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ON THE INVERSION OF SUBSURFACE RESIDUAL STRESSES FROM SURF ACE STRESS MEASUREMENTS

Matter removal is necessary in order to measure the stress tensor at an interior point of a solid by means of X-ray diffraction. This induces stress redistribution so that the measured stress is different from the original residual stress. This paper addresses the problem of reconstructing the original stress field from the measurements. A method of solution is described for the reconstruction problem, which leads to explicit inversion formulae for the case of some simple geometries. Closed-form expressions are obtained for the two-and three-dimensional half-space. For bodies of arbitrary shape, a numerical algorithm is proposed.

t Or, more generally, the inherent strain or stress-free strain field.

INTRODUCTION

Residual stresses play a significant role in the mechanical behavior of structures. For example, they can decrease or increase the apparent fatigue strength of a mechanical component. They can be a simple by-product of the manufacturing process (for example, in a drawn wire) or they can be induced on purpose by means of a special treatment (for example, shot-peening or rolling).

One experimental method has proved to be particularly efficient to measure residual stresses : that is, X-ray diffraction. This technique allows the measurement of an average of all components of the stress tensor at the surface of a polycrystalline metal. The average is taken over a small material volume. The technique applies provided certain material conditions (such as small grain size, little plastic deformation, no texture) are fulfi lled. The major sources of experimental error are generally well known. An extensive presentation can be found in Prevey (1981). It was proved by [START_REF] Maeder | Present possibilities for the X-ray diffrac tion method of stress measurement[END_REF] that this technique is accurate enough for the majority of engineering problems.

It is obvious that X-ray diffraction does not allow direct measurements at interior points of a solid. In practice, layers at the surface of the solid are removed to reach the considered points. To minimize the risk of modifying the plastic strain fieldt at the origin of the residual stress field, chemical etching is the preferred removal tech nique. The point is that, even if the plastic strain field is not modified by matter removal, there is an elastic redistribution of the residual stress field. Thus, the mea-sured stress tensor after removal is generally different from the original residual stress tensor at the corresponding point. Therefore, the main problem in residual stress analysis by means of X-ray diffraction is : how can the original stress (before matter removal) be related to the surface measured stress (after matter removal)?

Exact expressions relating the original residual stress field to the surface stress measurements have been obtained only for the following cases:

• Solid cylindrical bar with rotationally symmetric stresses independent of the axial coordinate z [exact integral expression, [START_REF] Moore | Mathematical correction for stress in removed layers in X-ray diff raction residual stress analysis[END_REF]].

• Solid cylindrical bar with stresses independent of the z-coordinate but varying along the angular coordinate 8 [approximate integral expression for stresses varying "smoothly" with 8, [START_REF] Moore | Mathematical correction for stress in removed layers in X-ray diff raction residual stress analysis[END_REF]].

• Hollow cylinder with rotationally symmetric stresses independent of the z-coor dinate [exact integral expression, [START_REF] Moore | Mathematical correction for stress in removed layers in X-ray diff raction residual stress analysis[END_REF]].

•Flat plate with stresses varying only along the thickness of the plate [exact integral expression in the framework of plate theory, [START_REF] Moore | Mathematical correction for stress in removed layers in X-ray diff raction residual stress analysis[END_REF]].

•Hollow cylinder (tube) with rotationally symmetric stresses possibly varying along the z-coordinate [exact infinite series expression, [START_REF] Nishimura | On axisyrnmetric residual stresses in tubes with longitudinally nonuniform stress distribution[END_REF]].

The cases treated have a special geometrical symmetry and the residual stress fi eld depends only on one space variable, with the exception of Nishimura ' s problem (which is two-dimensional).

This paper addresses the general problem of expressing the original stresses as functions of surface-measured stresses in the case of a solid of arbitrary shape con taining an arbitrary three-dimensional distribution of residual stresses for which no a priori information is available. In Section 1, some classical questions regarding this problem are examined through simple illustrative examples. In Section 2, explicit inversion formulas for the two-dimensional and the general three-dimensional half space are developed. In Section 3, the general problem for an arbitrary geometry is considered. The quantity of measurements necessary to reconstruct the original residual stress fi eld in a given part of the solid is investigated, or, equivalently, the conditions under which the problem is mathematically well posed are given. Finally, an algorithm for the numerical reconstruction of the original stresses from the X-ray surface measurements is also proposed.

Similar problems (inverse problems connected to residual stresses measurements) have already been studied. [START_REF] Cheng | Examination of the computational model for the layer-removal method for residual stress measurement[END_REF] have inverted the original residual stresses in a plate from strain gauge records on one side of a plate when layers are removed on the other side. [START_REF] Gao | On the inversion of residual stresses from surface displacements[END_REF] have inverted the residual stress field outside the plastically strained zone from surface displacements.

GENERALITIES AND EXAMPLES

In the sequel, n is a linear elastic solid with a residual stress field <1 (the original stresses). Let n, be the solid after matter removal at instant t (fictitious time parameter) and am be the stress fi eld at the surface of n, (the measured stresses). Note that am is a function of two spatial coordinates on the surface of n, and oft. Our fundamental assumption is: the relaxation of the remaining part 0. of n after the removal of 0\0. is elastic.

Stress redistribution

In this section, an example where matter removal induces a large stress redis tribution is presented.

Let n be a free elastic plane-strain half-space containing a plast ic inclusion in Eshelby's sense.t The inclusion is infinite along y with size [-0.5, 0.5] x {0, 10) in the (x, z) plane (see Fig. Let us suppose that infinite layers of uniform thickness are removed. Considering the thickness h of the removed layer as fictitious time parameter, it can be noted that Oh is a half-space with a plastic inclusion of the same form. Closed-form formulae for the stress field induced b� a rectangular inclusion in an elastic plane-strain half-space are presented in the Appendix. Therefore, the original stress field 11(x, z), as well as the measured surface stress field a"'(x, h) can be obtained from ( 40 It can be observed that the two curves are very different. This illustrates that matter removal may induce a strong stress redi stribution and the measurements after removal have no reason to agree with the original stress distribution.

Another example

Considering the previous example and Fig. 2, one could expect to find a method to compute the original stress evolution along z (dashed curve) just from the measured t The inclusion has the same elastic moduli as the half-space. stress evolution along z (unbroken curve). Another simple example will show that it is impossible.

Let us consider the elastic plane-strain half-space with plastic inclusions of the same geometry as previously: (-5.5, -4.5] x (0, 10) and (4.5, 5.5] x [O, 10) (see Fig. 3). ef and a� denote the plastic strain fields (still assumed homogeneous) corresponding to inclusions I and 2. These plastic strain tensors have the form matter removal process as in the fi rst example, the measured stress distribution vanishes identically on the z-axis. This example proves that there is not enough information in the measured stress distribution along a line to reconstruct the initial stress distribution along this line.

ls it necessary to remove matter?

There is another question of interest : is the matter removal absolutely necessary? In other terms, is it possible to reconstruct the interior stress field from only original stresses on the surface of Q? It is well known that the answer is no. However, a proof through a simple example shall be given.

Let Q be a free elastic ball of radius r0 with Lame constants A. and µ. We consider a given plastic strain tensor field llP whose expression in the spherical coordinate system (r, (), <P) is

[-2e P(r) llP(r) = 0 0 (1)
where c;P is a constant. It can easily be checked that the corresponding displacement fi eld u is given by 2µeP (r0 -r)2r u,(r, (), <P) = ,--- 2 , 11.+ µ r2 . 0 u8(r, (), </>) = u q,(r, (), <P) = 0 and that the corresponding residual stress fi eld is

( () ,1..) = 2µ(3A.+2µ)eP (r0-r)2 Urr r, ' ' f' , 2 ' 11.+ µ r o ( () ,1.. ) _ ( () ,1.. ) _ 2µ(3 A. + 2µ) e P (r0 -r)(r0 -2r) Uee r, , 'f' -<lq,q, r, , 'f' - A.+2 2 ' µ r o
<1,e (r, e, </>) = <1,q, (r, (), </>) = <leq, (r, (), <P) = 0.

(2)

(3)

It can be remarked that this residual stress fi eld vanishes (a= 0) on the free surface (r = r0) whereas it does not vanish identically inside the ball (in fact, in this example, the displacement field also vanishes on the free surface). This stress field is an example of a nonidentically vanishing residual stress field which is identically zero on the free surface.

The consequence is: X-ray analysis of subsurface residual stresses with no a priori information on the residual stress field is necessarily destructive.

In other terms, there is not enough information in the surface residual stress field to evaluate the stress fi eld inside the solid.

THE HALF-SPACE PROBLEM

In this section, n is a free elastic half-space with rectangular coordinate system (x, y, z). Infinite layers of uniform thickness h are removed. Therefore, nh is also a free half-space. The surface stress distribution am(x, y, h) is measured on the free surface of nh. The two-dimensional case first and then the general three-dimensional problem are presented.

The two-dimensional case

In this section, all the fields are independent of y. Therefore, a"' = a"'(x, z), a= a(x, z).

Let us consider three elastic problems (see Fig. 4).

(4)

•Problem l (equilibrium ofO): the free half-space with plastic strain field eP(x,y, z) (which is not known) and free surface. The stress field a sat i sfies: (5)

•Problem 2 (equilibrium of Oh): the free half-space with the plastic strain field aP(x,y,z) (z �h).The stress field on the free surface is a"'(x,y,h).

•Problem 3 (auxiliary problem): the elastic half-space with no plastic strain field and surface forces equal to <1(x,y,h) • n. The stress field is denoted by �(x,y,z) (z � h).

From the superposition principle, it follows that a(x,y,h) = a"'(x,y,h)+�(x,y,h). The solution of the auxiliary problem is straightforward provided the stress field produced by a surface line loading of an elastic half-space (Boussinesq's problem) is given. This can be found for example in [START_REF] Johnson | Contact Mechanics[END_REF] or deduced from the half space Green's function [START_REF] Mindlin | Force at a point in the interior of a semi-infinite solid[END_REF]) after having taken carefully the limit in sense of generalized functions. For a surface line loading f of the form

fx (x,y,z) = fx b(x)b(z), fy(x,y,z) = 0, f,(x, y, z) = fzb(x)b(z),
where b( ) is Dirac's generalized function, the stress field at the surface of the half space is 2 fx

(1)

CT xx (X, 0) = -----;-P.v. ;: -f,b(x), CT x ,(X, 0) = -fxb(x), CT zz (x, 0) = -f,b(x), (7) 
where P.v.(1/x) is the generalized function: principal value of 1/x. Using equation ( 6), this result leads to

CT xx (x,z)=CT':' x (x,z)+-P.v. xz ', dx'+CT,z(x,z), 2 f +oo CT (x' z) n x-x -00 CT x y(x,z)=u';'y(x,z)+-P.v. y z ' , dx', 1 f+oo CT (x' z) n x-x -00
CTyy(x,z)=CT�(x,z)+-P.v.

xz ', dx'+2vCT zz(x,z). 2v

I +oo CT (x' z) n x-x -00
Therefore, u is the solution of the system: with the following boundary conditions :

O CT xx + O CT xz = O O X oz ' O CT x y + O CTy z = O ox oz ' O CT xz O CTzz -+ -=0 ox 
(8) (9)
CTxz(X, 0) = 0, CTyz(X, 0) = 0, CTzz(X, 0) = 0.

(10) System ( 9) can be solved explicitly by use of the one-dimensional Fourier transform. Let us define it by f + oo f (s) = -00 f ( x') e-2inx' s dx' .

(11)

The application of the Fourier transform in the sense of generalized functions to system (9) gives the following system of ordinary differential equations :

au a : z (s,z) = -4nlslrJxz(s,z)-2insrJzz(s,z)-2insrJ';'x(s,z),

QUzz • - O Z (s, z) = -2InSCT xz(S, z),
ffxx(s,z) = ff;x ( s,z)-2i sgn (s)rJxz(s,z)+rJzz(s,z).

The corresponding boundary conditions, deduced from (10), are

ffxz(s, 0) = rJzz(s, 0) = 0.
The unique solution of system ( 12) is found to be rJxx(s,z) = rJ ':' x (s,z)-I: 4n\sl e-2 nls l (z -z ') rJ ':' x(s,z ' ) d z'

(12)

+ I: 4n2 s 2 ( z-z ' ) e-2n l s l (z-z') rJ';' x ( 

2 i z f + oo ( x-x') 4-3( x-x') 2 ( z -z') 2 er ( xz)=crm ( xz)+- xx ' xx ' [( ')2 ( ')2]3 n o -oo x-x + z-z (13) 
x [ cr':'x ( x', z')-cr';'x ( x, z')] dx' dz',

4 i z f +oo ( x-x')3 ( z-z')-( x-x') ( z-z')3 er ( x z) = - xz ' n 0 _00 [ ( x-x')2+ ( z-z')2]3
x [ a;x ( x', z')cr';'x ( x, z') ] dx' dz',

_ � l' f+<>o 3 ( x-x')2 ( z-z')2 -( z-z') 4 O'z z ( x, z) - n o -co [ ( x-x')2+ ( z-z')2] 3 x [ u;x ( x', z')-�x ( x, z')] dx' dz'. (14)
All the integrals in ( 14) are regular improper integrals.

To complete the determination of a, the remaining equations of system (9) can also be solved using the same technique and one obtains:

1 fz f+oo ( x-x')2-( z-z')2 (j xz =u' !'. xz +- xy ( ' ) x A ' ) [( ')2 ( ')2]2 n o -oo x-x + z-z x [a;y ( x', z')-u ;y ( x, z')] dx' dz', 2v iz f+oo ( x-x')2-( z-z')2 u xz =umxz +- yy ( ' ) yy { ' ) n o -oo [ ( x -x ')2 + ( z-z')2] 2 x [ � x ( x', z')-�x ( x, z')] dx' dz', 2 i z f+oo ( x-x') ( z-z') u y , ( x, z) = - [ �y ( x', z')-u'.;' y ( x, z')] dx' dz', 1t o -oo [ ( x-x')2+ ( z-z')2 ] 2 (15)
where vis Poisson ' s ratio of the material. It is clear that ( 14) and ( 15) allow us to compute a from �. As an illustration, let us come back to the example of Section 1.1 and compute a on the z-axis from �u sing ( 14). Results are reported in Fig. 5. It should be emphasized that to reconstruct a ( O, 0, z), not only am ( O, 0, z) (the plotted curve) but the whole field � ( x', y ',z') ( z' � z) has been used.

The three-dimensional problem

In this section am ( x, y, z) is an arbitrary three-dimensional field. To proceed as previously, the auxiliary problem must be solved first. In order to do so, the expression of the surface stress produced by a point force loading fat the surface of a half-space is needed. General expressions can be found, for example, in Mindlin (1 936).

After having taken the limit in the sense of generalized functions, we get: ( 16)

axxCx, y ,O) = _ f x [(l -2 v)P.v. ( x ) +3vP.v. ( x 3 )] n J x 2 + y 2 3 J x 2 + y 2 s -2 3vP v J, [ ( x z y )] n • • Jx 2 +y 2 s fz [ ( x 2 -y 2 )] l + 2v + -2 (l -2 v ) P.v. --2 -JzJ (x)b(y) , n (x z + y 2 ) 2 fx [ ( x y 2 )] ayy(x, y ,0) = --3vP.v. 5 n Jx z +y z _ fy [c1-2v)P.v.( Y )+3vP.v.( Y 3 )] n J x 2 + y 2 3 J x z + y 2 s fz [ ( y 2 -x 2 )] 1+2v + -2 (l-2 v) P.v. --2 -JzJ (x) b(y), n (x 2 + y 2 ) 2 O'zz(x, y , 0) = -fz J(x)b(y) ,
As previously, we can derive a system of equations fulfi lled by the components of the original stress field a : 00' xx 0 0' xy 0 0' xz -+-+-=0 ox oy oz ' 00' xy 0 0' yy 0 0' yz -+-+-=0 ox oy oz • O<lxz O<Tyz O<fzz Q -+-+ --O X o y az -' axx ( x , y , z ) = a:' x( x , y ,z ) + � P.v. f+ oo f+oo [ (l -2v ) x -x ' (1-2v ) <T2z (x , y , z ) dx dy , 1

J + oo J + oo [ (x-x' ) (y-y' ) J / 1 , / n -oo -oo (( x-x' ) 2+ (y-y' ) 2 ) 2
with the following boundary conditions:

<T x z ( X , 0) = O"y z (X, 0) = O" zz (X, 0) = 0.
(17 ) (18 )

Obtained by exactly the same technique as in Section 2 . 1, the solution of system (l 7 )

is:

I f + 00 f + 00 iz { [ 1 3 J axxC x ,y, z ) =a;x (x,y,z ) + 2 (1-2v ) -3 - , 2 n -oo -oo o R R (R+z-z ) + - + +----- [ l5 (x-x' ) 4 l2(x-x' ) 2 6 ( x-x' ) 2 l2 (x-x' ) 2 J R 7 R5 R3 (R+z-z' ) 2 R2 (R+z-z' ) 3 -(( x-x' ) 4 +2v (x-x' ) 2( y-y' ) 2 ) x [ R5 (R: z-z' )2 + R4(R+ 6 z-z' ) 3 + R3 (R+ 6 z-z' ) 4 ] } x [a;x (x' ,y', z' ) -a;x (x , y , z' ) ] dx' dy' d z' + _1_ J +00 J + oo f z {o +lv ) [ 3( x-x' ) (y-y' ) + 6 ( x-x' )(y-y' ) ] n -oo -oo Jo R3(R+z-z' ) 2 R2(R+z-z' ) 3 + [ l5 (x-x' ) 3 (y-y' ) _ 6 ( x-x' ) (y-y' )
] R 1 R s -((x-x' ) 3 (y-y' ) +2v (x-x' )(y -y' ) 3 )

x [ R5 (R: z-z' ) 2 + R4 (R+ 6 z-z' ) 3 + R3 (R+ 6 z-z' ) 4 ] } x [a;y (x',y' , z' ) -a;y (x,y, z' ) J dx' dy' d z' + -

(1-2v )

I f + oo f + oo i z { [ 3 J 2 n -oo -oo o R (R+z-z' ) 2 + + -- [ l5 (x-x' ) 2( y-y' ) 2 3( z-z' ) 2 3 J R 7 R s R3
-(( x-x' ) 2( y-y' ) 2 +2v (y-y' ) 4 )

x [ 3 + 6 + ---6 -- J

[ 6(y-y')2 12(y-y') 2 ]} ' ' ' ' ' ' ' +2v + [ a;' y (x ,y ,z )a;' y (x ,y,z )] dx dy dz, R3(R+z-z') 2 R 2 (R+z-z')3

1 I +oo I +oo rz {[ 1 3(z-z') 2 J uxy(x,y,z) = u:' y(x,y,z) + 2n -oo -oo J o R3 -R s +4v + + ------ [ 3(x-x') 2 (y-y') 2 6(x -x ') 2 (y-y') 2 6(x-x') 2 (y-y') 2 R 5 (R+z -z') 2 R4(R+z-z')3 R3(R+z-z')4 + _ l _ 3 ]} [ u';' y(x1 ,y' ,z1)-u';' y(x,y,z1) ] dx' dy' dz' R3 R(R+z-z') 2 ( 1 9) + _!__ I +oo f + oo r {[3(x-x' )(y-y')J _2 v [ 3(x-x')(y-y') + 6(x-x')(y-y')J} 2n -ro -ro Jo R 5 R3(R+z-z' ) 2 R 2 (R+z-z')3
x [ (u';' x(x' ,y' , z') -u';' x(x, y, z')) + ( �(x' , y' , z')a;' y (x, y, z'))] dx' dy' dz' + _!__ f+ oo f+oo fz 2v [ 3(x-x 1 )(y-y') + 6(x-x')(y-y') + 6(x-x')(y-y')] 2noooo o R 5 (R+z-z') 2 R4(R+z-z')3 R3(R+z-z')4

x [ (x-x') 2 (u:' x(x' ,y' , z')-u';' x(x,y, z' ))+ (y-y') 2 (�(x' ,y' , z' ) a;' y(x, y,z'))] dx' dy' dz' , ( 20) uyy(x,y, z) = uxxCx, y, z) with all x and y interchanged,

_ _!__ J+oo f+oo fz [ 1 5 (x-x')3(z-z') 6(x-x')(z-z')]

O" xz (x,y,z) -+ 2n

7 -R s -oo -oo o R
x [ <r;x(x' ,y1 , z1)u';' x(x,y,z1)] dx' dy' dz'

+ _!__ f+ oo f+oo fz [ 30(x-x') 2 (y 1 -y')(z-z') -3(y-y') 5 (z-z')] 2n -oo -oo o R R x [ u�(x1 ,y1 , z1)-<r;y(x,y ,z1)] dx' dy' dz' + _!__ f+ oo f+ oo rz [ 15 (x-x')(y � y')2(z-z') -3(x-x') 5 (z-z')] 2n -oo -oo J o R R x [ �(x' ,y' ,z')-�(x,y,z')] dx' dy' dz' , (22) 
O"yz(x,y, z) = O" xz (x,y,z) with all x and y interchanged, (23) 

_ _!__ f+ oo f+oo i z [ 15(x-x') 2 (z-z') 2 _ 3(z-z') 2 ] ���rj -+ 2 7 5 n -oo -ro o R
:(z-z ' )2 -3( z- 5 z ' )2 ] -oo -oo Jo R R
x [u;'.;,(x', y',z' ) -u;'.;, (x,y,z' ) ] dx' dy' d z ', where R = j(x-x' )2 + (y-y' )2 +( z-z' )2 .

(24 )

Formulae ( 19) -( 24) are explicit inversion formulae for the genera l three-dimensional problem in the particular case of the ha l f-space geometry. Simp l e inspection of these results leads to the follo wing conclusions for the half-space geometry :

• To reconstruct the original stress fi eld a, one needs to kno w the whole field um on each intermediate surface. This represents of course a large number of measurements but it is the nature of the mathematica l problem itself.

• I f the measured stress fi eld um appears to be independent of the spatial coordinate y, it can be seen from formulas (19 ) -( 24) that then the original stress fi eld is also independent of y and formulas of the previous section are recovered. Thus, the initial assumption (if um is independent of y then a is also independent of y ) of Section 2.1 is proved.

• I f the measured stress um appears to be i ndependent of the two spatial coordinates x and y , there is no stress redistribution due to the removal of the l ayers (i.e. u( x,y,x ) = um (x,y,z ) ).

THE GENERAL PROBLEM

. Description of the problem

I n this section, n0 is an elastic body of arbitrary shape supporting the original residual stress fi eld a. We suppose that matter removal is a continuous process depending on a fi ctitious time parameter t (0 � t � T), generating a sequence of bodies n, of boundary an1• S, denotes the part of an, which is exposed during this process (S, is the complementary of an, n an0 in an,) (see Fig. 6 ) . Let (a: , p , y) be a curvilinear coordinate system on n0 such that: • The coordinate lines parametrized by y are perpendicular to the surfaces S, (0::::; t::::; T).

• On each surface S , , the coordinate y remains constant and equal tot . • The coordinate lines y are every where perpendicular to the others (a: and p ) . n( a: ,p ,t) denotes the outward unit normal to an,; this vector f i eld is defined all over no \nT as Well as On ono.

The measured stress field u"' is assumed to be known on each surface S, (0 ::::; t ::::; T) and such that \:/ te [O , T] am(a , p , t)

• n( a: , /3 , t) = 0.

(

) 25 
The fundamental hypothesis is, as in the half-space problem, that the stress relax ation in nt due to the removal ofno\nt is elastic.

As previously, three elastic problems at instant t are considered (see Fig. 7):

• Problem 1: equilibrium ofn0• The stress field is a( a , /3 , y) , fulfilling the equilibrium equation div a( a , /3 , y) = 0.

(26)

• Problem 2: equilibrium of n,. The stress field on the free surface S, is u"'( a: , p , t). • Problem 3: auxiliary problem. Tractions a( a , /3 , t)

• n( a: , /3 , t) are imposed on the boundary ofn , , supposed to be initially at rest. a ' (a: , p , y) (y � t) denotes the resulting stress field in n, , fulf i lling div a ' (a , p , y) = 0 y � t.

(

) 27 
Problem 3 is purely elastic, whereas problems 1 and 2 involve the inelastic strain field (assumed to be identical in both cases as a consequence of the elastic relaxation hypothesis) which is the source of the stress field. From the superposition principle, it is readily seen that \:/ te [O , T] a( a , /3 , t) = u"'( a , p , t) +a ' (a , /3 , t).

(28)

For the half-space problem, the key point was the explicit solution of the auxiliary problem. I n the general problem, such an explicit solution is not available. Ho wever, the splitting in three elastic problems will help to prove the follo wing results: and is the stress field resulting in n, with surface tractions equal to o � ' l t ' �t (a ' ' . n)(tx, {3, t) on S, and to 0 on o O,\S,. Recalling (3 2) , these surface tractions are completely determined by the field a"'.

Being the solution of an elastic Neumann problem, the stress field :i, I , , � , a " (tx, /3 , y) (0 � t � y � T)

(3 4)

exists and is unique if and only if the resultant of the surface tractions resultant as well as their resultant moment vanish. Therefore, for a given field a m of measured stress such as (25) in 00 \Or, the field :i, I , , � , a " (tx, {3, y) (0 � t � y � T)

(3 5)

exists and is unique if and only if:

\f t E [O, 11 f h(ct, /3 , t) div a m (tx, {3, t) dS, = 0, ( 3 6) 
s, \ftE[0,J1 f OM(ct,{3,t) /\ (h(ct,{3,t)diva"'(ct,{3,t))dS,=0, (3 7)

s,

where 0 is any fixed point in the space and M(tx, {3, y) is the current point of integration.

Moreover, this field is fully determined by the field a"'.

The existence and uniqueness of a in 00\0r under the conditions (3 6) and (3 7) is, then, a consequence of (28) , which may be written as:

Let us make some comments on the above result. It is clear that (3 6) and (3 7) will not help for a potential numerical solution of the problem. However, the problem itself may be slightly modified to make these conditions vanish. Indeed, if instead of letting the body n0 be free during the matter removal process, a small part of its boundary (if possible far from the removed part) is kept fixed, one may assume that the stress relaxation will be only slightly influenced. Considering this hypothesis, the above proof may be rewritten using practically the same arguments and, in this case, existence and uniqueness may be proved without the conditions (3 6) and (3 7). The reason is that, in the case of mixed elastic problem (displacement prescribed on a part of the boundary and tractions on the remaining part), no condition, as in a Neumann problem, has to be fulfilled by the surface traction distribution to ensure the existence of the solution.

Some comments about the numerical solving of the problem

A numerical algorithm may be immediately derived from the previous proof. The matter removal process is supposed to be discretized in N steps, corresponding to N intermediate surfaces S; and N elastic bodies !l;.

An obvious method to find a numerical solution is to compute, from the measure ments u"', a numerical approximation of -h(rx, p , t) div nm (rx, {3, t) (39) and to solve the N elastic auxiliary problems (by a Finite Element Method or by a Boundary Element Method) with surface tractions -h(rx, /3 , t;) div u"'(rx, {3, l;) and geometries n;. A numerical integration in (38) will provide an evaluation of the stress field a.

Clearly, the numerical computation of div nm from the discretized field nm will be an important source of numerical error and a suitable numerical procedure will probably be necessary in order to stabilize the algorithm.

CONCLUSION

The aim of this paper was to investigate the problem of inverting a residual stress field from surface stress measurements after matter removal. A mathematical formalism for the general problem has been described. This has led to an explicit inversion formula for the half-space geometry. For other geometries, a numerical algorithm has been derived.

From a mathematical point of view, it appears that the reconstruction of the original stress field requires the knowledge of the surface stress distribution all over each intermediate surface. From a practical point of view, one can only expect to measure approximately surface stresses at a fi nite number of points. The inspection of explicit formulas ( 19)-( 24) shows that small errors on measurements have little influence on the reconstruction of the original stress. Moreover, the far fi eld measure ments can also be neglected. In both cases, an estimate of the error can be obtained.
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 I Fig. I. Rectangular plastic inclusion in an elastic plane-strain half-space.
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 2 Fig. 2. Distributions of the original stress component <T,x along the z-axis and of the surface stress a'.:'x after matter removal of th.ickness z.
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 3 Fig. 3. Two rectangular plastic inclusions in the elastic plane-strain half-space.
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 5 Fig. 5. Original stress distribution u"' surface stress �x after matter removal and reconstruction of u xx along the z-axis.
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 6 Fig. 6. Geometry and notations.
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 7 Fig. 7. Definition of problems I, 2 and 3.
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•for a given measured stress fi eld am , there corresponds at most one initial stress field a (uniqueness);

•provided two conditions are fulfilled (to be detailed in the sequel), any am fi eld in no \ Q r is derived from an initial stress fi eld t1 (existence).

Existence and uniqueness proof

The point of departure of the proof is (28) . In this equation, the stress fi eld a ' is defi ned on the basis of the unknown original stress field a . It will now be proved that the stress field a ' is fully determined by the measured stress fi eld �.

In order to provide an efficient use of the equilibrium equation, we shall develop its expression in the curvilinear coordinate system. Let us recall that, in Q 0\ Q r, n(ex , /3 ,y) is the normalized vector associated with they coordinate and let us denote by div2 the two-dimensional divergence operator relative to coordinates ex and /3 when the third coordinate y is fixed. Using the fact that the coordinate y is perpendicular to the others, the equilibrium equation may be written in the form: div a(ex , /3 , y) = div2 a+� :y<a

where h(ex , /3 , y) is a scalar function and D( ex, /3 , y) is a third rank tensor. hand Dare determined by the choice of the coordinate system. h( ex, /3 , y) is nothing but the local normal speed of the matter removal process.

Writing (2 6) and (27) in the form of (29) and using (28) and (25) , it is readily seen that : y (a • n) (ex , /3 , y = t) = :y<a ' • n) (ex , /3 , y= t)-h div am( ex , /3 , t) . (30) Differentiating (28) , we have

y=t) . y t t ' =t y

The combination of ( 30) and ( 31) gives By definition, a , . (ex , /3 , y) is the stress fi eld resulting in n,. with surface traction equal to a( ex , /3 , t') • n( ex , /3 , t') on S,. and to 0 on an,.\s, .. a , . (ex , /3 , y) in n, may be seen as the stress fi eld induced by surface tractions equal to a , . (ex , /3 , t) • n(ex , /3 , t) on S, and to 0 on an,\S,. This fi eld may now be differentiated with respect to t' . This yields

APPENDIX

In this Appendix, we give closed-form expressions of the stress field produced by a plastic inclusion in a plane-strain, isotropic, linear elastic half-space.

Geometry of the problem and notations are described in Integrations on y from -oo to + oo are performed on Green's function of the elastic half space [START_REF] Mindlin | Force at a point in the interior of a semi-infinite solid[END_REF] in order to get the two-dimensional Green's function. It is then easy to get the stress field in the whole half-space (see, for example, [START_REF] Mura | Micromechanics of Defects in Solids[END_REF]. The stress tensor field is found to be :

x +a x-a x+a

(5