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Abstract: The problem considered in this paper is the online diagnosis of Automated Production Systems 

with sensors and actuators delivering discrete binary signals that can be modeled as Discrete Event Systems. 

Even though there are numerous diagnosis methods, none of them can meet all the criteria of implementing 

an efficient diagnosis system (such as an intelligent solution, an average effort, a reasonable cost, an online 

diagnosis, fewer false alarms, etc.). In addition, these techniques require either a correct, robust, and 

representative model of the system or relevant data or experts’ knowledge that require continuous updates. 

In this paper, we propose a Machine Learning-based approach of a diagnostic system. It is considered as a 

multi-class classifier that predicts the plant state: normal or faulty and what fault that has arisen in the case 

of failing behavior.  

Keywords: Diagnosis, the industry of the future, Automated Production System, Machine Learning, 

LSTM, RNN. 

1. INTRODUCTION 

In order to ensure the safe operation of goods and equipment, 

the diagnostic task consists of detecting, isolating, and 

identifying, as accurately and as soon as possible, the slightest 

failure or deviation from the nominal machine behavior. The 

context of this work is the diagnosis of Automated Production 

Systems (APS). In the context of “the industry of the future", 

production systems need to be more flexible and resilient while 

becoming more complex. Performance requirements 

(production, quality, safety) lead manufacturers to avoid 

stopping their production tool due to breakdowns. The systems 

we are interested in in this paper are Discrete Event Systems 

(DES). The classical DES diagnostic approaches in the 

literature are mainly based on: 

1) Offline studies of the diagnosability of a system (ability to 

diagnose a fault with certainty in a finite time), 

2) Online system observer models (diagnosers) to be 

integrated into the control process. 

Although these "diagnoser" approaches are well known by the 

community, a huge amount of expertise is required to obtain 

high-performance models of the system. Furthermore, these 

approaches are quickly exposed to the problem of the 

explosion of the state space to build the diagnoser of complex 

systems. 

In this paper, we present a new approach based on Machine 

Learning (ML) techniques using data from normal and 

abnormal behaviors of a plant. Abnormal behaviors come from 

a Digital Twin (DT), one of the future industry’s tools. The 

concept of DT (Kritzinger et al., 2018), (Tao et al., 2019) 

consists in digitizing a factory and reproducing its behavior. 

Most industrial solutions allow matching a desired behavior of 

the machine to make virtual commissioning. Here, we look at 

using it to inject failures into the digitized system to enrich its 

learning. In (Saddem et al, 2022), we have proposed an ML-

based approach and recurrent neural networks (RNN) with 

short-term and long-term memory (LSTM) (Hochreiter, 1997) 

model to predict the future input/output vector of an APS. In 

this paper, we have improved this approach. The data 

acquisition method, the training and validation algorithm, the 

test, and the architecture of the RNN are different. The 

diagnostic system is considered as a multi-class classifier that 

predicts the plant state: normal or faulty and diagnoses what 

fault has happened in case of fault.  

The remainder of this paper is organized as follows: Section 2 

presents a brief overview of the state of the art. Section 3 

introduces our proposed method. In section 4 we describe an 

example of an APS on which we will rely to illustrate our 

approach and we present the results. Finally, we conclude the 

paper with some prospects in section 5.   

2. STATE OF THE ART OF DIAGNOSTIC APPROACHES 

In this study, we are interested in APS fault diagnosis. The 

literature proposes different approaches dealing with this 

problem (Ghosh et al, 2020) and distinguishes three classes 

according to the dynamics of the APS: the class of continuous 

systems, the class of DES and the class of hybrid dynamic 

systems (HDS). In this paper, we focus on the diagnosis of 

APS’s with sensors and actuators delivering logical signals, 

which fall under the DES. The diagnostic approaches for this 

class of systems can be seen according to whether the 

diagnosis is performed online or offline (Sampath et al., 1995), 

(Boussif and Ghazel, 2021), whether the model is specified (by 

automaton or by Petri net) or not (Basile, 2014), whether the 

diagnostic decision-making structure is centralized, 

decentralized, or distributed, whether faults are represented 

and recognized, and so on. In general, diagnostic approaches 

are classified into three main families: model-based 

approaches, knowledge-based approaches, or data-based 

approaches.  



Model-based approaches (Sampath et al., 1995), (Zaytoon and 

Lafortune, 2013), are generally used when there is sufficient 

knowledge of the internal functioning of the system. They are 

efficient and able to validate the consistency and completeness 

of the faults to be diagnosed. However, to work properly, these 

approaches require accurate and deep analytical models of the 

domain and the major difficulty is the high cost of 

implementing the models (Saddem and Philippot, 2014), (De 

Souza et al, 2020), (Moreira and Lesage, 2019). Indeed, the 

temporal complexity of implementing most models is 

exponential.  

Knowledge-based approaches have a high diagnostic capacity 

thanks to symptoms of faults they model. However, its major 

limit lies in the formalization of the expert’s knowledge and its 

updates (Dousson et al, 2008), (Subias et al., 2014).  

Data-based approaches (Venkatasubramanian et al., 2003), 

(Dou and Zhou, 2016), (Han et al., 2017) do not require 

knowledge of the internal workings of the system. They do not 

need an explicit formal model. They use available historical 

data. From this data, they give predictions. These approaches 

learn from each experience to improve their performance. 

They rely on ML techniques to achieve their objectives. 

However, they require a data preparation step to extract the 

most relevant data that will be formatted according to the ML 

technique to be used. 

 In this paper, we are interested in the diagnosis of DES using 

the data-based approach. 

3. PROPOSED APPROACH 

3.1 Automated Production System 

An APS system consists of three parts: the operative part (OP), 

the control part (CP), and the Human Machine Interface (HMI) 

(Figure 1).  

 
Figure 1: Structure of an APS 

OP represents all material resources that physically operate on 

the system. CP is the set of information processing and 

acquisition means that ensure the piloting and the control of 

the process. There are two types of information exchanges 

between CP and OP  i) CP sends orders to the actuators and 

pre-actuators of OP to obtain the desired effects ii) OP sends 

reports (sensor values) to CP. HMI allows communication 

between the CP and the human operator. The human operator 

gives instructions via HMI and receives various signals from 

CP such as light indicators, sound indicators, messages 

displayed on the screens, etc.  

Most APS that have sensors and actuators delivering binary 

signals are controlled by PLC that perform three successive 

operations: that perform three successive operations: (a) 

Reading the inputs, which consist of the recording of the states 

of sensors. (b) Executing the program. (c) Updating the outputs 

(actuators). These operations are cyclical, i.e. one cycle after 

the other. The diagnosis, therefore, consists in cyclically 

reading the sensor’s values and the CP's orders and analyzing 

them to detect and isolate faults. 

3.2 Proposal 

This paper we proposes a new solution for the online diagnosis 

of APSs that have discrete dynamics. Our solution is based on 

methods from the field of artificial intelligence (AI). Thus, we 

use AI techniques to diagnose on line the occurrence of faults 

of an APS. The development and deployment of ML models 

involve a series of steps: 

i. The definition of the problem, which consists of 

understanding the problem to be solved, determining the 

objectives (prediction, clustering, etc.), defining the 

criteria for success and the constraints to be respected. 

ii. Data acquisition, which consists of identifying and 

collecting data required to support the problem. These data 

can come from several sources and can be structured (such 

as database records, trees, graphs…) or unstructured (such 

as images, texts, voices…) 

iii. Data preparation, which consists of formatting the data 

according to the ML algorithm to be used. It includes 

transformation, normalization, cleaning, and selection of 

training data. 

iv. The training and validation of the algorithm. This requires 

dividing the available data into three parts: training data, 

validation data, and test data. We use cross-validation (CV 

for short). The training set is split into k smaller sets. First, 

the model is trained using k−1 of the folds as training data. 

Then, the resulting model is validated on the Kth fold. The 

test data is used for testing. 

v. The test consists in evaluating the performance of the 

algorithm. 

vi. The deployment of the algorithm. 

3.3 Understanding the problem 

For this step, a study and an analysis of the system are 

necessary: definition of the list of the APS’s components and 

their operating specifications. In this work, we are interested 

in the online diagnosis of APS with sensors and actuators 

delivering binary signals. Four faults are possible for each 

component: stuck to 0; stuck to 1; an unexpected move from 0 

to 1 and an unexpected move from 1 to 0. The monitored APS 

can be normal, failed, or uncertain. Uncertain state means that 

the system may be normal or faulty: there are not enough 

discriminating observations to decide its state. The objective is 

therefore to return the online status of the plant. If a fault 

occurs in a component of the plant, the diagnostic may return 

this fault. Therefore, on needs to have a list of the components 

of the plant to fix the number and the name of each fault that 

may occur. A specification of the APS operation allows us to 

establish a control program for the plant. We assume that this 



program does not contain any faults, i.e. if CP sends an order 

to OP, and then OP receives this order correctly. 

3.4 Data Acquisition 

For this step, we have developed an application in JavaScript 

with the Node-RED software, which allows recovering the 

data from a PLC. The objective is to save all input and output 

data history capturing the evolutions of sensors, actuators, and 

control program variables. These changes are displayed on the 

screen in the form of charts with periods of activity. The result 

of this step is an Excel file, which contains the values changes 

of the monitored variables. Each line represents the name of 

the variable, the date of occurrence of the change, starting 

time, and its value. 

The developed application allows also the calculation of 

statistics of the variables. We used this last option to generate 

symptoms. As an example, if an event B is expected after the 

occurrence of event A and it does not happen, a symptom is 

automatically generated. 

Our approach starts by collecting data from the APS in normal 

mode.  The use a DT instead of a real APS enables the designer 

to inject faults on sensors and actuators without any material 

damage. Several scenarios are possible: for each possible 

scenario, one collects data from sensors and actuators. It is 

important to note that the simulated faults of this study are 

components stuck-off to 1 or to 0. 

3.5 Data Preparation 

This step transforms the Excel files obtained in step 2 into a 

file containing rows as shown in Figure 2Figure 2. Thus, 

depending on the architecture used in the training step and 

depending on the number of past steps to be given to the neural 

network, data are formatted as labeled values. As an example, 

the model is fed with the last N past timed input/output vectors 

in order to predict the state of the system: normal or the faulty 

state concerned. N is a positive integer that is greater or equal 

to one. 

 
Figure 2: Representation of a timed input/output vector 

3.6 Training of the machine learning algorithm 

The ML model selected by our approach is LSTM RNNs. It is 

an effective neural model for a wide range of applications 

involving temporal or sequential data (Karpathy, 2015) such 

as video analysis, speech recognition (Graves et al, 2013), 

language modeling, handwriting recognition, or its generation, 

machine translation, image captioning, etc. Our specific RNN 

model is depicted by Figure 3. 

This work considers eight classes of state noted from 𝐶0 to 𝐶7. 

A description of these classes is given in § 4.1.2.b. To obtain 

a probability distribution at the output of the model, the model 

uses the softmax function to activate the last layer of the RNN 

network composed of height neurons (one for each class).  

 
Figure 3 : RNN Model 

The output vector of the RNN model returns for each class 

(possible system state) the probability of belonging to this 

class. The input vector of the architecture in Figure 3 is 

generic. The number of timed input/output vectors is given by. 

N is a hyper-parameter in our model. In Figure 4, the sensors 

and the actuators are modeled by the letters ‘a’ to ‘z’. T 

represents the relative time (duration) of the timed input/output 

vector considering the last change.  

 

 
Figure 4: Input-output architecture of the RNN model 

The proposed diagnostic system is considered as a multi-class 

classifier that predicts the plant state. In such classifications, 

common metrics are being used in the literature to evaluate the 

classifier’s performance. These metrics calculated from a 

confusion matrix (CM), use the following notations: 

- 𝑇𝑃𝑖 (True Positive of 𝐶𝑖): measures the number of states 

correctly assigned to 𝐶𝑖;  

- 𝑇𝑁𝑖  (True Negative of 𝐶𝑖): measures the number of states 

correctly recognized that do not belong to  𝐶𝑖; 

- 𝐹𝑃𝑖  (False Positive of 𝐶𝑖): measures the number of states 

that are incorrectly assigned to 𝐶𝑖; 

- 𝐹𝑁𝑖 (False Negative of 𝐶𝑖): measures the number of states 

that are incorrectly recognized that do not belong to 𝐶𝑖. 

Figure 5 is useful in understanding or visualizing the above-

mentioned concepts using a multi-class confusion matrix. In 

order to confirm the results, cross-validation was used (K-Fold 

with k = 3). Although the confusion matrix gives us a lot of 

information about the quality of the classification system, we 



can calculate other more concise metrics like the average 

accuracy (AC). It presents the proportion of the correct 

predictions made by the classifier. It measures the average per-

class effectiveness. 

 
Figure 5 : Illustration of 𝑇𝑃0, 𝐹𝑃0, 𝑇𝑁0, and 𝐹𝑁0 for 𝐶0 using a 

multi-class confusion matrix 

AC =
1

C 
∑

𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝐶−1

𝑖=0

 

With 𝐶 the number of classes. 

We use the following quality metrics: 

Precision of 𝐶𝑖 called 𝑃𝑖  measures the number of cases that the 

classifier has correctly assigned to 𝐶𝑖 divided by the number of 

cases attributed to this class. 

𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

 

Recall of 𝐶𝑖 called 𝑅𝐶𝑖 measures the proportion of cases 

correctly assigned to 𝐶𝑖 divided by the number of cases 

belonging to this class.  

𝑅𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

4. APPLICATION ON THE REAL SYSTEM  

4.1 Description of the system  

We apply our approach to a part of the Import-Export station 

of the CellFlex of CReSTIC laboratory in France. Before 

describing our case study (paragraph 4.1.2), we present the 

whole CellFlex plant in the following paragraph to give a 

global view of the considered system.  

4.1.1 CellFlex  

CellFlex is the main component of the CELLFLEX4.0 

(https://www.univ-reims.fr/meserp/cellflex-4.0/cellflex-

4.0,9503,27026.html) training and research platform at the 

University of Reims Champagne-Ardenne. The flexible cell, 

called CellFlex, is a group of eight stations operating together 

around a central conveyor (Figure 6). These stations simulate 

the operation of a bottling production line, in the form of a 

miniaturized factory connected to a network composed of 

industrial standards. 

 

Figure 6: The eight stations of the CellFlex 

4.1.2 The Import-Export Station 

In this work, we focused on the Import-Export station 

(https://www.univ-reims.fr/meserp/cellflex-4.0/import-

export/import-export,15743,27032.html), number 6 in Figure 

6. We apply our approach only to the import part, to make 

easier the comprehension of our model, in this paper. 

a) Operation mode 

- Import: it consists of introducing a new empty 6-pack on 

the supply conveyor. When a 6-pack is present at the entrance 

of the import conveyor, it must be transported to the end of 

the conveyor, below the vertical cylinder. When an empty 

pallet is present at the right position on the central conveyor 

(pallet sensor zone 6), the waiting 6-pack is loaded onto the 

pallet. 

- Export: it consists in taking a full 6-pack from the central 

conveyor. When a 6-pack is present on the central conveyor, 

in front of the station, the cylinders must be set in motion in 

order to take the 6-pack. Then it deposits it on one of the two 

export lines. The export has priority over the import, in order 

to avoid a blockage of the system. 

b) Description 

The import part of the Import-Export station consists of a 

conveyor allowing the transfer of new 6-packs and two 

sensors, one at the beginning of the conveyor and the other at 

the end of the conveyor (Figure 7).  

 

 
Figure 7 : Import-Export satation 



𝐶0 represents the normal behavior of the plant. 𝐶1 to 𝐶6 

represent six faulty behaviors corresponding to stuck to 1 or 

stuck to 0 of each component (actuator or sensor). 𝐶7 

represents all other faulty behaviors that can occur on the plant.  

 4.2 Results 

This paragraph resumes the results of the application of our 

approach on the system described previously. The digital twin 

of the system is based on the software Emulate 3D. For the 

data acquisition step (§ 3.4), the system is started in normal 

mode. The changes in variable values are collected during 

several cycles. For our system, the cycle duration is of few 

minutes. To change the system mode, a fault is injected at a 

moment, using the facilities of the digital twin. Indeed, 

Emulate 3D allows us to force a sensor or an actuator to a value 

(true or false). This forcing simulates a stuck to 1 or to 0 of the 

sensor or the actuator in question. The changes in variable 

values are collected during several cycles after the injection of 

the fault). The case study system is composed of 23 sensors 

and 10 actuators. We simulated stuck to 1 or to 0 of the two 

sensors and the actuator of the Import part of the studied 

system.  
 

 
Figure 8: Evolution of the error function 

The data preparation transforms the Excel files obtained in the 

previous step into a file containing lines of the form shown in 

Figure 2. Next, the date has been formatted as labeled value as 

described in § 3.5. The vector in Figure 2 is made up of the 

date and the 33 Boolean values of the system at this date. Then 

the duration between the previous acquisition step is 

calculated. Considering the complexity of the system 

presented in 4.1.2, our approach has estimated that N = 50 is 

sufficient. An exhaustive search to find the optimal value of N 

should be performed. The output layer of RNN is activated 

with the softmax function. For the error function, we use the 

Categorical Cross-Entropy (CCE) function.  

 

𝐶𝐶𝐸 =  − ∑ 𝑦𝑖   . log (ŷ
𝑖
 )

𝐶−1

𝑖=0

 

 

Figure 8 and  Figure 9 illustrate the obtained results: the 

evolution of the error function, which converges to zero and 

the AC that is near 70%. We see that the results are not bad. 

The AC  is difficult to be close to 100%.  

In Figure 11, each sub-figure represents the recall (blue 

curves) and precision (orange curves) on the train (dotted 

curves) and validation data (solid curves) of each class. For 

each class, recall and precision results on the validation data 

tend all to increase overtraining. However, they remain 

relatively erratic through the three folds for the least present 

classes (2, 4, 5, and 7). More data representing these types of 

faults would certainly make it possible to obtain more stable 

results. 

Figure 10 presents the average of normalized multi-class 

confusion matrix of the three folds. 

 
Figure 9 : Evolution of the average accuracy  

 
Figure 10 : The average of normalized multi-class confusion 

matrix of the three folds 

5. CONCLUSION 

In this paper, we have proposed a new data-based approach for 

online diagnosis of APS’s of DES class. Data acquisition of 

normal and abnormal behaviors is carried out through a DT 

using new software developed by our team. The data 

preparation consists of the transformation of files from this 

software into vectors for the proposed RNN model. The results 

of the application of the proposed method on the Import-

Export system of CellFlex show the contribution and the 

interest of this method.  

Several perspectives are possible. An exhaustive search to find 

the optimal value of the hyper-parameters (number of hidden 

layers, number of neurons on each hidden layer, the size of 

past observations) could be performed. We have applied the 

approach to a part of the Import-Export system of the cellFlex 

which contains 7 other stations, an application on the other 

stations, and an extension for continuous systems are possible. 



A comparison of model-based and knowledge-based diagnosis 

methods will be carried out in the near future.  
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