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Abstract

A novel approach to damage modeling for quasi-brittle solids is presented
relying upon a differential inclusion that is closely related to the one of im-
plicit gradient models. The proposed formulation naturally fits in the so-
called non-local standard approach, whereby the framework of Generalized
Standard Materials is extended to include gradients of internal variables to
account for the physics of the fracture phenomenon in a regularized sense,
i.e. via extended constitutive equations in which a length scale parameter
brings to the macro level information about material microstructure. This
concept is fully embodied into the present approach to quasi-brittle fracture,
whereby progressive damage occurs in layers of finite thickness where the
gradient of damage is bounded and a fully damaged region is understood as
a fracture with no ambiguity. Key to the effective implementation of the
model are the choice of two constitutive functions and the implicit tracking
of regions in a state of progressive damage via Lagrange multipliers acting on
internal constraints. The ideas are developed for a general Cauchy contin-
uum and representative numerical simulations are included that demonstrate
the model capabilities.
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1. Introduction

In the last two decades non-local and gradient formulations have become
increasingly popular in Mechanics as regularizing techniques that allow to
deal with problems suffering from mesh-sensitivity and time-stepping depen-
dence that are induced by strain softening.

In short, the idea underlying almost all such techniques is that of us-
ing some extended constitutive equations in which information about the
material microstructure is synthetically represented through a characteristic
length scale parameter; for instance, in concrete this is believed to be about
three times the maximum aggregate size, see e.g. [1]. The physical interpre-
tation of the length parameter on a micromechanical basis is however still
the object of an open debate, whereby its interpretation as a mathematical
regularization parameter is preferred by many Authors.

A number of successful damage models incorporating a length scale have
been provided in the literature in a nonlocal, integral formulation starting
from the pioneering work of Pijaudier-Cabot and Bazant [2]. In the same
context of Continuum Damage Mechanics, implementations of the gradient
concept have then been presented in [3, 4, 5] in the wake of gradient ap-
proaches initially developed within plasticity theories or as mere localization
limiters [6, 7, 8, 9]. Models of gradient type require the solution of a partial
differential equation in place of the explicit evaluation of averaging operators
and under suitable hypotheses they can be shown to be almost equivalent to
the nonlocal integral approach, see e.g. [10].

A complete damage state is commonly understood as the formation of
a discrete crack and a link between the two descriptions of material failure
can be established in different ways. In this respect, the variational theory
of quasi-static fracture initially developed by Francfort and Marigo in [11]
has gained in recent years a considerable interest in the scientific community.
Basically, it relies upon minimization of a functional obtained from the sum
of an elastic bulk energy and a surface energy that may be e.g. either Griffith-
or Barenblatt-like.

The implementation of the variational approach to fracture in its original
format is a formidable task owing to its nature of free-discontinuity prob-
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lem and the consequent difficulties emanating from the ambient spaces in
which the problem is formulated. Therefore, its numerical implementation
has been achieved in [12] in regularized form, i.e. in the form of a damage
gradient model for which the damage zone converges to a sharp crack as the
length scale parameter tends to zero. In the Solid Mechanics literature the
family of gradient models smoothing the Griffith fracture potential are often
referred to as phase-field models, see e.g. [13, 14] among others, and most of
them are motivated by the Ambrosio-Tortorelli regularized form [15] of the
Mumford-Shah functional used in image segmentation [16]. Common to all
these models is the underlying geometrical information consisting in the re-
placement of the (discrete) fracture surface topology with a fracture surface
density function of diffusive type depending on a scalar order parameter, the
damage variable, which plays the role of phase field.

In the same context, a different point of view is expressed by Freddi and
Royer-Carfagni, who present in [17] a gradient-regularized damage formula-
tion in the form of an autonomous model amenable to a physical interpreta-
tion that goes well beyond a mere mathematical approximation of the parent
free-discontinuity problem, the latter being eventually recovered in the limit.

Though from a different perspective, the global energy minimization ar-
gument is also exploited in [18], that builds up on previous contributions
[19, 20] where the framework of Generalized Standard Materials [21] has
been suitably extended to incorporate models with gradients of internal vari-
ables. It bears emphasis that the mentioned extension comes at the expenses
of the local normality rule, that is abandoned for gradient-dependent mod-
els since it is overconstraining on account of the adopted form of the free
energy and dissipation functionals. In this respect it is worth recalling that
the (usual) normality rule is only sufficient to ensure the satisfaction of the
dissipation inequality but it is not a necessary condition. Actually, in the lan-
guage of Ponter et al. [22] it is referred to as essentially a non-thermodynamic
property.

Another variant of the gradient enhancement has been first exploited in
[23], where spatial derivatives are introduced directly in the damage loading
function that acquires a nonlocal character since it depends on damage and
the Laplacian of damage. This interpretation also applies to the gradient
model of Lorentz et al., see e.g. [18, 24], that appears to be equivalent to
a model in which the yield function includes the Laplacian of damage via a
non-negative diffusion coefficient with the physical dimensions of a force.

Common to all the aforementioned approach is the fact that, once spatial
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gradients and/or a length scale are introduced in the constitutive equations,
the latter are no longer defined at the local (quadrature point) level but
they are established at a larger scale, i.e. the scale of the structural model.
Basically, for usual local models stresses, strains and internal variables are
all defined in a point-wise fashion whereby, as outlined in [25], their values
can be regarded as the parameters of a piece-wise constant interpolation.
Hence, variables computed at the Gauss point level in classical displacement-
based finite element methods are all understood as fields that are generally
discontinuous across elements boundaries and inside elements as well. This
discontinuous character is indeed one of the most striking consequences of the
strictly local character of the constitutive law. Contrariwise, for nonlocal and
gradient-enhanced models the presence of gradient or averaging operators in
the constitutive equations enforces a greater regularity of strains, stresses
and internal variables and the resulting solution will be globally smoothed
through elements. Moreover, increased regularity generally characterizes the
entire solution and is not limited to the gradient-enhanced variables.

For gradient-enhanced damage models, an important distinction can be
made with reference to the form of the enhancement and its relationship with
integral non-local formulations. In particular, the intrinsically different prop-
erties of explicit and implicit gradient enhancements can be summarized as
follows [10]. In explicit gradient models is defined an averaged quantity ȳ(x),
x being the spatial variable, that may well be a strain-like variable or a mea-
sure of elastic energy. This averaged variable is used in the damage consti-
tutive equation to introduce a regularizing effect that avoids ill-posedness of
the problem due to strain localization. In the explicit gradient-enhancement
the spatially averaged variable is defined as:

ȳ(x) = y(x) + c∇2y(x) (1)

∇2 being the Laplace operator.
Since ȳ(x) depends on the value and on the derivatives of the function

y at point x, this formulation is mathematically local and can be regarded
as a higher-order representation of the variable y(x) that is used to describe
damage evolution. One major drawback of the representation (1) is that it
may require use of C(1)-continuous interpolations, which a priori is not desir-
able. On the opposite side, implicit gradient models rely upon an equation
that looks very similar to (1):

ȳ(x)− c∇2ȳ(x) = y(x) (2)
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but has quite different properties. In particular, worth mentioning are the
reduced interpolation requirement and the fact that higher-order derivatives
of y(x) are implicitly still present in the representation of ȳ(x), which renders
equation (2) richer in information content compared to (1).

Geers et al. have first put forward in [26] that the implicit gradient for-
mulation is sometimes deficient in that excessive damage spread may take
place in the direction orthogonal to that of a propagating crack as a con-
sequence of the diffusive character of equation (2). The same conclusion is
arrived at in [27], where it is explicitly stated that standard gradient dam-
age formulations are not suitable to represent sharp cracks, which in a sense
constitutes a clear-cut limitation. A remedy proposed in [26] is to replace
in (2) the constant diffusion coefficient c by a damage-dependent activity
parameter. This however results in a much more involved procedure to solve
the problem equations that, to the best of Authors’ knowledge, has not been
further developed afterwards. We also remind in passing that, despite the
fact that the gradient-enhanced variable can be an equivalent strain, when
using the implicit gradient model one arrives at a coupled problem for which
the inf-sup condition of mixed finite element methods does not apply [28].

Restricting attention to phase-field and implicit-type gradient models, in
order to solve the problem one has to provide suitable boundary conditions
for the gradient-enhanced variable, say κ. Obviously, such boundary condi-
tions have a direct impact on the solution of the problem. A homogeneous
Neumann-type boundary condition given as:

∂κ

∂n
= 0 (3)

is the almost universally adopted choice, though the question about the phys-
ical motivation for it is in most cases left unanswered. Equation (3) can
however be recovered as a mere mathematical condition by following the ap-
proach developed in [29]. In this case a model incorporating the gradient
of damage enhancement follows in a natural way from the very definition of
mechanical dissipation that, for the class of extended Generalized Standard
Materials, is understood as a convex functional of the time rate of the dam-
age field. The above argument supersedes the formulation presented in [5]
in that it bypasses the completely artificial modification of the principle of
virtual power proposed therein that appears to have been introduced only as
a mean to fix the model equations.

In this paper we present a gradient-based damage formulation relying

5



upon a local damage description, obeying a normality rule and subject to
convex constraints. The model is called graded damage to remind the fact
that here we do not only penalize the gradient of damage as in phase-field
models, but rather we control the magnitude of the gradient of damage by
prescribing a suitable bounding function for it. This results in a model that
is shown to share many features with the so-called Thick Level Set (TLS)
approach initially proposed by Moës et al. in [30] to model the continuous
transition between damage and fracture.

In the original TLS formulation the damage state is expressed in an ex-
plicit, geometrical fashion as a function of a surrogate variable φ, i.e. the
level set; in particular, the level set allows to track the moving layers of fi-
nite thickness l evolving from 0 to lc where the transition between the sound
material and the completely damaged one occurs. Contrariwise, the model
presented in this paper abandons the level set-based representation in fa-
vor of an implicit description of damaged regions, whereby one arrives at a
Generalized Standard Model supplemented by two convex constraints. The
first one is of local type and expresses the usual [0,1] bounds on the damage
variable while the second one is responsible of non-locality and acts on the
gradient of damage by prescribing the shape of damage distribution within
the transition layer and the length scale lc as well.

The structural problem of the elastic-graded damageable body is gov-
erned by a three-field functional; this is in turn obtained by introducing a
potential of the constraints, which allows to define a total potential energy to
render stationary with respect to the arguments. The incremental solution
of the problem of the elastic-damageable body is therefore characterized as
the saddle-point of the potential energy, which is separately convex with re-
spect to displacement and damage fields. Moreover, the functions governing
the degradation of elastic stiffness and the softening part of the constitu-
tive law can be designed to deal with a variety of behaviours using material
parameters of clear physical meaning.

The outline of the paper is as follows. In Section 2 we introduce the
constitutive model and the relevant constraint equations; the graded damage
model and its relationship with the TLS approach are developed in Section
3. The structural model and the variational structure of the coupled three-
field problem are presented in Section 4, where the distinctive features of the
proposed model compared to the TLS formulation are also enlightened. In
Section 5 the problem of the one-dimensional rod under tensile load is dis-
cussed and the choice of the constitutive functions for the continuum damage
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formulation is made, motivated by the equivalence with the softening law of
a given cohesive relationship. Finite Element implementation is then out-
lined in Section 6 while representative numerical examples are documented
in Section 7 that demonstrate the capabilities of the proposed approach.

2. Constitutive model

Let us consider an elasto-damaging structural model undergoing a quasi-
static loading process whose events are ordered by a pseudo-time scalar pa-
rameter t that will be referred to in the remainder as time. At each instant
t ∈ [0, T ] the current configuration of the body is defined by a simply con-
nected open set Ω(t) ⊆ ℜ3 described by the linear space of its displacements
u from a reference configuration Ω(0):

u(X , t) = χ(X , t)−X (4)

which relates the placements X of the material particles in the reference
configuration to the corresponding (deformed) ones x = χ(X , t) occupied at
time t in the current configuration through the deformation map χ.

Under the assumption of small transformations the kinematics of defor-
mation is characterized by the infinitesimal strain measure:

ε =
1

2

(

∇u+∇uT
)

(5)

Addressing the linear isotropic case, the energy density function for the
undamaged solid reads:

ψ0(ε) =
1

2

[

2µ ε : ε+ λ tr2(ε)
]

(6)

µ and λ being the Lamé elastic moduli. Degradation of the stored energy can
be introduced in multiplicative form via a monotonically decreasing scalar
function ω(d) of the damage field d that transforms the sound material (d =
0) into a fully damaged one (d = 1) according to:

ω(0) = 1; ω(1) = 0 (7)

The simplest case consists in assuming a fully symmetric behaviour, i.e.

ψ(ε, d) = ω(d)ψ0(ε) (8)
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whereby stiffness and stress degradation occur with no distinction in ten-
sion and compression. Obviously, this form of the stored energy neglects
crack closure effects and allows to effectively model only cases that are
tension-dominated. A non-symmetric tension-compression behaviour can be
obtained by splitting the stored energy function as in [13]:

ψ(ε, d) = ω(d)ψ0
+(ε) + ψ0

−(ε) (9)

where ψ0
± are the positive (negative) undamaged shares:

ψ0
±(ε) =

1

2

[

2µ ε± : ε± + λ〈tr(ε)〉2±
]

(10)

In the above equation symbol ε± denotes the positive (negative) strain
tensor that is computed based on the spectral decomposition

ε± =
3

∑

i=1

〈εi〉± ni ⊗ ni (11)

where εi and ni are eigenvalues and eigenvectors, respectively, and 〈x〉±
stands for the positive (negative) part of the scalar argument x.

An immediate generalization of the stored energy (9) that is also consid-
ered in [30] can be expressed in the form:

ψ(ε, d) = ω(d)
[

ψ0
+(ε) + hψ0

−(ε)
]

(12)

where the scalar parameter h ∈ [0, 1[ is used to manage compressive damage,
which is less harmful than tensile damage owing to crack closure. Alterna-
tive forms of energy degradation are however possible in which isotropy is
preserved and/or the part of strain energy that is affected by damage is as-
sociated to expansion and/or shear using different strain splitting schemes,
see e.g. [31] and references therein for a full account.

For a local model the forces work-conjugate to the state variables ε, d
follow from the standard thermodynamic argument [32]; this provides the
Cauchy stress tensor σ and the damage energy release rate Y as:

σ =
∂ψ(ε, d)

∂ε
(13)

Y = −∂ψ(ε, d)
∂d

(14)
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Is is worth emphasizing the physical meaning of the damage energy re-
lease rate Y , that represents the elastic energy released per unit volume of
damaging material; this is different compared to the usual energy release rate
of Fracture Mechanics that is a surface energy, i.e. an energy per unit area
of surface cracks. The existing link between the two, that allows to find a
scaling relationship between the relevant critical values, depends on the ma-
terial length scale that characterizes the size of the process-zone bands where
damage develops. This aspect is discussed in Section 5 where the constitutive
functions of the model are determined in a way to be consistent with a given
cohesive law.

2.1. Introducing constraints

In the present model the damage variable d has to comply with two
internal constraints described via convex functions.

The first one is a two-sided constraint of local type and provides the usual
bounds for the order parameter describing the state of the material:

0 ≤ d ≤ 1 (15)

The above condition can be expressed either using the convex indicator
function of the interval [0, 1]:

⊔[0,1](d) =

{

0 if d ∈ [0, 1]

+∞ otherwise
(16)

or via a suitably regularized version of it in the form

g1(d) ≤ 0 (17)

that will be defined later on. The second constraint is one-sided and non-local
and expresses a bound for the norm of the gradient of damage as:

g2(d) = ||∇d|| − f(d) ≤ 0. (18)

The above condition does strongly characterize the present model that
is termed graded damage to emphasize the fact that the magnitude of the
gradient of damage is explicitly bounded by a positive function, here given
as f(d). The spatial gradient term in (18) introduces non-locality in the
formulation whereas information about the length scale and the shape of the
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damage distribution within the transition zone is contained in the charac-
teristic function f(d). It can be easily shown that inequality (18) defines a
convex set provided that the function g2 is convex, i.e. if the characteristic
function f(d) is concave, which is equivalent to −f(d) convex, see also [33].
The proof is sketched hereafter; to this purpose it assumed that f(0) > 0.

Proposition 1. For any concave function f , if there exists a point do such
that f(do) > 0, the set

C = {(d,∇d) ∈ S/g2(d) ≤ 0} (19)

is a nonempty and convex set in S.
Proof The set C is nonempty by hypothesis since (do, 0) ∈ C. Given a
pair of elements of C, i.e. (d,∇d) and (d∗,∇d∗), by definition their convex
combination fulfills the condition:

θ||∇d||+ (1− θ)||∇d∗|| ≤ θf(d) + (1− θ)f(d∗) (20)

for θ ∈ [0, 1]. On the one hand, for a concave function f one has:

θf(d) + (1− θ)f(d∗) ≤ f(θd+ (1− θ)d∗) (21)

while, on the other side, it turns out to be

||θ∇d+ (1− θ)∇d∗|| ≤ θ||∇d||+ (1− θ)||∇d∗|| (22)

by virtue of the triangular inequality.
The previous three relationships provide the condition:

||θ∇d+ (1− θ)∇d∗|| ≤ f(θd+ (1− θ)d∗) (23)

whereby the convex combination of (d,∇d) and (d∗,∇d∗) belongs to C, which
proves the proposition.

�

The constraints (17) and (18) are introduced in the formulation via two
fields of Lagrange multipliers γ1, γ2 and the relevant Karush-Kuhn-Tucker
(KKT) conditions, that is:

γi ≥ 0; gi(d) ≤ 0; γigi(d) = 0. (24)

The previous relationships characterize these constraints as non-dissipa-
tive, whence a potential of (17) and (18) can be formally defined as:

ψγ(d, γi) = γ1 g1(d) + γ2 g2(d) (25)

which is convex since it is the linear combination of two convex functions.
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3. Thick Level Sets VS graded damage

The Thick Level Set (TLS) model originally contributed in [30] is a nonlo-
cal damage formulation in which the damage variable d is not directly related
to the strain or strain energy but is expressed in geometrical terms, i.e. as
an explicit function of the distance to a moving interface Γo representing the
damage front, that is the surface separating the damaged and undamaged
portions of the domain under consideration.

Transition between the sound material and the completely damaged one
occurs within layers of finite thickness lc, which plays the role of a physical
length scale that regularizes the damage model by preventing pathological
mesh-dependence effects subsequent to strain localization.

In summary, the domain of the damaging body can be partitioned into
three distinct regions: the undamaged portion Ωo, the interphase or transi-
tion layer Ωc, where the damage variable ranges between 0 and 1, and the
completely damaged region Ω1, see e.g. Figure 1.

Ω
Γ

Ω

Ω

Γ

Figure 1: Domain partition in the TLS approach.

In order to continuously track the position of the damage front, i.e. the
iso-zero damage surface, in the TLS approach use is made of the signed
distance function φ(X ) as a surrogate variable. The function φ(X ) is the
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level set and is computed based on equation

||∇φ(X )|| = 1, X ∈ Ω (26)

to which the following boundary condition applies:

φ(X ) = 0, ∀X ∈ Γo (27)

Relationship (26) is an eikonal equation, that is a nonlinear, first-order
partial differential equation of Hamilton-Jacobi type. The solution of the
eikonal provides the distance function φ(X ), i.e. the length of the shortest
path within Ω between points X and the iso-zero curve Γo.

In order to obtain the damage distribution over the domain, a shape
function d(φ) of the distance φ(X ) is designed. This is a peculiar feature
of the TLS model that considers the damage shape function as a material
property. In particular, points with negative distance from Γo are undamaged
(d(φ) = 0) whereas points located at a distance greater than lc are fully
damaged (d(φ) = 1); in the transition zone the prescribed damage function
d(φ) is continuously increasing with distance φ from the sound material and
its derivative along φ is strictly positive and bounded by a positive function
f(d). These properties are summarized below:

X ∈ Ωo, φ(X , t) ≤ 0, d(X ) = 0

X ∈ Ωc, 0 ≤ φ(X , t) ≤ lc, 0 < d′(φ) < f(d)

X ∈ Ω1, φ(X , t) ≥ lc, d(X ) = 1

(28)

having denoted by d′(φ) the damage derivative along the level set φ.
The boundary of the transition zone is ∂Ωc = Γo∪Γ1 and points X ∈ ∂Ωc

fulfill the following:

X ∈ Γo, φ(X , t) = 0, d(X ) = 0; (29)

X ∈ Γ1, φ(X , t) = lc, d(X ) = 1. (30)

Damage evolution is associated to the motion φ̇ of the interface Γo and
the damage time rate reads:

ḋ = d′(φ) φ̇ (31)
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Figure 2: Level set (a) and damage field (b) on a notched plate.
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The damage time rate is positive owing to irreversibility of damage and
is also bounded because such is d′(φ). The spatial gradient of damage is
bounded as well; actually, use of the chain rule yields:

||∇d(φ(X ))|| = d′(φ)||∇φ(X )|| (32)

Within the localization band Ωc one has therefore:

||∇d(X )|| ≤ f(d) (33)

since φ is a distance function and, as such, has unit spatial gradient.
In summary, in terms of the level set φ(X ) the explicit model equations

in Ωc read:
d = d(φ)

||∇φ|| = 1

d′(φ) ≤ f(d)

(34)

Equations (34) express the original, geometrical point of view of the TLS
approach. They can be condensed into a single relationship to get the con-
dition (33), which provides the Continuum Mechanics point of view of the
graded damage model.

Though apparently very different, the two interpretations have much in
common. To show the similarities between them we consider in Figure 2 a
variant of the notched plate example presented in [34]. In particular, Figure
2 (a) depicts the geodesic distances φ on the notched plate computed from
point X 0 of cartesian coordinates (−2, 1) and obtained from the solution of
the eikonal equation (26) with boundary condition φ(X 0) = 0. On Figure
2 (b) is shown the damage distribution on the same domain obtained from the
damage equations detailed in next section with f(d) = 1/lc and d(X 0) = 1
as a Dirichlet boundary condition.

The two pictures do perfectly compare each other in the sense that, except
from a scale change, they show the same solution. This originates from the
fact that, owing to its properties, the damage shape function d(φ) admits the
inverse φ(d), whereby in this case the function f(d) in Ωc can be obtained
from d(φ) as:

f(d) = d′(φ(d)) (35)

Therefore, though implicitly, the non-local constraint (33) still contains
information on the level sets via the spatial gradient of damage and the
characteristic function f(d).
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4. The structural problem

Based on the previous considerations the reversible behaviour of the
elasto-damaging body Ω is governed by a global potential energy of the field
variables that takes the form of a three-field functional:

E(u, d, γi) =
∫

Ω

ψ(ε(u), d) dΩ−
∫

∂Ωt

t · u dS +

∫

Ω

ψγ(d, γi) dΩ (36)

where ψ is the stored energy function and ψγ the constraint potential (25).
On the other hand, for a Generalized Standard model damage evolution

emanates from a global pseudo-potential of dissipation; this is in turn a
non-negative closed convex functional that is obtained by integrating a local
dissipation function ϕ over the domain Ω:

D(d∗) =

∫

Ω

ϕ(d∗) dΩ (37)

Rate-independent behaviour requires the dissipation function ϕ be posi-
tively homogeneous of degree one with respect to the damage time rate d∗.
A possible expression for ϕ is:

ϕ(d∗) = Yc(d) d
∗ + ⊔ℜ+(d∗) (38)

where Yc(d) is a positive convex function of the current damage state d, here
considered as a parameter, that provides the instantaneous elastic limit; ⊔ℜ+

is the convex indicator function of non-negative reals:

⊔ℜ+(d∗) =

{

0 if d∗ ≥ 0

+∞ otherwise
(39)

that enforces damage irreversibility.

4.1. Equilibrium

For given damage state d and Lagrange multipliers γi, the displacement
field at solution is a minimizer for the potential energy over the set of kine-
matically admissible displacements U defined as:

U =
{

u∗|u∗(X ) = ud(X ),X ∈ ∂Ωu

}

(40)

where ∂Ωu denotes the Dirichlet boundary; the complementary part ∂Ωt of
∂Ω is the Neumann boundary, where surface tractions t are prescribed.
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In particular, the equilibrium equations are obtained by zeroing the first
variation of the potential (36) with respect to u as:

∂E
∂u

· δu = 0, ∀δu ∈ {v|v(X ) = 0,X ∈ ∂Ωu} . (41)

The above equation embodies the definition (13) of the Cauchy stress and
the differential equilibrium equation along with the relevant static boundary
condition:

divσ = 0, in Ω; σn = t, on ∂Ωt. (42)

4.2. Domain partition

Variations of the potential energy with respect to the Lagrange multipliers
read:

∂E
∂γ1

δγ1 =

∫

Ω

g1(d)δγ1 dΩ

∂E
∂γ2

δγ2 =

∫

Ω

g2(d)δγ2 dΩ

(43)

The above relationships allow to identify a decomposition of the domain
Ω according to the state of internal constraints, i.e. the sign of the constraint
functions g1 and g2.

In particular, for a compatible damage state d the variations (43) are both
nihil and the domain Ω can be partitioned as follows (see also Figure 1):

Ω = Ωo ∪ Ωc ∪ Ω1 (44)

with the properties:

i) on Ωo and Ω1 the damage field exactly meets the lower and upper
bounds, respectively, whereby g1 = 0 and, consequently, γ1 can take
any value;

ii) on Ωc damage is strictly comprised within bounds (g1 < 0), whence
γ1 = 0;

iii) on Ωo and Ω1 there is no damage activity since the gradient of damage
has zero magnitude; therefore g2 = −f(d) ≤ 0 and γ2 = 0.

The domain Ωc where progressive damage develops can in turn be parti-
tioned into two sub-domains:
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iv) Ω−
c where the norm of the damage gradient is strictly lower than f(d),

whereby g2 < 0 and γ2 = 0;

v) Ωo
c where the gradient of damage exactly meets the condition g2 = 0

and γ2 can take any value.

For an arbitrary damage distribution that is not a converged state of the
system constraints (17) and (18) are generally not fulfilled everywhere in
Ω and regions where the integrals (43) are positive may exist. These in-
compatible regions do represent the active constraint set where the Lagrange
multipliers have to be adjusted during the solution process in order to restore
compatibility.

4.3. Damage-driving forces

The thermodynamic forces responsible of damage evolution are obtained
by computing the first variation of the potential (36) with respect to d:

δE =

∫

Ω

[

∂ψ

∂d
δd+ γ1 g

′
1(d)δd+ γ2

( ∇d
||∇d|| · ∇δd− f ′(d)δd

)]

dΩ (45)

where the scalar functions g1(d) and f(d) have been left unspecified at this
stage since they are of local type and their particular form does not affect
the nature of the problem at hand.

The gradient-dependent term in equation (45) can be transformed using
the divergence theorem to obtain:

∂E
∂d

δd = −
∫

Ω

Gδd dΩ +

∫

S

[[

γ2
∇d

||∇d||

]]

S

· n δd dS +

∫

∂Ω

γ2
∇d

||∇d|| · n δd dS

(46)
The three terms put forward in the previous relationship are as follows.

The volume integral defines the damage energy release rate G as:

G = Y − γ1 g
′
1(d) + γ2f

′(d) + div

(

γ2
∇d

||∇d||

)

(47)

The thermodynamic force G is of non-local type whenever γ2 6= 0 be-
cause of the divergence term originating from the constraint equation (18);
as shown in section 4.2 this can occur only in region Ωo

c where g2(d) = 0. On
the contrary, in the other regions one has γ2 = 0 and the gradient-dependence
is dropped out, whereby G is a local quantity.
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The integral over internal, possible discontinuity surfaces S is assumed to
be nihil, that corresponds to the non-dissipative case:

[[

γ2
∇d

||∇d||

]]

S

· n = 0. (48)

In particular, equation (48) has to be fulfilled over the surface Γo sepa-
rating Ωo and Ωc; here d = 0+ and ||∇d|| = f(0+) > 0, which in turn implies
γ2 = 0. Along an internal discontinuity surface for the gradient of damage,
where d is a continuous function and g2 = 0, that is:

d+ = d−

||∇d+|| − f(d+) = ||∇d−|| − f(d−) = 0
(49)

one has:

n · ∇d+ + n · ∇d− = 0

(γ+2 ∇d+ − γ−2 ∇d−) · n = 0 (50)

γ+2 ≥ 0; γ−2 ≥ 0

whereby γ+2 = γ−2 = 0. In particular, on the boundary ∂Ω−
c ∩ ∂Ωo

c , i.e. the
surface separating the contiguous regions Ω−

c and Ωo
c , the gradient ∇d is

discontinuous and therefore γ2 = 0.
The surface integral over the external boundary provides the boundary

condition for the damage field equation as:

γ2
∇d

||∇d|| · n = 0 (51)

It is worth emphasizing that the above relationship is more general com-
pared to the usual homogeneous natural boundary condition of phase-field or
gradient-enhanced damage models. Actually, the presence of the Lagrange
multiplier γ2 in equation (51) allows for a non-zero normal derivative of dam-
age on the outer boundary ∂Ω. In particular, on the portion of boundary
∂Ω ∩ ∂Ω−

c relationship g2 < 0 holds, which in turn implies γ2 = 0.
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4.4. Dissipation and damage evolution

Since the constraints (17) et (18) are non-dissipative, the only contribu-
tion to the total dissipation of the system originates from the local damage
energy release rate Y , that is:

−∂E
∂d

ḋ =

∫

Ω

Gḋ dΩ =

∫

Ω

Y ḋ dΩ ≥ 0 (52)

Following [35], the irreversible behaviour of the structural model is gov-
erned by the subdifferential inclusion:

−∂E
∂d

∈ ∂D(ḋ) (53)

that generalizes the classical Biot equation to the non-smooth case. This is
indeed the case of the functional D defined by equation (37), which is convex
but non differentiable due to the presence of the indicator function in (38).
The local dissipation function (38) and its subdifferential:

∂ϕ(d∗) = Yc(d) + ∂ ⊔ℜ+ (d∗) (54)

are depicted in Figure 3 for a given damage state, that clearly shows their
multi-valued character.

Relationship (53) embodies the normality rule that governs damage evo-
lution for Generalized Standard models:

G− Yc(d) ≤ 0, ḋ ≥ 0, (G− Yc(d)) ḋ = 0 (55)

On account of the definition of the damage energy release rate G, which
may depend upon spatial derivatives of the damage field, the normality law
can be characterized as a differential problem. In particular, this occurs in
region Ωo

c where the Lagrange multiplier γ2 is non-zero and ||∇d|| = f(d)
since g2(d) = 0. In this case the divergence term of (47) becomes:

div

(

γ2
∇d
f(d)

)

=
1

f(d)

(

∇γ2 · ∇d+ γ2∇2d
)

− γ2 f
′(d) (56)

whereby the normality law (55) can be stated as:














(Y − Yc(d)) f(d) + div (γ2∇d) ≤ 0

ḋ ≥ 0

[(Y − Yc(d)) f(d) + div (γ2∇d)] ḋ = 0

(57)
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Figure 3: Dissipation function and its subdifferential.

to which the boundary conditions (48) and (51) apply. It bears emphasis that
in relationships (57) there is no dependence on the multiplier γ1 since the
latter is identically zero in Ωc, and in particular in Ωo

c . Conversely, in regions
Ωo and Ω1 the dependence upon γ2 is dropped out and damage evolution is
governed by a purely local law.

It is also interesting to note that the graded damage model is consistent
with the case of Linear Elastic Fracture Mechanics. To show this it is suf-
ficient to consider the case of a constant Yc , that allows to define a global
functional of dissipated energy:

G(d) =
∫

Ω

(
∫ d

0

Yc dα

)

dΩ =

∫

Ω

Yc d dΩ (58)

whereby the total energy of the system follows as:

W(u, d, γi) = E(u, d, γi) + G(d) (59)

and normal damage evolution can be recast in the form of a variational
inequality:

ḋ ≥ 0,
∂W
∂d

(δd− ḋ) ≥ 0, ∀δd ≥ 0. (60)
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Full consistency with the TLS model can also be proved. To this end we
compute hereafter the integral of the partial differential equation resulting
from the normality law (55) that holds in Ωo

c for ḋ > 0:

(Y − Yc(d)) f(d) + div(γ2∇d) = 0 (61)

to show that one can recover the limit condition of the TLS model that is
expressed in terms of the energy release rate associated to the motion of a
layer of thickness l [36]:

Ĝ =

∫ l

0

Y d′(φ)j(φ) dφ (62)

In this respect the following considerations are in order. Let X o(a, b) be
a point belonging to Γo and X ∈ Ωo

c a point of coordinates (a, b, z):

X (a, b, z) = X o(a, b) + z∇φ (63)

having denoted by z the (positive) coordinate in the direction normal to the
iso-damage surface d = 0+ to which X o belongs. In the previous relationship
φ is the signed distance function from the iso-zero damage surface Γo with
unit normal

∇φ =
∇d
f(d)

(64)

since, by definition, on Ωo
c one has g2(d) = 0 whereby

d′(φ) = f(d). (65)

Now consider the truncated cone of axis ∇φ depicted in Figure 4 delim-
ited by the area elements dS(0) located at z = 0 and dS(z) = j(z) dS(0)
located at z = l, where the function j(z) accounts for area change due to the
local geometric curvature of the surfaces. Integration of the non-local term
div(γ2∇d) over the thickness l of the truncated cone Ωl, which coincides with
the thickness of Ωo

c , and use of the divergence theorem gives:

∫ l

0

div(γ2∇d)j(z) dS dz =

[

γ2∇d j(z) dS
]z=l

z=0

= 0 (66)

since γ2 = 0 on the surfaces dS(z = 0) and dS(z = l) because they corre-
spond to the boundary of Ωo

c .
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Figure 4: Geometry of layers and domain of integration (truncated cone).

With this result in hand, integration of equation (61) over the truncated
cone provides the condition for damage evolution introduced in [30]:

Ĝ =

∫ l

0

Y d′(φ)j(φ) dφ =

∫ l

0

Yc(d) d
′(φ)j(φ) dφ = Ĝc (67)

where use has been made of (65), the normal coordinate z has been replaced
with the level set φ (they here coincide) and the area element dS that should
multiply all the integrals has been dropped out for notational simplicity.

It is worth emphasizing that, for each point X , the product Y d′(φ) ap-
pearing in equation (67) provides the derivative of the stored energy function
(9) with respect to the distance φ to the damage front Γ0; therefore, the phys-
ical meaning of this product is that of local energy release rate corresponding
to the motion of the damage front at point X .

The previous discussion shows that the coupling of a local damage model
with the constraint equation (18) allows one to recover the features of the
TLS model in its original, geometrical format. However, the great advantage
of the graded damage model compared to the TLS formulation is that it
can be implemented with no use at all of level sets since equation (61),
which provides the non-local damage evolution, is completely independent
from the notion of distance function, which has to be understood only as
a surrogate variable rather than an essential ingredient of the moving thick
layer approach.
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5. A problem in one dimension. Constitutive functions setup

This section is devoted to the characterization of the constitutive func-
tions ω(d) and Yc(d) that have been left unspecified until now; the goal will
be pursued by establishing an equivalence between the present continuum
damage formulation and the softening law of a cohesive zone model in the
wake of similar analyses conducted e.g. in [18, 37, 38], among others.

To this end we shall refer to the problem of a traction bar in one-
dimension, for which a closed-form solution can be easily obtained; this
solution may be considered representative of the response of a two- or three-
dimensional structure across a localization band. The domain occupied by
the rod is the interval [−L, L], body forces are neglected and loading is per-
formed by prescribing the axial displacement u at the two ends of the bar
as:

u(−L) = −u⋆, u(L) = u⋆; u⋆ > 0 (68)

The stress is uniform along the bar by equilibrium:

σ = ω(d)E
du

dx
(69)

E being the elastic modulus; the free energy and the dissipation function are
taken by analogy with their three-dimensional counterparts (12) and (38),
whereby one has a normality rule in the form (55). The nonlocal constraint
function is:

g2(d) =

∣

∣

∣

∣

dd

dx

∣

∣

∣

∣

− 1

lc
(70)

to which the following KKT conditions apply:

g2(d) ≤ 0 ; γ ≥ 0 ; γ g2(d) = 0 (71)

whence results a piece-wise linear distribution of damage.
During the loading phase when the displacement u⋆ initially grows from

0 to the elastic limit the unique possible response is the homogeneous elastic
one; afterwards loading is parametrized in terms of the maximum damage
level d(0) = dm ≤ 1.

The relationship between the stress and the prescribed displacement reads:

2 u⋆ =
σ

E

∫ +L

−L

ω−1(d(x)) dx (72)
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and it can be made explicit once the damage distribution d(x) has been
determined.

For the homogeneous inelastic case, damage evolution corresponds to an
increase of strain energy everywhere in the bar; this provides a necessary
condition for local stability as:

Yc(d)ω
′′(d)− Y ′

c (d)ω
′(d) > 0 (73)

where differentiation is made with respect to the damage variable d. The
above condition is suggested in [18] along with the one emanating from strain
softening, according to which the complementary elastic energy should de-
crease with damage, that is:

[

Y ′
c (d)ω

2(d) + Yc(d) 2ω(d)ω
′(d)

]

ω′(d)− Yc(d)ω
2(d)ω′′(d) ≥ 0 (74)

Without loss of generality, for the case of non-homogeneous damage we
assume that one single defect initiates at point x = 0 right after the initial
elastic limit, so that the analysis can be restricted to half of the bar.

Owing to (71) the Lagrange multiplier γ can be non-zero only on the
active constraint set Ω0

c , i.e. where g2(d) = 0; in this case the damage function
reads:

d(x) = d(0)

(

1− x

lm

)

= dm − x

lc
(75)

lm = dm lc being the half-width of the localization band. For damage evolu-
tion one has then the first-order ordinary differential equation:

−ω′(d)

ω2(d)

σ2

2E
+

1

lc
γ′(d) = Yc(d) (76)

to which two boundary conditions apply, one for the stress and another for
the differential equation itself. Integration of (76) between 0 and dm provides:

σ2(dm) =
2E

ω−1(dm)− 1

∫ dm

0

Yc(α) dα (77)

where Yc(d) is the softening function to be determined. To this end re-write
equation (72) for the half bar and split the integral into two parts, respectively
accounting for damage behaviour and a purely elastic response:

u⋆ =
σ

E

[
∫ lm

0

[

ω−1(d(x))− 1
]

dx+ L

]

=
1

2
w +

σ L

E
(78)
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whereby one can express the apparent opening displacement w across the
localization band in terms of the chosen parametrization as:

w(dm) =
2 σ(dm)

E

∫ lm

0

[

ω−1(d(x))− 1
]

dx =
2 σ(dm)

E
lc F (dm) (79)

Relationships (77) and (79) are used to determine the function Yc(d) by
requiring that the response of the damageable rod be equivalent to that of
an elastic bar endowed with a cohesive interface.

For example, consider the linear softening relationship:

f(w) = σf −
σ2
f

2Gf

w (80)

where σf and Gf respectively denote the peak stress and the surface fracture
energy. Substituting (79) into (80) and solving for σ provides the stress as:

σ(dm) =
σf

1 + λF (dm)
(81)

where λ is a non-dimensional parameter expressing the ratio between the
characteristic length lc of the graded damage model and the length scale of
the cohesive zone:

λ =
lc σ

2
f

E Gf

(82)

For a given dm, substitution of (81) into (77) yields:

∫ dm

0

Yc(d) dd =
ω−1(dm)− 1

2E

(

σf
1 + λF (dm)

)2

(83)

The above equation clearly shows that the constitutive function Yc(d) de-
pends both on the given cohesive softening law (80) and upon the stiffness
degradation function ω(d). With reference to gradient damage regulariza-
tions of diffusive type, a quadratic degradation function is recommended in
[13, 14] in order to comply with the condition

ω′(1) = 0 (84)

whereby the damage-driving force converges to a finite value in the fully
damaged state. On the other hand, in [18, 39] it is suggested to use for the
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degradation function a power law with exponent m ≥ 2 to ensure that the
size of the localization band is monotonously increasing with damage.

For the developments that follow and in the subsequent numerical appli-
cations we shall take for the degradation function the quadratic one:

ω(d) = (1− d)2 (85)

This choice is motivated based on stability arguments developed later on in
this section. Use of (85) yields:

F (dm) =
d2m

1− dm
(86)

whereby one gets the following expressions for the (uniform) stress:

σ(dm) = σf
1− dm

λ d2m + 1− dm
(87)

and for the target constitutive function:

Yc(d) =
σ2
f

E

1 + λ d2(d− 3)

(λ d2 + 1− d)3
(88)

Based upon the above result the Lagrange multiplier field γ can be readily
obtained by integrating relationship (76). As for the value of λ to be used in
computations, it can be taken in a way to comply with conditions (73) and
(74); for the case at hand it can be shown that any positive value of λ lower
than 1/2 allows to fulfill both conditions for all d ∈ [0, 1].

For a given damage distribution the relationship between the stress and
the end displacement u⋆ follows from equation (72) as:

σ =
E u⋆

L

1− dm
(

β d2m + 1− dm
) (89)

with

β =
lc
L

(90)

The response of the elasto-damaging rod is clearly dependent from lc, from
the length scale of the cohesive law and from the size of the bar. Actually,
comparison of equation (87) with (89) yields:

u⋆(dm) =
σf L

E

β d2m + 1− dm
λ d2m + 1− dm

(91)
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The previous relationship allows to obtain the condition under which the
response of the rod is stable under displacement control. This occurs if the
end displacement u⋆ is an increasing function of the maximum damage level
dm, which requires in turn:

L <
E Gf

σ2
f

(92)

The above condition strongly depends upon the expressions (85) and
(88) assumed for the constitutive functions. For instance, taking for Yc the
constant function, i.e. Yc (d) = Yc (0), along with the quadratic degradation
function (85) one arrives at:

σ(dm) =
2 σf (1− dm)√

4− 2 dm
(93)

in place of (87) and to

u⋆(dm) =
σf L

E

2(β d2m + 1− dm)√
4− 2 dm

(94)

instead of (91). Stability under displacement control now requires:

β >
3− dm

dm (8− 3 dm)
(95)

whereby one infers that there is always a snap back right after the elastic limit
regardless of the size of the rod since the right-hand side of (95) diverges for
dm → 0. This can slow down convergence in the solution of a Finite Element
problem and should be avoided as much as possible. However, an even more
harmful situation is obtained taking the linear degradation function

ω̄(d) = 1− d (96)

and the constant elastic limit:

Ȳc =
σ2
f

2E
(97)

In this last case stability under displacement control requires:

β >
1

ln (1− dm) + 3 dm
(98)

but the right-hand side of the above equation diverges for both dm → 0 and
for dm close to 0.94.
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6. Finite element implementation

The graded damage model presented so far has been numerically imple-
mented using a multi-field finite element method. In the adopted computa-
tional scheme, which is quite classical for coupled problems, two variational
problems are solved via alternate minimization with respect to displacements
and damage and maximization with respect to the Lagrange multipliers.

The point of departure is the standard weak form of equilibrium in
Galerkin form:

−
∫

Ω

σ · ∇w dΩ +

∫

∂Ωf

t ·w dS = 0 ∀w ∈ V (99)

The set of admissible displacements variations V is a linear space and
no special treatment is needed to solve the above equation for a given dam-
age state. Contrariwise, for given displacements the damage updating step
requires the regularization of indicator functions and of internal constraints
to render all functions differentiable. To this end use is made of an aug-
mented lagrangian formulation; this choice has many well-known advantages
and leads to a solution scheme that benefits of a considerable robustness [40].

Let us first consider the irreversibility condition that has been introduced
in (38) via the indicator function (39), which is convex non-differentiable.
The unilateral constraint ḋ > 0 can be conveniently expressed as:

g3(d) = ξd − d ≤ 0 (100)

supplemented by the KKT conditions

γ3 ≥ 0; γ3 g3(d) = 0 (101)

where ξd is a local history damage field:

ξd(X ) = max
τ≤t

d(X , τ) (102)

Inequality (100) implicitly contains also the constraint d ≥ 0, that is
therefore redundant once (100) has been specified. Therefore, both con-
straints (17) and (18) become one-sided inequalities specified as:

g1(d) = d− 1 ≤ 0

g2(d) = ||∇d|| − 1

lc
≤ 0

(103)
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that provide the upper bounds for the damage field and its gradient.
It is worth emphasizing that the Lagrange multipliers associated to func-

tions g1 and g3 cannot be active at the same point X and at the same time
t, whereby a unique multiplier can be used associated to the constraint set

K = {d | 0 ≤ d(tn−1) ≤ d(t) ≤ 1} (104)

whose indicator function can be expressed in regularized form as:

A1(d, γ1) =
1

2 η1

[

(

γ1 + η1 g
+
1 (d)

)2
+
(

γ1 + η1 g
+
3 (d)

)2 − γ21

]

(105)

where η1 is a penalty parameter and g+i are the constraint functions:

g+i (d) = max

{

gi(d), −
γ1
η1

}

(106)

that replace the original functions gi(d) in order to convert into equalities the
inequality constraints, see also [41]. The same regularization is used for the
nonlocal constraint expressed via function g2, for which the relevant potential
is analogous to (105):

A2(d, γ2) =
1

2 η2

[

(

γ2 + η2 g
+
2 (d)

)2 − γ22

]

(107)

Using the above relationships the weak form of the damage evolution
equation in regularized form can be formulated as

∫

Ω

[c(d) ζ +C(d) · ∇ζ ] dΩ = 0 ∀ζ ∈ L2(Ω) (108)

being

c(d) = −Y (d) + Yc(d) +
[

η1 g
+
1 (d) + γ1

]

−
[

η1 g
+
3 (d) + γ1

]

(109)

and
C(d) =

[

η2 g
+
2 (d) + γ2

]

ñ (110)

with

ñ =
∇d

||∇d|| (111)

and ζ the test functions for the damage field.
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The displacement field u and the damage field d are discretized as:

uh =

nel
∑

I=1

Nu
I aI = Nu a

dh =

nel
∑

I=1

Nd
I mI = Ndm

(112)

using standard C(0) interpolations since strains and damage gradients are al-
lowed to be discontinuous. In the present implementation the same interpo-
lations are used for the trial functions w and ζ whereas Lagrange multipliers
are evaluated at quadrature points of the elements, thus implicitly assuming
a piece-wise constant interpolation within the elements themselves. In this
way the number of global dofs of the problem is not directly affected by the
multipliers, that are updated using the classical Hestenes-Powell first-order
formula [42]:

γ
(k+1)
i = γ

(k)
i + ηi g

+
i (d) (113)

which follows from definitions (105) and (107) of the regularized constraint
potentials by zeroing the first variation with respect to the multipliers.

Substitution of the FE interpolations into (99) and (108) results into two
coupled residual equations:

−
∫

Ω

Bu,T
σ dΩ +

∫

∂Ω

Nu,T t dS = 0

∫

Ω

[

Bd,T C(d) +Nd,T c(d)
]

dΩ = 0

(114)

where Bu and Bd denote the standard gradient matrices and the superscript
T stands for transpose.

The residuals (114) are both non-linear owing to the internal constraints
and to the adopted form (9) of the local free energy function that accounts
for non-symmetric tensile-compressive behaviour. For this reason the Finite
Element equations have to be linearized and solved incrementally within the
time interval of interest.

The mechanical tangent needed for a full Newton solution reads:

Ku =

∫

Ω

Bu,T

(

ω(d)
∂2ψ0

+

∂ε2
+
∂2ψ0

−

∂ε2

)

Bu dΩ (115)
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which can be explicitly computed in intrinsic form by differentiating the
stress eigenvalues and eigenprojectors [43]. For the damage problem one has:

Kd =

∫

Ω

(

Bd,T ΞBd + ϑNd,TNd

)

dΩ (116)

being:

Ξ = κ2 η2 (ñ⊗ ñ) +
γ2 + η2 g2(d)

||∇d|| (I− ñ⊗ ñ) (117)

and
ϑ = (κ1 + κ3) η1 − Y ′(d) + Y ′

c (d) (118)

with κi = 1 for g+i (d) > 0, i = 1, 3 and vanishing otherwise.

7. Numerical examples

The numerical simulations documented hereafter refer to the isotropic
scalar damage model with non-symmetric tension-compression behavior de-
scribed by the free energy (9). Unlike the level set-based approach of Moës et
al. [30], in the present implementation we assume the quadratic degradation
function (85), that guarantees better stability properties compared to the
linear one, see also the discussion in Section 5.

The characteristic function that is used to bound the norm of the gradi-
ent of damage is taken as in equation (103), that prescribes a linear shape
function for the damage field within the transition layer; the damage evo-
lution law follows from a local dissipation expressed as in (38) where the
function Yc(d) is given by equation (88), which is in turn obtained based on
the equivalence with an intrinsic cohesive law with linear softening.

In numerical applications either structured or unstructured meshes made
of quadrilateral elements are used. FE meshes do not need to be uniform
to obtain objective results and elements with a characteristic size h ranging
from one sixth to one third of the length scale lc have been found sufficient
in all the examined cases to adequately resolve the damage process zone.

All computations have been carried out with a customized version of the
finite element code FEAP [44] using an arc-length control and a termination
criterion expressed in terms of the incremental energy norm [45] as:

E(i) ≤ ̺E(0) (119)

with a tolerance ̺ = 10−16.
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7.1. Problem 1. Imperfect traction bar

As a first example we consider the classical problem of the imperfect bar
under tension shown in Figure 5 and already analyzed in Reference [26].

Figure 5: Imperfect bar in tension. Model problem.

The bar has length L = 100mm and cross section area A = 10mm2;
strain localization is triggered with a geometrical imperfection consisting of
a cross section area reduction of 10% in the center of the bar over a length
of 2.5mm. Loading is simulated by prescribing nodal forces at the right end
of the bar via arc-length control.
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Figure 6: Imperfect bar in tension. Load-displacement curves at varying length scale lc.
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Figure 7: Imperfect bar in tension. Load-displacement curves at varying length scale lc.
Enlarged view at the end of the localization phase.

Elastic moduli are E = 2500MPa and ν = 0, the peak stress is set as
σf = 12.5MPa, which corresponds to the limit strain εo = 5.0 · 10−3 used in
[26], while the parameter λ defined by (82) has been taken equal to 1/3.

The problem is solved with seven different values of the length scale lc
using 4-noded elements within a structured non-uniform mesh. For the coarse
mesh the element size is 0.625mm for the 50mm-wide central part of the
bar and 1.25mm for the remaining part; a refined mesh is also considered
with halved element size that yields almost identical results.

Figure 6 depicts the global load-elongation curves obtained at varying lc
between 1.25mm and 5.00mm. These curves exhibit three distinct stages of
the structural response, that is: a first part with load and elongation increase
corresponding to initial elastic behaviour; a second part with a snap-back
that corresponds to the strain localization phase; a third part where the
bar elongation starts to grow again that is characterized by the occurrence of
fracture strains and vanishing material stiffness. As expected, the smaller the
length scale parameter lc, the sharper is the snap-back, see e.g. the enlarged
view of the load-deflection curves in Figure 7.
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Figure 8: Imperfect bar in tension. Damage evolution during the localization phase.

Figure 8 depicts damage evolution during the localization phase. The
figures correspond to the six points highlighted in blue in Figure 6; here it
is noted that damage tends to stabilize once the plateau d = 1 is reached in
the two central weakened elements.
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Figure 9: Imperfect bar in tension. Gradient of damage distribution at complete localiza-
tion.

In Figure 9 is depicted the gradient of damage norm, i.e. the non-local
constrained quantity of the model, at the end of the localization phase; the
relevant damage distribution corresponds to the last snapshot in Figure 8.
The gradient plot in Figure 9 shows that the size of the transition zone
between the completely damaged region and the sound material is controlled
by the constraint equation (18), that fixes the length scale parameter lc and
prescribes the shape of the damage function.

Use of Lagrange multipliers is successful to inhibit damage propagation
outside the transition band also after the gradient of damage has attained its
limiting value. This is demonstrated by Figure 10, where we report the dam-
age distribution corresponding to points labelled A to D in Figure 6. Indeed,
Figure 10 clearly shows that upon further loading, i.e. further displacement
of the bar end, the damage band does not propagate under (almost) zero
load even if the strains keep on increasing under zero stress because damage
is a constrained field (and not only strain-controlled).

This property overcomes one of the main limitations of classical gradient-
enhanced continuum damage models, where damage evolution is generally
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Figure 10: Imperfect bar in tension. Damage distribution beyond snap-back (from up-left
to bottom-right: points A to D in Figure 6).

accompanied by spreading of the damaged zone as a result of the diffusion
equation that governs damage growth.

In closing this section it is worth emphasizing what follows. The tensile
bar problem described so far has been analyzed as a two-dimensional problem
with a relatively coarse structured mesh. The process zone has been resolved
with quite good accuracy and non-broadening damage behaviour during the
fracture stage has been always observed, see also Figure 11.

This feature is considered to be one of the most remarkable properties of
phase-field models; however, such models are mostly suitable for problems
with vanishing length scales, whereby in most cases they require extremely
refined meshes in order to get converged results.
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Figure 11: Imperfect bar in tension. Damage distribution at final stage of loading process
for different length scales lc (from top to bottom: lc = 1.250mm, lc = 1.875mm, lc =
2.500mm, lc = 3.125mm, lc = 3.750mm, lc = 4.375mm, lc = 5.000mm).

7.2. Problem 2. Edge-cracked plate

The following numerical example has been first proposed in [13] and is
considered to be a numerical proof of the Γ-convergence property for the
regularized functional of phase-field models [38]. It consists of a square plate
with sides of unit length and a sharp horizontal crack along a line S from
the left edge to the center as shown in Figure 12.

S

Figure 12: Edge-cracked plate. Model problem.
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The presence of the crack is simulated via a Dirichlet boundary condition
d = 1 along S, while on the outer boundary the following boundary condition
holds:

γ2
∇d

||∇d|| · n = 0 (120)

For the case depicted in Figure 12 the above condition is equivalent to
prescribe a zero normal derivative of damage on the outer boundary as in
classical gradient damage models since the line S is orthogonal to the left
edge; however, as shown later on, this is not always the case.

Finite element computations are first carried out with different values of
the parameter lc and a uniform structured mesh of 160×160 linear quadrilat-
erals (mesh size is h = 0.00625mm). This is a rather coarse mesh compared
to the one used in [38] to perform the same computations using a phase-
field model, for which the mesh size has to be extremely small to resolve the
length scale. In particular, for this problem a mesh of more than one million
elements (1, 325, 000 linear triangles) has been used in [38], that is considered
to be computationally acceptable by the Author since the diffusion problem
that governs the evolution of the phase-field is a linear one.
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Figure 13: Edge-cracked plate. Damage distribution for different length scales lc (from left
to right: lc = 0.05mm, lc = 0.025mm, lc = 0.0125mm). The thickness of the damaged
region equals 2 lc.

Figure 13 shows the solutions computed based on the graded damage
model at varying length scale lc. The transition band with linear variation is
perfectly captured in all the examined cases even with only two elements per
each side of the prescribed crack within the process zone; the homogeneous
boundary condition for the normal damage derivative is recognized to hold.

Besides computational efficiency, the greater flexibility of the graded dam-
age formulation compared to classical gradient formulations, that use a zero-
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normal derivative of damage as natural boundary condition, can be demon-
strated via a slightly modified version of the edge-cracked plate shown in
Figure 14. As in the original version of the problem, we here prescribe a unit
damage value along a straight line S but now the line is no longer orthogonal
to the outer boundary. The boundary condition (120) still applies.

S

Figure 14: Modified edge-cracked plate. Model problem and FE mesh.

Computations are carried out using a fixed length scale lc = 0.05mm and
the non-uniform non-structured mesh consisting of 4309 linear quadrilaterals
depicted in Figure 14, that have been obtained using the mesh generator
GMSH [46].

The computed damage distribution is depicted in Figure 15. Here it is
shown that the boundary condition (120) is not equivalent to a zero normal
derivative of damage on the outer boundary. Actually, in this case the La-
grange multiplier γ2 is nihil on the outer boundary because here the gradient
of damage does not meet the condition g2(d) ≤ 0.

7.3. Problem 3. Three-point bending of a beam

Next we consider the unnotched beam under three-point bending already
analyzed in [27, 47].

In particular, in Reference [27] this example is used to show the spreading
of the damaged region during crack propagation; this is a well-known artefact
of classical strain-based gradient damage formulations, whereby such a class
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Figure 15: Modified edge-cracked plate. Damage distribution (lc = 0.05mm).

of models is considered not suitable to reproduce very brittle responses, that
often correspond to situations with narrow localization bands or sharp cracks.

Figure 16: Three-point bending of a beam. Model problem.

The beam has length 2L = 2000mm, height h = 300mm, thickness
b = 50mm and is analyzed under plane strain conditions. Displacement
boundary conditions consist of two point supports while loading is prescribed
by a uniform tractions distribution over a 100mm-wide region in the center
of the beam. Geometry and loading conditions are shown in Figure 16.

The structure has been modeled using structured meshes of linear quadri-
laterals; the coarse mesh consists of 5376 elements and the fine mesh has
11100 elements.

In order to accurately resolve the transition band a mesh refinement is
used in the central part of the beam to get a node spacing in both directions of
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6.25mm for the coarse mesh and 4.0mm for the refined mesh in the 200mm-
wide region located in the middle of the beam; in the 750mm-wide outermost
parts horizontal node spacing is 25mm for the coarse mesh and 20.83mm for
the refined mesh while in the intermediate zones (150mm-wide) horizontal
spacing is 12.5mm for the coarse mesh and 9.375mm for the refined mesh.
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Figure 17: Three-point bending of a beam. Load-deflection curves (lc = 40mm).

Elastic moduli are E = 20GPa, ν = 0.2, and the peak stress of the
equivalent cohesive law is set as σf = 2.0MPa, which corresponds to the
limit strain ε0 = 1.0 · 10−4 used in [27]. Moreover, the parameter λ has
been taken equal to 0.4, that corresponds to a surface fracture energy Gf =
2.0 · 10−2N/mm and to a length scale of the cohesive law of 100mm. The
specimen size, the material data set and the absence of an initial notch in
the beam suggest that a quite brittle behaviour should be expected; this
conjecture is also corroborated by the various brittleness numbers that can
be found in the literature, see e.g. [1], and will be confirmed by numerics.

Motivated by these considerations, numerical simulations have been car-
ried out using a CMOD as a constraint for the arc-length control instead
of the vertical displacement of the top center of the beam used in [27] (but
with a completely different gradient damage model). The load-deflection re-
sponses for a length scale lc = 40mm are depicted in Figure 17; the curves
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refer to the two meshes while the highlighted point (F, δ) corresponds to the
initial elastic limit that is computed as

F = σf
b h2

3L
; δ =

σf
E

2L2

3 h
(121)

based on Euler-Bernoulli beam theory.
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Figure 18: Three-point bending of a beam. Iso-damage maps showing damage evolution
for lc = 40.0mm.

As expected, the numerically computed load-deflections curves for the
coarse and fine mesh reported in Figure 17 exhibit a sharp snap-back and
are in substantial agreement. The effect of mesh size is clearly visible in that
the mesh refinement allows to correct the bumps present on the propagation
branch of the curve pertaining to the coarse mesh.

Except for the initial linear part, these curves cannot be directly com-
pared with those presented in Reference [27] due to the different damage
law; however, a comparison of results can be made in terms of damage iso-
value maps, that allow to demonstrate some distinctive features of the graded
damage model.
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Figure 18 depicts the damage contours for the case lc = 40.0mm that
illustrates damage evolution for the problem at hand. Since no initial defect
or notch is present, growth of the damage front naturally starts in the middle
of the beam where the (local) damage energy release rate first attains the ini-
tial threshold value; therefore, once the transition zone has fully established,
i.e. the width of the interphase equals the length scale lc, the crack starts to
propagate in a self-similar way and the front advances.
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Figure 19: Three-point bending of a beam. Iso-damage maps showing damage evolution
for lc = 80.0mm.

On the contrary, results presented in the literature, see e.g. Figure 13
in Reference [47] or Figure 4 in Reference [27], show that the damage dis-
tribution during crack propagation is accompanied by a significant damage
spread on the bottom of the beam as a consequence of the continuous growth
of the averaged strain measure in the vicinity of the crack. This last feature,
that is in a sense intrinsic to implicit gradient models, is strongly related
to the diffusion equation governing damage evolution and to the homoge-
neous Neumann boundary condition that is universally adopted in classical
gradient models.
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The iso-damage maps presented in Figure 18 refer to the coarse mesh;
use of the refined mesh does not affect these maps that remain practically
identical. Damage evolution exhibits exactly the same features when the
length scale is increased by a factor 2. This fact can be appreciated in
Figure 19, where the sequence of iso-damage contours obtained for the case
lc = 80mm shows that the non-local constraint (18) acting on the the damage
field plays the role of an optimal diffusion limiter in that it inhibits non-
physical damage spread.

7.4. Problem 4. Interacting cracks in a double-notched plate

As a last example we study a non-symmetric double edge notched speci-
men under tensile load after [48, 49]. This is a well-known test that is used
to investigate the ability of damage and fracture models to reproduce curved
cracks interacting each other during growth.

Figure 20: Asymmetric double-notched plate. Model problem.

Figure 20 shows the geometry and the boundary conditions of the struc-
ture that is analyzed under plane strain conditions. Following References
[31, 50] loading is applied by prescribing vertical displacements ū on the up-
per edge of the plate and material parameters are taken as E = 210 kN/mm2,
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ν = 0.3, critical fracture energy Gf = 2.7 · 10−3 kN/mm. The main length
scale parameter governing the width of the localization band is taken as
lc = 1mm while the parameter λ has been chosen equal to 0.4, which corre-
sponds to a length scale of the equivalent cohesive law of 2.5mm and a peak
stress σf = 4.76 kN/mm2.

The structure is discretized using the unstructured mesh shown in Figure
21 consisting of 9189 quadrilateral elements that is conveniently refined in the
region where crack propagation is expected; the obtained minimum element
size h = 0.1mm is able to resolve the transition band between the sound
material and the damaged one. This is a quite coarse mesh compared to
the one used e.g. in [31] that contains about 50000 elements (but using an
internal length scale of 0.135mm).

Figure 21: Asymmetric double-notched plate. FE mesh.

Figure 22 depicts the load-deflection curve that has been obtained using
∆ū = 1µm for the first 30 steps followed by increments reduced to 0.1µm.
The results in terms of crack evolution are summarized in Figure 23; here are
reported the contour plots of the damage iso-values corresponding to points
labelled A to D in Figure 22. A good qualitative correspondence is found
with the behaviour described in Reference [49], i.e. that during propagation
the two cracks first rotate away from one another, then turn in the opposite
direction and finally coalesce.
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Figure 22: Asymmetric double-notched plate. Load-deflection curve.

In closing this section we emphasize that all the information necessary to
track the evolution of interphases in a state of progressive damage is implicitly
contained in the Lagrange multiplier field associated to the constraint acting
on the gradient of damage, thus recasting the problem in the more classical
framework of non-smooth Generalized Standard Models of evolutionary type.

8. Summary and conclusions

We presented a new gradient-based damage formulation, the graded dam-
age model, that has much in common, but also some distinctive features,
compared to the moving thick layer approach that is known in the literature
in the form of the Thick Level Set (TLS) model. Unlike its more famous
relative, in the present formulation the introduction of level sets with all
consequent difficulties is abandoned and the information necessary to track
the evolution of interphases where progressive damage occurs is transferred
into two Lagrange multipliers fields acting on constraint equations that are
expressed in terms of convex functions.

Among the notable features of the graded damage model is the fact that
it naturally fits in the Generalized Standard setting, for which a normal-
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Figure 23: Asymmetric double-notched plate. Snapshots of crack growth (points A to D
in Figure 22).

ity rule holds. Moreover, the internal constraints being non-dissipative, the
only dissipation comes from the local damage energy release rate. From the
numerical standpoint, the incremental update of the state of the system is
carried out via a staggered computational scheme for a Lagrange multiplier
problem; this is in turn obtained based on the non-dissipative character of the
constraints that allows to set up a three-field functional to render stationary
with respect to the arguments.

The variational structure of the problem, to which relaxed Neumann
boundary conditions on the damage field apply, allow for an effective imple-
mentation, and the applications documented in the paper have demonstrated
the ability to perform Finite Element computations. In particular, localiza-
tion bands are well captured both for structured and unstructured meshes, no
spurious spreading of damaged regions is observed during crack propagation
and all computations are successfully terminated with quite coarse meshes
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compared to classical gradient-damage and phase-field formulations.
The model presented in this paper is amenable to a number of extensions

and further work is needed to implement the necessary enhancements needed
to handle more complex situations, e.g. three-dimensional problems among
others, and extensively compare with experimental data from concrete liter-
ature. These topics are still the object of ongoing research and will be dealt
with in forthcoming papers.
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