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INTRODUCTION

Speaker diarization aims at determining "who spoke when" in a recorded conversation, partitioning the audio sequence according to speaker identity. Recent end-to-end speaker diarization systems [1,[START_REF] Horiguchi | End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors[END_REF] have simplified this by training a single neural network in a permutation-invariant manner to ingest an audio recording and produce an overlap-aware speaker diarization output. These systems are usually trained to perform well on a given corpus with its own set of specific properties (e.g. microphone quality, noise, speaker accent, language, etc.) shared among recordings. We refer to this set of shared properties as a domain. However, it is well known that the performance of the same system on a different domain is substantially worse than on the training domain, a problem known as domain mismatch. In domain adaptation, the goal is to fix this mismatch by fine-tuning the out-ofdomain system on the target domain in which we want to Pseudo-labels ŷ are obtained by binarizing m(x) with a fixed threshold θ = 0.5.

obtain good performance. In particular, end-to-end training makes speaker diarization systems suitable for domain adaptation because fine-tuning a single model is simpler than doing so for multiple modules. Nevertheless, domain adaptation remains expensive for two reasons: 1) a relatively large number of new domain conversations needs to be collected, and 2) they need to be manually annotated. Pseudo-labels [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF][START_REF] Kahn | Self-Training for End-to-End Speech Recognition[END_REF] were originally designed for semisupervision (mixing labeled and unlabeled data) by using the predictions of a pre-trained system as annotations in a teacherstudent training scheme. However, they are also an interesting alternative to remove the need for annotated data. This method has shown great promise in end-to-end speaker diarization [START_REF] Takashima | Semi-Supervised Training with Pseudo-Labeling for End-to-End Neural Diarization[END_REF], where authors experiment with an iterative and committee-based training scheme. Another similar study on domain adaptation for speech enhancement [START_REF] Tzinis | Continual self-training with bootstrapped remixing for speech enhancement[END_REF] even goes one step further, showing that periodically updating the teacher model while fine-tuning the student on the target domain can significantly increase performance.

On the other hand, it is possible to eliminate the need to "a priori" collect a large new domain corpus by relying on continual learning [START_REF] Hadsell | Embracing Change: Continual Learning in Deep Neural Networks[END_REF]. This paradigm is defined by a sequential training scheme where new data (individual conversations in our case) become available as time passes. After sequential training on new conversations from a target do-main, we expect the system to perform well on both past and future conversations of that domain. As defined in previous works [START_REF] Hadsell | Embracing Change: Continual Learning in Deep Neural Networks[END_REF][START_REF] Lopez | Gradient Episodic Memory for Continual Learning[END_REF], improvement on past conversations is usually referred to as backward transfer, while forward transfer is used to denote improvement on future conversations. Unfortunately, continual learning is prone to catastrophic forgetting [START_REF] French | Catastrophic forgetting in connectionist networks[END_REF], whereby performance on past conversations sharply drops as the model is trained on new ones (i.e. negative backward transfer). A naive solution is to keep all past conversations for future training. However, storing these conversations permanently may be problematic or even impossible in some cases, as they are usually regarded as sensitive or personal identifiable data.

In this work, we study continual domain adaptation for end-to-end speaker diarization. We propose a fully selfsupervised training scheme that achieves an average 17% relative improvement over a pre-trained baseline without a single manually annotated conversation. Our approach also rivals (and sometimes outperforms) non-continual variants trained on the whole target domain at once. Furthermore, since only a single conversation at a time is used for training, every new conversation can be discarded as soon as it is processed, avoiding any potential unwanted access.

END-TO-END SPEAKER DIARIZATION

As in [1, 10], end-to-end speaker diarization is modeled as a multi-label classification problem. In our case, a model m is trained to ingest a 5s audio chunk x and produce speaker activity probabilities m(x) = {s 1 , . . . , s F } as depicted in Figure 1, where F is the number of output frames and s f ∈ [0, 1] Kmax , with K max the estimated maximum number of different speakers in an input (in our case K max = 4). Since any permutation of speakers in the output is equivalent in terms of diarization performance, a permutation-invariant loss [1] is minimized:

L(y, m(x)) = min perm∈P L BCE (perm(y), m(x)) ( 1 
)
where y is the reference annotation (manual or pseudo-label) for x, L BCE is the frame-wise binary cross entropy loss and P the set of all possible speaker permutations of y.

PROPOSED TRAINING SCHEME

In this section, we present the different components of our training scheme as shown in Figure 2. Specifically, given a model pre-trained on an out-of-domain corpus, we train on one conversation of the target domain at a time using pseudolabels. We first define self-supervision with pseudo-labels in Section 3.1 and then discuss continual training in Section 3.2. 

Self-supervision

Many successful works on self-supervision [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Chung | Generative Pre-Training for Speech with Autoregressive Predictive Coding[END_REF][START_REF] Chen | A Simple Framework for Contrastive Learning of Visual Representations[END_REF] rely on auxiliary tasks that attempt to predict artificially missing or distorted parts of the input. In contrast, in pseudolabeling [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF] a pre-trained teacher model generates labels to train the student model. A similar idea has been applied to speaker diarization in [START_REF] Takashima | Semi-Supervised Training with Pseudo-Labeling for End-to-End Neural Diarization[END_REF] using a committee-based method where pseudo-labels are a combination of predictions from multiple systems. Our work is more similar to [START_REF] Tzinis | Continual self-training with bootstrapped remixing for speech enhancement[END_REF], as the trained model is both teacher and student. However, contrary to [START_REF] Tzinis | Continual self-training with bootstrapped remixing for speech enhancement[END_REF], we train on a single conversation at a time instead of a large target domain corpus.

Pseudo-labels

Pseudo-labels ŷ can be an exact copy of m(x) ∈ [0, 1] Kmax×F . However, as shown in Figure 1, m(x) can be noisy and could fail to provide a useful training signal in some input regions, so we obtain ŷ by binarizing m(x) with a threshold θ = 0.5. As depicted in Figure 2, model m t-1 generates pseudo-labels ŷ from conversation conv t that are used to train m t-1 , resulting in model m t . A risk of the model being both teacher and student is divergence, as matching its own predictions may progressively reinforce errors. To limit this, we rely on data augmentation. During training we first calculate pseudolabels ŷ with a weak noise augmentation aug:

ŷkf = 1 if m t-1 (aug(x)) kf ≥ θ 0 otherwise (2)
where k indexes speakers and f indexes frames. Our hypothesis is that generating ŷ from a weak perturbation of x may help to prevent divergence by providing multiple views of the same input, acting as a form of regularization. As depicted in Figure 2, we use Aug(x) as inputs during training to improve robustness, where Aug is a strong augmentation adding both noise and reverberation. [START_REF] Ryant | The Third DIHARD Diarization Challenge[END_REF] ("Base DER") are evidence of domain differences in difficulty.

Stopping criterion

We use the area under the receiver operating characteristic curve (AUROC) [START_REF] Andrew | The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms[END_REF] as a validation metric when training on each conversation, allowing to measure model improvement. The ROC curve is calculated by relating false positives and true positives at different decision thresholds. Taking the example of Figure 1, this is equivalent to applying multiple thresholds θ ∈ [0, 1] to m(x) and comparing the result to the pseudo-labels. Notice that this metric may not approximate actual performance correctly if pseudo-labels contain errors.

Since the model has no access to a validation set, we extract 30% of conv t to form dev t , which is spread over the whole duration of the recording. We then calculate the AU-ROC on dev t after each epoch on the remaining set train t . When the validation AUROC does not improve for a certain number of epochs, we stop training and wait for the next conversation.

Continual training

As mentioned previously, continual training is prone to catastrophic forgetting [START_REF] Hadsell | Embracing Change: Continual Learning in Deep Neural Networks[END_REF][START_REF] French | Catastrophic forgetting in connectionist networks[END_REF]. A naive solution is to train on all conv ≤t at a given step t, but this introduces two problems. First, the cost of training on conv t grows linearly with the number of conversations, that can in theory be infinite. Second, storing conversations permanently may not be possible, as it is usually considered sensitive data that needs to be guarded from external access. Other works in continual learning [START_REF] Robins | Catastrophic Forgetting, Rehearsal and Pseudorehearsal[END_REF][START_REF] Pellegrini | Latent Replay for Real-Time Continual Learning[END_REF] show that it is possible to limit forgetting by keeping a memory buffer with previous inputs or latent features, partially solving the first problem but ignoring the second. Other popular methods [START_REF] Shin | Continual Learning with Deep Generative Replay[END_REF][START_REF] Rao | Continual Unsupervised Representation Learning[END_REF] use generative models to produce synthetic data that mimics past inputs, but generating such realistic conversations on-the-fly is costly and generative models are difficult to train.

As depicted in Figure 2, given an initial model m 0 pretrained on an out-of-domain corpus (in our case AMI [START_REF] Carletta | Unleashing the Killer Corpus: Experiences in Creating the Multi-Everything AMI Meeting Corpus[END_REF]), our goal is to improve overall performance on a single tar-get domain d (in our case one of the 11 DIHARD III [START_REF] Ryant | The Third DIHARD Diarization Challenge[END_REF] domains). Since we want to avoid storing potentially sensitive data, we train on one conversation conv t of d at a time. Hence, any data from steps < t are inaccessible. We believe the combination of augmentation and the stopping criterion described earlier may prevent in-domain forgetting by discouraging overfitting to any single conversation.

EXPERIMENTS

Dataset

We experiment on DIHARD III [START_REF] Ryant | The Third DIHARD Diarization Challenge[END_REF], which contains conversations from 11 different domains shown in Table 1. These domains differ greatly in number of speakers and difficulty (of which diarization error rate is a good proxy). Notice that webvideo may not in fact qualify as a domain, as it is a collection of English and Mandarin audio from video sharing platforms. Indeed, its set of shared properties among recordings may be rather small (e.g. differences in quality, noise, language, etc.).

Evaluation metric

Since we want to evaluate the overall quality of a local speaker diarization system that takes 5s inputs, instead of calculating the usual diarization error rate (DER) of a single hypothesis for an entire conversation, we calculate what we name the CDER, i.e. the average 5s chunk DER using a 500ms shift. We use pyannote.audio [START_REF] Bredin | pyannote.audio: Neural Building Blocks for Speaker Diarization[END_REF] to evaluate without forgiveness collar and including all overlapping speech.

Experimental protocol

We want to determine the best hyper-parameters while still being able to obtain performance for all 11 domains. Hence, we cross-validate hyper-parameter optimization making sure not to leak target-domain knowledge neither in model weights nor in hyper-parameters. We split the DIHARD III Full [START_REF] Ryant | The Third DIHARD Diarization Challenge[END_REF] domains into sets DH A and DH B as shown in Table 1. Given the differences in domain difficulty, we balance DH A and DH B by evening the VB-HMM baseline (track 2) [START_REF] Ryant | The Third DIHARD Diarization Challenge[END_REF] performance between both sets. Our goal is to progressively adapt model m 0 to a single domain, so for every hyper-parameter configuration h and every domain d ∈ DH A , we train m 0 sequentially on d train and evaluate the resulting model on d test to obtain its CDER p d . Performance for configuration h is defined as:

p h = 1 |DH A | d∈DH A p d (3) 
The configuration with the lowest p h is used to sequentially train m 0 on each domain d ∈ DH B on d train and evaluating each resulting model on its corresponding d test . Table 2: CDER of all systems on each d test at the end of the training sequence, averaged over 10 runs to limit the effect of randomness.

The same process is repeated inverting the roles of DH A and DH B .

Implementation details

We use the architecture introduced in [10] (SincNet [START_REF] Ravanelli | Speaker Recognition from Raw Waveform with SincNet[END_REF] trainable feature extraction, 4 LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] and 2 fully-connected layers) that we pre-train with true labels on the AMI corpus [START_REF] Carletta | Unleashing the Killer Corpus: Experiences in Creating the Multi-Everything AMI Meeting Corpus[END_REF] training set from Full [START_REF] Landini | Bayesian HMM Clustering of X-Vector Sequences (VBx) in Speaker Diarization: Theory, Implementation and Analysis on Standard Tasks[END_REF], achieving a DER of 17.5 on its test set. This constitutes our initial model m 0 . Both strong and weak augmentations Aug and aug apply random noise, but only Aug has a 50% chance of applying a random room impulse response (making it stronger than aug). Noises are sampled from MUSAN [START_REF] Snyder | MU-SAN: A Music, Speech, and Noise Corpus[END_REF] (excluding speech) and impulse responses are sampled from EchoThief and [START_REF] Traer | Statistics of natural reverberation enable perceptual separation of sound and space[END_REF]. We use a separate Adam optimizer [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF] for each new conversation and training on train t is stopped after 3 epochs of no improvement on dev t . Training sequences are sorted according to existing recording identifiers. Optimized hyper-parameters are background noise SNR (among ranges 0dB-5dB, 5db-10dB and 10dB-15dB), learning rates (among 10 -3 , 10 -4 and 10 -5 ) and batch size (among 16, 32, 64 and 128).

RESULTS AND DISCUSSION

Table 2 summarizes our main results. We include supervised (sup) systems as toplines. System ours3 corresponds to our full version as described in Section 3. The remaining systems constitute various ablative studies. Self-supervised training on the whole target domain at once (whole) are non-continual versions of our approach using m 0 to generate pseudo-labels, while ours1 and ours2 are ablations of ours3.

Continual self-supervision. System ours2 outperforms pretrained across all domains with a relative improvement of 17% on the average CDER, except on clinical where the model diverges. A surprising result from Table 2 is that ours2 closely follows our best non-continual system whole3 on average, and even outperforms it in some domains like meeting, maptask and socio field. This suggests that the quality of pseudo-labels may be improving in these domains as new conversations appear, since pseudo-labels in whole systems cannot improve because the teacher m 0 is static. Moreover, average CDER between ours2 and whole3 only differ by an absolute 1%. Notice that clinical for whole2 (the whole equivalent of ours2) is the only domain whose performance deteriorates with respect to pre-trained. This leads us to believe that divergence may be caused by poor initial pseudo-labels that fail to provide useful information for the model to exploit, effectively reinforcing its own errors as new conversations appear. Finally, note that supervised continual training also performs well, rivaling the non-continual supervised topline with a CDER absolute difference of 2%.

Performance evolution. Figure 3 shows the d test CDER at each conv t for various domains. System ours2 seems to keep improving with new conversations, except on clinical, where it diverges, and on webvideo, where performance of all systems is rather unstable. As discussed before, we believe this may be caused by its loose definition as a domain, suggesting that a well-defined set of shared characteristics may be key to benefit from transfer between conversations.

Forgetting and transfer. Figure 4 shows the train CDER on the first and last two conv t for domains meeting and clinical. Notice that performance across conversations varies greatly, suggesting a certain variability in difficulty even in conversations from the same domain. Despite this, forgetting seems to be limited, as sharp increases in CDER are rare when there is Fig. 3: CDER on d test as a function of training conversations conv t in sequence. Curves follow the average and standard deviation across 10 runs. Each system is referenced with its identifier from Table 2. no divergence. Notice that overall performance tends to improve with new conversations, which is interesting given that true labels are never seen by ours2 and ours3. Overall, selfsupervised systems seem to benefit more from both forward and backward transfer (see CDER before and after the dot in Figure 4 respectively). We believe this may progressively improve pseudo-labels as well as model quality estimation for the stopping criterion. It may also explain performance fluctuations in webvideo, as very dissimilar conversations might limit transfer.

The role of augmentation. Our results show that augmentation Aug is key in achieving good self-supervised performance, although not so much in supervised systems. The example of maptask in Figure 3 is particularly interesting, as Aug makes the difference between learning and diverging. On the other hand, aug seems to be more useful in whole systems than in continual training. Nevertheless, we believe that aug may prevent reinforcing errors at the beginning of continual training when pseudo-label quality is low, although failing to prevent divergence. Figure 4 is a good example of this, as ours3 is better than ours2 in the beginning for both meeting and clinical. Applying aug only during the first conversations of the sequence might be a better strategy to get the best from both variants.

CONCLUSION

We have proposed a training scheme for domain adaptation in end-to-end speaker diarization. We train on the target domain as conversations become available and in a fully selfsupervised way, removing the need for annotating data and storing sensitive user conversations permanently. We achieve an average 17% relative improvement over a pre-trained baseline, even rivaling a non-continual self-supervised topline. Moreover, our approach can run locally and autonomously in the background with little to no human involvement (e.g. in a home voice assistant). All our code is released as open source1 
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Fig. 1 :

 1 Fig.1: Real example of a system input x and output m(x). Pseudo-labels ŷ are obtained by binarizing m(x) with a fixed threshold θ = 0.5.

Fig. 2 :

 2 Fig. 2: Continual training over conversations conv t of domain d using pseudo-labels ŷt . Model m 0 pre-trained on an out-ofdomain corpus produces the first pseudo-labels ŷ1 . From then onwards, each model m t-1 produces pseudo-labels ŷt and is then trained only on conversation conv t , resulting in a new model m t .

Fig. 4 :

 4 Fig. 4: CDER on the first and last two training conversations. Each curve represents the CDER (averaged over 10 runs) of a single conversation across the entire training sequence. A dot denotes the position of the given conversation within the sequence.

Table 1 :

 1 Description of all DIHARD III domains. The average number of speakers per recording ("Spk / Rec.") and the DER of the VB-HMM baseline for track 2

	Subset	Domain	Recordings dev test	Duration dev test	Spk / Rec. Base dev test DER
		Broadcast Interview 12	12	2.1h	2.0h	3.8	3.7	4.6
		Court	12	12	2.1h	2.0h	6.9	7.3	8.9
	DH A	Socio Lab CTS	16 61	12 61	2.7h 10.2h 10.2h 2.0 2.0h 2.0	2.0 2.0	12.9 20.4
		Meeting	14	11	2.4h	1.9h	5.4	3.9	33.5
		Restaurant	12	12	2.0h	2.1h	7.2	6.4	49.5
		Audiobooks	12	12	2.0h	2.0h	1.0	1.0	5.2
		Maptask	23	19	2.5h	2.1h	2.0	2.0	11.0
	DH B	Socio Field	12	22	2.0h	2.3h	3.5	2.3	18.2
		Clinical	48	51	4.3h	4.4h	2.0	2.0	21.6
		Webvideo	30	35	1.9h	2.1h	4.0	4.1	41.8
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