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Appendix 1: Stochastic Block Model

The Stochastic Block Model, in its weighted version, makes it possible to model a block
structure into a dissimilarity array D between n individuals. There are two types of vari-
ables in this stochastic model: the observed variables, which are the elements d(i, j) of
the dissimilarity array, and the latent variables, which are the block memberships of each
individual: Zi ∈ {1, . . . , K} is the group of individual i. K is the number of blocks. The
model relies on two assumptions. First, the Zi’s are independent and their distribution is
parameterised by a categorial distribution α = (α1, . . . , αK), such that P (Zi = k) = αk.
Second, the dissimilarity between i and j depends only on the blocks of i and j. In this
study, we modelled P (d(i, j) | Zi = k, Zj = k′) with a Poisson distribution with parameter
λk,k′ . The K by K matrix Λ such that Λ(k, k′) = λk,k′ is called the connectivity matrix
of the model. The model parameters are α and Λ. In practice, only D is available and
the objective is to infer α, Λ and the block memberships. Based on D the parameters can
be estimated using the Variational EM algorithm (?). Each individual is then associated
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with the block with the larger a posteriori probability. In our study, we used R package
blockmodels with default settings for the function BM_poisson.
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Appendix 2: Estimation of θ density for composed OTU

identification

For each sample, the density of θ was estimated using the Kernel density estimation. Kernel
density estimation is a non-parametric method to estimate a probability density function by
smoothing the data. It relies on the choice of the kernel function and a bandwidth parameter
that fixes the amount of smoothing. The bandwidth makes it possible to control the tradeoff
between the bias and the variance of the estimated density. In scikit-learn Python’s
machine learning library, we used the KernelDensity estimator, with kernel=’gaussian’ and
bandwidth=0.05.
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Appendix 3: Supplementary figures
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Figure 1: Examples of OTUs fully annotated and categorised as composed. Left column:
heatmap of the dissimularity array Dotu, Right column: associated graph Gotu. The top
line corresponds to the typical situation targeted when identifying composed OTUs, the
middle line corresponds to a monospecific OTU with loosely connected sequences, and the
bottom line corresponds to a monospecific OTU with distances structured into two blocks.
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Figure 2: OTU sizes for the three types of OTUs: green dots for single OTUs without
noise, blue dots for single OTUs with noise, and red dots for composed OTUs.
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Figure 3: The 32 samples ordered by increasing values of their fraction of composed OTUs.
Samples from a benthic environment tend to be associated with larger fractions.
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Pierrecomperia catenuloides
Leyanella pauciporis

Extubocellulus cribriger
Leyanella arenaria

Arcocellulus mammifer
Papiliocellulus simplex

Thalassiosira spinulifera
Minidiscus trioculatus

Thalassiosira proschkinae Rhizosolenia fallax

Figure 4: Two different examples of connections between OTUs composed each of two
or more components, and taxonomic annotation of sequences (when available). The re-
lationship is not one-to-one between taxa and components. It seems easy in the bottom
graph to cut a small number of edges to recover two components, each monogeneric (Tha-
lassiosira and Mindiscus, Rhizosolenia is not visible because it is behind dots of other
genera), whereas such a simple operation seems complicated in the top graph where com-
ponents made up of different genera are connected by bundles, themselves made up of a
large number of links (like Leyanella in green and Extubocellulus in cyan).
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Figure 5: Result of a Correspondence Analysis performed on the contingency table between
the 216 species identified by the mapping of at least one sequence and the 32 samples. Small
grey dots represent species and large coloured dots represent the samples. The benthic
samples are in red. The pelagic samples are coloured by season. We observe that the
principal factor which drives the composition in a sample clearly is the opposition between
benthic and pelagic samples.
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Appendix 4: Supplementary tables
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Location Season Water column Number of sequences Number of OTUs
Teychan benthic summer 30372 107

autumn 29229 106
winter 20355 85
spring 28203 94

pelagic summer 23593 68
autumn 23571 52
winter 25893 92
spring 26529 50

Bouée 13 benthic summer 30056 109
autumn 29022 84
winter 27670 104
spring 25176 85

pelagic summer 34550 66
autumn 29956 55
winter 25244 67
spring 35729 69

Comprian benthic summer 26044 81
autumn 26766 83
winter 34011 145
spring 25643 82

pelagic summer 28814 27
autumn 21462 38
winter 19224 93
spring 31965 77

Jacquet benthic summer 28490 95
autumn 27984 121
winter 32131 125
spring 27301 115

pelagic summer 26719 52
autumn 30210 27
winter 20398 27
spring 31304 48

Table 1: Description of the dataset of 32 environmental samples of diatoms from Arcachon
Bay.
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Contingency table model
Automatic

Composed OTUs Single OTUs

E
x
p
er
t Composed OTUs

Uncertain OTUs
Single OTUs

Contingency tables per sample
sample θc contingency sample θc contingency

zone season table zone season table

BEN Summer 0.5454
10 7

1 4

0 85

PEL Summer 0.3292
8 0

1 0

2 57

BEN Autumn 0.3880
24 2

1 2

2 75

PEL Autumn 0.6300
2 1

0 2

0 47

BEN Winter 0.3180
15 0

2 2

2 64

PEL Winter 0.2871
12 0

2 1

0 77

BEN Spring 0.3728
17 0

4 0

3 70

PEL Spring 0.4648
4 2

0 1

0 43

Table 2: Top: contingency table model. Bottom: Critical θ (θc) and contingency tables for
composed OTU typing considering the eight samples from the Teychan location.
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Contingency table model
Automatic

OTUs OTUs
with noise without noise

E
x
p
er
t OTUs with noise

uncertain OTUs
OTUs without noise

Contingency tables per sample
sample contingency sample contingency

zone season table zone season table

BEN Summer
74 0

15 2

0 5

PEL Summer
38 0

12 2

0 5

BEN Autumn
66 0

12 0

1 0

PEL Autumn
42 0

7 0

0 1

BEN Winter
35 3

15 4

2 7

PEL Winter
28 3

8 15

2 22

BEN Spring
55 0

12 1

1 1

PEL Spring
37 0

6 2

0 1

Table 3: Top: contingency table model. Bottom: contingency tables for the task of identi-
fying single OTUs with and without noise, considering the eight samples from the Teychan
location.
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