defection is an infrequent event
that is inevitably associated with a class imbal-
ance hassle that impedes the quality of customer
churn prediction. This is particularly true when
the classes are highly overlapping and when the
minority class is divided into sub-clusters. The
class rarity issue is widespread throughout a broad
range of contexts beyond churn prediction such as
fraudulent credit card usage, telecommunication
equipment failure or patient survival prediction.
In such contexts, instances of the minority or pos-
itive class induce a great cost when they are not
well classified.

Churn datasets call for the use of various sam-
pling methods [9, 10] to change the class distribu-
tion. These methods consist in either introducing
data points within the minority class (oversam-
pling), removing datapoints from the majority
class (undersampling) or applying both sampling
strategies (hybrid). Basic and advanced sampling
methods have been proposed [31, 45], and sev-
eral studies showed that undersampling tends to
overtake oversampling [32, 48].

3.2 Oversampling

The oversampling methods generally consist
in duplicating instances in the minority class
or synthesizing new examples from the avail-
able instances. A straightforward oversampling

approach is the random oversampling that ran-
domly selects the instances to be replicated [87].
However, random replication can impede the deci-
sion boundary performance by for instance repeat-
ing outliers. We describe in the following two
more sophisticated and widely used oversampling
approaches, namely the Synthetic Minority Over-
sampling Technique (SMOTE) [31, 51] and the
Adaptative Synthetic Sampling (ADASYN) [69].

3.2.1 Synthetic Minority Oversampling
Technique

The SMOTE technique consists in oversam-
pling the minority class by generating synthetic
instances along the line segments created by a
k-nearest neighbors approach. Specifically, a sam-
ple x is taken at random from the minority class.
Then, its k-nearest neighbors {xi}i∈{1...n} are con-
sidered and used to generate a new synthetic
instance following the formula,

xnewi = x + U([0, 1])× (xi − x).

While the simple duplication of random instances
won’t bring any information, new SMOTE
instances are plausible observations, similar to
original instances from the minority class. How-
ever, while SMOTE helps avoiding the overfitting
problem, its synthetic instances might be ambigu-
ous in case of strongly overlapping classes.

To address this issue, three extensions have
been proposed, namely Borderline SMOTE [65],
Borderline Oversampling SVM [100] and
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ADASYN [69]. The Borderline SMOTE focuses
on generating instances based on observations
that are difficult to classify, according to a k-
nearest neighbors classifier while Borderline
Oversampling SVM uses a SVM classifier to gen-
erate new instances. In the following, we focus on
the third SMOTE extension, ADASYN.

3.2.2 Adaptive Synthetic Method

ADASYN, which is based on SMOTE, adaptively
generates minority data instances according to
their distributions. Specifically, more synthetic
instances are generated in the features space
regions where the observations density is low, and
conversely, fewer synthetic instances are generated
from the high density regions. Hence, ADASYN
focuses on the class separation boundary region.
As for Borderline SMOTE and Borderline Over-
sampling SVM, it would be advisable to remove
outliers before applying ADASYN.

3.3 Undersampling

Undersampling techniques delete instances from
the majority class or select a subset of exam-
ples. A straighforward approach is to randomly
delete instances. However, this can be hazardous
and make the classification task more complex
as it could lead to the removal of important
observations. Tomek Links [128] and Neighbor-
hood Cleaning rule (NCR) [83] are more advanced
undersampling strategies.

3.3.1 Neighborhood Cleaning rule

The NCR technique combines two methods that
remove from the majority class the instances that
are (i) redundant and (ii) noisy or ambiguous. The
first technique is the Condensed Nearest Neighbor
(CNN) Rule [67], that selects a minimal consis-
tent set which is a subset of observations from
the majority class that cannot be correctly classi-
fied. These samples are considered more relevant
for learning. The second approach is the Edited
Nearest Neighbors (ENN) Rule [143]. It finds and
removes noisy and ambiguous instances using a
k-nearest neighbors approach. With ENN, if
a majority class instance is misclassified by its
neighbors, it is removed from the dataset. Besides,
if a minority class instance is misclassified by its

majority class neighbors, the majority class neigh-
bors are also deleted. As shown in [83], NCR is
useful to learn a model upon difficult small classes.

3.3.2 Tomek links

This technique builds on the Condensed Nearest
Neighbor (CNN) Rule [67] and proposes to iden-
tify all cross-class pairs of datapoints, i.e. pairs
that have a sample from the majority and the
minority class that are closest neighbors. Hence,
majority samples that belong to Tomek links are
either boundary instances or noisy instances and
should be removed. It is also common to com-
bine CNN and Tomek links, as the former will
remove redundant samples, while the later deletes
noisy/borderline instances.

3.4 Hybrid

Over problems beyond the class distribution
skewness are usually encountered with churn-like
datasets, such as classes overlapping where major-
ity class examples invade the minority class space
and conversely. To create a better class separation
while balancing the data, various combinations
of upsampling and undersampling methods have
been proposed. A straightforward hybrid method
is to combine SMOTE and Random Undersam-
pling approaches. Chawla et al. shown that this
combination performs better than plain under-
sampling [31]. A more sophisticated combination,
proposed by Batista et al. [8], combines SMOTE
with Tomek Links. It has been successfully applied
on an imbalanced genomic dataset.

3.4.1 SMOTE and Random
Undersampling

As detailed in Section 3.2.1, SMOTE selects
instances that are similar in the features space
and synthesizes new instances in between. This
technique increases the size of the minority class.
A random deletion of instances from the major-
ity class, in combination with this approach, helps
to improve the data balancing and the class clus-
ters separation. However, an obvious limitation
with the random undersampling stage is that
information-rich samples might be deleted from
the majority class.
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3.4.2 SMOTE and Tomek Links

This combination has been proposed in [8]. It first
uses SMOTE to oversample the minority class
by creating synthetic samples. However, as class
clusters are generally not well defined, synthetic
minority class examples can invade the majority
class leading to overfitting. Applying Tomek links
undersampling procedure on the over-sampled
dataset by removing the cross-class pairs finally
produces a balanced dataset with well defined
class clusters.

3.4.3 SMOTE and NCR

For this technical survey, we also propose to
combine SMOTE with NCR. Our experimental
results (Section 6) show that these two sam-
pling approaches tend to improve some machine
learning techniques. NCR has a positive effect on
non ensemble approaches. SMOTE preferentially
improves LR. By combining SMOTE and NCR,
we expect an improvement of several machine
learning techniques compared in this survey.

4 Machine learning techniques

We detail in this section the most widespread
data mining techniques that have been pro-
posed to tackle the customer churn prediction
task. In the following, we mainly focus on base
machine learning approaches that do not embed
any weight correction for the imbalance nature of
churn datasets. For our experiments, we rather
choose to alleviate the class imbalance using sam-
pling approaches. We invite the reader to refer
to the literature which is abundant on the vari-
ants of machine learning methods in the context
of imbalanced data [47, 64, 89, 150, 151]. We
also introduce several machine learning techniques
which are suitable for strongly imbalanced data
and usually applied in anomaly detection. Hence,
Section 4 reports several supervised and semi-
supervised learning algorithms and supervised
ensemble methods. It also briefly covers some
aspects of semi-supervised techniques.

4.1 Supervised learning

4.1.1 k-nearest neighbors

The k-nearest neighbors (k-NN) is a non para-
metric memory-based algorithm. It assigns to an
instance xi the label that corresponds to the
majority label among its k closest training samples
Ωk. Formally,

p(Ci = g | xi) =
1

K

∑
j∈Ωk

1{xj}

where the indicator function 1 is defined as being
equal to one when xi ∈ +, zero otherwise. k-NN
depends on two main parameters, namely (i) the
number of neighbors k and (ii) a pairwise metric
distance function. For continuous data, the fol-
lowing distance is commonly used dist(xi,xj) =
||xi − xj || with xi,xj ∈ Rd ( ||.|| denotes the
Frobenius norm).

The simplicity and efficiency of k-NN have
made this algorithm very attractive in the field
of machine learning. Yet, it has several significant
drawbacks when used on churn-like data, as shown
in [49, 124].

4.1.2 Naive Bayes Classifier

The Gaussian Naive Bayes (Gnb) classifier [66, 75]
is appropriate in a high feature space context,
when the density estimation is difficult. The term
naive results from a simplifying assumption that
posits the conditional independence of the d fea-
tures xj given the class value k. This leads to

fk(xi) =

d∏
j=1

fkj(xij |k). (1)

Note that from Eq. 1, we can formally write
the Gnb classifier function as a generalized addi-
tive model. The Gnb classifier is simple, scalable
and often outperforms more complex approaches.
Although, it appears to be sensitive to the class
imbalance issue [13, 35, 110] - in particular due
to the strong bias in the prior estimation -,
good results can also be achieved for the churn
prediction problem [73].
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4.1.3 Logistic Regression

The logistic regression (LR) models the posterior
probability of the classes via a linear function in x.
In a binary context, such as churn prediction, the
posterior probability of the positive class simply
amounts to,

P (C = +|x) =
exp(β+0 + β+x)

1 + exp(β+0 + β+x)

and sum to 1 with P (C = −|x). This model is
usually fitted by the maximization of the likeli-
hood L(θ). The maximization can be made with
the Newton-Raphson algorithm, which requires
the second derivative of L(θ). Hence, fitting the
LR model amounts to solve,

∂L(β)

∂β
= X>(Y − p) and

∂2L(β)

∂β∂β>
= −X>WX

where p is the vector of fitted probabilities, pi =
P (Ci = +|xi), and W is a n× n diagonal matrix
with wii = pi(1 − pi). These equations can get
solved repeatedly, following the IRLS algorithm
(iteratively reweighted least squares) [26].

In the context of unbalanced datasets, it has
been shown that the bias of the regression vector
intercept tends to be stronger with the unbalanced
ratio [102, 114]. This issue can be overcome with a
prior correction that takes into account the minor-
ity class or with a penalized likelihood where the
maximum likelihood formula is weighted by the
fraction of ones in the target variable [79]. The
good performance of LR was previously pointed
out in [24].

4.1.4 Support Vector Machine

The Support Vector Machine (SVM) was intro-
duced by Vapnik [133] as a kernel based machine
learning model for classification and regression
task. A recent survey is available in [29]. The SVM

classifier aims to construct an optimal separating
hyperplane between two linearly separable classes,
and can be extended to the non-separable case.
The hyperplane can be defined as,

{xi|
d∑
j=1

xijβj + β0 = x>i β + β0 = 0}

where the coefficients βj are defined up to a mul-
tiplicative factor. Thereby the SVM classification
problem can be formally written as,

minβ,β0
||β||2 subject to yi(x

>
i β + β0) ≥ 1, i ∈ {1 . . . n}.

In the case of overlapping classes, the SVM classifier
can be optimized by allowing for some points to
be on the wrong side of the margin, with a cost of
ξ = (ξ1, . . . , ξn). Hence, bounding the

∑
i ξi by a

constant C leads to bounding the total number of
misclassifications, and the standard SVM classifier
problem can finally be expressed as,

minβ,β0 ||β||2 subject to

{
yi(x

>
i β + β0) ≥ 1− ξi ∀i

ξi ≥ 0,
∑

i ξi ≤ C.
(2)

The SVM as described above, uncovers linear
boundaries in the input feature space. Based on
a quadratic programming solution using Lagrange
multipliers, we can re-express the SVM classifier
problem of Eq. 2 as the following Lagrangian dual
objective function,

LD =

n∑
i=1

αi −
1

2

n∑
i,i′=1

αiαi′yiyi′x
>
i xi′ . (3)

We then maximize LD subject to 0 ≤ αi ≤
C,
∑n

i=1 αiyi = 0 and the Karush-Kuhn-Tucker
conditions to find the solution for β.

Note that we can easily enlarge the fea-
ture space by using basis expansions h to iden-
tify nonlinear boundaries in the original space.
This only requires the use of a kernel function,
K(x,x′) = 〈h(x), h(x′)〉 at the inner product
position of Eq. 3. Three widespread kernel func-
tions are regularly encountered in the SVM liter-
ature, namely Radial basis, Neural network and
dth-Degree polynomial functions. Since SVM only
takes into account the support vectors, i.e. the
points that are closed to the boundary, it is an
interesting candidate for moderately imbalanced
datasets [4, 39], although it performs poorly when
the class distribution is too skewed [127].

4.1.5 Decision Tree

The Decision Tree (DT) method iteratively par-
titions the feature space into a set of rectangles,
for which split-points achieve the best fit, until a
stopping rule is reached. Within each partition,



10

or region Rm, the target variable Y can be mod-
eled as a constant cm [22, 52]. A major advantage
of tree-based methods is that the recursive binary
partition is highly interpretable, and somehow
mimics a logical human thinking. For classification
purpose, the best split point s is obtained with an
impurity measure Qm that is based on the pro-
portion p̂mk of class k in the region Rm with Nm
observations,

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (4)

where I is an indicator function. Hence, at node
m, observations are classified at the class k(m)
that maximizes the proportion in Eq. 4. Three
impurity measures are usually encountered in DT

classification, namely Misclassification error, Gini
index and Cross-entropy, the two last measures
being generally preferred as they are differen-
tiable and more sensitive to changes in the node
probabilities. In a binary classification problem,
such as churn, the Gini index and the Cross-
entropy measures simple amount to 2p(1 − p)
and −p log(p) − (1 − p) log(1 − p) respectively,
weighted by the number of observations in the
obtained regions at split. In the context of imbal-
ance datasets authors argue that decision trees are
not viable [18, 139], while others propose an insen-
sitive splitting strategies based, for instance, on
the Hellinger distance [18, 149].

4.1.6 Deep neural networks

Deep neural techniques have led to state-of-the-
art results in various application domains. While
generally efficient on datasets with balanced class
distribution, deep neural networks performance
can be severely impede by imbalanced classes [137,
154]. To overcome this issue, some authors focused
on specific loss function [137] or cost-sensitive
learning [155] on neural networks.

Recently, Munkhdalai et al. [97] proposed an
end-to-end deep neural network architecture using
the Gumbel distribution as an activation function
to tackle the class imbalance issue. Their pro-
posal, so-called GEV-NN (Generalized Extreme
Value distribution), outperforms the state-of-the-
art baselines while giving a beneficial advantage
to interpret variable importance. GEV-NN frame-
work decomposes in three components: (i) a

feed-forward weighting neural network which pro-
vides variable scores to adaptively control input
variables [96], (ii) an auto-encoder to generate
encoded representation and extract efficient fea-
tures for the minority class [157] and (iii) a
prediction network that receives a concatenation
of scored input variables, encoded representation
and features.

A key element of the GEV-NN approach is the
Gumbel distribution which is used as an activation
function [37]. Also known as Generalized Extreme
Value distribution, it is widely used to model
the distribution of extreme samples and has been
extensively applied to characterize, for instance,
age at death or risk assessment in financial con-
text. Its cumulative distribution function is given
by F (x) = e−e

−x

. The Gumbel function asymme-
try naturally provides a different misclassification
penalization on both classes.

4.2 Ensemble Supervised Learning

Ensemble methods are meta-algorithms that com-
bine several models into one predictive model
in order to decrease variance (bagging) or bias
(boosting).

4.2.1 Bagging and Random Forest

Bagging, which stands for bootstrap aggregation,
is an ensemble method for improving unstable
estimation or classification schemes. In [19] the
author motivated bagging as a variance reduction
technique for a given base classifier, such as deci-
sion tree. This approach stands out from basic
ensemble algorithms by fitting a new model to
a bootstrap resample of size less than n. As M
models are trained, the final decision f̂bag aver-

ages the M decision rules f̂m(X) obtained from
the boostrapped training sets.

The Random Forest approach applies bagging
to decision trees while sampling the variables [20,
52]. Specifically, the DT algorithm creates subpar-
titions by choosing a variable among the available
features and splitting following an impurity crite-
rion such as Gini. With RF, the choice of the vari-
able is done within a random subset of features.
This ensemble strategy produces more accurate
predictions than DT. The easily interpretable deci-
sion rules are not available anymore, by contrast
with DT, however RF can provide a measure of fea-
ture importance for the model accuracy. Previous
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studies highlighted the good performance of RF on
imbalanced datasets (see for instance [32]).

4.2.2 eXtreme Gradient Boosting

The boosting method is similar to bagging in that
it combines the results of several classifiers, which
are commonly decision trees. Yet, in the boosting
strategy, each model tries to minimize the errors
of the previous model, by contrast with bagging.
The well-known variants of boosting are Adaboost,
gradient boosting and stochastic gradient boost-
ing which is the most general and widely used
boosting technique.

The key ingredient of Adaboost is the observa-
tion weights wi, that are larger for misclassified
instances. Hence, the approach forces the model
f̂m to train harder on the data for which it per-
forms poorly and iteratively updates the weights.
Each model seeks to minimize the weighted error
em, which corresponds to the sum of the weights
for the misclassified observations. Finally, the

boosted estimate is given by F̂ =
M∑
m=1

αif̂i where

the αi = log(1−em)
em

ensure that the models with
less errors have a larger weight in the final deci-
sion. Instead of adjusting weights, the gradient
boosting variant optimize a cost function, while the
stochastic gradient boosting strategy adds observa-
tions and variables sampling at each iteration. The
most widely used implementation for boosting is
XGBoost, a computationally efficient implemen-
tation of stochastic gradient boosting [33]. It is
interesting to note that with certain parameters
setting, the boosting algorithm can emulate RF.

When dealing with imbalanced dataset,
XGBoost has been shown to outperform other
types of methods [153]. Yet, some studies are less
optimistic and suggest that XGBoost should be
combined with other ensemble methods to achieve
state-of-the-art performance [113].

4.3 Semi-supervised learning

Although very few churn prediction and analy-
sis studies focus on semi-supervised techniques,
we briefly address this type of approaches as they
could be of great interest for future innovative
developments in the field. Semi-supervised tech-
niques have been widely studied in the context
of anomaly detection, an extreme case of churn

prediction. These approaches combine unsuper-
vised learning - which does not require labeled
data - and supervised learning - which learns
from labeled data. Semi-supervised techniques can
be either generative, discriminative or a combi-
nation of both. Generative models attempt to
model the joint probabilities of examples and their
labels. Once this joint probability is modeled, one
can generate new examples for a particular class,
as well as determine the most likely class for
a given example. Discriminative models restrict
themselves to determining the most likely class for
a given example by estimating the probability of
each class given the data example. Discriminative
models do not model the classes, so generation
of new class examples is difficult. An example of
semi-supervised learning in the context of churn
for telecommunication area can be found in [11].
More recently, in [144] the authors propose to com-
bine a semi-supervised approach with Metacost, a
cost-sensitive model, in an ensemble strategy.

In the context of anomaly detection, One-
Class Support Vector Machine (ocSVM) [116]
and Isolation Forest (iForest) [88] are among the
most widely used semi-supervised anomaly detec-
tion algorithms. ocSVM identifies the smallest
hypersphere containing the majority class data-
points [126]. As for SVM (Section 4.1.4), ocSVM
supports the introduction of a kernel function
to allow for more flexibility. Although interest-
ing, this approach does not perform well on large
databases [135]. Indeed, ocSVM introduces signifi-
cant memory requirements and is computationally
expensive when the number of instances increases.
By contrast, iForest [88] has a low linear time
complexity and a small memory requirement. This
approach posits that outlier datapoints can be iso-
lated more easily than normal datapoints. iForest
is based on a recursive 2D partitioning that can
be represented by a tree structure (Section 4.1.5),
so-called Isolation Tree. Anomalies or outliers cor-
respond to leaf node with the smaller path length
in the tree. This approach has been shown to
perform well on imbalanced datasets in several
studies [104, 135].

Recently, Pang et al. [104] proposed a semi-
supervised deep anomaly detection framework,
so-called DevNet, which outperforms state-of-the-
art methods. DevNet relies on neural deviation
learning, requires few labeled anomalies and uses a
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prior probability that enforces statistically signifi-
cant deviations of the anomaly scores. Specifically,
DevNet decomposes as follows: (i) assigning an
anomaly score to each training data object, (ii)
providing a reference score based on the mean
of the anomaly scores of normal data objects
based on a prior probability and (iii) defining a
loss function (deviation loss) to enforce statisti-
cally significant deviations of the anomaly scores
as compared to normal data objects. A strength
of DevNet framework is that it can naturally
accommodate anomalies with different anomalous
behaviors.

5 Model validation

5.1 Validation strategies

Model validation aims at estimating how effec-
tive is the model for the predictions of unseen
instances. A straightforward validation principle is
the holdout set, where some data subset that was
not used for the training is used for evaluating the
predictions of the trained model. We describe and
discuss in the following subsections two validation
approaches that build on and improve the holdout
set idea.

5.1.1 Cross-validation

A clear disadvantage of the holdout set strat-
egy is that a portion of the data is lost for the
model training. This especially becomes an issue
when the dataset is small. The cross-validation
addresses this issue by defining a training set and
a validation set, and then switching the sets before
combining the two validation scores.

5.1.2 K-fold validation

The aforementioned cross-validation idea can be
expanded to more subsets or folds, which is of
great interest when data are scarce. The dataset is
split inK subsets of equivalent sizes and the model
is fitted on K−1 folds. The prediction error of the
fitted model is then calculated on the kth unseen
subset. This strategy is repeated K times while
taking another subset as validation set. Finally,
the K estimates are combined. This is known as
K-fold cross-validation. A typical value for K is 5
or 10 [21, 25, 80].

The K-fold cross validation is not appropriate
as is for evaluating models on churn-like datasets
which are typically imbalanced [68]. Indeed, as the
data is split into K-fold with a uniform probability
distribution, it is likely that one or more folds will
have few or no examples from the minority class,
which in turn severely impedes the model training.

5.1.3 Stratified K-fold validation

The dataset imbalance issue can be addressed with
a stratified sampling, where the target variable y
is used to control the sampling process. Hence,
for a K-fold cross validation procedure, each fold
will roughly contain the same distribution of class
labels as the whole dataset.

The stratified K-fold validation is the valida-
tion strategy retained for our experiments, as it is
the validation procedure that would be applicable
in both balance and imbalance class contexts.

5.2 Evaluation metrics

The assessment procedure of a predictive model
can rely on different metrics. Several metrics have
been proposed in marketing and machine learning
areas. We present in the following the most com-
mon metrics and emphasize their strengths and
drawbacks when tackling churn-like data.

5.2.1 Metrics based on probability

Top decile-lift The top decile-lift is one of the
oldest evaluation metric among marketers to eval-
uate and compare predictive models. It is also a
widespread measure in the churn literature [24,
84]. The lift measure considers the observations/-
customers in order of their predicted probability
of being churners. Specifically, when focusing on
the 10% riskiest customers, the top decile-lift gives
the ratio between the proportion of churners in
the risky segment, π10%, and the whole propor-
tion of churners in the validation set, π, lift10% =

ˆπ10%/π̂. Hence, this measure evaluates if churn-
ers predicted as risky are actually at risk. The top
decile-lift is directly related to the profitability or
gain [99] which is formally defined as,

GAIN = nαπ̂(∆lift10%) [γLVC − δ(γ − ψ)]

where n is the number of customers, α is the
number of customers under study (here, 10%),
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∆lift10% is the top decile-lift increase, γ is the
success rate of the incentive among the churn-
ers, LVC is the lifetime value of a customer [60],
δ is the incentive cost among customers and ψ
is the success rate of the incentive among the
non-churners.
Gini coefficient While the top decile-lift mea-
sure focuses on the 10% riskiest customer, the Gini
coefficient takes also into account the less risky
customers. This coefficient is formally defined as
follows,

Gini =
2

M

M∑
`=1

(πc` − π`)

where M is the size of the validation set, πc` is
the fraction of actual churners above the thresh-
old f̂(xi), π` the fraction of customers above the

same threshold f̂(xi) and f̂(xi) corresponds to a
predicted churn probability. In the same way as
for the top decile-lift, the Gini coefficient takes
advantage of the predicted churn probabilities. It
is also a complementary measure as it considers
the ability to predict less risky customers.

5.2.2 Metrics from confusion matrix

Let TP be the True Positive, the number of
customers predicted as churners who actually
churned, and FP (False Positive) the number
of customers predicted as churners who did not
churn. Similarly, we can define TN (True Nega-
tive), the number of customers predicted as non
churners who did not resign, and FN (False Neg-
ative), the number of customers predicted as non
churner who actually churned. Hence, the num-
ber of correct predictions would be (TP+TN).
By dividing with the total number of predictions
(TP+TN+FP+FN), we obtain the accuracy that
can summarize the classification performance
of a model. However, using accuracy for churn
predictive model evaluation is not appropriate as
the data is strongly imbalanced [139]. We present
below two metrics that are advisable in the churn
context.

F1 score This score summarizes the Precision
and Recall metrics. The Precision estimates the
ability of the model to obtain TP among its
positive predictions, i.e. Precision = TP

TP+FP . It
is a complementary measure to the Recall, that
evaluates the ability of the model to recover

TP, i.e. Recall = TP
TP+FN . The F1 score pro-

poses an harmonic mean of these two metrics,
F1 = 2× Precision·Recall

Precision+Recall .

Area Under the Curve (AUC) The AUC
measure first requires to express the performance
of the model with a Receiver Operating Charac-
teristic (ROC) curve. This curve gives the True
Positive Rate (TPR = TP

TP+FN ) as a function

of the False Positive Rate (FPR = FP
FP+TN ) for

a series of decision thresholds. The AUC cor-
responds to the Area Under the Curve. Hence,
it provides an aggregated performance measure
for all possible ranking thresholds. This measure
can be interpreted as the probability that the
model correctly classifies an instance as positive
as compared to a negative instance.

6 Experiments

This section presents the churn prediction evalua-
tions for several variants of our pipeline (Fig. 2).
The retained datasets cover a range of domains
where churn is regarded as a core issue (Table 1).
We first summarize the experiments settings and
necessary preprocessing steps. We then detail the
machine learning performance on these datasets
when associated to a sampling approach or not.

6.1 Experimental settings

We consider nine popular supervised algorithms
- namely K-Nearest Neighbors (k-NN), Gaussian
Naive Bayes (Gnb), Logistic Regression (LR), Sup-
port Vector Machine with Radial Basis Function
kernel (SVM-rbf) and without kernel (SVM) 3, Deci-
sion Tree (DT), Random Forest (RF), XGBoost, a
feed-forward neural network (NN) and GEV-NN -
in association with different undersampling, over-
sampling and hybrid sampling strategies. Two
semi-supervised techniques are also considered,
namely iForest and DevNet 4. All the implemen-
tations are freely available from python packages.
We mainly kept default parameters (Appendix B).
In this survey, we focus on the association

3In our experiments, we consider both the linear SVM and the
SVM-rbf, which is a kernel SVM using the Radial basis function,
following Amnueypornsakul et al. results [6]

4GEV-NN, iForest and DevNet being specifically designed for
imbalance binary classification or anomaly detection, these
approaches are only evaluated without sampling.
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Table 2: AUC Classification results (No Sampling approach).

Dataset k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN GEV-NN iForest DevNet

Fraud 0.8990 0.9217 0.9766 0.9465 0.9441 0.8660 0.9466 0.9456 0.9573 0.9707 0.9459 0.9621
K2009 0.5004 0.5002 0.5135 0.5052 0.4989 0.4993 0.5114 0.5112 0.4999 0.5058 0.4975 0.4997
Thyroid 0.7598 0.5876 0.8645 0.9821 0.9786 0.9834 0.9996 0.9994 0.6223 0.9941 0.7551 0.7924
KKBox 0.5835 0.6468 0.6763 0.5022 0.4983 0.5302 0.6442 0.6800 0.6994 0.7054 0.5757 0.6184
UCI 0.7731 0.8477 0.8244 0.5963 0.7528 0.8447 0.9182 0.9174 0.8033 0.9137 0.6711 0.8139
Campaign 0.7596 0.8271 0.9331 0.5971 0.6451 0.7290 0.9395 0.9322 0.9134 0.9362 0.7338 0.7687
HR 0.6575 0.7442 0.8596 0.8091 0.4984 0.6053 0.7867 0.7993 0.6310 0.8558 0.6243 0.7677
TelE 0.8226 0.7505 0.7584 0.5335 0.6098 0.8514 0.9380 0.9411 0.8924 0.9320 0.5883 0.6769
News 0.7484 0.5655 0.8369 0.5958 0.6227 0.6754 0.8615 0.8323 0.8266 0.8525 0.5364 0.7003
Bank 0.7768 0.7166 0.8322 0.6645 0.7248 0.6908 0.8506 0.8216 0.8295 0.8583 0.6969 0.7686
Mobile 0.7567 0.7201 0.9030 0.4605 0.5463 0.6660 0.8095 0.7816 0.9118 0.8916 0.7963 0.8576
TelC 0.7822 0.8245 0.8458 0.6498 0.6548 0.6555 0.8210 0.7983 0.8357 0.8404 0.4542 0.7897
C2C 0.4387 0.5181 0.5222 0.4578 0.4656 0.4440 0.3518 0.3862 0.4541 0.3698 0.4985 0.4878
Member 0.5827 0.5914 0.6146 0.4874 0.5088 0.5462 0.6130 0.5987 0.6084 0.6243 0.5606 0.6283
SATO 0.6900 0.7272 0.7594 0.7116 0.7153 0.6365 0.7882 0.7396 0.7367 0.7600 0.6321 0.7030
DSN 0.6576 0.6671 0.7319 0.6868 0.6293 0.7350 0.8590 0.8516 0.6537 0.7493 0.6282 0.6941

ÃUC 0.7526 0.7184 0.8283 0.5967 0.6260 0.6707 0.8358 0.8104 0.7700 0.8542 0.6262 0.7353
Rank 8.06 7.19 3.19 9.00 9.56 8.62 3.38 4.44 5.69 2.88 9.69 6.31

(a) No sampling (with AD methods) (b) SMOTE (c) ADASYN

Fig. 3: Approaches similarities based on Critical Difference diagrams (Oversampling)

between base machine learning techniques, sam-
pling strategies and datasets in a churn prediction
context. Hence, we do not resort to hyperparam-
eters tuning. We adjusted the sampling so as to
obtain a balance distribution as suggested by the
AUC results presented in [142], where the authors
show that the best class distribution for learning
tends to be near the balanced class distribution.
Our evaluations follow a stratified K-fold cross val-
idation procedure where K = 5 (K ∈ [5, 10] is
typically advised in the literature [21, 25, 80]).

Several preprocessing steps where performed
on all datasets. First, we exclude features that
take a unique value for each observation (e.g.
customer ID, phone number, address). Besides,
only observations with less than 20% missing fea-
ture values are retained. All numeric variables are
standardized. The missing values are replaced by
the feature mean for numeric variables and the
majority category for a categorical variable (see
Appendix A for details).

6.2 Experimental results

6.2.1 Learning with sampling

We evaluate the churn prediction for all the
pipeline alternative as given in Figure 2. The
evaluation procedure follows a stratified 5-fold
cross-validation. Results are given in AUC without
sampling (Table 2), and with various oversampling
(Table 3), undersampling (Table 4) and hybrid
sampling approaches (Tables 5 & 6). The mean

rank and the median AUC (ÃUC) for each algo-
rithm are given in the last two columns of each
table.

The median AUC (ÃUC) given in Tables 2

to 6 indicate only small ÃUC variations over sam-
pling strategies. We can notice that the sampling

methods generally degrade ÃUC for RF as com-
pared to results obtained without sampling (from

ÃUC = 0.8358 to ÃUC = 0.8020). Only SMOTE

combined with NCR strongly increases RF ÃUC
(0.8404). On average, XGBoost performance is
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Table 3: Oversampling methods: AUC Classification results (top, SMOTE; bottom, ADASYN).

SMOTE k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.9054 0.9238 0.9751 0.7062 0.3136 0.8408 0.9693 0.9462 0.9648 0.6615
K2009 0.5001 0.4991 0.5135 0.4965 0.4993 0.5022 0.5023 0.4991 0.5054 0.0170
Thyroid 0.8006 0.5644 0.9039 0.8394 0.7128 0.9846 0.9995 0.9992 0.8624 0.4351
KKBox 0.5918 0.6430 0.6763 0.5590 0.4370 0.5272 0.6129 0.6414 0.6851 0.2481
UCI 0.7871 0.8273 0.8278 0.5327 0.7729 0.8490 0.9130 0.9154 0.8701 0.3827
Campaign 0.7657 0.7712 0.9311 0.6063 0.5761 0.7521 0.9406 0.9318 0.9258 0.3645
HR 0.6631 0.7168 0.8501 0.7066 0.5040 0.6309 0.7304 0.7905 0.7412 0.3461
TelE 0.8277 0.7497 0.7626 0.5470 0.5692 0.8482 0.9373 0.9421 0.9094 0.3951
News 0.7452 0.5664 0.8336 0.5651 0.6337 0.6881 0.8136 0.8333 0.8428 0.2777
Bank 0.7744 0.7861 0.8325 0.5830 0.7204 0.6940 0.8255 0.8234 0.8422 0.2592
Mobile 0.6479 0.6993 0.8942 0.6185 0.4404 0.6570 0.8138 0.7835 0.9124 0.4720
TelC 0.7650 0.8224 0.8451 0.5098 0.6881 0.6656 0.8007 0.7941 0.8439 0.3353
C2C 0.4375 0.5033 0.5160 0.4965 0.4751 0.4415 0.3944 0.3878 0.4348 0.1282
Member 0.5865 0.5936 0.6213 0.5176 0.5187 0.5489 0.6122 0.5959 0.6203 0.1037
SATO 0.6900 0.7272 0.7594 0.7116 0.7152 0.6385 0.7601 0.7396 0.7393 0.1216
DSN 0.6576 0.6671 0.7319 0.6868 0.6298 0.7314 0.8166 0.8516 0.6584 0.2218

ÃUC 0.7176 0.7081 0.8302 0.5740 0.5726 0.6768 0.8137 0.8088 0.8425

Rank 6.31 5.38 2.31 7.56 7.69 6.12 3.00 3.56 3.06

ADASYN k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.8990 0.9217 0.9766 0.9466 0.9428 0.8621 0.9514 0.9456 0.9635 0.1145
K2009 0.5007 0.4987 0.5137 0.5032 0.5053 0.4985 0.4945 0.5013 0.5013 0.0192
Thyroid 0.7598 0.5876 0.8645 0.9821 0.9786 0.9806 0.9995 0.9994 0.6381 0.4119
KKBox 0.5899 0.6421 0.6777 0.5491 0.5239 0.5268 0.6107 0.6468 0.6923 0.1684
UCI 0.7791 0.8293 0.8276 0.5512 0.7601 0.8483 0.9112 0.9156 0.8712 0.3644
Campaign 0.7596 0.8271 0.9331 0.5971 0.6505 0.7269 0.9398 0.9322 0.9156 0.3427
HR 0.6612 0.7241 0.8476 0.6768 0.5026 0.5814 0.7597 0.7978 0.7566 0.3450
TelE 0.8248 0.7551 0.7634 0.4678 0.5559 0.8382 0.9364 0.9418 0.9097 0.4740
News 0.7377 0.5661 0.8309 0.5467 0.6419 0.6876 0.8107 0.8328 0.8384 0.2917
Bank 0.7647 0.7865 0.8315 0.6403 0.7123 0.6865 0.8197 0.8225 0.8408 0.2005
Mobile 0.6203 0.6814 0.8848 0.1398 0.4864 0.6644 0.7970 0.7937 0.9100 0.7702
TelC 0.7515 0.8311 0.8444 0.4093 0.6822 0.6546 0.8003 0.7968 0.8429 0.4351
C2C 0.4408 0.5031 0.5171 0.5271 0.4734 0.4401 0.3971 0.3905 0.4606 0.1366
Member 0.5791 0.5958 0.6266 0.5015 0.5304 0.5479 0.6092 0.5973 0.6153 0.1251
SATO 0.6900 0.7272 0.7594 0.7116 0.7153 0.6375 0.7494 0.7396 0.7613 0.1238
DSN 0.6576 0.6671 0.7319 0.6869 0.6297 0.7336 0.8038 0.8516 0.6602 0.2219

ÃUC 0.7138 0.7028 0.8292 0.5502 0.6358 0.6754 0.8020 0.8101 0.7998

Rank 6.50 5.56 2.62 6.75 6.94 6.62 3.56 3.31 3.12

slightly improved when using NCR and SMOTE
combined with NCR (+0.0188 and +0.0186). The
approach that benefits the most from the sampling

strategies is NN, with a maximum ÃUC increase of
0.0728 when using SMOTE combined with Tomek

Links. The top approaches over all datasets and
sampling strategies are LR, RF, XGBoost and NN,
with a mean rank of 2.61, 3.21, 3.33 and 3.66
respectively. When considering particular meth-
ods and datasets, greater improvement can be
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Table 4: Undersampling methods: AUC Classification results (top, NCR; bottom, Tomek).

NCR k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.9000 0.9226 0.9762 0.9472 0.9423 0.8803 0.9496 0.9405 0.9664 0.0959
K2009 0.5061 0.5004 0.5146 0.5017 0.5033 0.5027 0.5105 0.5149 0.5065 0.0145
Thyroid 0.7650 0.5887 0.8574 0.9726 0.9548 0.9824 0.9993 0.9992 0.6557 0.4106
KKBox 0.6099 0.6483 0.6762 0.5353 0.4797 0.5488 0.6397 0.6824 0.7002 0.2205
UCI 0.8052 0.8512 0.8234 0.6309 0.6288 0.8500 0.9145 0.9200 0.8118 0.2912
Campaign 0.7789 0.8150 0.9287 0.6751 0.6828 0.7934 0.9374 0.9353 0.9017 0.2623
HR 0.6761 0.7350 0.8580 0.8332 0.4984 0.6194 0.7430 0.7918 0.6803 0.3596
TelE 0.8295 0.7468 0.7615 0.4438 0.6260 0.8583 0.9394 0.9417 0.8922 0.4979
News 0.7804 0.5672 0.8371 0.6727 0.6745 0.7306 0.8298 0.8399 0.8189 0.2727
Bank 0.7994 0.7460 0.8313 0.6647 0.7938 0.7327 0.8361 0.8369 0.8335 0.1722
Mobile 0.7274 0.7255 0.8867 0.4912 0.6077 0.6710 0.7862 0.7745 0.8883 0.3971

TelC 0.8028 0.8205 0.8438 0.8007 0.7920 0.7136 0.8201 0.8216 0.8380 0.1302
C2C 0.4069 0.4890 0.4985 0.5659 0.4533 0.4146 0.3527 0.3668 0.4360 0.2132
Member 0.5915 0.5886 0.6209 0.4915 0.5512 0.5693 0.6129 0.6104 0.6218 0.1303
SATO 0.7028 0.7348 0.7645 0.7741 0.7089 0.6615 0.7631 0.7685 0.7198 0.1126
DSN 0.6634 0.6328 0.7311 0.7186 0.6308 0.7214 0.8173 0.8672 0.6952 0.2364

ÃUC 0.7462 0.7302 0.8274 0.6687 0.6298 0.7175 0.8187 0.8292 0.7658

Rank 6.25 6.06 2.88 6.31 7.25 6.50 3.25 2.62 3.88

Tomek k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.8990 0.9217 0.9766 0.9457 0.9445 0.8793 0.9477 0.9446 0.9629 0.0973
K2009 0.4999 0.5002 0.5138 0.5007 0.4961 0.5044 0.5106 0.5017 0.4944 0.0194
Thyroid 0.7607 0.5879 0.8638 0.9825 0.9769 0.9825 0.9996 0.9994 0.6779 0.4117
KKBox 0.5873 0.6470 0.6761 0.5335 0.4762 0.5337 0.6189 0.6805 0.6994 0.2232
UCI 0.7773 0.8487 0.8252 0.6336 0.7540 0.8431 0.9134 0.9150 0.8241 0.2814
Campaign 0.7628 0.8252 0.9324 0.5985 0.6502 0.7449 0.9391 0.9341 0.9141 0.3406
HR 0.6671 0.7426 0.8585 0.8260 0.4990 0.6152 0.7481 0.7997 0.6281 0.3595
TelE 0.8236 0.7501 0.7589 0.5695 0.6031 0.8543 0.9379 0.9412 0.8906 0.3717
News 0.7533 0.5653 0.8376 0.6010 0.6395 0.6909 0.8132 0.8365 0.8263 0.2723
Bank 0.7797 0.7196 0.8321 0.5793 0.7500 0.6963 0.8243 0.8253 0.8314 0.2528
Mobile 0.7514 0.7182 0.8991 0.3813 0.5211 0.6619 0.7880 0.7868 0.9061 0.5248
TelC 0.7882 0.8240 0.8459 0.7019 0.7055 0.6683 0.8001 0.8017 0.8375 0.1776
C2C 0.4359 0.5164 0.5208 0.4803 0.4567 0.4427 0.3863 0.3855 0.4488 0.1353
Member 0.5890 0.5924 0.6170 0.4801 0.5162 0.5474 0.6036 0.6033 0.5960 0.1369
SATO 0.6891 0.7247 0.7573 0.7253 0.7029 0.6415 0.7483 0.7514 0.7034 0.1158
DSN 0.6535 0.6632 0.7286 0.7000 0.6241 0.7293 0.8294 0.8655 0.6518 0.2414

ÃUC 0.7524 0.7189 0.8286 0.5998 0.6318 0.6796 0.8067 0.8135 0.7638

Rank 6.31 5.56 2.38 6.50 7.31 6.31 3.19 3.00 4.44

observed. For instance, combining SVM with NCR
increases AUC of 0.1081 on C2C. The perfor-
mance of XGBoost is also increased when using the
hybrid sampling SMOTE & Tomek Links (from
0.8516 to 0.8694) on DSN. We notice an AUC

increase of 0.0124 when using SMOTE in combina-
tion with NCR on Member with LR. Hence, while
a global improvement of all the machine learning
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Table 5: Hybrid methods: AUC Classification results

k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Dataset SMOTE + Random undersampling

Fraud 0.9054 0.9238 0.9751 0.7758 0.3237 0.8357 0.9694 0.9462 0.9746 0.6514
K2009 0.5001 0.4991 0.5135 0.4967 0.5012 0.5023 0.5055 0.4991 0.5038 0.0168
Thyroid 0.8006 0.5644 0.9039 0.8394 0.7224 0.9835 0.9995 0.9992 0.8548 0.4351
KKBox 0.5918 0.6430 0.6763 0.5654 0.4628 0.5277 0.6199 0.6480 0.6997 0.2369
UCI 0.7871 0.8273 0.8278 0.5326 0.7727 0.8499 0.9168 0.9154 0.8715 0.3842
Campaign 0.7657 0.7712 0.9311 0.6063 0.5761 0.7500 0.9403 0.9318 0.9279 0.3642
HR 0.6631 0.7168 0.8501 0.7065 0.5031 0.6295 0.7560 0.7905 0.7601 0.3470
TelE 0.8275 0.7497 0.7626 0.5756 0.5677 0.8486 0.9373 0.9421 0.9084 0.3744
News 0.7454 0.5664 0.8337 0.5652 0.6337 0.6871 0.8117 0.8333 0.8415 0.2763
Bank 0.7744 0.7861 0.8325 0.5830 0.7204 0.6936 0.8240 0.8234 0.8430 0.2600
Mobile 0.6586 0.6993 0.8942 0.5304 0.5588 0.6586 0.7953 0.7835 0.9080 0.3776
TelC 0.7650 0.8224 0.8451 0.5785 0.6881 0.6675 0.7947 0.7941 0.8419 0.2666
C2C 0.4375 0.5033 0.5160 0.5097 0.4783 0.4429 0.3964 0.3878 0.4557 0.1282
Member 0.5866 0.5936 0.6213 0.5179 0.5169 0.5426 0.5985 0.5959 0.6235 0.1066
SATO 0.6900 0.7272 0.7594 0.7117 0.7152 0.6375 0.7491 0.7396 0.7405 0.1219
DSN 0.6576 0.6671 0.7319 0.6868 0.6293 0.7343 0.8156 0.8516 0.6677 0.2223

ÃUC 0.7177 0.7081 0.8302 0.5771 0.5719 0.6773 0.8035 0.8088 0.8417

Rank 6.38 5.56 2.38 7.44 7.69 6.19 3.00 3.62 2.75

(a) No sampling (b) Neighborhood Cleaning rule (c) Tomek

Fig. 4: Approaches similarities based on Critical Difference diagrams (Undersampling)

(a) SMOTE + Random undersampling (b) SMOTE + NCR (c) SMOTE + Tomek

Fig. 5: Approaches similarities based on Critical Difference diagrams (Hybrid sampling)

approaches cannot be observed, local improve-
ments can be observed for given methods and
samplings, depending on the datasets.

It is important to highlight the almost system-
atic complementary behaviors of LR, RF, XGBoost
and NN overall datasets. As can be seen from

Table 3 to Table 6, whenever LR is not the best
approach, XGBoost, RF or NN outperforms the
other machine learning techniques, and conversely
(see for instance bold values of Table 4, Tomek
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Table 6: Hybrid methods: AUC Classification results (top, SMOTE-Tomek; bottom, SMOTE-NCR)

ST-T.L. k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.9054 0.9238 0.9751 0.7893 0.3207 0.8377 0.9679 0.9462 0.9698 0.6544
K2009 0.5001 0.4991 0.5135 0.4999 0.4985 0.5050 0.5088 0.5084 0.5047 0.0150
Thyroid 0.8006 0.5656 0.9035 0.8683 0.7173 0.9826 0.9995 0.9993 0.8685 0.4339
KKBox 0.5926 0.6432 0.6764 0.5098 0.4378 0.5291 0.6142 0.6494 0.7017 0.2639
UCI 0.7871 0.8273 0.8278 0.5685 0.7700 0.8457 0.9189 0.9150 0.8750 0.3504
Campaign 0.7633 0.7708 0.9304 0.5914 0.5887 0.7491 0.9399 0.9335 0.9294 0.3512
HR 0.6631 0.7168 0.8501 0.7065 0.5018 0.6298 0.7533 0.7905 0.7378 0.3483
TelE 0.8270 0.7496 0.7628 0.5042 0.5492 0.8482 0.9359 0.9402 0.9098 0.4360
News 0.7450 0.5690 0.8335 0.5414 0.6363 0.6882 0.8124 0.8273 0.8435 0.3021
Bank 0.7746 0.7860 0.8325 0.5952 0.7295 0.6958 0.8232 0.8273 0.8420 0.2468
Mobile 0.6351 0.6995 0.8941 0.2132 0.5761 0.6639 0.7951 0.7939 0.9073 0.6941
TelC 0.7708 0.8223 0.8449 0.5011 0.7051 0.6717 0.7980 0.7960 0.8447 0.3438
C2C 0.4370 0.5034 0.5158 0.4691 0.4705 0.4419 0.3894 0.3846 0.4574 0.1312
Member 0.5852 0.5925 0.6201 0.4627 0.5118 0.5470 0.6007 0.6029 0.6206 0.1579
SATO 0.6986 0.7219 0.7581 0.7438 0.7122 0.6375 0.7565 0.7602 0.7388 0.1227
DSN 0.6531 0.6644 0.7304 0.7125 0.6257 0.7314 0.8066 0.8694 0.6691 0.2437

ÃUC 0.7218 0.7082 0.8302 0.5550 0.5824 0.6800 0.8023 0.8116 0.8428

Rank 6.44 5.62 2.44 7.44 7.81 6.06 3.12 3.00 3.06

ST-NCR k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.9054 0.9238 0.9751 0.8562 0.3237 0.8358 0.9681 0.9452 0.9642 0.6514
K2009 0.5003 0.4995 0.5153 0.4972 0.5044 0.4984 0.4944 0.4974 0.5063 0.0209
Thyroid 0.8004 0.5672 0.9032 0.8399 0.7201 0.9865 0.9994 0.9991 0.8587 0.4322
KKBox 0.6054 0.6485 0.6801 0.5243 0.4790 0.5479 0.6665 0.6705 0.7004 0.2214
UCI 0.7856 0.8341 0.8274 0.5683 0.7524 0.8537 0.9144 0.9187 0.8726 0.3504
Campaign 0.7536 0.7706 0.9284 0.6180 0.5952 0.7495 0.9402 0.9311 0.9223 0.3450
HR 0.6569 0.7080 0.8274 0.7500 0.4992 0.6620 0.7911 0.8031 0.7334 0.3282
TelE 0.8178 0.7465 0.7633 0.5954 0.5967 0.8524 0.9364 0.9413 0.9095 0.3459
News 0.7495 0.5936 0.8388 0.6342 0.7010 0.7323 0.8537 0.8477 0.8404 0.2601
Bank 0.7781 0.7827 0.8320 0.6542 0.7773 0.7232 0.8495 0.8423 0.8414 0.1953
Mobile 0.6260 0.6984 0.8799 0.6541 0.5329 0.5825 0.6210 0.6689 0.8747 0.3470
TelC 0.7754 0.8176 0.8435 0.6038 0.7778 0.7139 0.8312 0.8156 0.8425 0.2397
C2C 0.4225 0.4963 0.5022 0.4692 0.4468 0.4101 0.3153 0.3638 0.4563 0.1869
Member 0.5860 0.5791 0.6270 0.4485 0.5654 0.5590 0.6218 0.6125 0.6354 0.1869
SATO 0.7053 0.7387 0.7575 0.7556 0.7138 0.6850 0.7811 0.7671 0.7371 0.0961
DSN 0.6513 0.6515 0.7392 0.7334 0.6393 0.6986 0.8556 0.8661 0.6909 0.2268

ÃUC 0.7274 0.7032 0.8274 0.6261 0.5960 0.7062 0.8404 0.8290 0.8409

Rank 6.25 5.50 2.69 6.88 7.50 6.56 3.19 3.12 3.31

Links or Tables 5, SMOTE & Random Undersam-
pling). This finding suggests the use of an ensem-
ble method based on the top four approaches, LR,
XGBoost, RF and NN (see Section 6.2.3).

We propose to visualize the machine learning
performance similarities and ranking with Critical
Difference (CD) diagrams [43] based on statisti-
cal pairwise comparisons computed from the AUC
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(a) CA biplot, dimensions 1 and 2, no sampling (b) Representation Quality

(c) CA biplot, dimensions 1 and 3, no sampling (d) Representation Quality

Fig. 6: (a & c) Visualization of associations between machine learning approaches and churn-like datasets
without sampling using Correspondance Analysis. (b & d) Quality of representations on the factor map.

results (Table 2 to Table 6). For these compar-
isons, we consider the post-hoc Nemenyi test (α =

0.05) for which Figures 3, 4 and 5 provide the
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CD diagrams [43] for each sampling strategy. Hor-
izontal lines connect the approaches for which we
cannot exclude the hypothesis that the average
AUC rank is equal. As can be seen, the sam-
pling strategies have a weak effect on the machine
learning approaches ranking.

6.2.2 Models and datasets CA

To go beyond the analyses in Section 6.2.1, we
propose to visualize the relationships between the
machine learning techniques and the churn-like
datasets in a two-dimensional plot based on the
AUC results. To this end, we perform a Correspon-
dence Analysis (CA) - a geometric approach that
extends principal component analysis - on an AUC
results table (Table 2). The Figure 6 provides a CA

result overview that is useful for interpretation.
As can be seen from correlation plots in

Figures 6(b) and 6(d), SVM, and NN are well rep-
resented by the first dimension, RF and XGBoost

by the second dimension and LR by the third
dimension. Similarly, not all datasets are well rep-
resented by the two first components and some of
them are found on the third and the fourth dimen-
sions. Hence, we provide in Figures 6(a) and 6(c)
two CA biplots based either on the two first
components, or on the first or third dimensions.

The Figure 6(a) suggests a similar behav-
ior between RF and XGBoost. It also highlights
the difference with these approaches and SVM

and SVM-rbf. News appears associated with RF,
XGBoost and GEV-NN, in agreement with the AUC
Table 2. We also visualize the Mobile dataset in
the vicinity of NN which is the most suitable tech-
nique without sampling. Similarly, TelE is found
near XGBoost. The Figure 6(b) uses the third
dimension instead of the second dimension, bring-
ing a better representation of LR. We notice the
positioning of News between RF and GEV-NN, as
expected from the AUC table. Interestingly, SATO
has shifted towards RF, GEV-NN and LR. This is in
agreement with Table 2, as these machine learning
techniques provide the best top three AUC results.
Similarly, KKBox stands towards LR and GEV-NN.

6.2.3 Ensemble study and proposal

In this Section, we combine LR, XGBoost, RF and
NN for the churn prediction. Specifically, we aver-
age predicted probabilities for each instance, over
two, three or four methods among LR, XGBoost

RF and NN. The Figure 7 shows, for each sampling
strategy, and over all datasets, the AUC for LR,
XGBoost, RF and NN (light gray), their pairwise
ensembles (light orange), the combination of three
methods (dark orange) and the combination of all
four methods (dark blue). As can be seen from
Figure 7, LR|XGBoost|RF|NN ensemble mostly out-
performs the other methods, closely followed by
LR|XGBoost|RF (Table 7). Overall, the best ensem-
ble approach is obtained when combining the
three approaches (LR|XGBoost|RF) and without

sampling strategy (Table 7, ÃUC = 0.8577).
The Table 8 provides for each dataset, the

pipeline that produces the highest AUC (Best
non ensemble pipeline AUC & Best non ensem-
ble pipeline columns). Our recommended ensemble
pipeline (LR|XGBoost|RF and no sampling) pro-
vides an AUC that nearly reaches the best AUC
result, for almost all datasets. The only exception
is for C2C. All in all, in practice, we recommend
the use of the ensemble LR|XGBoost|RF with no
sampling for analyzing novel churn-like datasets.

7 Discussion

We compare in this study eleven well-established
and popular supervised machine learning tech-
niques used for churn prediction, imbalance
dataset or anomaly detection. Our results pro-
vide information on the relationships between
supervised machine learning methods, imbalanced
datasets preprocessing and the datasets. We dis-
cuss in this section overall advisable strategies and
improvement perspectives.

In this survey, we only consider the default
parameters for each approach. However, the super-
vised context would also allow for boosting ver-
sions of some of these techniques. This could
significantly improve their classification results, in
particular for SVM [131]. The boosting strategy
has been successfully applied to the prediction of
customer churn in retail [36] and telecom compa-
nies [84]. Generally speaking, ensemble approach
should be considered for the classification task in
a churn-like context, as they repeatedly performed
better than individual classifiers in the field of
data mining. Ahmed et al. [3] even proposed
nested ensemble learners models that outperform
traditional ensemble when applied to churn pre-
diction in telecom industry.
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Fig. 7: AUC ensemble results on the three top machine learning approaches and all datasets
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Table 7: ÃUC for ensemble and non ensemble approaches and all datasets.

Sampling no SMOTE ADASYN NCR
Tomek
Links

SMOTE
& R.U.

SMOTE
& T.L.

SMOTE
& NCR

ÃUC

LR 0.8283 0.8301 0.8293 0.8274 0.8287 0.8301 0.8302 0.8274 0.8294
XGBoost 0.8104 0.8087 0.8102 0.8292 0.8135 0.8087 0.8117 0.8290 0.8167
RF 0.8358 0.8137 0.8021 0.8187 0.8066 0.8035 0.8023 0.8403 0.8162
NN 0.7700 0.8425 0.7998 0.7658 0.7617 0.8417 0.8428 0.8409 0.8159

LR|XGBoost 0.8479 0.8464 0.8465 0.8457 0.8485 0.8464 0.8466 0.8395 0.8464
LR|RF 0.8516 0.8439 0.8460 0.8457 0.8476 0.8467 0.8466 0.8470 0.8472
LR|NN 0.8383 0.8442 0.8408 0.8378 0.8403 0.8446 0.8449 0.8424 0.8418
XGBoost|RF 0.8325 0.8256 0.8251 0.8374 0.8267 0.8240 0.8255 0.8405 0.8313
XGBoost|NN 0.8388 0.8461 0.8450 0.8412 0.8388 0.8484 0.8448 0.8352 0.8431
RF|NN 0.8533 0.8409 0.8365 0.8411 0.8358 0.8375 0.8395 0.8449 0.8423

LR|XGBoost|RF 0.8577 0.8526 0.8489 0.8500 0.8529 0.8521 0.8489 0.8466 0.8517
LR|XGBoost|NN 0.8498 0.8457 0.8477 0.8459 0.8452 0.8478 0.8465 0.8462 0.8473
LR|RF|NN 0.8523 0.8462 0.8484 0.8472 0.8491 0.8485 0.8470 0.8479 0.8483
XGBoost|NN|RF 0.8566 0.8512 0.8463 0.8486 0.8533 0.8510 0.8464 0.8464 0.8501

LR|XGBoost|RF|NN 0.8562 0.8533 0.8506 0.8491 0.8546 0.8537 0.8492 0.8513 0.8526

Table 8: Our ensemble proposal vs. best non ensemble approach for each dataset.

LR|XGBoost|RF
& no sampling AUC

Best non ensemble
pipeline AUC

Best non ensemble pipeline

Fraud 0.9794 0.9766 no sampling & LR
K2009 0.5197 0.5153 SMOTE-NCR & LR
Thyroid 0.9989 0.9996 no sampling & RF
KKBox 0.6890 0.7054 no sampling & GEV-NN
UCI 0.9215 0.9200 NCR & XGBoost
Campaign 0.9440 0.9402 SMOTE-NCR & RF
HR 0.8443 0.8596 no sampling & LR
TelE 0.9435 0.9421 SMOTE & XGBoost
News 0.8636 0.8615 no sampling & RF
Bank 0.8531 0.8583 no sampling & GEV-NN
Mobile 0.8761 0.9124 ADASYN & NN
TelC 0.8340 0.8459 Tomek Links & LR
C2C 0.3852 0.5659 NCR & SVM
Member 0.6201 0.6354 SMOTE-NCR & NN
SATO 0.7765 0.7882 no sampling & RF
DSN 0.8623 0.8694 SMOTE-T.Links & XGBoost

ÃUC 0.8069 0.8240

The finance industry has gradually adapted
various machine learning techniques. In particular,
detecting economic crimes (eg., accounting fraud,

money laundering) triggered successful applica-
tions of machine learning. LR, Gnb and SVM are
among the most classic methods exploited in this
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area. The emergence of new kinds of fraud with
the growth of electronic market has also popular-
ized deep learning methods in finance. Ensemble
strategies and boosting also remain a valuable
option in this area. An enhanced hybrid ensem-
ble approach, named RS-MultiBoosting [156] has
been proposed; it incorporates random subspace
and MultiBoosting to improve the accuracy of
forecasting credit risk.

As already mentioned in this study the exis-
tence of small disjuncts within the minority
class – corresponding in the churn context to
the customer profile heterogeneity – can signifi-
cantly impede the classifier performance. Hence,
it would be advisable to segment the minority
class upstream of or during the model train-
ing phase. The Logit Leaf Model [41] (LLM) is
a successful example of this strategy; it is an
hybrid classification algorithm that combines DT

and RF over a dataset whose partitioning is in
agreement with the heterogeneity between cus-
tomers. Hence, LLM is an ensemble approach that
takes into account specific group characteristics
that remained unknown when a single classifier is
trained over the whole dataset.

Most of the churn-like prediction frameworks
consider traditional structured data. However, as
a large proportion of big data consists of diverse
unstructured data [53], it is important to find
strategies that enable the incorporation of the
information that they contain. Indeed, online com-
munication means between customers and com-
panies or banks are expanding rapidly. Previous
studies demonstrate that textual data can improve
the churn prediction performance. Examples can
be found with the use of highly unstructured
data coming from social networks [12, 39, 125].
Recently, De Caigny et al. [42] proposed the
incorporation of textual information based on
Convolutional Neural Network.

If the advantage of supervised learning is that
all input labels are typically meaningful and serve
as basis for an explainable discriminative classifier,
the need for labels collection is however by itself
a strong limitation. First of all, when the volume
of the data is too large, it becomes prohibitively
expensive to collect all labels. Furthermore, when
distinctive labels are hard to find, it implies noise
or uncertainties in the supervision which can lead
to inaccurate results [27, 122]. In addition, in an

imbalanced or strongly imbalanced classes distri-
bution context, accessing high quality labels for
the minority class is generally challenging. Indeed,
the existence of different instance profiles within
the positive class strongly impedes the training
phase [122].

Unsupervised or semi-supervised learning can
be used to overcome these issues. While unsu-
pervised learning requires no class label, semi-
supervised learning only requires a small number
of labeled samples. A key idea is to learn a model
for the class associated with the normal behav-
ior and then use this model to identify abnormal
behaviors [30]. Hence, semi-supervised or unsu-
pervised approaches can handle, during the test
phase, abnormal behaviors that did not appear in
the training dataset. This is a clear advantage as
compared to supervised learning strategy.

Deep learning techniques can be of great help
to learn efficient model with few or none abnor-
mal instances label [105]. Indeed, deep learning
provides novel representations of the data which
in turn can be used to identify minority class
samples. However, whenever the representation
learning is independent from the classification
task, deep representations might be suboptimal or
even irrelevant. Recently, efforts have been made
to incorporate the identification of the abnormal
instances within the representation learning phase
to improve their expressiveness.

8 Conclusion

This technical survey aims to review, evaluate
and compare several popular machine learning
approaches in the context of churn prediction. It
also offers original analyses and visualizations, and
ultimately provides a general recommendation on
a churn prediction pipeline based on an ensemble
approach.

In our proposal, we included a background
of the churn analysis research, an introduc-
tion to widespread data sampling and classifier
approaches and a presentation of advisable eval-
uation metrics and strategies. First, we described
publicly available churn-like datasets covered in
this study and provide links for an easy access.
Then, we introduced data sampling approaches,
which unfold in three categories, namely oversam-
pling, undersampling and hybrid. We also detailed
several machine learning classifiers encountered
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in the churn research field and discussed their
reported success in the literature. The validation
strategies and metrics are then discussed. Finally,
machine learning approaches are combined and
evaluated on sixteen publicly available churn-like
datasets. We summarized our results in terms of
AUC score.

Ultimately, we proposed effective visualiza-
tions shading light on behavioral relationships
between classifiers/sampling methods and their
association with churn-like benchmark datasets.
Most importantly, we presented a general churn
analysis pipeline based on a straightforward
ensemble technique that can be successfully used
in practice. Hence, this technical survey provides
a good reference to users interested in machine
learning choices in the context of churn prediction.
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Appendix A Datasets
complementary
information

K2009 (KDD-Cup 2009 small) This dataset was
proposed in the context of the KDD Cup 2009:
Churn relationship prediction and originates from
the French telecommunication company Orange
in order to predict the switch of provider [62].
#Dummified Features: 1039.

KKBox’s (WSDM CUP 2018) This churn
dataset was proposed for the 11th ACM Inter-
national Conference on Web Search and Data
Mining (WSDM 2018) and originates from the
KKbox Taiwanese music streaming company. The
proposed challenge is to predict if a subscriber
will churn as soon as the subscription expires [34].
#Dummified Features: 56.

UCI (MLC Churn) This dataset is similar to
the Telecom SingTel, CrowdAnalytix and UCI
datasets. MLC Churn is proposed in the R pack-
age modeldata [131]. #Dummified Features: 21.

HR (IBM Employee Attrition) This dataset origi-
nates from IBM HR and includes 1, 470 records of
individuals who left the company or not. It is an
artificial dataset created by IBM data scientists
from Watson analytics, and has been proposed to
uncover the factors that lead to employee attri-
tion [92]. #Dummified Features: 86.

TelE (Telco-Europa) This dataset corresponds
to the real data of a small telecommunications
company in Oceania that has only 14 months of
historical data. It is found in online churn predic-
tion tutorials. #Dummified Features: 26.

News (Newspaper) This datasets contains infor-
mation on Californian newspaper subscribers
and an attrition variable. It is found in online
churn prediction tutorials. Other newspaper pri-
vate datasets were analyzed in previous studies;
see [24, 39, 40]. #Dummified Features: 307.

Bank This data set contains details of a bank’s
customers and their departure. It is found in
online churn prediction tutorials. #Dummified
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Features: 16.

TelC (IBM Telco Churn) This dataset is pro-
posed by IBM and is used in an online tutorial
to train a model that predicts if a customer is
likely to leave the telecom provider. #Dummified
Features: 34.

C2C (Cell2Cell) The data sets is provided by the
Teradata Center for CRM (Customer Relation-
ship Management). Data were provided by the
Cell2Cell company, which is one of the largest
wireless company in the USA [78]. #Dummified
Features: 75.

Member (Membership Woes) This dataset is
cited in online tutorials. #Dummified Features:
26.

SATO (South-asian) This dataset is provided
by a South Asian Telecom Operator, also called
SATO. Data were collected between August 2015
and September 2015 [2]. #Dummified Features:
29.

DSN (DSN-telecom ‘Nigerian Telecom’) This
dataset has been proposed in the context of the
DSN Telecoms Churn Prediction 2018 challenge,
which is one of the pre-qualification to the 2018
Data Science Nigeria hackathon. #Dummified
Features: 32.

Fraud (Credit Card Fraud Detection) The dataset
contains transactions made by credit cards in
September 2013 by European cardholders. This
dataset presents transactions that occurred in two
days, where we have 492 frauds out of 284,807
transactions. The dataset is highly unbalanced,
the positive class (frauds) account for 0.172%
of all transactions. It is an anomaly detection
dataset.

Thyroid (Thyroid Disease) This data are from
the Garavan Institute. The problem is to deter-
mine whether a patient referred to the clinic is
hypothyroid. 92 percent of the patients are not
hyperthyroid in this dataset which contains 7,200
instances. It is an anomaly detection dataset.

Campaign (Bank Marketing) The data is related
with direct marketing campaigns of a Portuguese

banking institution. The marketing campaigns
were based on phone calls. Often, more than one
contact to the same client was required, in order
to access if the product (bank term deposit)
would be (’yes’) or not (’no’) subscribed. It is an
anomaly detection dataset.

Appendix B Python package
and functions

All experiments in this survey were performed
on public datasets using freely available Python
packages. Hence, results are entirely reproducible.
Table B1 summarizes information on packages,
functions and parameters used for our experi-
ments. It also provides links to the online descrip-
tion of each function.
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Table B1: Packages, functions and parameters summary for the churn pipeline

Approach Function parameters version online details
Sampling

over.
SMOTE SMOTE default 0.7.0 imblearn.over sampling.SMOTE

ADASYN ADASYN ’not minority’ 0.7.0 imblearn.over sampling.ADASYN

under. Tomek links TomekLinks default 0.7.0 imblearn.under sampling.TomekLinks.html

NCR NeighbourhoodCleaningRule default 0.7.0
imblearn.under sampling.
NeighbourhoodCleaningRule

hybrid
SMOTE+Random

SMOTE
RandomUnderSampler default 0.7.0

imblearn.over sampling.SMOTE
imblearn.under sampling.
RandomUnderSampler

SMOTE+Tomek links SMOTETomek default 0.7.0 imblearn.combine.SMOTETomek

SMOTE+NCR
SMOTE
NeighbourhoodCleaningRule

SMOTE: default
NCR: ’minority’ 0.7.0

imblearn.over sampling.SMOTE
imblearn.under sampling.
NeighbourhoodCleaningRule

Model Fitting

Supervised

k-nearest neighbors KNeighborsClassifiere default 0.23.2 neighbors.KNeighborsClassifier
Näıves Bayes GaussianNB default 0.23.2 sklearn.naive bayes.GaussianNB

Logistic Regression LogisticRegression default 0.23.2 sklearn.linear model.LogisticRegression
Support Vector Machine SVC default 0.23.2 svm.SVC

Decision Tree DecisionTreeClassifier default 0.23.2 sklearn.tree.DecisionTreeClassifier
Feed Forward Neural Network NN default – Neural-Network-Churn-Prediction
Generalize Extreme Value-NN GEV-NN default – GEV-NN

Semi-supervised Isolation Forest IsolationForest default 0.23.2 sklearn.ensemble.IsolationForest
Deep AD with Deviation Networks DevNet default – deviation-network

Ensemble
Supervised

Random Forest RandomForestClassifier default 0.23.2 sklearn.ensemble.RandomForestClassifier
XGBoost XGBClassifier default 1.0.2 xgboost.readthedocs.io

Evaluation

Strategy
Cross Validation train test split default 0.23.2 sklearn.model selection.train test split
K-fold validation KFold K=5 0.23.2 sklearn.model selection.KFold

Stratified k-fold validation StratifiedKFold K=5 0.23.2 sklearn.model selection.StratifiedKFold

Metric
Top-lift plot lift curve default 0.3.7 rasbt.github.io--lift score

F1-score f1 score default 0.23.2 sklearn.metrics.f1 score
AUC roc auc score default 0.23.2 sklearn.metrics.roc auc score

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.ADASYN.html
https://imbalanced-learn.org/dev/references/generated/imblearn.under_sampling.TomekLinks.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.NeighbourhoodCleaningRule.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.NeighbourhoodCleaningRule.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/dev/references/generated/imblearn.combine.SMOTETomek.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.NeighbourhoodCleaningRule.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.NeighbourhoodCleaningRule.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://github.com/naomifridman/Neural-Network-Churn-Prediction
https://github.com/lhagiimn/GEV-NN-A-deep-neural-network-architecture-for-class-imbalance-problem-in-binary-classification
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://github.com/GuansongPang/deviation-network
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://xgboost.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
http://rasbt.github.io/mlxtend/user_guide/evaluate/lift_score/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
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