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Conditions for uniform ensemble output controllability, and

obstruction to uniform ensemble controllability

Baparou Danhane1 Jérôme Lohéac2 Marc Jungers2

October 9, 2023

Abstract

We consider the linear time-invariant system ẋ(t, θ) = A(θ)x(t, θ) + B(θ)u(t) with output

y(t, θ) = C(θ)x(t, θ) where A, B and C are continuous matrices with respect to the constant

parameter θ, which belongs to some compact set P. Given any continuous initial state datum

θ 7→ x0(θ) and any continuous output function θ 7→ y1(θ), we investigate the existence of a

θ-independent open loop control u such that x0 is steered, in �nite time, arbitrarily closed to y1

with the uniform norm. When C(θ) is the identity matrix, this notion is usually termed to be

uniform ensemble controllability. In this paper, we extend some result on uniform ensemble

controllability to the case where C(θ) is not the identity matrix. We will also give some

obstructions to ensemble controllability when the parameter set admits an interior point.

Keywords: Control of parameter dependent systems, ensemble controllability, output controlla-
bility, average controllability, linear control system.
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1 Introduction

The concept of ensemble controllability [2, 22, 29, 32, 10] needs no more publicity nowadays with
regard to its practical importance. The aim being to study the controllability of systems for
which the natural dynamic depends on some parameters. This class of systems arises for instance
in the transport of quantum particles where the goal is to develop external excitation that can
simultaneously steer the ensemble of systems with variation in their internal parameters from
an initial state to a desired final state [28]. One can also see [6] where it is used to study the
controllability of the Bloch equation, for an ensemble of non-interacting half-spins, in a static
magnetic field, with dispersion in the Larmor frequency. Other real life practical example can be
found as for instance in non-holonomic systems theory where ensemble controllability is used to
derive an approximate steering algorithm for a non-holonomic unicycle in the presence of model
perturbation [7].

In linear time invariant system theory, the ensemble controllability is a topic of intensive research
as it can be seen from the above references. From the generic notion of ensemble controllability,
many other notions emerged as the one of uniform ensemble controllability [22, 28, 29], uniform
ensemble reachability, Lq-ensemble reachability [16]. In the above mentioned non-exhaustive ref-
erences, authors derived necessary and/or sufficient conditions for system (A(θ), B(θ)) to be uni-
formly ensemble controllable (UEC). Even if this topic is studied actively, it is far from being well
understood. From these references, especially [10] and [16], it could be seen that the topology of P
plays a crucial role in the controllability issue. In [16], it has been shown that for single input
systems, uniform ensemble controllability cannot hold if the compact set P is homeomorphic to
some non-empty compact subset of Rd for d > 2. In [10], it has been shown that any real-analytic
linear system is not Lr-controllable (ensemble controllable), for 2 6 r 6∞, if its parameterization
space P contains an open set included in Rd for d > 2. To the best of our knowledge, the question
of uniform ensemble controllability when P has interior points, the system (A(θ), B(θ)) is not
real-analytic and the number of input greater than one is still open.

It should also be noted that in [27, 39], under the assumption that system (A(θ), B(θ)) is UEC,
authors present methods to compute suitable open-loop control functions. In [40], feedback method
for ensemble reachability of (A(θ), B(θ)) is considered, and in [38], a problem of optimal control
of an ensemble of affine-control systems is considered.

A particularity of uniform ensemble controllability is that all the state variables are controlled.
But in some situations, controlling all the state variables may not be of interest. For instance,
let us consider the motion of two cars given by Figure 1. For the sake of simplicity, the motion
will be supposed linear and the frictions fi(θ) = −αi(θ)vi, i.e., proportional to the speed vi of
the cars with coefficients αi varying continuously with respect to the parameter θ living in some
compact subset of the complex plane. The variables u1 and u2 can be seen as the driving forces.
Applying the fundamental principle of dynamics, the state of this system contains at least four
variables which are the two positions and two speeds. Instead of controlling the whole state of
the system, one might, for instance, want to control the difference between the positions, yd, or
the difference in velocities or both, which is actually a linear combination of the state variables
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and not the state itself. For that purpose, we introduce in this paper a new notion of ensemble
controllability termed uniform ensemble output controllability (UEOC), which is an extension of
the notion of uniform ensemble controllability discussed for instance in [16, Section 3]. Instead of
considering the pair (A(θ), B(θ)), we will consider the triplet (A(θ), B(θ), C(θ)) where (A(θ), B(θ))
describes the evolution of the system state and the matrix C stands for the output matrix. In the
case whereby C is the identity matrix, in which case the output is nothing else than the state, the
notion of uniform ensemble output controllability and the one of uniform ensemble controllability
overlap. Based on this last observation, uniform ensemble controllability of the pair (A(θ), B(θ))
will be investigated as a particular case of uniform ensemble output controllability. For instance,
it will be shown that if the spectrum of A(θ) meets R for any θ ∈ P or if the entries of A are
differentiable, it is impossible to have uniform ensemble controllability if P has interior points
with the topology induced by C. Necessary and sufficient conditions will be given for the uniform
ensemble output controllability of (A(θ), B(θ), C(θ)) as well in some particular cases.

• • •••
−→u2

−→
f2

•
−→u1

−→
f1

p2
p1

yd

Figure 1: System of two cars.

The paper is organized as follows: In Section 2, we introduce the notion of uniform ensemble
output controllability and link this notion to polynomial approximation. Also, a link between this
notion and uniform ensemble controllability is given. Some structural results are also given in this
section. The Section 3 is dedicated to our contributions to uniform ensemble controllability of
the pair (A(θ), B(θ)). In this section, we mainly show, through Theorems 3.1 and 3.7, that if the
pair (A,B) is regular enough or if the spectrum of A(θ) intercepts R for any θ ∈ P, the uniform
ensemble controllability of (A,B) cannot hold if the interior of P with respect to the topology of C
is not empty. In Section 4, direct consequences of Lemma 2.5 on finite dimensional systems and
holomorphic systems are given in the case of the uniform ensemble output controllability. The above
mentioned lemma states how uniform ensemble output controllability behaves under restrictions
of the parameters space P. The uniform ensemble output controllability of particular systems are
also investigated in this section. The Section 5 is dedicated to more general results on UEOC. In
Section 6, we give an application of UEOC to averaged controllability. In Section 7, the results
are numerically illustrated on the example given on Figure 1. A conclusion is given in Section 8.
Finally, we prove some technical lemmas in Appendix A, and recall some known and used results
in Appendix B.

Let us give a summary of the contributions presented in this paper. In all the paper, P is
assumed to be a compact set of C, the map θ ∈ P 7→ (A(θ), B(θ), C(θ)) is continuous, n, m and q
are respectively the size of the state x(t, θ), the input u(t) and the output y(t, θ).

• Negative results.
Assume that P is of nonempty interior,

– Theorem 3.1: If A and B are 2m− 1 differentiable, then (A,B) is not UEC;
– Theorem 3.7: If σ(A(θ)) ∩ R 6= ∅ for every θ ∈ P, then (A,B) is not UEC;
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– Theorem 4.4: If A, B and C are holomorphic on some nonempty open subset of P, then
(A,B,C) is not UEOC.

These results extend [10, 16].

• Positive results for uniform ensemble output controllability.

– Theorems 4.5 and 4.6: In the case n = q = 1, if P is of empty interior, for every θ ∈ P,
(A(θ), B(θ), C(θ)) is state to output controllable, and if A is one-to-one, then (A,B,C)
is UEOC. Furthermore, these conditions are necessary when m = 1;

– Theorem 4.8: Assume that m = q = 1, C \ P is connected, B and C are constant
and A(θ) is a Jordan block and σ(A(θ)) = {λ(θ)}. (A,B,C) is UEOC if and only if
(A(θ), B,C) is state to output controllable for every θ ∈ P, λ is one-to-one and P is of
empty interior;

– Theorems 4.12 and 4.13: Assume P is of empty interior and C \ P is connected, given
A, B and C constant,
∗ if rkCAkB = q for every k ∈ N, then (θA,B,C) is UEOC;
∗ assume in addition that kerC is stable by A and 0 ∈ P. (θA,B,C) is UEOC if and

only if rk(CAC†) = rk(CB) = q, where C† is the Moore-Penrose pseudo-inverse
of C.

These results extend [29, Theorem 1] and [41, Theorem 5] in the presence of a nontrivial
output.

– Theorems 5.1 and 5.11 state the UEOC of parallel and cascade systems if some sub-
systems of the initial system are UEOC, and under a spectral disjunction for parallel
systems.
These results extend the ones given in [16] in the presence of a nontrivial output.

Note that Theorems 4.8, 5.1 and 5.11 can be combined with Proposition 5.5 (which is [16,
Proposition 2]) which state the existence of a continuous and regular matrix T such that
T (θ)−1A(θ)T (θ) is block diagonal. This leads to Theorems 5.6 and 5.8.

• Proposition 6.2: Averaged output controllability is ensured if UEOC is satisfied. This result
extends [16, Proposition 9 and Corollary 5].

The following notations will be used in the paper. We denote by N the set of natural numbers,
including 0. Given k ∈ N, the set N<k (resp. N6k) stands for {0, 1, · · · , k−1} (resp. {0, 1, · · · , k}).
The set of real (resp. complex) numbers is denoted by R (resp. C). For X, any of the above
introduced sets, X∗ stands for X \ {0}. Given a set X, #X is its cardinal, and given k, ` ∈ N∗, Xk

`

(resp. Xk when ` = 1 and X` when k = 1) stands for the set of k rows and ` columns matrices
with entries in X. A topological space X is said contractible if the identity map is homotopic to
a constant map, that is there exists a continuous map H : [0, 1] × X → X such that H(0, x) = x
and H(1, x) = c for some c ∈ X. For more details on the notion of contractibility, we refer to
[44, Chapter 1]. A set Ω ⊂ C is said non-separating if its complement in C, C \ Ω, is connected.
The set Ω stands for the closure of Ω. For a complex number z, |z| is the modulus of z, z its
complex conjugate, and <(z) and =(z) are respectively the real and imaginary parts of z. For
a linear operator F , we denote by F ? its adjoint, and by F † its Moore-Penrose pseudo inverse
when it makes sense. When F is a matrix with entries in C, denoting by F> the transpose
of F , we have F ? = F

>
. Also, ImF is the space generated by the columns of F , rkF is the

dimension of ImF , and kerF the null space of F . The set X(P) = C(P;C) stands for the space
of complex valued continuous functions on P. For any function f =

(
f1 . . . fk

)> ∈ X(P)k, we
define ‖f‖∞ := max{‖fk‖∞, k ∈ N∗6k} where ‖fk‖∞ = supθ∈P |fk(θ)|. For any S ⊂ X(P)k, and
any g ∈ X(P), we define gS =

{
θ ∈ P 7→ g(θ)f(θ) ∈ Ck | f ∈ S

}
⊂ X(P)k. For a one variable
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complex polynomial p, d◦(p) stands for its degree and p′ for its derivative. For every Ω ⊂ C, we
denote by H(Ω) the set of continuous functions defined on Ω that are holomorphic in the interior
of Ω. In particular, if Ω is open, then, H(Ω) is the set of holomorphic function defined on Ω.

2 Preliminaries and facts on uniform ensemble output con-

trollability

2.1 Preliminaries

Let P be a compact subset of C and consider for every constant θ ∈ P the system described by

ẋ(t, θ) = A(θ)x(t, θ) +B(θ)u(t), (2.1a)
y(t, θ) = C(θ)x(t, θ). (2.1b)

In (2.1), we assume that A ∈ X(P)nn, B ∈ X(P)nm and C ∈ X(P)qn. The input u is independent of
the parameter θ, and ẋ is the derivative of x with respect to the time variable t. Given an initial
state datum x0 : θ 7→ x0(θ) and an input u, the solution of (2.1) at time t, when it exists, will be
denoted by y(t, θ; x0, u).
The main problem can be formulated as follows:

Given any continuous state datum x0 and any continuous output function y1, does
there exist a finite time T > 0 and a θ-independent input u ∈ U(T ) such that the output
solution of (2.1) satisfies y(T, θ; x0, u) = y1(θ) for every θ ∈ P?

In this problem, U(T ) stands for a set of controls for which the equation
y(T, ·; x0, u) = y1 makes sense. This problem is called, exact controllability in [11, 46],
complete controllability in [43], or exact simultaneous controllability in [30].

• When #P <∞.
If C is the identity matrix, then the uniform ensemble output controllability problem is reduced
to the classical problem of controlling a parallel connection of finitely many linear systems. In
this case, the output space of the system, which is its state space, remains finite dimensional and
this case is well understood from the literature, see e.g. [17]. When the matrix C is different from
the identity matrix, we similarly fall in a classical output controllability of a finite dimensional
system. For more information about output controllability for linear parameter independent
time invariant systems, we refer to our previous work [14], see also [15] for time variant systems.

• When #P =∞.
In this case, with C the identity matrix, it is well-known that the problem of exact control-
lability in finite time cannot be achieved [13, Theorem 4.1.5], [30, Proposition 3.1] and [45,
Theorem 3.3.1]. For C different from the identity matrix, following the same arguments, it can
be deduced that exact controllability of system (2.1) cannot hold in finite time.

Hence, instead of trying to reach exactly the desired output function in finite time, we will try to
get arbitrarily close to the target function. Let us therefore state clearly what will be considered
as the definition of uniform ensemble output controllability in this paper.

Definition 2.1. The system (2.1) is said to be uniformly ensemble output controllable (UEOC) if
for any continuous initial state datum x0 ∈ X(P)n, any final output datum y1 ∈ X(P)q and any
ε > 0, there exist a time T > 0 and a control u ∈ L1([0, T ];Cm), independent of θ, such that

‖y(T, ·; x0, u)− y1‖∞ 6 ε.
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The terminology uniform in the above definition is used to emphasize the fact that the set of
output functions is the continuous one endowed with the uniform norm. This definition actually
makes sense since for any continuous initial state datum x0 and any θ-independent input u ∈
L1([0, T ];Cm), the output trajectory is continuous with respect to the time t and the parameter θ.

2.2 Uniform ensemble output controllability and polynomial interpola-

tion

Matrices A, B and C induce the multiplication operators MA : X(P)n → X(P)n, MB : Cm →
X(P)n and MC : X(P)n → X(P)q defined respectively by

(MAf)(θ) = A(θ)f(θ), (MBv)(θ) = B(θ)v and (MCf)(θ) = C(θ)f(θ)

(θ ∈ P, f ∈ X(P)n, v ∈ Cm). (2.2)

Since the matrices A, B and C are continuous on P which is compact, they are uniformly bounded
and by [20, Proposition 2.1], the linear operators MA, MB and MC are bounded.

With these operators, system (2.1) takes the form

ẋ(t, ·) = MAx(t, ·) + MBu(t), (2.3a)
y(t, ·) = MCx(t, ·). (2.3b)

Since the linear operators MA, MB and MC are bounded, we deduce from [45, Theorem 7.1.1] that
the uniform ensemble output controllability of system (2.3) depends neither on the controllability
time nor on the chosen initial state datum and is equivalent to∑

k∈N
Im
{
MCMk

AMB

}
= X(P)q. (2.4)

In the subsequent analysis, we then take without loss of generality x0 ≡ 0. Also, from what
precedes, one can see that the UEOC of system (2.1) does not depend on the regularity of the
input. If the system is UEOC with controls in L1([0, T ];Cm), then it is also UEOC with controls
in L2([0, T ];Cm). Therefore, when the analysis becomes easier or more elegant with input in
L2([0, T ];Cm), then L2([0, T ];Cm) will be used as a set of admissible controls.
Defining CAkbj : C→ X(P)q by (CAkbjv)(θ) = C(θ)A(θ)kbj(θ)v for every v ∈ C and every θ ∈ P,
where bj(θ) is the j-th column of B(θ), we infer from (2.4) that the system (A,B,C) is uniform
output ensemble controllable if and only if the set

R(A,B,C) := span
{
CAkbj | k ∈ N, j ∈ N∗6m

}
is dense in X(P)q. This is equivalent, in terms of polynomial approximation, to the fact that for
every y ∈ X(P)q and every ε > 0 there exist m complex polynomials p1, · · · , pm such that∥∥∥∥∥∥

m∑
j=1

Cpj(A)bj − y

∥∥∥∥∥∥
∞

6 ε. (2.5)

To digress a bit, let us note that criteria (2.4) and (2.5) remain true in the case of uniform ensemble
output controllability of discrete-time systems. Needless to say that for discrete-time systems, the
minimal controllability time cannot be zero.

As consequences of this approximation result, that is (2.5), we have the Propositions 2.2 to 2.4.
The Proposition 2.2 mainly states that the uniform ensemble output controllability property in
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real Banach space is preserved under complexification. The proof of this proposition will not be
provided here since it can be easily deduced from [16, Lemma 1]. The Proposition 2.3 gives some
invariant properties on uniform ensemble output controllability and Proposition 2.4 links the notion
of uniform ensemble output controllability to the one of uniform ensemble controllability.

Proposition 2.2. For k ∈ N∗, let us denote by XR(P)k = C(P,R)k the set of continu-
ous k values real functions. Denote also by XC(P)k its complexification that is XC(P)k :={
f + ig | f, g ∈ XR(P)k

}
endowed with the smallest reasonable complexification norm1 ‖f +

ig‖XC(P)k := supt∈[0,2π]‖f cos(t)− g sin(t)‖∞.
Assume that (A,B,C) ∈ XR(P)nn×XR(P)nm×XR(P)qn. (A,B,C) is UEOC on XC(P)q if and only
if it is UEOC 2 on XR(P)q.

Proposition 2.3. (i) The system (A,B,C) is UEOC if and only if for any invertible matrix
T ∈ X(P)nn, the system (T−1AT, T−1B,CT ) is UEOC.

(ii) The system (A,B,C) is UEOC if and only if for any invertible matrix Q ∈ X(P)qq, the system
(A,B,QC) is UEOC.

(iii) Let ϕ be a continuous one-to-one map on P. The system (A,B,C) is UEOC on X(P)q if
and only if (A ◦ ϕ−1, B ◦ ϕ−1, C ◦ ϕ−1) is UEOC on X(ϕ(P))q.

Proof. (i) follows from the fact that for any continuous invertible matrix T ∈ X(P)qq,
R(T−1AT, T−1B,CT ) = R(A,B,C). For (ii), it suffices to note that, for any linear continu-
ous invertible map Q, the linear bounded map MQ : X(P)q → X(P)q defined for every f ∈ X(P)q

and θ ∈ P by (MQf)(θ) = Q(θ)f(θ) is an isomorphism on X(P)q. Finally, for (iii), we observe that
if ϕ is a continuous one-to-one map on P, then ϕ : P → ϕ(P) is a homeomorphism. Assume that
(A,B,C) is UEOC on X(P)q. Let f be an element of X(ϕ(P))q and ε > 0. Since f ∈ X(ϕ(P))q,
we have f ◦ ϕ ∈ X(P)q. Using the fact that by assumption (A,B,C) is uniform ensemble output
controllable on X(P)q, we deduce the existence of m complex polynomials p1, · · · , pm such that

sup
θ∈P

∣∣∣∣∣
m∑
k=1

C(θ)pk(A(θ))bk(θ)− f ◦ ϕ(θ)

∣∣∣∣∣ 6 ε
and it follows that

sup
z∈ϕ(P)

∣∣∣∣∣
m∑
k=1

C(ϕ−1(z))pk(A(ϕ−1(z)))bk(ϕ−1(z))− f(z)

∣∣∣∣∣ 6 ε.
Therefore, the system (A◦ϕ−1, B ◦ϕ−1, C ◦ϕ−1) is UEOC on X(ϕ(P))q. The converse implication
follows the same pattern.

Considering (2.4) and (2.5) it becomes obvious that if C is the identity matrix, then UEC and
UEOC coincide. More generally, the relationship between uniform ensemble controllability and
uniform ensemble output controllability can be summarized in the following proposition.

Proposition 2.4. If rkC(θ) = q for every θ ∈ P, and if the pair (A,B) is UEC then the system
(A,B,C) is UEOC.
Moreover, if C(θ) is invertible for every θ in P, then there is equivalence between UEOC of
(A,B,C) and UEC of (A,B).

1See [33] for more details.
2UEOC on XR(P)q , means that for every f in XR(P)q and every ε > 0, there exist a time T > 0 and a real

valued input function u ∈ L1([0, T ];Rm) such that ‖y(T, ·; 0, u)− y1‖∞ 6 ε.
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Proof. To begin with, note that since rkC(θ) = q for every θ ∈ P and C is continuous, the
application C† : θ 7→ C(θ)? (C(θ)C(θ)?)

−1 exists and is continuous on P. The matrix C† is actually
the Moore-Penrose pseudo-inverse of the matrix C. We now write ‖

∑m
k=1 Cpk(A)bk − f‖∞ 6

‖C‖∞‖
∑m
k=1 pk(A)bk − C†f‖∞ and observe that for every f ∈ X(P)q, the function C†f belongs

to X(P)n. To end the proof of this item, we use the assumption that (A,B) is uniformly ensemble
controllable to deduce that for every ε > 0, there existsm complex polynomial p1, · · · , pm satisfying
‖
∑m
k=1 Cpk(A)bk − C†f‖∞ 6 ε/‖C‖∞.
In addition, if C(θ) is invertible for every θ in P, it suffices to note that C† = C−1 and

the necessity is obtained by observing that ‖
∑m
k=1 pk(A)bk − f‖∞ 6 ‖C−1‖∞‖

∑m
k=1 Cpk(A)bk −

Cf‖∞.

From these links, it follows that understanding the notion of uniform ensemble controllability
will contribute to understand the one of uniform ensemble output controllability. Hence, in the
next section, necessary conditions for uniform ensemble controllability are given, to this end we will
use the following lemma. This lemma shows how uniform ensemble output controllability behaves
under restrictions on the parameter set. This lemma is actually a necessary condition for UEOC,
and can be easily derived from [16, Lemma 2].

Lemma 2.5 (Restriction). Let P and P̂ be two compact sets of C such that P̂ ⊂ P, and let
A ∈ X(P)nn, B ∈ X(P)nm and C ∈ X(P)qn, with n,m, q ∈ N∗. If (A,B,C) is UEOC on X(P)q then
(A,B,C) is UEOC on X(P̂)q.

Proof. Let us define the restriction map R : f ∈ X(P) 7→ f |P̂ ∈ X(P̂). It is trivial that R is a
linear bounded and unitary operator. Furthermore, from [37, Theorem 20.4], this operator is onto.
Now assume that (A,B,C) is UEOC on X(P)q, let f̂ ∈ X(P̂)q and choose ε > 0. Since R is onto,
there exists f ∈ X(P)q such that Rf = f̂ . Using the UEOC of (A,B,C) on X(P)q and the fact
that f ∈ X(P)q, we deduce from (2.5) that there exist m complex polynomials p1, · · · , pm such
that ‖

∑m
k=1 Cpk(A)bk − f‖∞ 6 ε. To end the proof, observe that∥∥∥∥∥

m∑
k=1

RCpk(RA)Rbk − f̂

∥∥∥∥∥
∞

=

∥∥∥∥∥R

(
m∑
k=1

Cpk(A)bk − f

)∥∥∥∥∥
∞

6

∥∥∥∥∥
m∑
k=1

Cpk(A)bk − f

∥∥∥∥∥
∞

6 ε.

Remark 2.6. An easy consequence of Lemma 2.5 is that if (A,B,C) is UEOC on X(P)q, then for
every θ ∈ P, the system (A(θ), B(θ), C(θ)) is state to output controllable (see [14, Definition 2.2]).
In Section 4.1, we will give some other direct consequences of Lemma 2.5.

3 Contributions to uniform ensemble controllability of the

pair (A,B)

As mentioned in the introduction, it has been shown in [16] that for m = 1, i.e., single input
system, a necessary condition for uniform ensemble controllability is that the compact set P must
be of empty interior with respect to the topology of C. In [10], the author proved the same negative
result for real-analytic system (A(θ), B(θ)) regardless to the number of input.
Here, we consider the case m > 1 and show that if the pair (A(θ), B(θ)) is regular enough or if the
spectrum of A(θ) intercepts the real axis for every θ ∈ P then the above condition on the topology
of P is still necessary.
Let’s start with the regular case.
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Theorem 3.1. Assume that P is not of empty interior with respect to the topology of C. Assume
also that A and B are 2m−1 times differentiable in the interior of P. Then the pair (A,B) cannot
be UEC on X(P)n.

The proof we propose for this theorem is a proof by contraposition. The strategy of this proof
is as follows.
(a) First, we assume that (A,B) is UEC with P of non-empty interior.
(b) Secondly, we show that there exists a closed ball included in P on which the matrix A admits

an eigenvalue λ and a left eigenvector v associated to λ both having the same regularity as
A. This will be done in Lemma A.2.

(c) Thirdly, we show that by reducing the size of the ball mentioned in the above item, λ can be
chosen one-to-one. This is done in Lemma 3.2.

(d) Finally, we reduce the problem of uniform ensemble controllability to the case n = 1, link
the obtained system’s uniform ensemble controllability problem to a density result and show
that this density cannot hold.

To begin with, let us give the following lemma.

Lemma 3.2. Assume that P is not of empty interior in C and that (A,B) is UEC on X(P)n. If
A is differentiable in the interior of P, then there exist θ0 interior to P and δ0 > 0 such that, A
admits a differentiable and injective eigenvalue λ on Bθ0(δ0).

Before giving the proof of this Lemma, let us recall that a necessary condition for the pair (A,B)
to be uniformly ensemble controllable on X(P)n is that for distinct complex numbers θ1, . . . , θk ∈ P,

σ(A(θ1)) ∩ · · · ∩ σ(A(θk)) = ∅, ∀k > m. (3.1)

In the above, σ(A(θ)) stands for the spectrum of the matrix A(θ). This remark is actually [16,
Proposition 4] which follows directly from Lemma 2.5 and the Hautus test given in [21, Theorem 1].

Proof. According to Lemma A.2, since A is C1 in the interior of P, there exist θ0 interior to P and
δ0 > 0 such that A admits a differentiable eigenvalue λ on Bθ0(δ0).
Using (3.1) we will show that by shifting θ0 inside Bθ0(δ0) and reducing δ0, if necessary, λ is
injective on Bθ0(δ0).
Let Υδ0

θ0
:= {(<(θ),=(θ)) ∈ R × R | θ ∈ Bθ0(δ0)}, with <(z) and =(z) the real and imaginary

parts of z ∈ C. Define λ̃ : Υδ0
θ0
7→ R2 such that λ̃ = (λ1, λ2), with λ1 = <(λ) and λ2 = =(λ) and

denote by Jλ̃, the Jacobian matrix of λ̃. Let us assume by contradiction that λ is not injective on
any open set of Bθ0(δ0). Then for every (θ1, θ2) ∈ Υδ0

θ0
, we have det Jλ̃(θ1, θ2) = 0. Indeed, if we

had det Jλ̃(θ1, θ2) 6= 0 for some (θ1, θ2) ∈ Υδ0
θ0
, by continuity of Jλ̃, there would exist a ball in Υδ0

θ0

on which λ̃ (and hence λ) is injective. Since, by assumption, (A,B) is UEC, according to (3.1),
A cannot admit a constant eigenvalue on a non-zero measure set. Therefore, using the fact that
Jλ̃ is continuous and non invertible, we deduce the existence of θ̃0 ∈ Bθ0(δ0) and ε̃ > 0 such that
Υε̃
θ̃0
⊂ Υδ0

θ0
and rk Jλ̃ = 1 on Υε̃

θ̃0
. Hence, using Theorem B.1 there exists a non-zero continuous

function α : Υε̃
θ̃0
→ R2 such that Jλ̃(θ1, θ2)α(θ1, θ2) = 0 for every (θ1, θ2) ∈ Υε̃

θ̃0
. Therefore, we can

construct inside Υδ0
θ0

a path γ such that γ(0) = (<(θ̃0),=(θ̃0)) and γ̇(t) = α(γ(t)) thanks to the
Cauchy–Peano’s Theorem. From

d

dt

(
λ̃(γ(t))

)
= Jλ̃(γ(t))γ̇(t) = Jλ̃(γ(t))α(γ(t)) = 0,

we deduce that λ̃, and therefore λ, is constant along the flow of γ and this is in contradiction
with (3.1).
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The result of Lemma 3.2 leads to the following remark.

Remark 3.3. From the above lemma, observe that if P was assumed to be homeomorphic to
a non-empty interior compact subset of Rd for d > 2, then it is not possible to have the UEC
of (A,B) if A is differentiable. Indeed, in this case, Lemma 3.2 would imply the existence of a
continuous and injective map from Rd into R2. This would contradict [8, Theorem 20.2, p.242]
which states that there does not exist a continuous and injective map from κ-sphere (seen as a
sub-manifold of Rκ+1) into Rκ for every κ ∈ N∗. This theorem is usually termed as Borsuk-Ulam
Theorem.

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that P is not of empty interior in C and that (A,B) is of class C2m−1
in the interior of P. Let us further assume that (A,B) is UEC on X(P)n.
From Lemma A.2, there exist θ0 interior to P and δ0 > 0 such that on Bθ0(δ0), the matrix A
admits a C2m−1 eigenvalue λ with a C2m−1 left eigenvector v associated to λ.
• Reduction to the case n = 1.

Multiplying the state equation on the left side by v, we get, for every θ ∈ Bθ0(δ0),

v(θ)ẋ(t, θ) = v(θ)A(θ)x(t, θ) + v(θ)B(θ)u(t).

Using the fact that v(θ)A(θ) = λ(θ)v(θ) on Bθ0(δ0), setting y(t, θ) = v(θ)x(t, θ) ∈ C and
v(θ)B(θ) =

(
b̃1(θ) . . . b̃m(θ)

)
∈ Cm, the above equation becomes

ẏ(t, θ) = λ(θ)y(t, θ) + v(θ)B(θ)u(t). (3.2)

Using Proposition 2.4 and the fact that (A,B) is UEC on X(P)n, we infer that system (3.2) is
uniformly ensemble controllable on X(K), for every compact set K ⊂ Bθ0(δ0).
In the following, we choose a compact set K ⊂ Bθ0(δ0) with nonempty interior, and we set
b(θ) =

(
b1 . . . bm(θ)

)
= v(θ)B(θ). Observe that b is of class C2m−1 on K.

• Link with Lemma A.1.
To begin with, note that from Proposition 2.3–(iii), one can consider without loss of generality λ
to be the identity map. Indeed, according to Lemma 3.2, λ is continuous and one-to-one, thus,
λ : P → λ(P) is a homeomorphism. Therefore, system (λ, b) is UEC on X(K) if and only if
(id, b◦λ−1) is UEC on X(λ(K)) where id stands for the identity map on λ(K). Since K is compact
with non-empty interior, λ(K) is also compact with non-empty interior. Furthermore, thanks to
Remark A.3, we have that b ◦ λ−1 is of class C2m−1 on λ(K ′), for some compact set K ′ ⊂ K of
nonempty interior. Therefore, we can assume without loss of generality that λ is the identity map
on K.

Since system (3.2) is assumed to be UEC, Remark 2.6 ensures that rk b(θ) = 1 for every θ ∈ K.
We can therefore choose θ0 ∈ K and get the existence of j0 ∈ N∗6m such that bj0(θ0) 6= 0. By
continuity of bj0 , we deduce that there exists a compact neighborhood of θ0 denoted by D included
inK on which bj0 does not vanish. Now, consider the bj ’s for which the intersection of their support
with D have interior point in C and choose finally D to be the closure of a small ball contained in
that intersection. By construction of D and the continuity of bj ’s, either bj(θ) 6= 0 for every θ ∈ D
or vanishes identically. We assume without loss of generality that for every k ∈ N∗6m, bj(θ) 6= 0
for every θ ∈ D. By Proposition 2.4 we can also assume that b1(θ) = 1 for every θ ∈ D and this is
what will be done for the rest of this proof. Thanks to Lemma 2.5, we deduce that system (3.2)
restricted to the parameter set D is UEC on X(D). Hence, as we have seen in Section 2 the UEC
on X(D) of system (3.2) is equivalent to

m∑
j=1

bj span {θ ∈ D 7→ θk | k ∈ N} = X(D). (3.3)
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Using the fact that for every k ∈ N the maps θ 7→ θk are holomorphic over C and that D is a
compact with connected complement, we infer from (3.3) (with b1 = 1) that

H(D) + b2H(D) + . . .+ bmH(D) = X(D). (3.4)

Thanks to the restriction lemma, we can also assume that for every ` ∈ N∗6m there does not exist
a nonempty open set O ⊂ D such that b`|K ∈ H(K) +

∑m
k=2,k 6=` bkH(K).

• Conclusion of the proof.
The density relation (3.4) and Lemma A.1 imply that every continuous function on D is locally a
Cm function which is obviously not true.

Remark 3.4. Observe through the proof of Theorem 3.1 that in the case m = 1, one does not
need A to be differentiable to show that a necessary condition for (A,B) to be UEC is that P
must be of empty interior in C. Indeed, the differentiability of A was used to show the injectivity
of the selected eigenvalue. In the case m = 1 the injectivity is directly given by the restriction
lemma and (3.1). It is therefore enough to use Lemma A.2 to reduce the UEC of (A,B) to the
one of a scalar system, i.e., to the case n = m = 1, and notice that the UEC of (A,B) implies
H(D) = X(D) for some closed non-empty interior ball included in P which is not possible. Recall
that this result was already given in [16, Theorem 3].

Remark 3.5. One can also observe though this proof that one can still get relation (3.4) with the
only assumption that A is C1(P). But this time the functions bk, k ∈ {2, 3, · · · ,m}, will be only
continuous. Note that if the space H(D) + b2H(D) + . . .+ bmH(D) is a closed subspace of X(D),
then it is easy to see that (3.4) cannot hold. Unfortunately H(D) + b2H(D) + . . .+ bmH(D) is in
general not closed in X(D). Taking for instance m = 2, D = {z ∈ C | |z| 6 1} and b2(z) = z for
all z ∈ D, one can show, by applying for instance [47, Theorem 1.1], that H(D) + b2H(D) is not a
closed subspace of X(D).

Remark 3.6. From Theorem 3.1, the following result can be deduced.
Let P be a compact subset of C. If P has an interior point with respect to the topology of C and
if (A,B) is of class C2m−1 in the interior of P, then there exists a non-zero complex measure µ
supported on P such that ∫

P
B(θ)?A(θ)?

k
dµ(θ) = 0, ∀k ∈ N.

To see this, let T > 0 and define, for every u ∈ L2([0, T ];Cm), the end-point map ΦT by

(ΦTu)(θ) =

∫ T

0

e(T−t)A(θ)B(θ)u(t) dt (θ ∈ P).

As defined, one can see that ΦT is a linear and continuous map from L2([0, T ];Cm) into X(P).
Also, its dual Φ?T is a linear and continuous map from the space of Radon measures M(P) into
L2([0, T ];Cm) and is given, for every µ ∈M(P), by

(Φ?Tµ)(t) =

∫
P
B(θ)?e(T−t)A(θ)? dµ(θ) (t ∈ [0, T ]).

From [24, Theorem 3.1] (see also [46, Theorem 11.2.1] for the same result in Hilbert spaces), it
follows that the UEC of (A,B) is equivalent to the unique continuation property

∀t ∈ [0, T ], (Φ?Tµ)(t) = 0 =⇒ µ = 0. (3.5)
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In (3.5), µ = 0 has to be understood in the sense that for every f ∈ X(P)n,

〈µ, f〉M(P),X(P)n =

∫
P
f dµ = 0.

Since we have shown in Theorem 3.1 that if P has interior point, the pair (A,B) cannot be uniformly
ensemble controllable, it follows from (3.5) that there exists a non-zero complex measure µ such
that for every t ∈ [0, T ], (Φ?Tµ)(t) = 0. The expected result is obtained by evaluating the successive
derivatives of (Φ?Tµ)(t) = 0 at time T .

The following theorem states that if A admits a continuous real eigenvalue on P (in particular
Hermitian matrices with continuous eigenvalues and left eigenvectors), then a necessary condition
for uniform ensemble controllability is that P has to be of empty interior in C.

Theorem 3.7. Assume P is not of empty interior in C, and for every θ ∈ P, σ(A(θ)) ∩ R 6= ∅.
Then (A,B) cannot be uniformly ensemble controllable on X(P)n.

Let us give a proof to Theorem 3.7.

Proof. The proof of this theorem follows the same pattern as the one of Theorem 3.1 but is shorter.
Indeed, we will show that under the assumption of Theorem 3.7, if (A,B) is uniformly ensemble
controllable on X(P)n then there exists a continuous and injective map from R2 into R which is in
contradiction with the Borsuk-Ulam Theorem mentioned in Remark 3.3.
• Continuous real eigenvalue selection.

Since P is not of empty interior in C and A is continuous and satisfies σ(A(θ)) ∩ R 6= ∅ for every
θ ∈ P, we deduce from Lemma A.4 that there exist θ0 interior to P and δ0 > 0 such that on Bθ0(δ0),
A admits a continuous real eigenvalue selection λ.
• Injectivity of λ.

Now that we have a continuous real eigenvalue λ on Bθ0(δ0), we show by contradiction that if
(A,B) is UEC on X(P)n, there exists δ1 6 δ0 such that λ is one-to-one on Bθ0(δ1).
Let assume that (A,B) is UEC on X(P)n and that for every δ1 6 δ0, λ is not one-to-one on Bθ0(δ1).
Since λ is not one-to-one on Bθ0(δ0) there exist two complex numbers θ1 6= θ2 in Bθ0(δ0) such that
λ(θ1) = λ(θ2).
If λ(θ1) 6= λ(θ0), we can constructm+1 disjoint smooth curves γk connecting θ0 to θ1 (since Bθ0(δ0)
is an open path-connected set). Using the Intermediate Value Theorem on functions λ ◦ γk, we
would deduce the existence of m + 1 distinct complex numbers θ̃0, . . . , θ̃m in Bθ0(δ0) such that
λ(θ̃0) = · · · = λ(θ̃m) and this would contradict (3.1).
Assume now that λ(θ1) = λ(θ2) = λ(θ0). Here, either θ1 = θ0 or θ2 = θ0 or θ1 and θ2 are distinct
from θ0. We assume without loss of generality that θ1 6= θ0. Choose δ1 small enough such Bθ0(δ1)
does not contain θ1. Since λ is not one-to-one on Bθ0(δ1), there exist θ2 and θ3 such that λ(θ2) =
λ(θ3). If λ(θ0) 6= λ(θ2), then use the previous m + 1 curves argument. Otherwise, continue the
process until you construct m+1 distinct complex numbers θk in P such that λ(θ0) = · · · = λ(θm).
This will contradict (3.1). All in all, we have deduced that there exists δ1 6 δ0 such that λ is
one-to-one on Bθ0(δ1).
• Conclusion of the proof.

In fine, if (A,B) is UEC on X(P)n, there exist θ0 ∈ P, δ0 > 0 and a continuous and one-to-one
function λ : Bθ0(δ0) → R. This leads to a contradiction, since there does not exist one-to-one
function from C to R.

Remark 3.8. It can be seen from the proof of Theorem 3.7 that its conclusion remains true if P
is homeomorphic to any non-empty interior compact of Rd, for d > 2. Indeed, if P admits a
non-empty interior in Rd, there exist (θ3, . . . , θd) ∈ Rd−2 and P̂ ⊂ R2 with non-empty interior
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such that P̂ × {(θ3, . . . , θd)} ⊂ P. Using Lemma 2.5, if the pair (A,B) is UEC on X(P)n, then it
is UEC on X(P̂)n, which is impossible, according to Theorem 3.7. Bearing in mind Borsuk-Ulam
Theorem ([8, Theorem 20.2, p.242]), the above observation could also be deduced from the proof
of Theorem 3.7.

Remark 3.9. In Theorem 3.7, one can also relax the assumption σ(A(θ)) ∩ R 6= ∅ to
σ(A(θ)) ∩M 6= ∅, where M ⊂ C is a continuous manifold of dimension one.

To end this section dedicated to uniform ensemble controllability, we note that in general the
matrix A is just continuous and admits no real eigenvalue. In this case, the uniform ensemble
controllability with P of nonempty interior in C is open.

4 Uniform ensemble output controllability

4.1 Direct consequences of the restriction lemma

The first consequence of Lemma 2.5 is Remark 2.6. Indeed, from Lemma 2.5, it follows that a
necessary condition for uniform ensemble output controllability is that for every θ ∈ P, the system
(A(θ), B(θ), C(θ)) has to be state to output controllable, see [14, Definition 2.2]. This criterion can
be checked by using the extended Kalman rank condition given in [26, Theorem III], that is

rk
(
C(θ)B(θ) C(θ)A(θ)B(θ) . . . C(θ)A(θ)n−1B(θ)

)
= q, (4.1)

or the extended Hautus Test given in [14, Lemma 4.2], that is

rkC(θ) = q and ImC(θ)? ∩
⊕

λ∈σ(A(θ))

Eθ,λ = {0}, (4.2)

where Eθ,λ =
{
z ∈ ker

(
A(θ)? − λIn

)nθ,λ | B(θ)?
(
A(θ)? − λIn

)l
z = 0, ∀l ∈ N<nθ, λ

}
, with nθ,λ,

the algebraic multiplicity of λ in the minimal polynomial of A(θ).
Assume now that the parameter set P is reduced to {θ1, θ2, · · · , θN} for some positive

integer N . In that case, system (2.1) becomes a finite dimensional system given, for all k ∈ N∗6N ,
by ẋ(·, θk) = A(θk)x(·, θk) +B(θk)u and y(·, θk) = C(θk)x(·, θk).
By setting x(t) =

(
x(t, θ1)> . . . x(t, θN )>

)> ∈ CNn and similarly y(t) =(
y(t, θ1)> . . . y(t, θN )>

)> ∈ CNq, the system (2.1) becomes

ẋ(t) = Ax(t) + Bu(t), (4.3a)
y(t) = Hx(t), (4.3b)

where the matrices A ∈ CNnNn, B ∈ CNnm and H ∈ CNqNn are given by

A =

A(θ1)
. . .

A(θN )

 , B =

B(θ1)
...

B(θN )

 , H =

C(θ1)
. . .

C(θN )

 .

Note that system (4.3) is a finite dimensional parallel system and the UEOC of this system is
equivalent to its state to output controllability. To check if system (4.3) is state to output control-
lable, one can apply criterion (4.1) or (4.2). Here, we are going to use (4.2) since it directly gives
information on the controllability of the above system based on the spectrum of the matrix A(θ).

Proposition 4.1. Let P = {θ1, θ2, · · · , θN} and assume that
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(i) for every k 6= l, σ(A(θk)) ∩ σ(A(θl)) = ∅,
(ii) for every k ∈ N∗6N , the system (A(θk), B(θk), C(θk)) is state to output controllable.

Then system (4.3) is state to output controllable.

Proof. Using (4.2), the state to output controllability of (4.3) is equivalent to

rk (H) = Nq and ImH? ∩

 ⊕
λ∈σ(A)

Eλ

 = {0}, (4.4)

where Eλ =
{
z ∈ ker

(
A? − λInN

)nλ | (A? − λInN)l z ∈ kerB?, ∀l ∈ N<nλ
}
, and nλ is the alge-

braic multiplicity of λ in the minimal polynomial of A.

Since A = diag(A(θk))k, we have σ(A) =

N⋃
k=1

σ(A(θk)) and nλ = max
k∈N∗6N

nθk,λ, where nθk,λ is the

algebraic multiplicity of λ in the minimal polynomial of A(θk).
From A = diag(A(θk))k, we deduce that

(
A? − λInN

)l
= diag

((
A(θk)? − λIn

)l)
k
for any l ∈ N

and any λ ∈ C. This also shows that

ker
(
A? − λInN

)nλ
=

N∏
k=1

ker
(
A(θk)? − λIn

)nθk,λ (4.5)

and that every z ∈ ker
(
A? − λInN

)nλ can be written as z =
(
z>1 . . . z>N

)>, where each zk

belongs to ker
(
A(θk)? − λIn

)nθk,λ .
Also, note that

(
A? − λInN

)l
z ∈ kerB? for all l ∈ N<nλ is equivalent to

N∑
k=1

B(θk)?
(
A(θk)? − λIn

)l
zk = 0 (l ∈ N<nλ). (4.6)

From (4.5) and (4.6), we deduce that for every λ ∈ σ(A),

Eλ =
{

(z1, z2, · · · , zN ) ∈
N∏
k=1

ker
(
A(θk)? − λIn

)nθk,λ |
N∑
k=1

B(θk)?
(
A(θk)? − λIn

)l
zk = 0, ∀l ∈ N<nλ

}
. (4.7)

Using assumption (i), we deduce that for every λ ∈ σ(A), there exists a unique k0 ∈ N∗6N such
that λ ∈ σ(A(θk0)). It follows from (4.7) that

Eλ = · · · × {0} × Eθk0 ,λ × {0} × · · · , (4.8)

where at the k0-th position, we have

Eθk0 ,λ :=
{
z ∈ ker

(
A(θk0)? − λIn

)nθk0 ,λ | B(θk0)?
(
A(θk0)? − λIn

)l
z = 0, ∀l ∈ N<nθk0 ,λ

}
.

From (4.8), we deduce that ⊕
λ∈σ(A)

Eλ =

N∏
k=1

⊕
λ∈σ(A(θk))

Eθk,λ. (4.9)
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Finally, note that since H = diag(C(θk))k, rk (H) = Nq if and only if rk(C(θk)) = q for every
k ∈ N∗6N and ImH? = ImC(θ1)? × · · · × ImC(θN )?. Therefore, the state to output controllability
of system (4.3) is equivalent to the fact that for every k ∈ N∗6N ,

rk (C(θk)) = q and ImC(θk)? ∩
⊕

λ∈σ(A(θk))

Eθk,λ = {0}. (4.10)

We end the proof by noticing that assumption (ii) implies (4.10).

Remark 4.2. From the above proof, it can be seen that the equality of the output subsystems
dimension, that is the fact that yθk belongs to Cq for every k ∈ N∗6N is not relevant. The result
still holds even if every yθk ∈ Cqk with potentially different qk’s.

Remark 4.3. The condition (i) of Proposition 4.1 is not necessary. One can get convinced by
considering the state to output controllable system given by the following matrices,

A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , B =


1
1
1
0

 and H =

(
1 0 0 0
0 0 1 0

)
.

Another immediate consequence of Lemma 2.5, is the following result which is a necessary
condition for (2.1) to be uniform ensemble output controllable in the case of holomorphic systems.

Theorem 4.4. Assume that the interior of P with respect to C is not empty. If there exists a
non-empty open subset V of P on which matrices A, B and C are holomorphic, then system (2.1)
cannot be uniformly ensemble output controllable on X(P)q.

Proof. Assume that there exists a non-empty open subset V of P on which matrices A, B and C
are holomorphic and that system (2.1) is UEOC on X(P)q. Let P1 be a compact subset of C
included in V. By Lemma 2.5, system (2.1) is UEOC on X(P1)q. Therefore, from (2.5), for
every function f ∈ X(P1)q, there exists a sequence of complex polynomials (pk1 , · · · , pkm)k such
that

∥∥∥∑m
j=1 Cp

k
j (A)bj − f

∥∥∥
∞

goes to zero when k goes to infinity. In other words, there exists a

sequence of polynomials (P k)k depending on the entries of the matrices A, B and C such that∥∥P k − f∥∥∞ → 0 when k → +∞. But, since matrices A, B and C are holomorphic on V, then
the sequence (P k)k is a sequence of holomorphic functions and since it converges uniformly on P1

towards f , then f is necessarily holomorphic on V. This yields a contradiction.

4.2 Results on particular structures

To begin with, let us consider the simplest systems, that is, the case whereby for three continuous
functions λ, b and c defined from P into C, (A,B,C) = (λ, b, c). We have the following theorem.

Theorem 4.5. Let P be a compact subset of C with connected complement.
The scalar system (λ, b, c) is uniformly ensemble output controllable on X(P) if and only if
(i) for every θ ∈ P, the system (λ(θ), b(θ), c(θ)) is state to output controllable;
(ii) λ is one-to-one;
(iii) P has no interior point with respect to the topology of C.

Proof. For the proof, it suffices to note that thanks to Proposition 2.4 system (λ, b, c) is UEOC if
and only if for every θ ∈ P, c(θ) 6= 0 and (λ, b) UEC, [16, Proposition 3]. Therefore, the necessity
of these conditions, follows from [16, Theorem 3].
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For the sufficient part, one can follow the proof of [16, Proposition 3]. The only argument that seems
to fall down is the fact that we cannot use [36, Proposition 4.2.8] since λ(P) is not contractible.
Nevertheless, if P is compact with connected complement in C, then the connected components
of P are simply connected since C \ P is path connected. Therefore, if λ is continuous and one-
to-one on P, then λ(P) is of connected complement. Indeed, one can assume without loss of
generality that P is simply connected. If P is not simply connected, write P as a disjoint union of
its connected components and use [16, Lemma 8]. Since λ is continuous, λ(P) is compact. Let γ
be a closed curve in λ(P). Since λ is a homeomorphism from P to λ(P), λ−1(γ) is a closed curve
in P. Using the fact that P is simply connected, we deduce that for any point θ0 ∈ P, there exists
a continuous map H : [0, 1]× [0, 1]→ P such that H(0, t) = λ−1 ◦γ(t) and H(1, t) = θ0. It follows
that λ ◦H(0, t) = γ(t) and λ ◦H(1, t) = λ(θ0). We then deduce that any closed curve in λ(P) can
be continuously deformed into a single point. Therefore, λ(P) is compact and simply connected.
Thus, λ(P) is of connected complement in C. We can then conclude as in [16, Proposition 3], using
Mergelyan’s Theorem (see Theorem B.2).

For scalar systems with multiple inputs, the injectivity of λ in Theorem 4.5 fails to be necessary.
For a more intuitive justification of this failure, let us first give the following sufficient condition
of uniform ensemble output controllability for scalar systems with multiple inputs. Note that in
contrast to linear parameter independent systems, it is reasonable to consider systems with m > n
since the state space is of infinite dimension.

Theorem 4.6. Let P be a compact and contractible subset of C, b1, b2, . . . , bm and c, m+ 1 scalar
continuous functions. Assume that
(i) for every θ ∈ P, the system (λ(θ),

(
b1(θ) . . . bm(θ)

)
, c(θ)) is state to output controllable;

(ii) λ is one-to-one;
(iii) P has no interior point with respect to the topology of C.
Then (λ, (b1, b2, . . . , bm), c) is uniformly ensemble output controllable on X(P).

Proof. To begin with, note that, since λ is assumed to be continuous and one-to-one, using Propo-
sition 2.3, we can assume without loss of generality that λ is the identity map of P. Also, from
assumption (i) and Proposition 2.4, we can assume that c(θ) = 1 for every θ ∈ P. Therefore, we
will show that for every f ∈ X(P) and every ε > 0, there exist m complex polynomials p1, · · · , pm
such that ∥∥∥∥∥

m∑
k=1

pk(id)bk − f

∥∥∥∥∥
∞

= sup
θ∈P

∣∣∣∣∣
m∑
k=1

pk(θ)bk(θ)− f(θ)

∣∣∣∣∣ 6 ε. (4.11)

Let f ∈ X(P) and ε > 0. The assumption (i) ensures that rk b(θ) = 1 for every θ ∈ P. In addition,
since b is continuous on P, P compact and contractible, we deduce from Theorem B.1 that there
exist m continuous functions χ1, · · · , χm defined on P such that χ1b1 + · · · + χmbm = 1. Thus,
f = fχ1b1+ · · ·+fχmbm. We now observe that for every k ∈ {1, · · · ,m}, the function fχk belongs
to X(P). Since P is compact and contractible, we infer from [36, Proposition 4.2.8] that C \ P
is connected. Using assumption (iii) and applying Mergelyan’s Theorem, we deduce by setting
β =

∑m
k=1 supθ∈P |bk(θ)| > 0 that for k ∈ {1, · · · ,m}, there exists a complex polynomial pk such

that
sup
θ∈P
|pk(θ)− χk(θ)f(θ)| 6 ε

β
.
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This leads to the following inequalities,

sup
θ∈P

∣∣∣∣∣
m∑
k=1

pk(θ)bk(θ)− f(θ)

∣∣∣∣∣ = sup
θ∈P

∣∣∣∣∣
m∑
k=1

pk(θ)bk(θ)−
m∑
k=1

f(θ)χk(θ)bk(θ)

∣∣∣∣∣
6

m∑
k=1

sup
θ∈P
|(pk(θ)− f(θ)χk(θ)) bk(θ)|

6
m∑
k=1

sup
θ∈P
|bk(θ)| sup

θ∈P
|pk(θ)− f(θ)χk(θ)|

6
ε

β

m∑
k=1

sup
θ∈P
|bk(θ)| = ε.

Remark 4.7. • Thanks to Lemma 2.5, assumption (i) is a necessary condition.
• As mentioned earlier, assumption (ii) is not necessary unless m = 1. In the case m = 1, the

necessity can be directly inferred from Lemma 2.5 and the Hautus Test [21, Theorem 1]. One can
also see [16, Theorem 3]. To see that the injectivity of λ is not a necessary condition whenm > 1,
one can consider [16, Example 3]. More precisely, assuming that (iii) is fulfilled, we can, without
loss of generality, use polynomials instead of continuous functions on P for the controllability
issue since any continuous function can be uniformly approximated by polynomials. To show
the UEOC of the considered system, it would therefore be necessary and sufficient to prove
that for every polynomial p and every ε > 0, there exist m complex polynomials pk such that
supθ∈P |

∑m
k=1 pk(λ(θ))bk(θ)− p(θ)| 6 ε. The non necessity of condition (ii) follows from the

fact that in some situations, it is possible to find such polynomials even if λ is not injective by
solving the polynomial equation

∑m
k=1 bkpk ◦λ−p = 0. One can consider P = [−1, 1], λ(θ) = θ2

and B(θ) =
(
1 θ . . .

)
. With this example, λ is clearly not injective on P but for any fixed

polynomial p, it is not difficult to see that there exist two complex polynomials p1 and p2 such
that p1(θ2) + θp2(θ2) = p(θ).
Note however, that even if the injectivity of λ is not required for m > 1, λ still have to be such
that (3.1) holds, i.e., for every θ0, . . . , θm two by two distinct parameters, there exist k, l ∈ N6m

such that λ(θk) 6= λ(θl).
• The necessity of assumption (iii) is still unclear to us except the case whereby (λ, b) is regular

enough, in which case, the necessity follows from Theorem 3.1.

Let us consider now the case where A is a Jordan block, B and C respectively are constant
column and row vectors.

Theorem 4.8. Let P be a compact subset of C with connected complement. The system

A(θ) =



λ(θ) 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 . . . . . . 0 λ(θ)


∈ Cnn, B(θ) ≡ B =



b1
...
...
...
bn


∈ Cn

and C(θ) ≡ C =
(
c1 · · · cn

)
∈ Cn (θ ∈ P). (4.12)

is uniformly ensemble output controllable on X(P) if and only if
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(i) for every θ ∈ P, the system (A(θ), B,C) is state to output controllable;
(ii) λ is one-to-one on P;
(iii) P is of empty interior, with respect to the topology of C.

Proof. We give the proof for n = 2, i.e., with A(θ) =

(
λ(θ) 1

0 λ(θ)

)
, B =

(
b1
b2

)
and C =

(
c1 c2

)
.

The general case being similar.
• Necessity.

It suffices to note that setting the constants α0 = c1b1 + c2b2 ∈ C and α1 = c1b2 ∈ C, we have

span
{
CAkB | k ∈ N

}
= span

{
α0, α0λ

k + kα1λ
k−1 | k ∈ N∗

}
⊂ span

{
α0λ

k | k ∈ N
}

+ span
{
kα1λ

k−1 | k ∈ N∗
}

= span
{
α0λ

k | k ∈ N
}

+ span
{
α1λ

k | k ∈ N
}

=

{
{0} if α0 = α1 = 0,

span
{
λk | k ∈ N

}
otherwise.

From the above, if system (4.12) is uniformly ensemble output controllable on X(P) then we have

span { CAkB, k ∈ N} = X(P)

which is possible if α0 and α1 are not both null, that is if (i) is fulfilled, and if span {λk | k ∈ N} =
X(P), that is, if conditions (ii) and (iii) are satisfied.
• Sufficiency.

Thanks to (ii) and Proposition 2.3, we assume without loss of generality that λ = id. We now aim
to show that for every f ∈ X(P) and every ε > 0, there exists a complex polynomial p such that

sup
θ∈P
|Cp(A(θ))B − f(θ)| = sup

θ∈P
|α1p

′(θ) + α0p(θ)− f(θ)| 6 ε. (4.13)

Let f ∈ X(P) and ε > 0. Since the compact set P has connected complement and no interior
point, we deduce from Theorem B.2 that there exists a complex polynomial q such that

sup
θ∈P
|q(θ)− f(θ)| 6 ε/2. (4.14)

To end the proof, it suffices to show that there exists a complex polynomial p such that

sup
θ∈P
|α0p(θ) + α1p

′(θ)− q(θ)| 6 ε/2. (4.15)

Let us write q(z) =
∑N
k=0 qkz

k. Recall that thanks to the necessary condition (i), α0 or α1 is
different from zero. If α0 6= 0, one can check that the polynomial p defined by p(z) =

∑N
k=0 pkz

k,
with pN = qN/α0, pk−1 = (qk−1 − α1kpk)/α0 for all k ∈ N∗6N satisfies (4.15). If α0 = 0, then
α1 6= 0 and the polynomial p = Q/α1, with Q any polynomial such that Q′ = q satisfies (4.15).

It should be noticed through the above proof that the conditions listed in Theorem 4.8 are still,
mutatis mutandis, necessary and sufficient even in multi-input case as far as the input and the
output matrices are respectively a constant matrix and a single constant output row vector.

For the sufficiency of conditions in Theorem 4.8 , one can see that we have solved explicitly the
polynomial differential equation

α1p
′ + α0p = q. (4.16)
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This was simple to do since the complex numbers α0 and α1 are constants and at least one
of them is not zero. In the case whereby B and C depend on θ, α0 and α1 in (4.15) become
α0(θ) = c1(θ)b1(θ) + c2(θ)b2(θ) and α1(θ) = c1(θ)b2(θ). That is to say that α0 and α1 are in
general non-constant complex continuous functions on P. Nevertheless, one should note that if
there exists a polynomial p satisfying (4.16) on P then (4.15) is fulfilled. The dependency of α0

and α1 on θ makes the analysis more difficult, and some ingredients and particular cases are
discussed in the following remarks.

Remark 4.9. If α0 and α1 are polynomials, one can see by setting d0 = d◦(α0), d1 = d◦(α1),
dp = d◦(p) and dq = d◦(q), that given dq, the number of equations and unknowns in (4.16)
are respectively max {d0 + dp, d1 + dp − 1, dq} + 1 and dp + 1. Therefore, for (4.16) to ad-
mit a polynomial solution, it is necessary that max {d0 + dp, d1 + dp − 1, dq} 6 dp, that is
max {d0, d1 − 1, dq − dp} 6 0. We infer that for the polynomial equation (4.16) to admit a solu-
tion, d0 has to be equal to zero and d1 ∈ {0, 1}. In general, one can see that under these necessary
conditions on d0 and d1, equation (4.16) admits a polynomial solution for every polynomial q with
α0(z) = ς0, α1(θ) = ς1,1θ + ς1,0 for every (ς0, ς1,1, ς1,0) ∈ C3, if and only if ς0 /∈ −ς1,1N.

In the above remark, the case whereby a ∈ −bN can be handled in some particular cases. It
is for instance, the case if the parameterization set P is a real interval, see Remark 4.11. Before
showing this, let us introduce the following remark in which α0 and α1 do not need to be necessarily
polynomials.

Remark 4.10. Let us consider the case where P = [θ0, θ1] ⊂ R with θ0 < θ1 and assume that the
continuous function α1 does not vanish on P. In this case, one can solve the ordinary differential
equation h′ = −α0

α1
h+ q

α1
. Therefore, there exists a differentiable solution h of (4.16), but h might

not be polynomial.
Now, choose for η > 0, a polynomial p̃ satisfying ‖h′ − p̃‖∞ 6 η, and set p(θ) = h(θ0) +

∫ θ
θ0
p̃(z)dz

for any θ ∈ P. We have ‖p− h‖∞ 6 η(θ1 − θ0). In addition, we have

‖α1p
′ + α0p− q‖∞ 6 ‖α0‖∞‖p− h‖∞ + ‖α1‖∞‖p̃− h′‖∞ + ‖α1h

′ + α0h− q‖∞
6 ‖α0‖∞η(θ1 − θ0) + ‖α1‖∞η.

Hence, choosing η > 0 small enough, we get ‖α1p
′ + α0p− q‖∞ 6 ε.

If α1 vanishes on P (but is not identically null on P), the solvability of (4.16) is not clear, unless α0

and α1 are polynomials. This situation is discussed in the next remark.

Remark 4.11. We also assume, as in Remark 4.10, that P = [θ0, θ1] ⊂ R, and we continue
Remark 4.9 in the case ς0 = −ς1,1N for some N ∈ N. In this case, it is not possible to get directly
a polynomial satisfying (4.16) with q(θ) = θN but thanks to the margin in (4.15), we can show
that there exists a polynomial satisfying (4.15). If α1 does not vanish on [θ0, θ1], then one can use
Remark 4.10 to conclude. But, when α1 vanishes, one cannot use Remark 4.10. The idea is then
to perturb α1 by some η such that α1 + η does not vanish, use Remark 4.10 with α1 replaced by
α1 + η, and finally pass to the limit |η| → 0.
We illustrate this strategy with N = 1, α0 = 1 and α1 = −θ (and 0 ∈ [θ0, θ1]). The other situations
can be computed similarly. For every η ∈ R∗, we set α̃1(θ) = −θ + iη, so that α̃1 does not vanish
on [θ0, θ1]. Solving the ordinary differential equation h′η = −α0

α̃1
hη + q

α̃1
=

hη−θ
θ−iη , we obtain the

particular solution3 hη(θ) = −(θ− iη) log(θ− iη) + θ, for which we have h′η(θ) = − log(θ− iη). We
now have,

|α1(θ)h′η(θ) + α0(θ)hη(θ)− q(θ)| 6 |(α1 + iη)h′η(θ) + α0(θ)hη(θ)− q(θ)|+ |ηh′η(θ)| = |ηh′η(θ)|.
3We use log to denote the principal branch of the complex logarithm.
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That is to say, |α1(θ)h′η(θ) + α0(θ)hη(θ) − q(θ)| 6 |η log(θ − iη)|. It is then easy to see that
supθ∈[θ0,θ1] |η log(θ − iη)| → 0 as |η| → 0. In particular, for every ε > 0, there exist η = η(ε) 6= 0
such that supθ∈[θ0,θ1] |α1(θ)h′η(θ) +α0(θ)hη(θ)− q(θ)| 6 ε/2. We then conclude as in Remark 4.10
by approximating hη by a polynomial p, such that h′η is also approximated by p′.

To conclude this paragraph, we consider a particular case where matrices B and C are constant
and where A is linear with respect to the parameter. The following theorem extends [29, Theorem 1]
and [41, Theorem 5] to the case of UEOC.

Theorem 4.12. Let P be a compact subset of C with empty interior and connected complement,
and let A, B and C be constant matrices. Assume that 0 ∈ P and A kerC ⊂ kerC. The system
(θA,B,C) is uniformly ensemble output controllable if and only if

rk(CAC†) = rk(CB) = q.

We recall that C† is the Moore-Penrose pseudo-inverse of the matrix C.

In the more general situation, we have the following sufficient condition.

Theorem 4.13. Let P be a compact subset of C with empty interior and connected complement.
The system (θA,B,C) where matrices A, B and C are constant is uniformly ensemble output
controllable if

rk
(
CAkB

)
= q, ∀k ∈ N. (4.17)

It has to be mentioned that condition (4.17) is not necessary. This can be seen by considering
for a non-zero complex number θ the system

P = {θ}, A(θ) = θ

(
1 1
1 0

)
, B =

(
1
0

)
and C =

(
0 1

)
.

It is straightforward that P satisfies the assumptions of Theorem 4.13 and that UEOC here is
nothing else than the state to output controllability of the above system. Through (4.1), it can be
seen that the above system is state to output controllable but rk(CB) = 0.

Proof of Theorem 4.12. Let L be the orthogonal projector in the null space of C. Therefore, we
have C†C +L = I, and since A ker(C) ⊂ ker(C), we deduce that CAL = 0. As a consequence, we
have

ẏ(t, θ) = Cẋ(t, θ) = θCAx(t, θ) + CBu(t)

= θCA
(
C†Cx(t, θ) + Lx(t, θ)

)
+ CBu(t)

= θCAC†y(t, θ) + CBu(t).

It is then clear that (θA,B,C) is UEOC if and only if (θCAC†, CB) is UEC. We then conclude
using [42, Theorem 5] (or [29, Theorem 1]).

Proof of Theorem 4.13. Let T > 0. From our discussion of Remark 3.6, the UEOC of (θA,B,C)
is equivalent to the unique continuation property

∀t ∈ [0, T ], (Φ?Tµ)(t) =

∫
P
B?eθ(T−t)A

?

C?dµ(θ) = 0 =⇒ µ = 0, (4.18)

where µ belongs toM(P). Assume now that (4.17) holds and let µ ∈M(P) such that

(Φ?Tµ)(t) = 0, ∀t ∈ [0, T ]. (4.19)
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Computing the derivatives of (4.19) with respect to t and evaluating the resulting equation at
time T , we get

B?(A?)kC?
∫
P
θ
k
dµ(θ) = 0 (k ∈ N). (4.20)

From (4.17), we infer that ∫
P
θkdµ(θ) = 0 (k ∈ N) (4.21)

and therefore that for every polynomial p,∫
P
p(θ)dµ(θ) = 0. (4.22)

To finish the proof, note that thanks to the assumptions on P and to Mergelyan’s Theorem (see
Theorem B.2), every f ∈ X(P)q can be uniformly approximated by polynomials on P. This ensures
that µ = 0.

Remark 4.14. • Let us observe that in the proof of Theorem 4.13, we use Mergelyan’s Theo-
rem to ensure than span{θ ∈ P 7→ θk | k ∈ N} = X(P). Note that if P = [α, β] ⊂ R, with
0 6 α < β, then one can use Müntz Theorem [37, Theorem 15.26] to conclude that if there
exists a set N ⊂ N such that 0 ∈ N and

∑
k∈N\{0} 1/k = ∞, then (θA,B,C) is uniformly

ensemble output controllable if rk(CAkB) = q for every k ∈ N .
• Let us however mention that Cayley-Hamilton Theorem cannot be used.

Firstly, rk(CAkB) = q, for every k ∈ {0, · · · , n − 1}, does not imply (4.20). This is for

instance the case for A =

(
0 1
0 0

)
, B =

(
1
1

)
and C =

(
1 0

)
. Indeed, on this example, we

have CB = CAB = 1 and CAkB = 0 for every k > 2.
Secondly, the previously defined matrices satisfy rk(CAkB) = q, for every k ∈ {0, · · · , n− 1}
(with q = 1 and n = 2), but the system (θA,B,C) is not uniformly ensemble output control-
lable. In fact, for every polynomial p(θ) = p0+p1θ+p2θ+· · ·+p`θ`, we have, Cp(θA)B = p0+

p1θ. Hence, we have span {θ ∈ P 7→ C(θA)kB | k ∈ N} = {θ ∈ P 7→ p0 + p1θ | p0, p1 ∈ C}
( X(P) (as soon as #P > 2).

5 More general results

In this section, we give more abstract contributions to uniform ensemble output controllability.
Before stating our results, we need to introduce the spectrum, σXn(MA), of the multiplication
operator MA : X(P)n → X(P)n associated to A. Recall that MA has been defined in (2.2). To
this end, we introduce as in [16] the set-valued spectral map specA : P  C, defined for every
θ ∈ P by

specA(θ) = σ(A(θ)).

It has been shown in [34, Lemma 7.1] (see also [20]) that the closure in C of the image of the above
spectral map is the spectrum of the multiplication operator MA. More precisely, we have

σXn(MA) =
⋃
θ∈P

σ(A(θ)).
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5.1 Uniform ensemble output controllability of parallel systems

In this paragraph we give some results on UEOC of parallel systems.

Theorem 5.1. Let P be a compact subset of C, N,m, κ ∈ N∗, n1, . . . , nN ∈ N∗, and q1, . . . , qκ ∈
N∗. For every i ∈ N∗6N we consider Ai ∈ X(P)nini , Bi ∈ X(P)nim , and for every i ∈ N∗6κ and every
j ∈ {i, . . . , N}, we consider Ci,j ∈ X(P)qinj . Let us consider the parallel system

A1

. . .
AN

,
B1

...
BN

,
C1,1 · · · · · · · · · C1,N

. . .
...

Cκ,κ · · · Cκ,N


 (5.1)

and assume that
(i) for every k ∈ N∗6κ−1 the system (Ak, Bk, Ck,k) is UEOC on X(P)qk ;
(ii) there exists r ∈ {κ, · · · , N} such that the system (Ar, Br, Cκ,r) is UEOC on X(P)qκ ;
(iii) for every k ∈ N∗6N , σXnk (MAk) is non-separating with finitely many connected components;
(iv) for every k, ` ∈ N∗6N such that k 6= `, σXnk (MAk) ∩ σXn` (MA`) = ∅.
Then the parallel system (5.1) is UEOC on X(P)q, with q = q1 + · · ·+ qκ.

The criteria in the above theorem are sufficient and not necessary. One can see from Remark 4.2
that even for finite dimensional systems, the spectral disjointness condition (iv) is not necessary.
Also, in some cases it might happen that two or many blocks of operator A share the same
eigenvalue. In the application of this theorem, one can, thanks to Proposition 2.3, perform a
permutation in the state space variable in order to gather together the blocks that share the same
eigenvalue.

To make the proof easier, we first consider the following two lemmas. More precisely, in
Lemma 5.2, we consider the case κ = N and in Lemma 5.3, we consider the case κ = 1. These two
lemmas are obviously particular cases of Theorem 5.1.

Lemma 5.2. With the notations and assumptions introduced in Theorem 5.1, with κ = N , the
parallel system 

A1

. . .
AN

,
B1

...
BN

,
C1,1 · · · C1,N

. . .
...

CN,N


 (5.2)

is UEOC on X(P)q.

Proof. The proof of this lemma follows the same arguments as the ones of [16, Theorem 1] and is
also done for the case N = 2 and m = 1, Bi = bi. The proof of the general case follows the same
arguments.

Let (y1, y2) ∈ X(P)q1 × X(P)q2 and take any ε > 0. The aim is to show that there exists a
complex polynomial p such that∥∥∥∥(C1,1p(A1)b1 + C1,2p(A2)b2 − y1

C2,2p(A2)b2 − y2

)∥∥∥∥
∞
6 ε. (5.3)

From assumption (i), there exists a complex polynomial p2 such that

‖C2,2p2(A2)b2 − y2‖∞ 6 ε.

Using the fact that any connected component of a compact set is compact, applying [16, Lemmas 7
and 8], and using assumptions (ii)–(iii), we get the existence of two disjoint compact setsK1 andK2
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which do not separate the plane and properly contain σXn1 (MA1
) and σXn2 (MA2

) respectively.
From [33] (see also [16, Lemma 9]), considering, for ` ∈ {1, 2}, the functions h` : K1 ∪ K2 → C
defined by

h1(z) =

{
1 if z ∈ K1,

0 if z ∈ K2,
and h2(z) =

{
0 if z ∈ K1,

1 if z ∈ K2,

there exist, for every ε̃ > 0, two polynomials π1 and π2 such that

|π1(z)− h1(z)| < ε̃ and |π2(z)− h2(z)| < ε̃ (z ∈ K1 ∪K2). (5.4)

From (5.4), we have

|π1(z)− 1| < ε̃ and |π2(z)| < ε̃ (z ∈ K1),
|π1(z)| < ε̃ and |π2(z)− 1| < ε̃ (z ∈ K2).

(5.5)

At this stage, the only completely known polynomial is p2. The polynomials π1 and π2 have to be
adjusted by the choice of ε̃ in order to get (5.3). Setting therefore ỹ1 = y1−C1,2p2(A2)b2, we have
by assumption (i) the existence of a complex polynomial p1, depending on p2 and y1, such that

‖C1,1p1(A1)b1 − ỹ1‖∞ 6
ε

2
⇐⇒ ‖C1,1p1(A1)b1 − y1 + C1,2p2(A2)b2‖∞ 6

ε

2
.

We now choose, as in [16], p(z) = π1(z)p1(z) + π2(z)p2(z) and show that a suitable choice of ε̃ can
be made in (5.5) so that p satisfies (5.3). For more details on the construction and properties of p,
we refer to [3].
By adding and subtracting C1,1p1(A1)b1 and C1,2p2(A2)b2 and using triangular inequality, we have

‖C11p(A1)b1 + C12p(A2)b2 − y1‖∞ 6 ‖C1,1π1(A1)p1(A1)b1 − C1,1p1(A1)b1‖∞
+ ‖C1,1π2(A1)p2(A1)b1‖∞
+ ‖C1,2π1(A2)p1(A2)b2‖∞
+ ‖C1,2p2(A2)π2(A2)b2 − C1,2p2(A2)b2‖∞
+ ‖C1,1p1(A1)b1 − y1 + C1,2p2(A2)b2‖∞ .

Let us first consider the first term on the right-hand side of this inequality. We have,

‖C1,1π1(A1)p1(A1)b1 − C1,1p1(A1)b1‖∞ 6 ‖C1,1‖∞ ‖(π1(A1)− In1
)p1(A1)‖∞ ‖b1‖∞ .

Using the Dunford-Taylor formula, that is,

g(Ak(θ)) =
1

2iπ

∫
γk

g(z)(zInk −Ak(θ))−1dz (k ∈ {1, 2}),

where g is any complex polynomial and γk consists of the union of finitely closed grid polygons
with positive direction contained in Kk \ σXnk (MAk) and such that σXnk (MAk) is in the interior
of the curve γk (see [25, Chapter 1, §5, Section 6], we also refer to [35, Chapter 12, §4] and the
discussion of [16, §6.3] for the notion of grid polygon), and (5.5), we have

‖(π1(A1)− In1
)p1(A1)‖∞ 6

1

2π

∫
γ1

|(π1(z)− 1)||p1(z)|‖(zIn1
−MA1

)−1‖dz

6
ε̃L1

2π
sup

z∈Im(γ1)

(
|p1(z)|‖(zIn1

−MA1
)−1‖

)
.
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In what precedes (and follows), Lk stands for the length of the curve γk for k ∈ {1, 2}.
From the above, we deduce by setting for k, ` ∈ {1, 2}, βk = ‖bk‖∞, νk,` = ‖Ck,`‖∞ and αk,` =
supz∈γk

(
|p`(z)|‖(zInk −MAk)−1‖

)
,

‖C1,1π1(A1)p1(A1)b1 − C1,1p1(A1)b1‖∞ 6
ε̃ν1,1β1α1,1L1

2π
,

‖C1,1π2(A1)p2(A1)b1‖∞ 6
ε̃α1,2β1ν1,1L1

2π
,

‖C1,2π1(A2)p1(A2)b2‖∞ 6
ε̃α2,1β2ν1,2L2

2π
,

‖C1,2p2(A2)π2(A2)b2 − C1,2p2(A2)b2‖∞ 6
ε̃α2,2β2ν1,2L2

2π
.

Finally, we have

‖C1,1p(A1)b1 + C1,2p(A2)b2 − y1‖∞ 6
ε̃

2π
(β1ν1,1L1(α1,1 + α1,2) + β2ν1,2L2(α2,1 + α2,2)) +

ε

2
.

We then choose ε̃ < πε (β1ν1,1L1(α1,1 + α1,2) + β2ν1,2L2(α2,1 + α2,2))
−1

:= ε̃1 to get

‖C1,1p(A1)b1 + C1,2p(A2)b2 − y1‖∞ 6 ε.

To end this proof, let us show that ε̃ in (5.5) can also be chosen in such a way that the
polynomial p satisfies

‖C2,2p(A2)b2 − y2‖∞ 6
ε

2
.

Again, by adding and subtracting C2,2p2(A2)b2 and using the triangular inequality, we get

‖C2,2p(A2)b2 − y2‖∞ 6 ‖C2,2π1(A2)p1(A2)b2‖∞ + ‖C2,2p2(A2)b2 − y2‖∞
+ ‖C2,2π2(A2)p2(A2)b2 − C2,2p2(A2)b2‖∞ .

Using the same arguments as those used for the first component of (5.3), we have

‖C2,2π1(A2)p1(A2)b2‖∞ 6
ε̃α2,1β2ν2,2L2

2π
,

‖C2,2π2(A2)p2(A2)b2 − C2,2p2(A2)b2‖∞ 6
ε̃α2,2β2ν2,2L2

2π
,

and therefore,

‖C2,2p(A2)b2 − y2‖∞ 6
ε̃

2π
β2ν2,2L2(α2,1 + α2,2) +

ε

2
.

We then choose ε̃2 < πε (L2β2ν2,2(α2,1 + α2,2))
−1

:= ε̃2 to get

‖C2,2p(A2)b2 − y2‖∞ 6 ε.

We finally get (5.3), by choosing ε̃ ∈ (0,min{ε̃1, ε̃2}) in (5.5).

Lemma 5.3. Using the notations of Theorem 5.1, with κ = 1, assume that
(ii’) there exists r ∈ N∗6N such that (Ar, Br, Cr) is UEOC on X(P)q;
(iii’) the sets σXnr (MAr ) and

⋃N
k=1
k 6=r

σXnk (MAk) are non-separating, with finitely many connected

components;
(iv’) σXnr (MAr )

⋂⋃N
k=1
k 6=r

σXnk (MAk) = ∅.
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Then the system 
A1

. . .
AN

,
B1

...
BN

, (C1 · · · CN
)

is UEOC on X(P)q.

Remark 5.4. Let us first mention that in Lemma 5.3, condition (iv’) is not necessary. To see
that, let us go back to the example of Figure 1, with the parameters given in Section 7. More
precisely, we consider (2.1) with P, A, B and C given by (7.1),

P = [0, 1], A(θ) =


0 1 0 0
0 −θ 0 0
0 0 0 1
0 0 0 −2θ

 , B =


0 0
1 0
0 0
0 1

 , C =
(
0 1 0 −1

)
.

On this simple example with two blocks in matrix A, one can see that the spectral disjointness
condition (iv’) is not fulfilled. Keeping in mind the Hautus Test consequence (3.1), it can also be
readily seen that the system (A(θ), B) is not uniformly ensemble controllable since 0 ∈ σ(A(θ))
for every θ ∈ P. But performing a permutation in the state space variable, one can see that the
uniform ensemble output controllability of (7.1) is equivalent to the one of (θÃ, B̃, C̃) where Ã =(
−1 0

0 −2

)
, B̃ =

(
1 0
0 1

)
, C̃ =

(
1 −1

)
. Therefore, the uniform ensemble output controllability

of system (7.1) follows from Theorem 4.13.
This example also gives a contrast between UEC and UEOC. Here, we can see that the system is
UEOC while the matrix A(θ) admits a constant eigenvalue. This is an obstruction to UEC.

Proof of Lemma 5.3. The proof is done for m = 1, that is the case where the operator B is a
column vector that will be denoted by b. In addition, we assume without loss of generality that
(A1, b1, C1) is UEOC on X(P)q. The aim is to show that for every y1 ∈ X(P)q and every ε > 0,
there exists a complex polynomial p such that∥∥∥C1p(A1)b1 + C̃p(Ã)b̃− y1

∥∥∥
∞
6 ε, (5.6)

where

Ã =

A2

. . .
AN

, b̃ =

 b2
...
bN

, C̃ =
(
C2 · · · CN

)
.

Since (A1, b1, C1) is UEOC by assumption, there exists a complex polynomial p1 such that

‖C1p1(A1)b1 − y1‖∞ 6
ε

2
.

Using (iii’) and (iv’) and following the proof of Lemma 5.2, one can construct two dis-
joint non-separating compact sets K1 and K2 strictly containing σXn1 (MA1) and σXñ(MÃ) =⋃N
k=2 σXnk (MAk) respectively, where ñ =

∑N
k=2 nk. Design now π1 as in (5.5) and choose p = p1π1.

To finish the proof, write∥∥∥C1p(A1)b1 + C̃p(Ã)b̃− y1
∥∥∥
∞
6 ‖C1p1(A1)π1(A1)b1 − C1p1(A1)b1‖∞

+
∥∥∥C̃p1(Ã)π1(Ã)b̃

∥∥∥
∞

+ ‖C1p1(A1)b1 − y1‖∞
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and use the same arguments as in the proof of Lemma 5.2 to design a suitable ε̃ > 0 for (5.5) and
therefore an adequate approximation of h1, the indicator function of K1, so that the polynomial p
satisfies (5.6).

We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. We take N = 3 and κ = 2 in which case (5.1) becomesA1

A2

A3

,
B1

B2

B3

, (C1,1 C1,2 C1,3

C2,2 C2,3

) . (5.7)

The general case follows using the same arguments.
Set now

Ã2 =

(
A2

A3

)
, B̃2 =

(
B2

B3

)
, C̃1,2 =

(
C1,2 C1,3

)
and C̃2,2 =

(
C2,2 C2,3

)
.

With these new notations, (5.7) becomes((
A1

Ã2

)
,

(
B1

B̃2

)
,

(
C1,1 C̃1,2

C̃2,2

))
.

Using assumptions (ii)–(iv) and Lemma 5.3, we deduce that the system (Ã2, B̃2, C̃2,2) is UEOC
on X(P)q2 .
Finally, note that σXn1+n2 (MÃ2

) = σXn2 (MA2
) ∪ σXn3 (MA3) has finitely many connected compo-

nents, does not separate the plane, thanks to [16, Lemma 7], and does not intersect σXn1 (MA1),
by assumption. Therefore, since the subsystems (A1, B1, C1,1) and (Ã2, B̃2, C̃2,2) are UEOC, the
UEOC of (5.7) follows from Lemma 5.2.

5.2 Diagonalization of the state matrix A into Jordan blocks form

From Theorem 5.1 and keeping in mind Proposition 2.3, it seems natural to look for the situation
whereby the system (A(θ), B(θ), C(θ)) can take the form (5.1). To this end, we introduce as in [16]
the following definitions and notations.
A set valued map Γ : P  C is said to be a partial spectral map, if for every θ ∈ P, Γ(θ) ⊂ σ(A(θ)),
and is said to be continuous if it is continuous with respect to the Hausdorff metric. A single-valued
partial spectral map will be referred to as an eigenvalue selection and will be denoted by λ : P → C.
Two partial spectral maps Γ1 and Γ2 are said to be pointwise disjoint if Γ1(θ)∩Γ2(θ) = ∅ for every
θ ∈ P and strictly disjoint if Γ1(P) ∩ Γ2(P) = ∅. Finitely many continuous partial spectral maps
Γ1,· · · , ΓN are called a continuous spectral decomposition of A if for every θ ∈ P,

N⋃
k=1

Γk(θ) = σ(A(θ)).

Continuous spectral decomposition always exists. In fact, one can take for instance the trivial
decomposition Γ(θ) := σ(A(θ)). If Γ1,· · · , ΓN are single-valued, then the spectral decomposition
will be said to be single valued and if they are pairwise pointwise disjoint (resp. pairwise strictly
disjoint), then the spectral decomposition will be said to be pointwise disjoint (resp. strictly
disjoint).

The following result has been given in [16, Proposition 2] (see [16, Section 6.2] for its proof).
In this proposition, the parameter set P will be required not only to be compact but also to be
contractible. For a better understanding of these assumptions on P, we refer to [19].
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Proposition 5.5. Assume that P is compact and contractible and that there exists a continuous
spectral decomposition Γ1, · · · ,ΓN of A which is pointwise disjoint. Then, there exists a continuous
family of regular matrices T (θ) such that

T (θ)−1A(θ)T (θ) =

A1(θ)
. . .

AN (θ)

 , (5.8)

where, for every k ∈ N∗6N , Ak are continuous matrices and for every θ ∈ P, σ(Ak(θ)) = Γk(θ).

Unless otherwise stated in this paragraph, we assume that A admits a continuous spectral de-
composition Γ1, · · · ,ΓN which is pointwise disjoint. With the assumption made in Proposition 5.5
on the set P, the matrix A is continuously transformed in the block diagonal form as in Lemma 5.3.
The matrix B is transformed in T−1B and can be expressed as the one of Lemma 5.3. Indeed,
let us define Πk :=

(
0 . . . 0 Ink 0 . . . 0

)
∈ Cnkn , where nk is the number of rows of the

Jordan block Ak. We then have Ak(θ) = ΠkT (θ)−1A(θ)T (θ)Π?
k, and set Bk(θ) := ΠkT (θ)−1B(θ)

and Ck(θ) := C(θ)T (θ)Π?
k. Performing this transformation, the following result follows from

Lemma 5.3.

Theorem 5.6. Assume that P is compact and contractible and that the operator A admits a
continuous strictly disjoint spectral decomposition Γ1,· · · , ΓN . Assume also that for every k ∈ N∗6N
the image of the partial spectral map Γk, that is Γk(P), does not separate the plane.
If there exists an integer r ∈ N∗6N such that the subsystem (Ar, Br, Cr), where Ar, Br, Cr are
defined above, is UEOC then system (2.1) is uniformly ensemble output controllable on X(P)q.

Proof. Note that under the assumptions of the above proposition, all the assumptions of Lemma 5.3
are satisfied. Using the fact that there exists an integer r ∈ N∗6N such that the subsystem
(Ar, Br, Cr) is UEOC on X(P)q, we deduce from Lemma 5.3 that the system (T−1AT, TB,CT )
where T is the continuous invertible transformation given by (5.8) is uniformly ensemble out-
put controllable on X(P)q. Since (T−1AT, TB,CT ) is obtained by applying to system (2.1) an
invertible transformation in the state space variable and the uniform output ensemble controlla-
bility is preserved under such a transformation (see Proposition 2.3), system (A,B,C) is therefore
uniformly ensemble output controllable on X(P)q.

Theorem 5.6 provides conditions which are sufficient, but not necessary. For instance, let us
consider the following simple example.

Example 5.7.

P = [1, 2], A(θ) =

θ 0 0
0 −2θ 1
0 0 −2θ

, B =

 θ
3θ
θ

, C =

(
θ 1 2θ
2θ 1 2

)
.

The block diagonal elements of A which are A1 = θ and A2 =

(
−2θ 1
0 −2θ

)
satisfy the spectral

disjointness condition. But setting B1 = θ, B2 =

(
3θ
θ

)
, C1 =

(
θ
2θ

)
, C2 =

(
1 2θ
1 2

)
, we have

C = (C1, C2) and one can readily see that none of the subsystems (Ak, Bk, Ck) is uniformly
ensemble output controllable. Nevertheless, by the end of this paragraph, see Example 5.10, we
will see that the above system is UEOC.
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Observe through (4.1) that, for finite dimensional systems, the state to output controllability
property is preserved under a left multiplication of the output variable equation by an invertible
matrix. This observation still holds in the case whereby the parameter set P is a compact continuum
as it was shown in Proposition 2.3. Therefore, the following theorem follows immediately from
Theorem 5.1.

Theorem 5.8. Assume that P is compact and contractible and that A admits a continuous spectral
decomposition Γ1, · · · ,ΓN which is strictly disjoint. Also, assume that for every k ∈ N∗6N the image
of the partial spectral map Γk, that is Γk(P), does not separate the plane. Finally, assume that
there exists a continuous invertible transformation M such that

MCT =

C1,1 · · · · · · · · · C1,N

. . .
...

Cκ,κ · · · Cκ,N

 , (5.9)

for some κ ∈ N∗6N , and where T is the linear continuous and invertible transformation given in
Proposition 5.5.
The system (A,B,C) is UEOC on X(P)q if
(i) for every ` ∈ N∗6κ−1 the system (A`, B`, C`,`) is UEOC on X(P)q` ;
(ii) there exists r ∈ {κ, · · · , N} such that the system (Ar, Br, Cκ,r) is UEOC on X(P)qκ .

In the above items, we recall that Ak(θ) = ΠkT (θ)−1A(θ)T (θ)Π?
k and Bk(θ) := ΠkT (θ)−1B(θ).

Remark 5.9. Note that if the first q columns of the matrix CT are linearly independent for every
θ ∈ P, then the linear continuous invertible transformation M exists. One can just consider M
to be the inverse of the q × q matrix obtained by extracting the q first columns of CT . But the
continuous and invertible transformation M does not exist in general. Indeed, for P = [−1, 1], let
us consider the matrix CT to be

(CT )(θ) =



(
f(θ) cos(θ) 1 0

f(θ) sin(θ) 0 1

)
if θ 6 0,(

f(θ) sin(θ) 1 0

f(θ) cos(θ) 0 1

)
if θ > 0,

where f is a continuous function which vanishes only at θ = 0. As defined above, one can see that
the matrix CT is continuous on P, its first column vanishes in 0 and for every θ ∈ P, we have
rk(CT (θ)) = 2. Also, all the matrices M such that MCT takes the form of (5.9) are of the form,

M(θ) =



(
? ?

−h(θ) sin(θ) h(θ) cos(θ)

)
if θ < 0,(

? ?

−g(θ) cos(θ) g(θ) sin(θ)

)
if θ > 0.

A necessary condition for M to be continuous on P is that M has to be continuous in 0. This
implies h(0) = g(0) = 0. But h(0) = g(0) = 0 leads to the non invertibility of M for θ = 0. All in
all, the continuity of M and its invertibility are not compatible.

To end this paragraph, let us show that the system given in Example 5.7 is uniformly ensemble
output controllable.
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Example 5.10 (Example 5.7 continued). Setting M =

(
1 0
−2 1

)
, we have MC =

(
C1,1 C1,2

0 C2,2

)
,

with C1,1 = θ, C1,2 =
(
1 2θ

)
and C2,2 =

(
−1 2(1− 2θ)

)
. Observe now that the system

(A,B,MC) takes the form of (5.2) with N = 2 and

(A1, b1, C1,1) = (θ, θ, θ),

(A2, b2, C2,2) =

((
−2θ 1

0 −2θ

)
,

(
3θ
θ

)
,
(
−1 2(1− 2θ)

))
.

From Theorem 4.5 we deduce that (A1, b1, C1,1) is uniformly ensemble output controllable. Using
Remark 4.10, one can also check that (A2, b2, C2,2) is uniformly ensemble output controllable.
Furthermore, the spectrum of A1 and A2 which are respectively [1, 2] and [−2,−4] are compact,
connected, strictly disjoint and do not separate the plane. It therefore follows from Theorem 5.8
that the system considered in Example 5.7 is uniformly ensemble output controllable.
Let us illustrate numerically this fact. To this end, we set x0(θ) =

(
θ −θ

√
θ
)>

, y1(θ) =
(
0 0

)>
and T = 1. For the numerical approximation, we follow the strategy proposed in [27, Section 2.2],
and the dynamical system is solved using Crank–Nicolson method with a time step of 10−3. It
appears that 4 values of θ are enough to get a final error less than ε := 10−1. To obtain these three
values, we have used a greedy search. More precisely, assume that at step k the set of parameters
used is Pk, then the corresponding ensemble control uk is construct using parameters in Pk. At
step k+ 1, we consider Pk+1 = Pk ∪{θk+1}, with θk+1 ∈ argmaxθ∈P

∥∥y1θ − y(T, θ; x0, uk)
∥∥. For the

example considered, we have obtained P4 = {1, 1.363, 1.803, 2}. On Figure 2, the output at final
time is displayed, and on Figure 3, the obtained control is displayed. On Figures 4 and 5, we have
respectively displayed times trajectories for the output and the state, for some values of θ ∈ P .
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θ

[y1]1(·) y1(T, ·)
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0

0.05

0.1

1 1.2 1.4 1.6 1.8 2
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[y1]2(·) y2(T, ·)

Figure 2: Output at final time for the ensemble controllability problem described in Example 5.10.

5.3 Uniform ensemble output controllability of cascade systems

Let us conclude Section 5, with another particular structure which is cascade systems. For this
structure, we have the following general result.

Theorem 5.11. Let P be a compact subset of C, N ∈ N∗, m1, . . . ,mn ∈ N∗, n1, . . . , nN ∈ N∗,
and q1, . . . , qN ∈ N∗. For every i ∈ N∗6N and every j ∈ {i, . . . , N}, we consider Ai,j ∈ X(P)ninj ,
Bi,j ∈ X(P)nimj and Ci,j ∈ X(P)qinj .
Assume that the triples (Ak,k, Bk,k, Ck,k) are UEOC on X(P)qk for every k ∈ N∗6N . Then the
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Figure 3: Control obtained for the ensemble controllability problem described in Example 5.10.
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Figure 4: Time evolution of the output for some values of the parameter θ. The ensemble control-
lability problem is described in Example 5.10.

cascade system
A1,1 · · · A1,N

. . .
...

AN,N

,
B1,1 · · · B1,N

. . .
...

BN,N

,
C1,1 · · · C1,N

. . .
...

CN,N




is UEOC on X(P)q, with q =
∑N
k=1 qk.

Proof. The proof is done for N = 2. The general case follows the same argument.
When N = 2, the system (2.1) takes the form

ẋ1(t, θ) = A1,1(θ)x1(t, θ) +B1,1(θ)u1(t) +A1,2(θ)x2(t, θ) +B1,2(θ)u2(t), (5.10a)
ẋ2(t, θ) = A2,2(θ)x2(t, θ) +B2,2(θ)u2(t), (5.10b)
y1(t, θ) = C1,1(θ)x1(t, θ) + C1,2(θ)x2(t, θ), (5.10c)
y2(t, θ) = C2,2(θ)x2(t, θ). (5.10d)

Denote by ϕk, k = 1, 2 the output solution of the system

ẋk(t, θ) = Ak,k(θ)xk(t, θ) +Bk,k(θ)uk,
ϕk(t, θ) = Ck,k(θ)xk(t, θ).
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Figure 5: Time evolution of the state for some values of the parameter θ. The ensemble controlla-
bility problem is described in Example 5.10.

Let (f1, f2) ∈ X(P)q1 × X(P)q2 and take any ε > 0. We aim to show that there exists a time
T > 0 and a control u such that the output solution (y1, y2) of (5.10) satisfies max

{
‖y1(T, ·; 0, u)−

f1‖∞, ‖ϕ2(T, ·; 0, u)− f2‖∞
}
6 ε.

Since the system (A2,2, B2,2, C2,2) is UEOC on X(P)q2 , for every time T > 0, there exists a θ-
independent control u2 such that

‖ϕ2(T, ·; 0, u2)− f2‖∞ 6 ε.

From (5.10c), we have
y1(T, θ; 0, u1) = ϕ1(T, θ; 0, u1) + f̃(θ),

with

f̃(θ) = C1,1(θ)

∫ T

0

e(T−t)A1,1(θ) (A1,2(θ)x2(t, θ) +B1,2(θ)u2(t)) dt+ C1,2(θ)x2(T, θ).

Since (A1,1, B1,1, C1,1) is UEOC on X(P)q1 , then for the function f1−f̃ , there exists a θ-independent
input u1 such that ∥∥∥ϕ1(T, ·; 0, u1)− f1 + f̃

∥∥∥
∞
6 ε.

We end the proof by taking the control u =
(
u>1 u>2

)>.
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6 Application of uniform ensemble output controllability to

averaged controllability

In this section, we link the notion of uniform ensemble output controllability to the one of averaged
controllability. As far as we know, the notion of averaged controllability has been introduced in [48].
In the above mentioned paper, the author considers a pair (A(θ), B(θ)) where θ ∈ (0, 1), and
investigates conditions under which, given a control time T > 0 any initial state x0 ∈ Rn (which
can depend on θ) and any x1 ∈ Rn, there exists a θ-independent control u such that the state of
this system satisfies

∫ 1

0
x(T, θ) dθ = x1. The author shows, in particular, that this control task can

be achieved if and only if rk
(∫ 1

0
A(θ)kB(θ) dθ, k ∈ N

)
= n. Also, the averaged controllability of

some class of PDE has been investigated in the same paper. Many other results on PDE have been
obtained and can be found for instance in [4, 5, 12, 31]. Dealing with the numerical aspect of the
averaged controllability, we refer to [1, 27].

In this paper, the following definition borrowed from [16] will be considered.

Definition 6.1. Let µ be a Borel probability measure on P. The system (2.1) is said to be
averaged controllable, if for any y1 ∈ Cq, there exist a time T > 0 and a control u ∈ L1([0, T ];Cm)
such that ∫

P
y(T, θ; 0, u) dµ(θ) = y1,

where y(T, ·; 0, u) ∈ X(P)q is the output solution of (2.1) with 0 as initial state data and u as input.

It has been shown in [16] that a necessary and sufficient condition for averaged controllability is

rk

(∫
P
C(θ)A(θ)kb`(θ)dµ(θ), k ∈ N, ` ∈ N∗6m

)
= q. (6.1)

Moreover, it was shown in [16, Proposition 9 and Corollary 5] that if the pair (A(θ), B(θ)) is
uniform ensemble controllable, and if there exist θ1, · · · , θk in the support of the measure µ such
that rk

(
C(θ1) . . . C(θk)

)
= q then system (2.1) is averaged controllable.

As a contribution to this topic, we have the following simple result which does not require
uniform ensemble controllability of the pair (A(θ), B(θ)).

Proposition 6.2. The system (2.1) is averaged controllable if it is uniformly ensemble output
controllable on X(P)q.

Proof. To begin with, note that since the output space is of finite dimension, there is equivalence
between averaged controllability and the fact for any y1 ∈ Cq and any ε > 0, there exist a time T
and an input u ∈ L1([0, T ];Cm) such that∣∣∣∣∫

P
y(T, θ; 0, u) dµ(θ)− y1

∣∣∣∣ 6 ε.
This last property is termed as approximate averaged controllability in [16].
To end the proof, it suffices to write∣∣∣∣∫

P
y(T, θ; 0, u) dµ(θ)− y1

∣∣∣∣ =

∣∣∣∣∫
P

(y(T, θ; 0, u)− y1) dµ(θ)

∣∣∣∣ 6 ‖y(T, ·; 0, u)− y1‖∞ .
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Remark 6.3. Going back to the cars example given by (7.1) in Section 7, one can see that
with the criteria given in [16, Proposition 9 and Corollary 5], nothing can be inferred on the
averaged controllability of this system since it is not uniformly ensemble controllable. But with
Proposition 6.2, we can infer that this system is averaged controllable because it is uniformly
ensemble output controllable.

Example 6.4 (Averaged controllability for Example 5.7). As stated in Example 5.10, the system
given in Example 5.7 is UEOC. Hence, according to Proposition 6.2, it is also averaged controllable.

We numerically illustrate this fact by taking the same parameters as the ones used in Exam-
ple 5.7, and we consider the measure µ given by dµ(θ) = dθ. For the numerical experiment, we use
the strategy proposed in [27, Section 2.1]. In particular, we use the Crank–Nicolson method for
the numerical resolution of the dynamical system (the time step is set to 10−3), and the mid-point
rule for the computation of the average (the step is also set to 10−3). On Figure 6, we display the
values of θ 7→ y(T, θ), on Figure 7, we display the computed control. Finally, on Figures 8 and 9,
we give some time trajectories for some values of θ for the output and the state respectively.
Let us mentioned that the norm of the control obtained for the averaged control problem is smaller
than the one obtained for the ensemble control problem described in Example 5.10. Let us also
mention that we could have used the strategy proposed in [30] to get a control that both solves
the averaged and the ensemble control problem.
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Figure 6: Output at final time for the averaged controllability problem described in Example 6.4.
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Figure 7: Control obtained for the averaged controllability problem described in Example 6.4.

To conclude this section, let us consider the case whereby µ = (1/N)
∑N
k=1 δθk where

for every k, θk ∈ P and δθk stands for the Dirac measure located in θk. In this case
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Figure 8: Time evolution of the average of the outputs, and of some outputs for different values of
the parameter θ. The averaged controllability problem is described in Example 6.4.
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Figure 9: Time evolution of some states for different values of the parameter θ. The averaged
controllability problem is described in Example 6.4.

∫
P y(T, θ; 0, u) dµ(θ) = (1/N)

∑N
k=1 C(θk)x(T, θk; 0, u) and the averaged controllability of sys-

tem (2.1) with this measure is equivalent to the state to output controllability of the finite
dimensional system (4.3), with matrices A, B and H given by
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A =

A(θ1)
. . .

A(θN )

 , B =

B(θ1)
...

B(θN )

 , H =
(
C(θ1) . . . C(θN )

)
.

Let us set

W = Im

C(θ1)?

...
C(θN )?

 ∩ N∏
k=1

 ⊕
λ∈σ(A(θk))

Eθk,λ

 ,

where Eθk,λ is defined just below equation (4.8). The following proposition can be deduced from
the proof of Proposition 4.1.

Proposition 6.5. Assume that the following assumptions hold:
(i) for every k 6= l, σ(A(θk)) ∩ σ(A(θl)) = ∅,
(ii) rk

(
C(θ1) . . . C(θN )

)
= q and W = {0}.

Then system (2.1) is averaged controllable with probability measure µ = 1
N

∑N
k=1 δθk .

The following corollary is a direct consequence of the above proposition.

Corollary 6.6. Assume that the assumption (i) of Proposition 6.5 is fulfilled, and assume there ex-
ists k0 ∈ N∗6N such that (A(θk0), B(θk0), C(θk0)) is state to output controllable. Then system (2.1)
is averaged controllable with probability measure µ = 1

N

∑N
k=1 δθk .

Proof. It suffices to show that the assumption (ii) of Proposition 6.5 if satisfied. To this end, let us
assume, without loss of generality, that (A(θ1), B(θ1), C(θ1)) is state to output controllable. In this
case, we have rkC(θ1) = q and the necessary condition rk

(
C(θ1) . . . C(θN )

)
= q is satisfied.

Hence, it remains to show that W = {0}. Let us take z =
(
z>1 . . . z>N

)> ∈ W. There exists
η ∈ Cq such that zk = C(θk)?η ∈

⊕
λ∈σ(A(θk))

Eθk,λ for every k ∈ N∗6N . Since by assumption
(A(θ1), B(θ1), C(θ1)) is state to output controllable, then Im(C(θ1)?) ∩

⊕
λ∈σ(A(θ1))

Eθ1,λ = {0}
which implies that η = 0 and that W = {0}.

From the above proof, note that if C(θk) = pθkIn, where pθk , satisfying 0 < pθk < 1 and∑N
k=1 pθk = 1, is the probability for having θ = θk, then we have

W = {0} ⇐⇒
N⋂
k=1

 ⊕
λ∈σ(A(θk))

Eθk,λ

 = {0}.

It follows that if at least one of the pairs (A(θk), B(θk)) is state controllable then system (2.1) with
µ =

∑N
k=1 pkδθk is averaged controllable.

7 The example of Figure 1

Let us go back to the two cars example given in Figure 1. For the sake of simplicity, we take
m1 = m2 = 1, f1 = −θv1, f2 = −2θv2, where vk stands for the speed of the k-th car and θ living
in P = [0, 1]. Let us set as output y(t) = v1(t) − v2(t). We also set pk the position of the k-th
car. Setting x = (p1, v1, p2, v2)>, u = (u1, u2)>, the state of the system coupled with the output
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variable y yields (2.1) with

P = [0, 1], A(θ) =


0 1 0 0
0 −θ 0 0
0 0 0 1
0 0 0 −2θ

 , B =


0 0
1 0
0 0
0 1

 , C =
(
0 1 0 −1

)
. (7.1)

It has already been said in Remark 5.4 that this system is uniformly ensemble controllable.
From this property, one can conclude that it is also averaged controllable (see Remark 6.3).

The aim of this section is to propose a numerical illustration of this fact. For the numerical
experiments, we follow the strategy proposed in [27, Section 2]. More precisely, for averaged
controllability, we follow [27, Section 2.1], and for uniform ensemble controllability, we follow
[27, Section 2.2]. Dealing with the uniform ensemble controllability, it appears that few values
of θ are enough to get a final error less than a prescribed ε > 0. As title of example, for the
system considered in this section with the parameters given below, only two values of θ were
enough (that are 0 and 0.394). To obtain these two values, we have used a greedy search. More
precisely, assume that at step k the set of parameters used is Pk, then the corresponding ensemble
control uk is built using parameters in Pk. At step k + 1, we consider Pk+1 = Pk ∪ {θk+1}, with
θk+1 ∈ argmaxθ∈P

∥∥y1θ − y(T, θ; x0, uk)
∥∥.

We use the Crank–Nicolson method for the numerical resolution of the dynamical system (the
time step is set to 10−3), and the mid-point rule for the computation of the average (the step is
also set to 10−3). Let us then consider the final time T = 2, the initial condition and output target

x0(θ) =


1
−θ2
1− θ
cos θ

 and y1(θ) = 0 (θ ∈ P).

For the uniform ensemble controllability, we fix ε = 10−1, and for the averaged controllability we
will consider that µ is the Lebesgue measure. The obtained results are displayed on Figures 10
to 12 for the uniform ensemble output controllability and on Figures 13 to 15 for the averaged
controllability.
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0 0.2 0.4 0.6 0.8 1
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y1(·) y(T, ·)

Figure 10: Final time output, for the uniform ensemble output controllability of the two cars
example (see Figure 1). Parameters are given in Section 7.

Let us finally mention that the L2-norm of the control obtained for ensemble output control-
lability is 0.8554 while the one for averaged output controllability is 0.3484. This is expected as
soon as ε > 0 is small enough. More precisely, for ε > 0 small enough, the L2-norm of the minimal
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Figure 11: Minimal L2-norm control for uniform ensemble output controllability of the two cars
example (see Figure 1). Parameters are given in Section 7.

L2-norm averaged control is below the L2-norm of the minimal L2-norm ensemble control, with
threshold ε.

8 Conclusion

In this paper, we have introduced the notion of uniform ensemble output controllability (UEOC) of
the system (A(θ), B(θ), C(θ)) which is a generalization of uniform ensemble controllability (UEC)
of the pair (A(θ), B(θ)). We have also extended some results on UEC. In particular, we have
shown that if the set of parameters θ has an interior point with respect to the topology of C,
then the pair (A(θ), B(θ)) cannot be uniformly ensemble controllable if A admits a real eigenvalue
or if its components are differentiable. Also, some necessary and sufficient conditions have been
given to ensure the UEC or UEOC in some particular case. Finally, an application to averaged
controllability has been given.

A Technical lemmas

In this Appendix, we state some results on the existence of a local continuous eigenvalue and
eigenvector associated to matrix A (Lemmas A.2 and A.4). We also propose Lemma A.1 giving
some regularity properties of convergent sequences of sums of holomorphic functions multiplied by
regular (but not necessarily holomorphic) functions. Since we were not able to locate these results
in the literature, we provide them here.

The following result will be useful for the proof of Theorem 3.1.

Lemma A.1. Let D ⊂ C be a compact set with nonempty interior, k ∈ N∗ and f1, · · · , fk be k
continuous functions defined on D and of class C2k+1 in the interior of D. Assume that for every
` ∈ N∗6k, there does not exist a nonempty open O ⊂ D such that f`|O ∈ H(O)+

∑k
j=1,s 6=` fj |OH(O).

Then for every
ϕ ∈ H(D) + f1H(D) + . . .+ fkH(D),

there exists a closed ball D0 included in D on which ϕ is of class Ck+1. Moreover, we have
ϕ|D0 ∈ H(D0) + f1|D0H(D0) + . . .+ fk|D0H(D0).

Proof. We give a proof in the case k = 1. The general case can be done following the same
arguments.
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Figure 12: Time dependent trajectories for uniform ensemble output controllability of the two cars
example (see Figure 1). Parameters are given in Section 7.

Let us set R(D, f1) := H(D) + f1H(D). By assumption, f1 is three times differentiable and is
not holomorphic in any open subset of D. Take ϕ ∈ R(D, f1). By definition, there exists a
sequence (ϕn)n in R(D, f1) that converges uniformly on D to ϕ. Exploiting the fact that for
every n, ϕn belongs to R(D, f1), we deduce that for every n, ϕn is three times differentiable and
takes the form ϕn = ϕ0

n + f1ϕ
1
n where (ϕ0

n, ϕ
1
n) ∈ H(D) × H(D). Setting ∂ = ∂

∂z , ∂ = ∂
∂z and

L =
(
∂f1
)
∂
2 −

(
∂
2
f1

)
∂, we have in the interior of D

ϕn = ϕ0
n + f1ϕ

1
n ⇐⇒ ∂ϕn = ϕ1

n∂f1.

This is because ∂ϕ0
n = ∂ϕ1

n = 0. Since f1 is not holomorphic in any open subset of D, there exists
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Figure 13: Final time output for averaged controllability of the two cars example (see Figure 1).
Parameters are given in Section 7.
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Figure 14: Minimal L2-norm control for averaged controllability of the two cars example (see
Figure 1). Parameters are given in Section 7.

an open ball O ⊂ D such that for every z ∈ O, ∂f1(z) 6= 0. We therefore have 1
∂f1

∂ϕn = ϕ1
n on O.

Applying ∂ to this relation, we get(
∂f1
)
∂
2
ϕn −

(
∂
2
f1

)
∂ϕn = 0,

that is to say that
Lϕn = 0 on O. (A.1)

From the above, it should also be noticed that since f1 is not holomorphic in any open subset
of D, if Lϕn = 0 in O then for every compact set K ⊂ O, we have ϕn|K = h0n + f1|Kh1n for some
functions h0n, h1n ∈ H(K).
From (A.1), we deduce that for any infinitely differentiable function ψ supported in O,

〈Lϕn, ψ〉 = 〈ϕn, L?ψ〉 = 0, where L? =
(
∂f1
)
∂2 + 3

(
∂2f1

)
∂ + 2∂3f1. (A.2)

Using the fact that (ϕn)n converges uniformly to ϕ, we deduce from (A.2) that 〈ϕ,L?ψ〉 = 0
in the weak sense. Observing first that the coefficients of the uniformly elliptic operator L are
differentiable, and second that the coefficients of the adjoint operator L? are continuous and third
that the function ϕ belongs to L∞(O), we infer from [9, Theorem 2.2] that for any compact at
a positive distance from the complementary of O, the function ϕ is three times differentiable.
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Figure 15: Time dependent trajectories for averaged controllability of the two cars example (see
Figure 1). Parameters are given in Section 7.

Therefore, there exists an open subset of O on which Lϕ = 0 in the classical sense. Bearing in
mind the observation made below (A.1), it follows that there exists a compact set K ⊂ O on which
ϕ takes the form h0|K + f1|Kh1|K for some h0, h1 ∈ H(K).

Theorem 2.2 of [9] shows that Lemma A.1 remains true if the functions f1, · · · , fk are of the
class C2k,1, that is to say that these functions belong to the space of continuous functions whose
derivatives up to 2k are continuous and the derivative of order 2k + 1 is essentially bounded.
Indeed, to apply [9, Theorem 2.2] we only need the coefficient of the adjoint operator L? to be
essentially bounded.
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Lemma A.2. Let P ⊂ C be a compact with non-empty interior, and assume for some k ∈ N
that A is of class Ck in the interior of P. There exist an interior point θ0 to P and δ0 > 0 such
that A admits an eigenvalue of class Ck on Bθ0(δ0), and there exists a left eigenvector of class Ck
associated to the selected eigenvalue.

Proof. 1. Existence of local continuous eigenvalue selection.
Define for every θ ∈ P and ν ∈ C,

f(θ, ν) = det (A(θ)− νIn) . (A.3)

By definition and using the continuity of A, it follows that f(θ, ν) is continuous with respect to θ
and holomorphic with respect to ν.
Since P has interior point, let V be a non-empty open subset of P and set

k0 = min {nz | z ∈ σ(A(θ)), θ ∈ V} ,

where nz, for every z ∈ σ(A(θ)), is the algebraic multiplicity of z in the characteristic polynomial
of A(θ). Since {nz | z ∈ σ(A(θ)), θ ∈ V} is a finite subset of N∗, k0 exists and is positive. Let θ0
be an element of V in which k0 is achieved. Let d be the distance4 between λ0 and σ(A(θ0)) \ {λ0}
and choose ε1 ∈ (0, d). Finally, let γ be a smooth closed curve inside Bλ0(ε1), separating strictly
λ0 with the other zeros of f(θ0, ·).
By the construction of γ, f(θ0, ·) does not vanish on Im γ. Hence, there exists η > 0 such that

min
z∈Im γ

|f(θ0, z)| > 2η. (A.4)

Since f(θ, z) is continuous with respect to θ and holomorphic with respect to z, f is uniformly
continuous on the compact set P × Im γ. Consequently, we infer that

∃δ0 > 0 such that ∀ (θ, z) ∈ Bθ0(δ0)× Im γ, |f(θ0, z)− f(θ, z)| 6 η. (A.5)

It then follows from (A.4) and (A.5) that for every θ ∈ Bθ0(δ0), we have

|f(θ, z)| = |f(θ, z)− f(θ0, z) + f(θ0, z)| > |f(θ0, z)| − η > η, ∀z ∈ Im γ. (A.6)

We infer from (A.5) and (A.6) that for every θ ∈ Bθ0(δ0) and every z ∈ Im γ,

|f(θ0, z)− f(θ, z)| < |f(θ, z)|.

Using Rouché’s Theorem (see Theorem B.3), we infer that for every θ ∈ Bθ0(δ0), the function
f(θ, ·) admits k0 roots inside Im γ counted with multiplicities. From the above, we deduce that
#σ(A(θ)) ∩ Bλ0

(ε1) = 1 for every θ ∈ Bθ0(δ0). If not, there would exist on V an eigenvalue
of A with algebraic multiplicity strictly less than k0, and this would undermine the choice of θ0.
Let us now define λ to be the map that associates every θ ∈ Bθ0(δ0) to the element of σ(A(θ))
located in Bλ0

(ε1). By construction, for every θ ∈ Bλ0
(ε1), the algebraic multiplicity of λ(θ) in

the characteristic polynomial of A(θ) is exactly k0.
The selection λ is also continuous on Bθ0(δ0). From the previous discussion, we already know that
#σ(A(θ̃)) ∩ Bλ0

(ε1) = 1 for every θ̃ ∈ Bθ0(δ0). That is to say that f(θ̃, ·) admits one and only
one zero in Bλ0(ε1), and this zero is λ(θ̃). Let θ ∈ Bθ0(δ0). We aim to show that for every ε > 0
small enough, there exists δ > 0 such that |λ(θ̃) − λ(θ)| < ε as soon as |θ̃ − θ| < δ. For every
ε > 0 such that Bλ(θ)(ε) ⊂ Bλ0

(ε1), using the previous estimates, there exists δ > 0 such that
|f(θ, z) − f(θ̃, z)| < |f(θ, z)| for every θ̃ ∈ Bθ(δ) and every z ∈ ∂Bλ(θ)(ε), where δ can be chosen

4We use the convention that the distance to an empty set is in�nite.
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small enough, such that Bθ(δ) ⊂ Bθ0(δ0). Hence, Rouché’s Theorem leads to the existence of a
zero of f(θ̃, ·) in Bλ(θ)(ε) for every θ̃ ∈ Bθ(δ). That is to say that |λ(θ̃) − λ(θ)| < ε as soon as
|θ̃ − θ| < δ.
Until now, we have shown that the matrix A admits on Bθ0(δ0) a continuous eigenvalue λ with
constant algebraic multiplicity k0, that is, for every θ ∈ Bθ0(δ0),

∂`νf(θ, λ(θ)) = 0, ∀` ∈ N<k0 and ∂k0ν f(θ, λ(θ)) 6= 0. (A.7)

Observe that if k = 0 in Lemma A.2 then we would have done with the proof of the existence of a
continuous eigenvalue.
Assume now that k > 1. In this case, since A is k times differentiable, then the function f defined
by (A.3) is k times differentiable with respect to θ and holomorphic with respect to ν.
Taking θ = θ0 in (A.7), we deduce, by applying the implicit functions theorem to the function
∂k0−1ν f , that there exist ε > 0, a neighbourhood Γλ(θ0) of λ(θ0) and a differentiable function ϕ
such that ϕ(θ0) = λ(θ0) and

∀(θ, λ) ∈ Bθ0(ε)× Γλ(θ0), ∂k0−1ν f(θ, λ) = 0⇐⇒ λ = ϕ(θ). (A.8)

Relations (A.7) and (A.8) show that by reducing δ0, if necessary, λ if differentiable on Bθ0(δ0).
Let us set g(θ) = ∂k0−1ν f(θ, λ(θ)) for every θ ∈ Bθ0(δ0). The function g is differentiable on Bθ0(δ0)
and since g(θ) = 0 for every θ ∈ Bθ0(δ0) we have ∂θg(θ) = 0 leading to

∂θ∂
k0−1
ν f(θ, λ(θ)) + λ′(θ)∂k0ν f(θ, λ(θ)) = 0.

Using the fact that ∂k0ν f(θ, λ(θ)) 6= 0 for every θ ∈ Bθ0(δ0) (see (A.7)), it follows from the above
identity that for every θ ∈ Bθ0(δ0),

λ′(θ) = −∂θ∂
k0−1
ν f(θ, λ(θ))

∂k0ν f(θ, λ(θ))
. (A.9)

From (A.9) it can be seen that λ is also k times differentiable on Bθ0(δ0).

2. Local continuous selection of a left eigenvector.

Let K be a closed ball included in Bθ0(δ0). By construction of λ, the matrix (A(θ)?−λ(θ)In)k0 has
constant rank n−k0 on K and is continuous. Using (B.1.b) of Theorem B.1, we deduce that there
exists a Ck function v such that v(θ) 6= 0 for every θ ∈ K satisfying (A(θ)? − λ(θ)In)k0v(θ) = 0.
If k0 = 1, then v? is a left eigenvector associated to λ. If k0 > 1, choose the smallest ` such that
(A(θ)?− λ(θ)In)`v(θ) = 0 for every θ ∈ K. Setting ζ(θ) = (A(θ)?− λ(θ)In)`−1v(θ), it follows that
there exists θ1 ∈ K such that ζ(θ1) 6= 0. By the continuity of ζ, there exists δ1 > 0 such that for
every θ ∈ Bθ1(δ1) ⊂ K, ζ(θ) 6= 0. Therefore, ζ? is a left eigenvector of class Ck associated to λ
on Bθ1(δ1).

Let us give the following remark which is used in the proof of Theorem 3.1.

Remark A.3. One should also note that if λ is assumed to be one-to-one on Bθ0(δ0), then
λ : Bθ0(δ0) 7→ λ(Bθ0(δ0)) is a homeomorphism. Therefore, we can always find an open set O
included in λ(Bθ0(δ0)) on which λ−1 is of class Ck.

The following lemma is used in the proof of Theorem 3.7.

Lemma A.4. Let P ⊂ C be a compact with non-empty interior, and let A be a continuous n× n
matrix on P satisfying σ(A(θ)) ∩ R 6= ∅ on some nonempty open subset O ⊂ P. Then there exist
θ0 ∈ O and δ0 > 0 such that A admits a continuous real eigenvalue selection on Bθ0(δ0).
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Proof. Define
k0 = min {nz | z ∈ σ(A(θ)) ∩ R, θ ∈ O} ,

where nz is the algebraic multiplicity of z in the characteristic polynomial of A(θ). Since by assump-
tion, σ(A(θ))∩R 6= ∅ for every θ ∈ P, and thanks to the fact that {nz | z ∈ σ(A(θ)) ∩ R, θ ∈ O}
is a finite subset of N∗, k0 exists and is positive. Let θ0 be an element of O in which k0 is achieved,
and let λ0 ∈ σ(A(θ0)) ∩ R such that nλ0

= k0. Setting m0 =
∑
z∈σ(A(θ0))∩R nz, we have

m0 6 n and m0 > k0 # (σ(A(θ0)) ∩ R) .

Define d to be the distance5 between λ0 and σ(A(θ0)) \ {λ0} and choose ε ∈ (0, d).
Using Rouché’s Theorem (see Theorem B.3), we deduce, as in the 1st step of the proof of
Lemma A.2, that there exists δ > 0 such that for every θ ∈ Bθ0(δ),

∑
z∈σ(A(θ))∩Bλ0 (ε)

nz = k0.
Two situations can arise6.

(s1) There exists δ0 6 δ such that for every θ ∈ Bθ0(δ0), we have σ(A(θ)) ∩Bλ0
(ε) ∩ R 6= ∅.

(s2) There exists θ10 ∈ Bθ0(δ) such that σ(A(θ10)) ∩Bλ0(ε) ∩ R = ∅.

If (s1) occurs, proceeding as in the 1st step of the proof of Lemma A.2, we can ensure that
# (σ(A(θ)) ∩Bλ0

(ε)) = 1 for every θ ∈ Bθ0(δ0). We then define λ to be the map which associates
each element of Bθ0(δ0) to the unique element of σ(A(θ)) ∩ Bλ0

(ε) ∩ R. Finally, as it has been
done in the 1st step of the proof of Lemma A.2, one can show, by using Rouché’s Theorem (see
Theorem B.3), that λ is continuous on Bθ0(δ0).
If (s1) does not occur, then (s2) occurs, we get by applying Rouché’s Theorem, the existence of
δ1 > 0 such that Bθ10 (δ1) ⊂ Bθ0(δ) and for every θ ∈ Bθ10 (δ1), σ(A(θ)) ∩Bλ0

(ε) ∩ R = ∅.
In this case, set P1 = Bθ10 (δ1) and define

k1 := min {nz | z ∈ σ(A(θ)) ∩ R, θ ∈ P1} .

Let θ1 be an element of P1 in which k1 is achieved.
From the above, we have by setting m1 =

∑
λ∈σ(A(θ1))∩R nλ,

k0 6 k1 and k1 # (σ(A(θ1)) ∩ R) 6 m1 6 n− k0.

We then restart the process by making θ1 play the role of θ0, P1 the role of P0 := O and k1 the
one of k0.
Iterating this process ` times, we get the existence of ` distinct complex numbers θj , ` sets Pj
satisfying Pj+1 $ Pj , θj ∈ Pj \Pj+1, ` integers kj such that kj 6 kj+1 and ` integers mj such that
1 6 kj # (σ(A(θj)) ∩ R) 6 mj 6 n − jk0. Since by assumption σ(A(θ)) ∩ R 6= ∅ for every θ ∈ P,
we necessarily end in (s1) since the process has to stop at most after n iterations. Therefore, a
continuous selection of real eigenvalue is possible.
To sum up, we have shown that there exist θ0 interior to P, δ > 0 such that Bθ0(δ) ⊂ P and on
Bθ0(δ), A admits a continuous real eigenvalue λ (with constant algebraic multiplicity).

B A list of classical results

We recall here some fundamental mathematical theorems used in our paper.
5We use the convention that the distance to an empty set is in�nite.
6Note that (s1) and (s2) can occur simultaneously, but if (s1) does not occur, then (s2) occurs.
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Theorem B.1 ([19, Theorem 3.8], [42]). Let X be a topological space that is Hausdorff, para-
compact and contractible. Let M : X → Y k

` be a continuous map with the property that for some
r0 ∈ {0, · · · ,min{k, `}}, we have rk(M(z)) = r0 for every z ∈X .
(B.1.a) There exist a continuous map M0 : X → U(k,Y ) and a continuous map N0 : X → Y k

r0
such that for all z ∈X ,

M(z)M0(z) =
[
N0(z) | 0k`−r0

]
. (B.1)

(B.1.b) If X has a structure of a real, finite-dimensional, differentiable manifold of class C` and
if M ∈ C`, ` ∈ N, then there exist C` mappings M0 : X → U(k,Y ) and N0 : X → Y k

r0
such that (B.1) holds.

Let us point out that the contractibility of K is very important in this theorem. For instance,
let us consider on K = S2 =

{
(x1, x2, x3) ∈ R3 |

∑3
k=1 x

2
k = 1

}
the unit outer normal vector

M(x) =
(
x1 x2 x3

)
. It can be easily seen that S2 is compact and simply connected, and for

every x ∈ S2, rkM(x) = 1. But the matrix M0 does not exist. Indeed, if M0 existed, then its
second and the third column would be in the tangent bundle of S2 and non-zero everywhere. But
it is well-known that this is impossible (see e.g. [23, Corollary 2.4, p.134]).

Theorem B.2 ([37, Theorem 20.5]). If K is a compact set in the plane whose complement is
connected, and if f is a continuous complex function which is holomorphic in the interior of K,
then for every ε > 0, there exists a complex polynomial p such that |f(z) − p(z)| < ε for every
z ∈ K.

Theorem B.2 is due to Mergelyan and known as Mergelyan’s Theorem. Also, the ongoing
discussion in [37] shows that if K has empty interior then the conclusion holds for every continuous
function on K.

Theorem B.3 ([18, Rouché’s Theorem, p.229]). Let D be a bounded domain with piecewise smooth
boundary ∂D. Let f and g be holomorphic functions on D ∪ ∂D. If |f(z)− g(z)| < |f(z)| on ∂D,
then f and g have the same number of zeros inside D, counting multiplicities.
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