Simple approaches for evaluation of OTU quality based on dissimilarity arrays

Marie-Josée Cros¹, Jean-Marc Frigerio^{2,3}, Nathalie Peyrard^{1,*}, and Alain $\rm Franc^{2,3}$

²Université de Bordeaux, INRAE, BIOGECO, 33612 Cestas, France ³Pleiade, EPC INRIA-INRAE-CNRS, Université de Bordeaux, 33405 Talence, France

 $^1 \mathrm{Universit\acute{e}}$ de Toulouse, INRAE, UR MIAT, 31320 Castanet-Tolosan, France

^{*}corresponding author: nathalie.peyrard@inrae.fr

Running title: OTU quality from dissimilarity arrays

Appendix 1	p. 1	Description of the stochastic block model
Appendix 2	p. 3	Estimation of θ density for composed OTU identification
Appendix 3	p. 4	Supplementary figures
Appendix 4	p. 9	supplementary tables

Appendix 1: Stochastic Block Model

The Stochastic Block Model, in its weighted version, makes it possible to model a block structure into a dissimilarity array D between n individuals. There are two types of variables in this stochastic model: the observed variables, which are the elements d(i, j) of the dissimilarity array, and the latent variables, which are the block memberships of each individual: $Z_i \in \{1, \ldots, K\}$ is the group of individual i. K is the number of blocks. The model relies on two assumptions. First, the Z_i 's are independent and their distribution is parameterised by a categorial distribution $\alpha = (\alpha_1, \ldots, \alpha_K)$, such that $P(Z_i = k) = \alpha_k$. Second, the dissimilarity between i and j depends only on the blocks of i and j. In this study, we modelled $P(d(i, j) \mid Z_i = k, Z_j = k')$ with a Poisson distribution with parameter $\lambda_{k,k'}$. The K by K matrix Λ such that $\Lambda(k, k') = \lambda_{k,k'}$ is called the connectivity matrix of the model. The model parameters are α and Λ . In practice, only D is available and the objective is to infer α , Λ and the block memberships. Based on D the parameters can be estimated using the Variational EM algorithm (?). Each individual is then associated with the block with the larger a posteriori probability. In our study, we used R package blockmodels with default settings for the function BM_poisson.

Appendix 2: Estimation of θ density for composed OTU identification

For each sample, the density of θ was estimated using the Kernel density estimation. Kernel density estimation is a non-parametric method to estimate a probability density function by smoothing the data. It relies on the choice of the kernel function and a bandwidth parameter that fixes the amount of smoothing. The bandwidth makes it possible to control the tradeoff between the bias and the variance of the estimated density. In scikit-learn Python's machine learning library, we used the KernelDensity estimator, with kernel='gaussian' and bandwidth=0.05.

Appendix 3: Supplementary figures

Figure 1: Examples of OTUs fully annotated and categorised as composed. Left column: heatmap of the dissimularity array D_{otu} , Right column: associated graph G_{otu} . The top line corresponds to the typical situation targeted when identifying composed OTUs, the middle line corresponds to a monospecific OTU with loosely connected sequences, and the bottom line corresponds to a monospecific OTU with distances structured into two blocks.

Figure 2: OTU sizes for the three types of OTUs: green dots for single OTUs without noise, blue dots for single OTUs with noise, and red dots for composed OTUs.

Figure 3: The 32 samples ordered by increasing values of their fraction of composed OTUs. Samples from a benthic environment tend to be associated with larger fractions.

Figure 4: Two different examples of connections between OTUs composed each of two or more components, and taxonomic annotation of sequences (when available). The relationship is not one-to-one between taxa and components. It seems easy in the bottom graph to cut a small number of edges to recover two components, each monogeneric (*Thalassiosira and Mindiscus, Rhizosolenia* is not visible because it is behind dots of other genera), whereas such a simple operation seems complicated in the top graph where components made up of different genera are connected by bundles, themselves made up of a large number of links (like *Leyanella* in green and *Extubocellulus* in cyan).

Figure 5: Result of a Correspondence Analysis performed on the contingency table between the 216 species identified by the mapping of at least one sequence and the 32 samples. Small grey dots represent species and large coloured dots represent the samples. The benthic samples are in red. The pelagic samples are coloured by season. We observe that the principal factor which drives the composition in a sample clearly is the opposition between benthic and pelagic samples.

Appendix 4: Supplementary tables

Location	Season	Water column	Number of sequences	Number of OTUs	
Teychan	benthic	summer	30372	107	
		autumn 29229		106	
		winter	20355	85	
		spring	28203	94	
	pelagic	summer	23593	68	
		autumn	23571	52	
		winter	25893	92	
		spring	26529	50	
Bouée 13	benthic	summer	30056	109	
		autumn	29022	84	
		winter	27670	104	
		spring	25176	85	
	pelagic	summer	34550	66	
		autumn	29956	55	
		winter	25244	67	
		spring	35729	69	
Comprian	benthic	summer	26044	81	
		autumn	26766	83	
		winter	34011	145	
		spring	25643	82	
	pelagic	summer	28814	27	
		autumn	21462	38	
		winter	19224	93	
		spring	31965	77	
Jacquet	benthic	summer	28490	95	
		autumn	27984	121	
		winter	32131	125	
		spring	27301	115	
	pelagic	summer	26719	52	
		autumn	30210	27	
		winter	20398	27	
		spring	31304	48	

Table 1: Description of the dataset of 32 environmental samples of diatoms from Arcachon Bay.

Contingency table model						
		Automatic				
		Composed OTUs	Single OTUs			
rt	Composed OTUs					
tpe	Uncertain OTUs					
Ê	Single OTUs					

Contingency tables per sample							
sample		$ heta_c$	contingency	sample		$ heta_c$	contingency
zone	season		table	zone	season		table
BEN	Summer	0.5454	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PEL	Summer	0.3292	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
BEN	Autumn	0.3880	$ \begin{array}{c ccc} 24 & 2 \\ 1 & 2 \\ 2 & 75 \end{array} $	PEL	Autumn	0.6300	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
BEN	Winter	0.3180	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PEL	Winter	0.2871	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
BEN	Spring	0.3728	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PEL	Spring	0.4648	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2: Top: contingency table model. Bottom: Critical θ (θ_c) and contingency tables for composed OTU typing considering the eight samples from the Teychan location.

Contingency table model					
		Automatic			
		OTUs	OTUs		
		with noise	without noise		
ŗt	OTUs with noise				
Expe	uncertain OTUs				
	OTUs without noise				

sample		contingency	sample		contingency	
zone	season	table	zone	season	table	
BEN	Summer	$ \begin{array}{c ccc} 74 & 0 \\ 15 & 2 \\ 0 & 5 \end{array} $	PEL	Summer	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
BEN	Autumn	$ \begin{array}{ccc} 66 & 0 \\ 12 & 0 \\ 1 & 0 \end{array} $	PEL	Autumn	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
BEN	Winter	$ \begin{array}{c ccc} 35 & 3 \\ 15 & 4 \\ \hline 2 & 7 \end{array} $	PEL	Winter	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
BEN	Spring	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PEL	Spring	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table 3: Top: contingency table model. Bottom: contingency tables for the task of identifying single OTUs with and without noise, considering the eight samples from the Teychan location.