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An overview of deep learning
applications in precocious
puberty and thyroid dysfunction

Misbah Razzaq1*, Frédérique Clément2 and Romain Yvinec1,2

1PRC, INRAE, CNRS, Université de Tours, Nouzilly, France, 2Université Paris-Saclay, Inria, Centre
Inria de Saclay, Palaiseau, France
In the last decade, deep learning methods have garnered a great deal of

attention in endocrinology research. In this article, we provide a summary of

current deep learning applications in endocrine disorders caused by either

precocious onset of adult hormone or abnormal amount of hormone

production. To give access to the broader audience, we start with a gentle

introduction to deep learning and its most commonly used architectures, and

then we focus on the research trends of deep learning applications in thyroid

dysfunction classification and precocious puberty diagnosis. We highlight the

strengths and weaknesses of various approaches and discuss potential

solutions to different challenges. We also go through the practical

considerations useful for choosing (and building) the deep learning model, as

well as for understanding the thought process behind different decisions made

by these models. Finally, we give concluding remarks and future directions.

KEYWORDS

deep learning, endocrinology, thyroid dysfunction, artificial intelligence, precocious
puberty, supervised learning, imbalanced data
Highlights
• We provide comprehensive cues and synoptic tables to analyze and compare

different deep learning-based studies dedicated to endocrinological issues.

• Our critical analysis embraces many criteria related to the dataset building and

preprocessing, management of imbalanced data or missing values, selection and

implementation of neural network architecture, and use of metrics to assess

accuracy and computing results.

• We conclude that:
1. Deep learning methods have been applied successfully to clinical

endocrinology.

2. Deep learning is effective in assessing the biological bone age for

precocious puberty diagnosis.
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3. Deep learning is effective in predicting the

thyroid status from standard lab tests.

4. We expect that the next generation of deep

learning approaches in endocrinology will be

improved by including multi-source information.
1 Introduction

In this review, we give an overview of deep learning (DL1)

methods and their application to thyroid dysfunction and

precocious puberty from a diagnostic point of view (see

Figure 1). Recently, DL methods involving artificial neural

networks (ANNs) with multiple layers have become popular to

perform classification and regression tasks involving large

amounts of data (1). They have been successfully applied in

many domains such as image recognition (2), robotics (3),

speech recognition (4), and life sciences (5–7). ANNs can deal

with complex and noisy data. The layer-wise design of nonlinear

processing units enables them to model nonlinear relationships.

Advances in biomedical technologies provide us with large

amounts of data such as proteomics, genomics, and medical

images (8). ANN-based approaches can take raw features (such

as images or gene expression profiles) from large datasets as

input to create models identifying hidden patterns in the data.

These models can then be used to perform predictions on

additional datasets. ANNs have shown great results in

identifying patterns existing in complex biological data (9).

ANNs are computing systems based on the idea of replicating

human brains. An ANN is composed of different units or artificial

neurons inspired by the functionality of biological neurons. ANNs

map an input space to an output space analogous to a

mathematical function. ANNs are quite resilient to noise in

datasets as well as in the learning procedure (10). ANNs can be

used to perform supervised as well as unsupervised learning (11).

In supervised learning, we are given a dataset of (input, output)

pairs and our goal is to learn the relationship (function) between

these pairs, so that we can predict values for unseen data (12). In a

biological context, input can be genomic sequences, gene or

protein expression profiles, metabolite concentrations, etc. The

output can be growth rates, diseased or healthy states, and sub-

types of a disease (13). For example, it can be used to classify

patients into two categories of thyroid function, i.e., normal and

hypothyroidism, using a proteomics dataset. In such a case, our

inputs are the protein levels (continuous variables) and our output

is the type of thyroid function (binary variable). Typically, we

divide our dataset into three subsets, i.e., training (80%), validation

(10%), and testing (10%). ANN is trained using the training set

while fine-tuning the parameters using the validation set, and
de a list of abbreviations at the end of the paper.
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finally predictions are performed on the testing set (12). On the

other hand, in unsupervised learning, we have unlabeled data. The

objective is to discover useful properties regarding the structure in

the data. Various tasks can be performed in an unsupervised

manner such as clustering, dimensionality reduction, association

learning, and outlier detection. For example, we may reveal groups

of proteins whose level of expression is consistent with the above

thyroid function classification, which may further lead to the

search of biomarkers or signaling pathways responsible

for hypothyroidism.

Various machine learning algorithms have been shown to be

useful in the diagnosis of endocrine disorders (14). The scope of

our study is narrowed to a review of DL methods, which is a sub-

field of machine learning using biologically inspired ANNs.

There are several reasons why DL can be a useful technique

for thyroid dysfunction and precocious puberty diagnosis. In

case of precocious puberty, usually, the biological bone age is

more advanced than the chronological age (15), and is

traditionally measured by Tanner–Whitehouse (TW) (16) and

Greulich and Pyle (GP) (17) methods, which take time and

supply subjective estimates. Standard machine learning

algorithms such as support vector regressions or the gradient

boosted decision trees (GBDT) have also been employed for

bone age assessment (BAA); however, they require manual

feature extraction. On the contrary, DL methods present an

ideal framework for BAA. In particular, convolutional neural

networks (CNNs) can be used to determine objective bone age

estimates using left-hand images. Using CNNs can save the time

of radiologists and help identify new features from images

related to the biological age. In addition, left-hand radiographs

can be merged with other sources of information such as pelvic

ultrasonographs (USs) and electronic health records (EHRs) to

improve diagnosis. In case of multi-source information, most of

the current work use DL methods as a feature extractor and then

employ standard machine learning methods to predict bone age.

In the future, fully DL methods will probably be developed to

handle multi-source information. The diagnosis of thyroid

dysfunction, in particular hypothyroidism, is a challenging

task, especially since most symptoms are poorly specific. DL

methods seem promising to predict thyroid dysfunction from

routine clinical tests features, with a high accuracy (18), yet

multi-source information are rarely handled so far. This review

has been motivated by recent successful applications of DL

methods to endocrine issues. We intend to draw the reader’s

attention on both the current interest and limits of such

approaches, and expected future development. To do so, we

first introduce background notions on common DL methods,

then we describe in more details the DL approaches dedicated to

the diagnosis of precocious puberty and thyroid status.

Meanwhile, we provide good practice counseling to help non-

experts interpret the results of DL-based studies, preprocess their

datasets adequately, and possibly start setting up their own

design. For a detailed description of machine learning
frontiersin.org
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techniques for thyroid disease, the interested reader can consult

the following review (19). An overview on bone age assessment

in different contexts including precocious puberty using

traditional and machine learning methods can be found

elsewhere (20, 21).

In section 2, we start with an easy-to-understand overview of

different DL architectures, i.e., multilayer perceptrons (MLPs),

CNNs, self-organizing map (SOM)-based neural networks, and

Bayesian regularized neural networks (BRNNs). Then, we move

toward the DL application in diagnosing precocious puberty

(section 3.1), where mostly CNN-based architectures have been

employed. We start with describing the background of the

problem. Then, we argue why precocious puberty is an ideal

domain for the application of DL methods. We highlight

common concerns such as dealing with data heterogeneity and

the black box nature of DL models, and discuss how they can be

addressed. Subsequently, we discuss thyroid dysfunction

classification in section 3.2 as a second case study for applying
Frontiers in Endocrinology 03
both supervised (using MLPs and BRNNs) and unsupervised

(using SOMs) learning-based DL methods. We also highlight

how the combination of supervised and unsupervised learning

helps to interpret or explain the decision boundaries of DL

models. We discuss the power and weakness of different DL

models in this specific application. Finally, we discuss in section

4 the common issues that one should consider when applying

DL methods.
2 Artificial neural networks

In this section, we describe different architectures of ANNs

that are subsequently used in the different DL applications in the

thyroid dysfunction classification and precocious puberty

diagnosis. Different ANN architectures (see Table 1) are

generally better suited for specific types of tasks (for example,

CCNs perform well for image classification or object detection).
FIGURE 1

DL application in thyroid dysfunction and precocious puberty. The process starts with building a model from different data sources such as x-
rays, medical records, and lab tests. Preprocessing is performed on the dataset to handle issues highlighted in section 4 (Considerations).
To understand the internal mechanism of the DL model, one can use different explanation methods as discussed in section 4.5 (The black
box nature).
frontiersin.org
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Yet, the core process behind most architectures is similar. Neural

networks perform classification or regression tasks by learning a

function between inputs and outputs through training. Neural

network training imply two main phases (see Figure 2): (i)

forward propagation and (ii) backward propagation. In the

forward propagation, outputs of all nodes while moving from

the input layer to the output layer are generated. At the output

layer, error between the predicted output and the expected

output is computed. In the second phase, the error is

backpropagated to update the network parameters. These

phases are iterated so as to minimize the final error by

adjusting the values of connections between nodes. Once

learning is achieved, the DL network is run on the testing

dataset, and several criteria are used to assess the accuracy of

the predictions (see Table 2).
2.1 Multilayer perceptrons

MLPs, also called feed-forward neural networks (FFNNs),

are the simplest architecture of neural networks. Information are

conveyed unidirectionally from the input to the output layer,

through the hidden layers (see Figure 2). More elaborate

networks, called recurrent neural networks (RNNs) (22),

include feedback loops between the network layers.

Formally, we can define the functionality of an artificial

neuron in the following manner:

z = f o
n

i=0
wixi + b

 !
(1)

Where x0,x1, … xn are the inputs, w0,w1, … wn are the

weights associated with the respective inputs, b represents the

bias, z is the output of the neuron, and f is an activation function.

When converting an input signal into an output signal,

activation functions (also known as transfer functions) are

crucial. Activation functions can be formulated as thresholds

on the current inputs, above which neurons are activated. In

order to learn complex nonlinear relations, a nonlinear

activation function is unavoidable. The hyperbolic tangent

(Tanh), logistic sigmoid (also called sigmoid), and rectified

linear unit (ReLu) functions are the most popular activation

functions (see Figure 3). The graphs of the sigmoid and Tanh

functions form an S-shaped curve with output values bounded

by (0,1) and (-1,1), respectively. Within the last few years, ReLu
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has become the most popular activation function. ReLu returns

zero for any negative input value, and the input value otherwise,

so that outputs are not bounded (lima!+∞ f(a) = +∞).

After determining the number of layers, nodes per layer, and

activation functions, the neural network can be trained. To

determine the error between expected and predicted outputs,

one chooses a cost function. The quadratic (mean square) cost

function can be defined as:

C =
1

2(m + 1)o
m

k=0

(ok − yk)
2 (2)

where vector y = (y0,…,ym) contains the predicted outputs,

vector o = (o0,…,om) contains the expected (“right”) outputs,

and m+1 is the size of the training samples. The cross-entropy

cost function is used in case of binary outputs, for instance in

classification problems, and is defined as:

C = −
1

m + 1o
m

k=0

½okln yk + (1 − ok)ln(1 − yk)� (3)

where the ok’s are the expected labels, i.e., 0 or 1, and the yk’s are

the continuous-valued predictions of the model. The next step is

to learn the optimal values of weights and biases by minimizing

the cost function. The most popular algorithm to perform

parameter optimization for neural networks is the gradient

descent (see Figure 4). This iterative algorithm tries to find the

local minima of the cost function by performing a first-order

partial differentiation with respect to learnable parameters.

During each iteration, the parameter values are updated when

the error is backpropagated. This process is repeated until the

function has decreased below a fixed threshold or the maximal

iteration number is reached.

The value of the learning rate (a) determines the size of each

step toward the local minimum. If the learning rate is too high,

oscillations may occur, while if it is too low, the computational

cost needed to converge becomes penalizing. Therefore, it is

better to use an adaptive learning rate, i.e., a bigger learning rate

in the beginning to reduce computational overhead and a

smaller one toward the end in order to fine-tune the

parameters (8).

There exist several variants of the gradient descent

algorithm. The batch gradient descent calculates the error for

all examples (pairs of input and output) of the training set. All

parameters are updated exactly once in one iteration, which is

extremely memory intensive because data must be stored in
TABLE 1 The neural network architectures.

Type Architecture Learning rule

Supervised

Unsupervised

Multilayer perceptrons (MLPs)
Convolutional neural networks (CNNs)
Bayesian regularized neural networks (BRNNs)
Self-organizing maps (SOMs)

Error correction
Error correction
Error correction
Competitive
frontiersin.org
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memory. The stochastic gradient descent update the parameters

m+1 times. Each time, it calculates the error for a single random

sample of examples, which consumes less memory, but can cause

the error to fluctuate rather than decrease. The mini-batch

gradient descent calculates the error on a subset of the training

set. This strategy minimizes the inherent oscillations of

stochastic gradient descent while enhancing the efficiency of

batch gradient descent.
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2.2 Convolutional neural network

CNNs are a special type of FFNNs inspired from human

vision, and mainly used to perform image classification, object

detection, and clustering similar images. They are based on three

layer types (23): convolutional layers for feature extraction,

pooling layers for dimensionality reduction, and fully

connected layers for classification.
FIGURE 2

A feed-forward neural network. This network consists of one input layer, two hidden layers, and one output layer. The input nodes (shown as
ovals) forward their inputs without performing any transformation. The nodes (shown in orange rectangles) in the second (hidden) layer perform
more complex and abstract tasks, for example, learning nonlinear decision boundaries. The output layer contains two nodes (shown in black
rectangles). The functionality of one of the hidden neurons is highlighted at the bottom of the figure. It is worth noting that neurons are
connected across layers, but not within layers.
TABLE 2 Different performance metrics for classification tasks.

Metric Formula Description

Accuracy Correction predictions
All Predictions

Proportion of correct predictions among all predictions

Root mean square error (RMSE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

i=0(oi − yi)
2

m + 1

s
Square root of the difference between the model predictions and actual values

Mean absolute difference (MAD) om
i=0=oi − yi=
m + 1

Absolute difference between the model predictions and actual values

True positive rate (TPR) TP
TP + FN

Proportion of correct positive predictions among all positive cases

False positive rate (FPR) FP
FP + TN

Proportion of incorrect positive predictions among all negative cases

False negative rate (FNR) FN
FN + TP

Proportion of incorrect negative predictions among all positive cases

True negative rate (TNR) TN
TN + FP

Proportion of correct negative predictions among all negative cases.
Here, o represents the actual values and y represents the predicted values. FP is the number of false positives. TP is the number of true positives. TN is the number of true negatives. FN is the
number of false negatives.
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A convolutional layer basically first performs element-wise

multiplications using different filters or kernels (matrices of

numbers) applied to the input data, and then sums the results

to generate feature maps. Usually, there are many filters

responsible for extracting different types of visual information

such as edges, diagonal lines, and orientation from the image,

hence generating many feature maps. Figure 5 shows an instance

of the convolution operation with a 3 × 3 filter. These filters are

learned during the training process and shared across the input

instances. The parameter sharing property of CNNs reduces the
Frontiers in Endocrinology 06
storage requirement and guarantees translational equivariance;

if we shift the object in the input, then the convolution output

will shift equally (22). The output of the convolutional layer is

subjected to an activation function such as ReLU to account for

nonlinearity. As we can see from Figure 5, we may lose border

information, which can be avoided by padding, i.e., supplying

zeros vertically and horizontally to conserve the edge or

border information.

A pooling layer is used to perform the sampling of the

feature maps in order to conserve only important information,
FIGURE 4

Gradient descent: w and w′ represent the current and updated weights, respectively, and a is the learning rate. The current weight w is moved
along the direction of the steepest descent (pink arrow) by the learning rate a.
A B C

FIGURE 3

Most common activation functions. (A) Sigmoind, (B) ReLu and (C) Tanh.
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thereby getting rid of noise and redundancy. Pooling enables

CNNs to be invariant to small translations; spatial translation

has little effect on the output of the pooling operation (22). For

example, a CNN can detect a cat in an image regardless of its

position. Max pooling keeps the maximum value of each patch

of the feature map, while average pooling keeps the average.

Figure 5 shows the pooling operation with a 2 × 2 filter with

stride 2. Stride refers to the step size used for the pooling

operation, for example, a stride of size 2 allows to step 4 pixels

(2 vertically and 2 horizontally). Large strides allow one to

shrink the size of the output. It is worth noting that the

parameters (such as filter sizes or operations or strides) of the

pooling layer are fixed during the learning process. Fully

connected layer(s) are finally used after pooling to perform

classification or regression tasks (24).

In Figure 6, we show an example of the layer-wise

architecture of a CNN.
2.3 Self-organizing maps

The most popular SOMs architecture is the Kohonen network,

proposed by Teuvo Kohonen (25, 26) and based on the principle of

competitive learning. It is an unsupervised learning method where

output neurons compete with each other to become active (11).
Frontiers in Endocrinology 07
The output neuron learns to represent different input categories.

SOMs are mostly used to classify and visualize high-dimensional

data into a lower-dimensional space (typically a 2D space). There

are two types of layers in SOM-based neural networks: (1) input

layer and (2) output layer (competitive or Kohonen layer), see

Figure 7. Each node in the input layer is connected to all the nodes

in the output layer. Each node in the output layer is characterized

by a weight vector whose size is equal to the number of connections

to the node. Contrary to other ANNs (see Table 1), the weights are

adjusted according to learning rules instead of the error

computation: either the winner takes all (only the winner

weights are updated) or the winner takes most (the weights of

both the winner and its neighborhood are updated). The best

matching unit or the winner node is identified by calculating the

distance between the input and the weight vector. The Euclidean

distance is generally used to identify the winner node. We define

the Euclidean distance Distj between node j and input vector x of

dimension n+1 as

Distj =o
n

i=0
(xi − wi)

2 (4)

where w is the weight vector of node j having the same

dimension as the input vector. However, other measures such

as correlation, direction cosine, and block distance can also

be used.
FIGURE 5

CNN’s fundamental operations. On the left panel, a convolution operation is shown where the sum of the element-wise multiplications using a
filter across the input data is performed to generate a feature map. On the right panel, average and maximum pooling operations are shown.
frontiersin.org
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The training process starts with the random initialization

of weights. An example is selected from the training set, the

winner node is found by calculating the Euclidian distance, the

weights of the winner node and/or the neighbor nodes are

updated, and this process is repeated until the maximum

number of iterations is reached or the modification in

weights is less than a predefined threshold. The weights are

modified in such a way that the different locations of SOMs

reflect distinct categories of the input data. In the testing phase,

the weights are fixed and data are projected onto the

learned map.
Frontiers in Endocrinology 08
2.4 Bayesian regularized neural networks

ANNs are powerful universal approximators that can learn

meaningful patterns from extremely complex datasets (27).

However, they can also be a victim of overfitting. Overfitting

occurs when the model fails to generalize to the test dataset since

it approximates too closely the examples from the training

dataset; the model has memorized the noise instead of

learning the actual signal. During training, overfitting can be

detected by verifying the performance on the validation dataset

in addition to the training dataset (23). Overfitting can be
FIGURE 7

Graphical illustrations of self-organizing neural networks. Instance of a Kohonen neural network with n input nodes and a grid of output nodes.
Note that each input node is directly connected to a node on the grid. However, we did not draw some of the connections from inputs to the
nodes on the grid for clarity. The orange node represents the winner node and the light pink node denotes the neighborhood radius. The
weights of the winner node and its neighbors will be updated during the training phase.
FIGURE 6

A simple CNN architecture with convolutional, pooling, and fully connected layers.
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avoided by regularization to reduce generalization errors (22).

The most effective method is to expand the training datasets,

which is not always possible. Another option is to use data

augmentation, which entails creating the augmented or fake

dataset using transformations like rotation and translation. We

can also lower the model complexity by reducing the number of

layers and nodes.

Bayesian regularized neural networks (BRNNs) are

particularly well suited for overcoming the overfitting issue of

standard ANNs. In MLPs, a single set of weights are learned

through error correction procedure during the training phase,

and then these values are used to perform the predictions from

the testing dataset. In contrast, in BRNNs, network weights are

random variables, whose probability distribution is learned

during a training phase (see Figure 8), and then weights are

drawn from these distributions to make predictions on the

testing dataset. The prior distribution of these weights

represents the prior belief about the network (prior to the

training phase). It is generally difficult to guess what the prior

distribution should look like, so that we can use general

properties to represent the prior belief, such as smoothness, or

use a Gaussian distribution. The posterior distribution is learned

for these parameters using Bayesian inference, given the training

dataset (28).

In BRNNs, regularization is achieved by introducing a

regularization term in the cost function that penalizes large

weights resulting from overfitting (equation 5). In the case of

centered Gaussian prior distributions, this amounts to using the

sum of squares as a penalty term:

F = g Ed + bEw,  Ew = o
m

k=0

w2
k (5)

where Ed is the cost function given in equation 2. b and g are

regularization hyperparameters. The BRNN tries to strike the
Frontiers in Endocrinology 09
balance between the prediction error (Ed) and the weights (Ew)

by finding the optimal values of parameters b and g. The values
of b and g are not known in advance and learned during training.
If g is much larger than b, the algorithm favors the goodness of

fit, at the expense of keeping a rather high level of model

complexity. If b is much larger than g, the weight distribution

will concentrate around a zero mean (for centered Gaussian

prior distributions), meaning that many connections will be

removed within the network. In each iteration, the values of both

the model parameters (weights) and hyperparameters (b and g)
are updated. The simplest way is to move the hyperparameter

values on a grid from one iteration to the next one. A more

elaborate procedure updates the hyperparameter values at the

end of each iteration, from the current values of the weights and

cost function components Ew and Ed (27).

A great advantage of BRNNs is that they can handle small

datasets; the embedded regularization procedure allows one to

only divide the original dataset into a learning subset and a

testing subset (27). In addition to resolving overfitting, BRNNs

propose automatic relevance determination (ARD) (28, 29) to

calculate the importance of each variable and ignore less

important variables.
3 Application of deep learning
in endocrinology

3.1 Precocious puberty

Puberty is a complex transitional process that is initiated by

the activation of the gonadotropic axis and especially by the

onset of pulsatile GnRH (gonadotropin-releasing hormone)

secretion from hypothalamic neurons. Stimulation of the

gonads by the pituitary hormones FSH (follicle-stimulating
FIGURE 8

An instance of Bayesian regularized neural network with one input layer, two intermediate hidden layers, and one output layer. The orange
curves represent prior distribution on each weight connection.
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hormone) and LH (luteinizing hormone) results in steroid

synthesis and emergence of secondary sexual characteristics.

Precocious puberty (PP) is defined as the development of

secondary sexual characteristics before 8 years of age in girls

and before 9 years of age in boys (30). PP is further classified into

either central precocious puberty (CPP) or peripheral precocious

puberty (PPP) (see Figure 1). CPP is the most frequent form of

PP and is induced by the early activation of the hypothalamic–

pituitary–gonadal axis. CPP is usually diagnosed using bone age

assessment (BAA), hormonal tests, GnRH stimulation tests (a

gold standard), human chorionic gonadotropin levels, and

magnetic resonance imaging (31, 32). In a GnRH stimulation

test, the response of the pituitary gland is assessed through

monitoring FSH and LH blood levels before and after a GnRH

hormone shot.

The bone age is typically more advanced than the

chronological age in case of PP (33). BAA is an ideal example

for CNN application as the goal is to perform the classification of

a given set of images. BAA is conventionally assessed from left-

hand radiographs, mainly for historical reasons. Since most

people are right-handed, the left hand of manual workers was

less likely to be impaired (20).

The TW (16) and Greulich and Pyle (GP) (17) methods are

commonly used to assess BAA. GP is the most frequently used

method in clinical practice, where radiographs of the left hand

and wrist are compared with an atlas of standard bone images to

estimate the bone age. The TW method (and its variants) is

based on scoring a specific selection of hand and wrist bones,

and estimating the bone age by summing these scores. It is more

accurate than the GP method (34). In the following, we also

discuss studies taking into account multiple sources of

information such as ultrasonography (US) reports, health

records, and lab tests in addition to radiographs (see Figure 9).

A synthetic overview on the DL approaches analyzed and

compared in the next subsections is provided in Table 3.
3.1.1 Bone age assessment
Recently, DL methods have been employed for the BAA, an

important parameter in the diagnosis of PP. Lee et al. (35)

proposed a fully automated DL system based on CNNs for BAA.

Recall that CNNs consist of convolutional and pooling layers,

followed by the fully connected layer (see section 2.2). The

dataset consists of 4,278 radiographs for women and 4,047 for

men. First, they normalized the dataset images to remove

discrepancies across images such as different background

colors, object colors, and sizes, then performed the BAA using

CNN, and finally generated radiology reports. Their system

achieved an accuracy of 57.32% for the female cohort and

61.40% for the male cohort. The biggest advantage of the

proposed system is that it can take into account images of

different formats and qualities in the training step. In addition,
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they obtained attention maps to visualize image segments used

by the model to make a specific decision. Notably, these

segments were in accordance with the features employed by

experts. Later, a DL system based on the GP method was

proposed by Kim et al. (36). They also used a CNN-based DL

architecture, and investigated three scenarios: (1) the score

decided by the DL system, (2) the score determined by the DL

system together with radiologists, and (3) the score produced by

the GP technique together with radiologists. Two experienced

radiologists created the reference scores. The input dataset

consists of left-hand radiographs from 200 patients. The

concordance rate between the score proposed by the DL-based

system and the reference score was 69.5%, while the reading

times of the radiologists decreased by 29% without

compromising accuracy. The authors claim to perform better

than Lee et al. (35) with an accuracy of 69.5%, which is not fair

given the different datasets used for training or testing, and

reference values obtained by different experts. Nonetheless, both

works provide an excellent example of DL application in the

clinical assessment of bone age.

In (37), the authors published a first publicly available DL

system “BoNet”, based on a CNN architecture, along with the

source code to support the result reproducibility. BoNet was

tested on a publicly available dataset of 1,400 images (49) and

managed to outperform four previously implemented methods

(49–52). In addition, they performed comparison between the

features used by the TW method and those used by BoNet for

age prediction. While there were some common features used by

BoNet and TW methods for BAA, only BoNet highlighted the

weak role of carpal bones and, in contrast, the importance of the

radius and ulna. This implies that some features now used by

clinicians may be unnecessary, while others should

be considered.

In (38), the authors have shown the power of data

augmentation to deal with scarce medical datasets. They

augmented 301 cases of x-rays by 30 times and built a CNN to

classify subjects into different age categories. Data augmentation

was done by random rotation or brightness regulation of

different images. Their CNN model achieved an accuracy of

91.3% on a testing dataset beating some of the existing methods

(53). In (39), a multitask CNN model was proposed to estimate

bone age as well as to localize ossification centers in different

bones, i.e., phalangeal, metacarpal, and carpal (as done in the

TW method). They used a dataset from the RSNA Pediatric

Bone Age Machine Learning challenge (54), containing 12,585

x-ray hand images. They highlighted the relevant image

segments using Gradient-weighted Class Activation Mapping

(Grad-CAM) (55), showing that joint learning improved the

accuracy of the network by focusing on features, i.e., 20

ossification center regions relevant for bone age assessment.

The authors in (40) proposed a first diagnostic DL system

based on an updated version of the TW method (56) with a
frontiersin.org

https://doi.org/10.3389/fendo.2022.959546
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Razzaq et al. 10.3389/fendo.2022.959546
sample size of 9,059 images. The proposed CNNmodel achieved

a stable overall performance in terms of accuracy and time as

compared to the experienced endocrinologists and radiologists.

In (41), the authors used the chronological age as a reference (or

ground truth) contrary to the reference ages based on GP or TW

methods utilized in most of the previous studies. They used

15,129 hand radiographs for training and 1,681 for testing

purposes. In addition, they used 214 hand radiographs from

an external institute to gauge the generalizability of their CNN

model. The suggested DL model performed similarly to GP-

based systems or human experts. However, it was more sensitive

to systematic biases such as overestimating the age of younger

children. In order to deal with the limitations of hand x-rays

such as large inter-observer error and subtle morphological

changes in hand or wrist bones, the authors in (42) presented

the first DL model for BAA using elbow radiographs. They

obtained 4,437 images to train and validate a CNN model from

one institute. A set of 141 images were obtained from an external

hospital for testing purposes. Their model yielded results that

were equivalent to those of human experts.
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3.1.2 A hybrid system
Recently, Lee et al. (43) suggested a hybrid GP- and TW-

based DL system. Two public datasets were used to train a CNN

model: (1) 14,236 radiographs from RSNA (54) and (2) 1,375

radiographs from Digital (57). The reference scores were

generated by three experts (endocrinologists and radiologists).

Their technique first computes two types of BBA using CNN

based on the TW and GP methodologies, and then integrates the

features from both the TW and GP methods to propose a final

BAA using a fully connected neural network. There was an

excellent agreement between the reference BAA and the

predicted BAA with a mean absolute difference (MAD) of 0.39

years (95% confidence interval, 0.33-0.45 years) and reading

times were reduced by 35% with the help of the DL system.

In (44), a TW-based DL system combines an RNN (with a

modified optimization process) as a classifier with an FR-CNN

(Faster Region-CNN) as a feature extractor. This hybrid model

was tested using public and private datasets, with better results

than models based on single architecture and non-modified

optimization process. To decrease the computational overhead,
FIGURE 9

Workflow for a CPP diagnostic system by considering multiple sources of information in young girls. A key step is the interpretation of the
model prediction, which highlighted the usefulness of LH and FSH levels (from laboratory tests) and uterine volume (obtained from pelvic
ultrasonography).
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a TW hybrid system based on DL and extreme machine learning

(ELM) was proposed in (45). ELM is a single hidden layer FFNN,

introduced in (58). It assigns fixed values to the weights linking

the input and hidden nodes, so that only the weights linking the

hidden and output nodes are tuned, which makes it extremely

faster (59). Like the TW method, only selected parts of the

images were used for the BAA, thereby reducing the

computational cost. Feature extraction was performed using a

CNN, and retrieved features were then used as inputs to the

ELM algorithm to predict bone age. They used a publicly

available dataset of 12,611 images, which was divided into a

training (70%) and a testing (30%) set. Their trials have revealed

that the CNN-based model outperforms the others, although it

necessitates more computational resources. In contrast, their

hybrid system is slightly less accurate than the CNN-based

system, but it is computationally more economical.

3.1.3 Multiple sources of information
Multiple sources of information can help to improve

diagnoses in the medical field (60, 61). In Figure 9, we

illustrate a generic workflow to perform CPP diagnosis with a

DL model using diverse sources of information.

In (46), the authors have taken into account x-ray images in

addition to race and gender (male or female) information. They

model the problem of age prediction as a regression task whose

ultimate goal is to predict the age as close as possible to the

ground truth. They used a CNN as a feature extractor in x-ray
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images, and combined the output features with the race and sex

to get the bone age estimation using support vector regression.

They used both public and private datasets to construct and test

the models. Their results show that merging heterogeneous

features can improve bone age estimates of the model. Later,

in (47), the authors adopted FR-CNNs from object detection to

the bone age estimation problem, which enabled them to take

the original x-ray images directly as inputs instead of first

extracting manually the regions of interest from the x-ray

images. The extracted features along with detected regions of

interest are used to predict the bone age. In (48), the authors

used DL to extract features and Extreme Gradient Boosting

(XGBoost) algorithm to classify. They demonstrated that

numerous sources of information can help in the rapid

diagnosis of CPP without the requirement for a GnRH

stimulation test. They revealed that the most important

additional sources were LH levels and the uterine volume

measured through pelvic US. Although pelvic US cannot be

used alone to predict CPP in women, it improves the diagnosis

when combined with laboratory data. As demonstrated in (37),

the authors inferred a set of features that were useful for

classification; however, they are not presently employed for

CPP diagnosis.

More recently, in (33), the authors presented an artificial

intelligence-based diagnostic system called dynamic multimodal

variational autoencoder (DMVAE) to diagnose CPP. The

datasets come from four different resources including
TABLE 3 DL-based studies for precocious puberty diagnosis.

Study Method Reference Performance Time Source code Size Interpretation Type Gender

Accuracy MAE

Single Source (35) GP Radiologists 57%, 61% – – No 8,325 Yes CNN ♀/♂

(36) GP Radiologists 70% – 29% No 200 No CNN ♀/♂

(37) GP Radiologists – 0.79 – Yes 1,391 Yes CNN ♀/♂

(38) – – 91% – – No 301 No CNN ♀/♂

(39) GP Radiologists – – – No 1,2585 Yes CNN ♀/♂

(40) TW Endocrinologist
Radiologist

– 0.5 y – Yes 9,059 Yes CNN ♀/♂

(41) GP Radiologist – 11.1 m – Yes 16,810 No CNN ♀/♂

(42) Sauvegrain Researchers – 0.22 y – No 4,437 Yes CNN ♀/♂

Hybrid system (43) GP + TW Endocrinologist
Radiologist

– 0.39 y 35% No 15,611 Yes CNN ♀/♂

(44) TW Radiologist
Endocrinologist

– 6.99, 6.99 – No 14,311 No FR-CNN + RNN ♀/♂

(45) TW Endocrinologist
Radiologist

– 6.07 – No 12,611 No ELM + RNN ♀/♂

Multi source (46) GP Radiologist – 0.61, 0.73 – No 21,391 No CNN + SVR ♀/♂

(47) GP Radiologist – 0.48,0.51 – No 24,851 No FR-CNN ♀/♂

(48) – – – - – No 2523 Yes DL + XGBoost ♀

(33) – – 68% – – No 2228 Yes VAE + GBDT ♀
front
Regarding imaging data, hand images were used except in (42) where elbow images were used as input. The - sign implies that information was either missing or irrelevant for the
corresponding study or another evaluation criterion was reported. Two evaluation metrics are reported whenever we find separate scores based on either gender (male or female) or data
(public or private).
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electronic health records, laboratory tests, pelvic US, and left-

hand radiography reports. All 2,228 subjects had electronic

health records (with 10 features) and laboratory tests (with 9

features); however, only 858 subjects had left-hand radiography

reports (with 6 features), and 896 subjects had pelvic US (with 16

features). The first step was to infer (impute) the missing scoring

values for the subjects in cases of pelvic US and hand

radiography reports, using variational auto-encoders (VAEs).

VAE is a generative model consisting of an encoder and a

decoder, which minimizes the error between the initial data

and encoded–decoded data. Precisely, a modality indicator first

specifies if the feature value is missing or not, and then the joint

representation between different modalities is learned to impute

the missing values. Next, a GBDT algorithm, known to perform

well with high-dimensional datasets, was used to predict the

response to a GnRH agonist stimulation given the combined

features from all four resources. There were 1,046 positive

stimulation tests and 1,182 negative stimulation tests. Finally,

shapely additive explanations (SHAP) were employed to explain

the output of the machine learning model at both the feature

level and data source level. On the global feature scale, LH levels

were the most important feature [as also shown by Pan et al.

(48)] followed by the LH/FSH ratio. This is encouraging as it is

consistent with the current clinical decision-making process.

Laboratory tests were the most important sources followed by

pelvic US reports. The least important source was the left-hand

radiography reports. This work presents an excellent example of

DL-based system that can help to resolve missingness problem

in order to accurately predict if a patient needs to undergo

GnRH stimulation test.
3.1.4 Conclusion
BAA represents a perfect example of object detection where

CNN-based DL models can perform efficiently. The task is to

predict the bone age class given hand radiographs as inputs. The

references described above show a true potential of DL for

assessing bone age in clinical practice. In the future, we can

expect that DL systems will be used routinely in clinical practice,

just like feature extraction systems like BoneXpert (62) are.

However, certain limitations have been raised in the literature

and need to be addressed. BAAs are compared with the manual

bone age determined by experts, yet one cannot confirm that the

manually determined age is the true age. It would be wise to refer

to the age assessed through other methods such as MRI (63). The

bone maturity also differs across different ethnicities; one should

encourage the use of datasets coming from multiple ethnicities

as shown in the work of Kim et al. (36). In addition, DL models

have an intrinsic black box nature. One can resolve this problem

by interpreting model predictions. For example, in (37, 64), the

authors highlighted the most sensitive image parts

corresponding to specific anatomical zones. Larson et al. (64)

discussed that the metacarpal–phalangeal joints, proximal
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interphalangeal joints, and carpal bones were the most

sensitive areas, all of which correspond to maturity indicators

as defined by GP criteria. More precisely, the sensitivity to carpal

bone is similar to the TWmethod. Contrarily, it has been shown

in (37) that although all features used by the TW method were

kept, the carpal bones did not necessarily influence the final

predictions, which raises the problem of the trustability of the

proposed explanations. One can try using multiple methods to

search for explanations and select the most pertinent for final

analysis. In Section 4.5, we discuss several strategies to explain

DL models. Finally, another frequently encountered problem is

the reproducibility (see Table 3); either the source code is not

available or the model is trained on private datasets (37). In the

future, we can expect to see more advance DL methods that will

be able to tackle the aforementioned issues.
3.2 Thyroid dysfunction

The thyroid gland is involved in many physiological

functions, and is a major player in metabolism control,

through the secretion of Triiodothyronine (T3, the active

form) and Tetraiodothryronine (T4, converted into T3 by the

target cells). As for the gonads, the thyroid activity is tightly

controlled via endocrine loops within the thyreotropic axis. The

perturbation of this endocrine dialogue can lead to either

hypothyroidism or hyperthyroidism (see Figure 1). The most

prevalent kind of thyroid problems is hypothyroidism

(underactive thyroid), in which too little thyroid hormone is

produced, and hyperthyroidism (overactive thyroid), in which

too much thyroid hormone is generated.

Thyroid disorders are often difficult to diagnose based solely

on clinical or laboratory investigations, as symptoms of

hypothyroidism, such as weight gain, sadness, and exhaustion,

are sometimes mistaken with other pathological conditions.

Furthermore, other conditions such as pregnancy and

psychiatric troubles might influence hormone levels, resulting

in an incorrect diagnosis of thyroid dysfunction. The diagnosis

of thyroid disorders also presents a challenging problem for

machine learning algorithms, since there is typically a large

variation between the numbers of samples belonging to different

classes, i.e., hyperthyroidism (hyper), hypothyroidism (hypo),

and normal (often the overrepresented status), resulting in an

unbalanced dataset. Thyroid diseases are characterized as either

functional (euthyroid or normal, hyper, and hypo) or structural

(65). The structural categories are based on the morphology of

the gland, which can be assessed by palpation (physical

examination) or imaging techniques such as US or

scintigraphy (which employs radioactive materials). The

thyroid gland can be diffuse or nodular in structure, and if

nodular, it can be mono-nodular or multi-nodular (66). Here,

our main focus is the overview of functional classifications of the

thyroid status using DL methods. The goal is to classify samples
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with different features from laboratory and routine tests into a

hyper, hypo, or normal group. These features include serum

total thyroxine (TT4), serum free thyroxine (FT4),

triiodothyronine (T3), T3 uptake test (T3U), thyroxine

binding globulin (TBG), serum thyroxine (T4), total serum

triiodothyronine (T3 or T3RIA), T3 resin uptake (RT3U),

serumthyroid-stimulating hormone (TSH), and increased TSH

after injection of TSH-releasing hormone (DTSH), alkaline

phosphatase (ALP), serum creatinine (S-Cr), low total

cholesterol (T-Cho), mean corpuscular volume (MCV), and

lactic acid dehydrogenase (LDH). It is also possible to use

multiple sources of information such as images and medical

records in addition to the laboratory tests as inputs to the ANN,

which can help to improve the diagnosis. A synthetic overview

on the DL approaches analyzed and compared in the next

subsections is provided in Tables 4, 5.
3.2.1 Thyroid dysfunction classification—
first application

The first exploratory work using ANNs to diagnose thyroid

dysfunction dates back to 1993. Sharpe et al. (67) proposed a

comparison of two types of ANNs, i.e., MLP and learning vector

quantization (LVQ). LVQ is a supervised machine learning

approach based on competitive learning in a similar manner

as unsupervised SOM-based neural networks (see Section 2.3).

The objective was to classify 392 cases with six features, T4, FT4,

T3, T3U, TSH, and TBG, into three functional groups

(hypothyroid, euthyroid, and thyrotoxic). The data were highly

imbalanced, with 309 euthyroid (normal thyroid), 49 thyrotoxic,

and 34 hypo cases. The authors pointed out the data imbalance

issue (see Section 4.3) as well as that of pattern variations within

classes. The training dataset should have enough pattern

variation within a class to determine non-ambiguous decision

boundaries within the feature space (75). To study the pattern

variation issue, they used 30 examples in the training set

encompassing the whole range of variations of six features for

three groups. The results show a high classification rate of 96.4-

99.7. It was unclear how they dealt with the data imbalance issue.

Furthermore, the authors opted to divide their dataset into a

training and a testing set, without building a validation test,
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because of the data scarcity. Nonetheless, their study forms a

basis to explore ANN diagnostic systems for thyroid disorders.

3.2.2 Data imbalance
Later, Zhang and Berardi (68) demonstrated the efficiency of

ANNs to handle data imbalance issues, and the effect of

sampling variability on the classification of thyroid status with

a slightly bigger dataset of 7,200 cases. There were a total of 21

features representing a mixture of binary (15) and continuous

(6) variables. The class distribution was again highly imbalanced

with 5.1% cases belonging to the hypo group, 2.3% to the hyper

group, and 92.6% to the normal group. A fourfold cross-

validation scheme was deployed to ensure model robustness.

The model was trained iteratively on three partitions of the

dataset, and the fourth one was used for testing the performance,

until all partitions had served as a testing set. To avoid any

classification bias toward a particular class, it was made sure that

there were enough examples from each class in each partition.

They reported classification accuracy for each class separately.

The average accuracy for the hyper, hypo, and normal group was

81%, 93%, and 99%, respectively, on the testing dataset. They

also revealed that the basic logistic regression failed to deal with

the imbalanced datasets and drastically overfitted the normal

group; the average accuracy for the normal group was 100%,

while it was 0% for the other two groups. Overall, a rather small

variability in the classification rates was observed between

training and testing examples of each class, except in the

hyper group, suggesting that better strategies to cope with the

imbalanced datasets are required. We discuss different strategies

to deal with the data imbalance issue in Section 4.3.

3.2.3 Hybrid network
In (69), the authors evaluated the use of three ANN

architectures i.e., MLP, radial basis function (RBF), and

adaptive conic section function neural network (CSFNN). RBF

is a special type of two layer neural networks with a single hidden

layer (11). The input layer of an RBF does not perform any

computation; it simply forwards the input to the hidden layer

just like a standard neural network. The role of the hidden layer

is to transform the input space into a new, linearly separable,
TABLE 4 DL-based studies for thyroid status assessment.

Study Method Var Dataset Performance Interpretation Code

Hyper Hypo Normal Total Accuracy TPR

Single
Source

(67) MLP, LVQ 6 49* 34 309 392 >93% – No No

(68) MLP 21 166 368 6,666 7,200 >81% – No No

Hybrid (69) MLP, RBF, and CSFNN 5 – – – 215 >79% – No No

Multi source (70) MLP 23 – – – 176,727 – >86% Yes Yes
frontiers
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space. The number of nodes in the hidden layer is larger than the

number of nodes in the input layer according to Cover’s

theorem. This theorem states that, given a set of nonlinearly

separable training examples, one can transform it into another

linearly separable set, by casting it into a higher-dimensional

space (76, 77). The hidden nodes of an MLP take the dot product

between inputs and weights, and then apply an activation

function (sigmoid, Tanh, Softmax, etc.) to compute the value

of the node, while hidden nodes of RBF use the Euclidean

distance between weights and inputs, and a Gaussian

activation function (78). A CSFNN is a hybrid neural network

where neurons behave either as MLP or as RBF, and as an

intermediate unit. The dataset consists of 215 cases with five

features. The objective was to learn the relationships between

these features and three classes, i.e., hyper, hypo, and normal.

The dataset was highly imbalanced as only 30 out of 215 cases

belonged to the normal class. The ANN based on a hybrid

structure (CSFNN) was the computationally most efficient

architecture with a better accuracy than MLP and RBF. It was

not clear whether the data imbalance problem was handled prior

to training or not. The authors opted to divide their dataset into

training and testing sets only. A threefold cross-validation

scheme was deployed to ensure robustness.

3.2.4 Predicting thyroid disorder on
patient datasets

In this section, we present in chronological order a series of

studies undergone by a group of researchers from Tohoku

University. A synoptic view of the designed neural networks is

provided in Table 4. The first study, in 2005, was dedicated to the

functional classification of thyroid status using two types of

neural networks: (1) SOM-based neural networks (see Section

2.3) and (2) BRNN (see Section 2.4). They classified 215 subjects

(with five features) into three groups: (1) 150 normal, (2) 35

hyper, and (3) 30 hypo. The features were obtained from

laboratory tests: T4, T3, RT3U, TSH, and DTSH. Their results

show three distinct clusters of hypo, hyper, and normal in the

SOM visualization (see Figure 10). Within clusters, a further

classification level was also observed. For instance, patients with

severe hyper cases (high T4, T3RIA, and very low DTSH) were
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situated in the deeper zone, whereas patients with mild cases

were placed on the boundary of the hyper and normal clusters. A

few cases of hyper and hypo were wrongly labeled as normal.

However, when the authors generated the SOM with only two

variables, T4 and DTSH (identified by BRNNs as the most

relevant ones), the classification accuracy improved. The

authors argued that this could be because of the redundant

role of RT3U for the hyper group and TSH for the hypo group.

They also built a three-layer BRNN with and without the ARD

method (see Section 2.4), and implemented a backward stepwise

selection strategy to identify the relevant or essential features. In

backward selection strategy, first a model is built with all

variables and then variables having the least effect on the

model’s performance are eliminated. They demonstrated that

the best classifiers always used T4 and DTSH as inputs. However,

the authors did not employ an independent testing dataset to

validate their predictions (71). Later on, the authors used 14

features from only routine tests to classify patients into hyper

and normal groups using a BRNN. They identified 3 relevant or

important features, ALP, S-Cr, and T-Cho, out of 14. They also

had a separate testing dataset, which was not the case in the

previous study we discussed. It is interesting to note that three

out of the seven individuals predicted to be in the hyper class by

both SOM and BRNN were later diagnosed as such by a

physician, and these three patients were in the deeper zone of

hyper cases in the SOM. This points out the interest of using

neural networks for thyroid dysfunction classification.

Furthermore, the remaining four persons identified as hyper

had hepatic dysfunction, which explains the incorrect

classifications as routine test results from these patients

mirrored the hyper instances (18). In a next study, they

increased the sample size of the training and testing datasets

(72). In addition, they generated 1,000 virtual subjects, by

randomly generating values for different features using

the mean and variance of the patient dataset, to verify the

robustness of the screening method. The accuracy of the

classification was improved with the augmented datasets, as

participants with severe hyper cases were deeper in the hyper

zone than in previous SOM visualizations. The false-negative

rate was reported to be 10%, and was attributed to a comorbidity
TABLE 5 Overview on the datasets and neural network architectures in a series of studies performed in Tohoku University.

Study Train Test Vars SOM BRNN Accuracy Imbalance Gender

Competitive layer Number of neurons Hypo Hyper

(71) 215 – 5 30 × 30, r = 50 3, 5, 8, and 12 >83% >91% 5× less –

(18) 66 142 14 30 × 20, r = 30 8, 10, and 12 – ≈ 90% ∼2.6× less ♀/♂

(72) 120 171 14 30 × 20, r = 20 3–15 – >81% ∼2.4× less ♀

(73) 78 135 14 30 × 20, r = 30 – – – ∼1.5× less ♂

(74) 156 307 12 30 × 20, r = 30 12 >80% – ∼2.8× less ♀/♂
front
The imbalance column is used to indicate the degree of uneven data distribution. For example, in the first row, there were five times less samples from the minority class (hypo) than from
the majority class (normal). The - sign implies that information was either missing or irrelevant for the corresponding study.
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in addition to hyperthyroidism, which altered the routine test

interpretation. For example, a patient with graves and a renal

disease had a normal S-Cr level (an important variable for

prediction with this BRNN). A strong association was also

found between the three key variables (S-Cr, T-Cho, and ALP)

and FT4.

Later on, the authors extended the work to men in order to

account for sex differences in routine test data (73). In addition

to two neural networks, they also build a model based on a

support vector machine (SVM). We will not give details on

SVMs as it is out of the scope of this paper. A same false-negative

rate of 10% was reported as in the previous women-only study;

however, the false-positive rate (six male subjects were predicted

to be in hyper class) was higher due to more hepatic dysfunction

cases in men than women. S-Cr, T-Cho, and ALP appeared to be

the most important variables for diagnosis in men as in women.

The authors did not make a detailed comparative study; they

simply suggested that SVMs performed marginally better than

BRNNs. After focusing on the detection of hyperthyroidism, the

authors extended their approach to include hypo cases as well

(74). Four variables, LDH, TC, S-Cr, and RBC, were the most

important out of the 10 input variables. A strong correlation was

reported between these four variables and TT4. A false-negative

rate of 10% was reported again. False positives were often

reported in elderly subjects, which the authors speculated may
Frontiers in Endocrinology 16
be due to a slow metabolism. Nonetheless, false positive was

reported regardless of age if patients had additional conditions.

3.2.5 Multiple sources of information
More recently, an explainable diagnostic support system was

proposed in (70). A significantly larger dataset than

aforementioned studies (18, 67–69, 71–74) of 176,727 subjects

recruited in four hospitals was used in this study. The patients

were labeled with 23 features (laboratory tests). Separate models

were built to identify patients in hypo or hyper within the whole

dataset, using four machine learning algorithms: GBDT, SVM,

logistic regression, and MLP. For the hyper classification model,

hypo and normal patients were used as a control group; for the

hypo classification model, hyper and normal were used as a

control group. We will not go into details of the first three

machine learning algorithms as it is out of the scope of this

paper. The GBDT model performed the best as compared to the

other three models. S-Cr, MCV, and T-Cho were important

variables for the hyper model, while S-Cr, LDH, and T-Cho were

important features for the hypo model. A direct comparison

cannot be performed with other studies, as lots of technical

details are missing. Nonetheless, it is encouraging to observe that

LDH, S-Cr, and T-Cho were the common variables identified as

important features both in the previous works (72, 74) and in

this study.
FIGURE 10

An example of a self-organizing map with a 2D hexagonal grid for thyroid dysfunction classification. We observe three clusters: hyper in green,
hypo in blue, and normal in red. Each dot can be mapped to the input subject using the coordinates of the winner nodes on the grid.
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3.2.6 Conclusion
Starting from 1993, there has been a huge amount of

impressive studies based on DL methods to classify thyroid

function, and their accuracy has improved with time. One

surprising observation is the handling of imbalanced data. The

imbalance issue arises from the unequal distribution of samples

for each class, for example, more samples in the normal group

than in the hyper or hypo group in a dataset. Most of the

methods described above did not explicitly implement a strategy

to handle this issue, and, still, they manage to achieve a high

accuracy. However, sometimes (67), an overall accuracy metric

was mentioned without specifying the accuracy for each class

separately. Furthermore, the accuracy is not the best metric to

measure the performance of a classifier in case of imbalanced

datasets. A high global accuracy can be achieved even if the

model fails to classify examples from the important class, i.e.,

hyper and hypo correctly, as demonstrated above (68) in case of

the regression classifier. Furthermore, lots of important details

were missing on dataset divisions, parameters, and architectures

of DL models. It is valuable to have this information to perform

fair comparisons and guarantee the reproducibility of results.

Having said that, DL methods, when implemented correctly, can

certainly help to improve the performance of diagnosis (79). For

example, three out of seven subjects predicted as hyper by neural

networks were later diagnosed so by a physician in (18). To go

one step further, one can design a system that can take different

types of medical exams (images and endocrine tests) as input

and generate the diagnosis based on varying sources of

information. Even with these necessary improvements, one

should not assume that the model will cope with all scenarios;

the presence of a diagnostician remains mandatory to confirm

the predictions. Contrary to the statement made by an AI expert,

“People should stop training radiologists now” (80), these

systems will not replace the physicians in a foreseeable future,

but will certainly serve as a second opinion.
4 Considerations

4.1 Preprocessing

We should perform some preprocessing before feeding our

data into a model. One of the most prevalent issues is missing

values. The missing data might be the result of a human or

machine error. Because different types of variables, e.g.,

categorical versus numerical, require a distinct treatment, it is

critical to apply datatype-specific manipulations. The severity of

missing values depends on the percentage of missingness. The

missingness problem can be resolved by either removing the

examples with missing values (unpopular as we discard lots of

information) or replacing missing values with an estimated value

calculated through a technique known as imputation. One
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usually takes the mean, median, or mode to replace missing

data (81). However, this approach can introduce bias in the

dataset, especially if the percentage of missing values is

substantial. For a detailed survey on how to tackle missing

values, the interested reader can consult this overview (82).

Missing values can also be predicted using machine learning

methods. One needs to define a predictive model in order to

extrapolate missing values from the available data. For example,

in thyroid status classification (70), the k-nearest neighbor

algorithm was employed to predict the missing values. To

address the issue of missingness in a multi-source context, we

can also deploy the “data-driven sparse Partial Least Square”

method. This method imputes missing samples in covariate

blocks in a supervised fashion to estimate the underlying

model and to generate predictions (83). DL-based imputation

methods are particularly useful for inferring missing data when

there are complex, nonlinear relationships between features.

VAEs can outperform the imputations obtained from using

the mean or applying a principal component analysis (PCA)

(84). In case of BAA (see Section 3.1.3), the authors in (33) have

extended VAEs to multi-source settings (missing values in one

source are predicted from other information sources), and

improved both the classification and imputation performance.

After dealing with missing values, we have to convert the

data into a machine-readable format. We choose the appropriate

preprocessing method depending on the datatype, i.e.,

numerical, binary, or categorical. Although numerical data are

already in a machine-readable format, we are faced most of the

time with a situation where different features have variable

ranges. To avoid the major artificial influence of differences in

amplitude, we rescale the data on a same range, typically

between 0 and 1. For binary variables, for example, gender, we

can assign 1 to a female and -1 to a male, or vice versa. For

categorical features, we can use integer encoding or one-hot

encoding, among others (85). In integer encoding, each category

is assigned a particular integer, for example, 1 to k for k

categories. However, this introduces an ordinal relationship

among categories, which might not be present originally. The

other alternative is to use one-hot encoding, which converts each

category into a binary vector of size k in case of k categories.
4.2 Data exploration

It is wise to perform a deep exploration of data before

building a model. The initial exploration step helps to gather a

basic understanding of the dataset and select the most robust

algorithm for the task at hand. Different techniques can be used

to identify patterns and interesting characteristics in the datasets.

We can start with an unsupervised, linear data reduction

method, i.e. , PCA. We can also apply a nonlinear,

unsupervised data reduction technique, i.e., t-distributed
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stochastic neighbor embedding (t-SNE) (86) for high-

dimensional data exploration and visualization. The objective

is to reduce the high-dimensional data into two or three

dimensions where similar data points are close together. t-SNE

defines the probability distribution of similar data points over

the high and corresponding low-dimensional spaces, and then

minimizes the distance between these probability distributions

using a gradient descent algorithm. Alternatively, one can apply

a uniform manifold approximation and projection (UMAP)

method, which is faster and better at conserving the global

structure than t-SNE (87).
4.3 Imbalanced data

Classification algorithms are known to be very sensitive to

unbalanced data when the aim is to derive classification and

prediction tools for categorical classes. In general, the algorithms

will correctly classify the most frequent classes and lead to higher

misclassification rates for the minority classes, which are often

the most interesting ones. In the instance of thyroid status

classification, we have much more normal examples (majority

class) than hypo or hyper examples (minority class). Before

building a classification model, we have to resolve the issue of

imbalanced data by employing different techniques such as

under- or oversampling of the majority or minority

class, respectively.

We can perform undersampling with the edited nearest

neighbor (ENN) algorithm (88). ENN starts with removing

from the samples of the majority class whose class differs from

that of their k nearest neighbors (k is typically an odd number to

avoid ties). However, by performing undersampling, we can lose

important information from the majority class. An alternative

strategy is to perform a random oversampling of the minority

classes to create a balanced dataset, but it may lead to overfitting

the data. In order to overcome this issue, instead of simply

copying examples, we can generate synthetic examples for the

minority class using ADASYN (Adaptive Synthetic) (89) or

SMOTE (Synthetic Minority Over-sampling Technique) (90)

among others. SMOTE randomly selects examples from the

minority class and creates a new synthetic data point between

the selected example and one of its k nearest neighbors by

interpolation, while ADASYN also takes into account the

weighted distribution for minority class samples in order to

create new examples. In the instance of thyroid status

classification (see Section 3.2), we could deploy ADASYN or

SMOTE to create synthetic samples for hypo or hyper groups.

Furthermore, other methodologies such as ensemble modeling

(91, 92) and different performance metrics [Cohen’s kappa (93)

and Matthews correlation coefficient (94)] are available to tackle

such issues. Practitioners should investigate which methods are

suitable for their problem and how the application of these

methods may impact the final results.
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4.4 Hyperparameters

Hyperparameter tuning is needed to get the best-performing

model. The hyperparameters (number of layers and neurons,

learning rate) are different from the model parameters (weights),

which are learned during training by optimizing the cost

function (see Figure 4 and equations 2 and 3). The

hyperparameters are involved in the model design and are not

updated during the training process (95). Hyperparameter

tuning usually begins by constructing a model, then sampling

values from a range of hyperparameter values, and finally

assessing the model performance on the validation dataset.

Remember that we separate our data into three categories: (1)

training for learning model parameters, (2) validation for

optimizing hyperparameters, and (3) testing for evaluating the

generalizability of the model.

Different approaches are used to optimize the hyperparameter

values. Each strategy has advantages and disadvantages. Manual

search is a widely prevalent strategy, which uses a trial-and-error

approach and requires expert knowledge (96). Random search

(97) randomly selects a set of hyperparameters from a defined

range of hyperparameters, as done in the grid search, instead of

verifying each configuration exhaustively. In both the grid and

random search, the search space is independent, so that

parallelization is easy to achieve. Unfortunately, both methods

ignore the results of earlier iterations. As a result, the algorithm

may be stuck in unpromising areas of the search space, and it may

take a long time to find optimal hyperparameters. Bayesian

approaches (98), on the other hand, uses information from the

previous iterations to set the hyperparameter values, so that they

may need less time to tweak parameters by completing fewer

iterations (99). A hyperband is a variant of the random search

method based on pure-exploration principles. It implements an

intelligent resource allocation as well as early stopping criteria. It

randomly selects the configurations of parameters and discards

the poorly performing ones using successive halving. It discards

the worst configurations as early as possible because the most

promising configurations frequently outperform the worst ones

since the beginning. In terms of processing time, the hyperband

algorithm outperforms the Bayesian (100) approach. However, in

practice, it is usually difficult to verify all combinations of

hyperparameters as we are mostly constrained by the

computational resources. One can take guidance from

hyperparameter optimization methods with a grain of salt. A

detailed review on hyperparameter optimization methods can be

found here (101).
4.5 The black box nature

It is often useful to understand the internal working of DL

models and to identify the most essential features for the
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classification or regression tasks. This is a crucial precondition to

get insight into the underlying biological or clinical structure of

data and to ground any clinical translation. Some models are

more explainable (white box models) such as linear models and

decision trees. However, these models may not perform well in

certain situations and we may need to go for more complex and

powerful models such as DL models (black box models); i.e., the

thought process behind a particular decision or prediction is not

clear. DL models are successful in giving performances

comparable to humans (102); however they are not a silver

bullet for all kinds of problems. Sometimes, even for a difficult

problem but with well-structured data, a simple model may

perform likewise (103). That is why it is important to perform an

initial data exploration to select the appropriate classification

tool (see Section 4.2).

Fortunately, many methods have been developed in the last

decade to tackle the problem of explainability of DL models,

such as feature relevance, local or global explanations, and

visualizations [for a review, see (103–106)]. Our aim here is to

briefly describe different methods to turn the black box nature

of DL models into a white box. Some of these methods are

model agnostic and some are model specific (107). Model-

agnostic methods do not depend on model design. A widely

used agnostic method is LIME (Local Interpretable Model-

agnostic Explanations), which explains the model by

perturbing the dataset around the observation of interest (for

example, an individual or an image) and analyzing how the

model changes its predictions w.r.t. the perturbed dataset. An

explanation for an observation is then generated by learning a

simpler linear model using a subset of features. These

explanations are locally truthful, i.e., only valid for the

observation being investigated (108). A variant of LIME is

Anchors (High-Precision Model-Agnostic Explanations),

which explains the predictions by learning if–then rules, and

reports the measure of precision associated with each

explanation (109). For example, for the thyroid status

classification (section 3.2), one can deploy LIME to score

input features (e.g., levels of T3, FT4, and TBG). This will

help to determine which features contribute to a hyer or hypo

risk prediction and what are the relative weights using a linear

approximation of the DL model. Saliency maps provide a

model-specific way to explain CNNs by highlighting the

important image fragments. The maps highlight regions of

interest from an image or video by monitoring the changes in

the output w.r.t. changes in the input image. They are obtained

by repeatedly applying small modifications to an input image

(110). Typically, saliency maps could be used to highlight the

important image fragments of the left-hand radiographs in the

framework of precocious puberty diagnostic (see Section 3.1).

This would help one to see which anatomical zones of the left-
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hand radiographs influence the final prediction of an ANN

model. In (35), the attention map of prepubertal category

highlighted the mid-distal phalanges and carpal bones as

important regions for classification. DeepLIFT (Deep

Learning Important FeaTures) is a popular, heuristic-based,

model-specific method. This method assigns contribution

scores to the features of a particular observation, according

to a reference point (neutral value). DeepLIFT basically tries to

trace back contributions to the input features by back-

propagating activated neurons (111). A choice of reference

value for applying DeepLIFT requires careful consideration

and domain-specific knowledge. For example, in case of

thyroid dysfunction, we can select the clinical characteristics

of a thyroid subject that did not experience any thyroid

dysfunction as a starting point. DeepLIFT can be sensitive to

the choice of the reference values. To achieve stable results, one

can use DeepLIFT with multiple reference values. Despite the

rapid development of these methods, the explainability of

neural networks remains an open question.
5 Conclusion

DL is very effective in handling large amounts of data and

finding patterns or functions hidden deep inside the biological

datasets, where classical linear models may fail. With the

availability of ready-to-use open-source DL libraries such as

Torch, Keras, Caffe, Theano, MXNet, and DMTK, among others,

it is becoming easier to apply DL out of the box without knowing

much about the underlying theory. However, since DL

application is a challenging task, one should not arbitrarily

apply DL to any dataset. The successful application of DL on

biological data requires a synergy of skills from mathematics,

computer science, and biology, as well as navigation through

different subtle points and caveats. One has to take into account

the common issues arising from the data or chosen method, such

as imbalanced data, parameter optimization, and the black box

nature. Currently, there are many methods available to turn

these black box neural networks into more white box models.

However, the challenge remains of which explanation to trust,

especially if different methods give contradictory explanations.

One way to overcome this challenge would be to generate

explanations from multiple methods, keeping only the most

consistent ones. Another way would be to provide a confidence

score with each explanation, and to trust only those explanations

with a high score. Lastly, domain knowledge also plays an

important role in the validation of these explanations. For

example, we can add constraints, so that each explanation

meets definite specifications (prior knowledge). Furthermore,

at the beginning of DL application, as exemplified with
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precocious puberty and thyroid status classification, only one

data modality was taken into account. In recent years, different

sources of information are merged in order to develop more

robust neural networks. Integrating different kinds of datasets,

however, raises new issues, such as missingness, structural

heterogeneity, datatype differences, and dynamic ranges.

Further advances in DL methods are still awaited to handle

these integration problems.
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DL Deep learning

ANNs Artificial neural networks

MLPs Multilayer perceptrons

CNNs Convolutional neural networks;

BRNNs Bayesian regularized neural networks

ARD Automatic relevance determination

SOMs Self-organizing maps

FFNNs Feed-forward neural networks

PP Precocious puberty

GnRH Gonadotropin-releasing hormone

PPP Peripheral precocious puberty

CPP Central precocious puberty

BAA Bone age assessment

TW Tanner–Whitehouse

GP Greulich and Pyle

US Ultrasonography

FR-CNNs Faster region-based CNNs;

SHAP Shapely additive explanations

T3 Triiodothyronine;

T4 Tetraiodothyronine or thyroxine

Hypo Hypothyroidism;

Hyper Hyperthyroidism

LVQ Learning vector quantization;

RBF Radial basis function
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CSFNN Adaptive conic section function neural network

GBDT Gradient boosting decisiontree;

SVM Support vector machines

t-SNE t-distributed stochastic neighbor embedding

PCA Principal component analysis

UMAP Uniform manifold approximation and projection

ENN Edited nearest neighbour

SMOTE Synthetic minority over-sampling technique

ADASYN Adaptive synthetic

LIME Local interpretable model-agnostic explanations

Anchors High-precision model-agnostic explanations

DeepLIFT Deep Learning Important FeaTures;

XGBoost Extreme gradient boosting

LDH Lactic acid dehydrogenase

T-Cho Total cholesterol

S-Cr Serum creatinine

MCV Mean corpuscular volume

TT4 Serum total thyroxine

ALP Alkaline Posphatase

TSH Thyroid-stimulating Hormone

T3U T3 Uptake

FT4 Serum Free Thyroxine

ELM Extreme Learning Machine

TBG Thyroxine Binding Globulin

RT3U T3 Resin Uptake

ΔTSH Increased TSH after injection of TSH-releasing hormone

VAE Variational Auto-encoders
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