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Abstract: This work studies the power of adversarial attacks against machine learning algorithms
that use differentially private mechanisms as their weapon. In our setting, the adversary aims to
modify the content of a statistical dataset via insertion of additional data without being detected by
using the differential privacy to her/his own benefit. The goal of this study is to evaluate how easy
it is to detect such attacks (anomalies) when the adversary makes use of Gaussian and Laplacian
perturbation using both statistical and information-theoretic tools. To this end, firstly via hypothesis
testing, we characterize statistical thresholds for the adversary in various settings, which balances the
privacy budget and the impact of the attack (the modification applied on the original data) in order
to avoid being detected. In addition, we establish the privacy-distortion trade-off in the sense of the
well-known rate-distortion function for the Gaussian mechanism by using an information-theoretic
approach. Accordingly, we derive an upper bound on the variance of the attacker’s additional data
as a function of the sensitivity and the original data’s second-order statistics. Lastly, we introduce a
new privacy metric based on Chernoff information for anomaly detection under differential privacy
as a stronger alternative for the (ε, δ)-differential privacy in Gaussian mechanisms. Analytical results
are supported by numerical evaluations.

Keywords: differential privacy; adversarial classification; Kullback–Leibler divergence; Chernoff
information; Laplace mechanism; Gaussian mechanism

1. Introduction

The major issue in terms of data privacy in today’s world stems from the fact that
machine learning (ML) algorithms strongly depend on the use of large datasets to work
efficiently and accurately. Along with the highly increased deployment of ML, its privacy
aspect rightfully became a cause of concern, since the collection of such large datasets
makes users vulnerable to fraudulent use of personal, (possibly) sensitive information. This
vulnerability is aimed to be mitigated by privacy enhancing technologies that are designed
to protect data privacy of users.

Differential privacy (DP) has been proposed to address this vulnerability and it has fur-
thermore been used to develop practical methods for protecting private user-data. Dwork’s
original definition of DP in [1] emanates from a notion of statistical indistinguishability
of two different probability distributions which is achieved through randomization of
the data prior to their publication. The outputs of two differentially private mechanisms
are indistinguishable for two datasets that only differ in one user’s data, i.e., neighbors.
In other words, DP guarantees that the output of the mechanism is statistically indifferent to
changes made in a single row of the dataset proportional to its privacy budget. The reader
is referred to [2–4] for surveys of results.

Let us imagine a scenario where it is possible to weaponize privacy protection methods
by adversaries in order to avoid being detected by the defender. Adversarial classifica-
tion/anomaly detection is an application of the ML approach, statistical classification,
to detect misclassification attacks where adversaries shield themselves by using DP to
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remain undetected. This paper studies adversarial classification in differentially private
mechanisms to establish the trade-off between the probability distribution of the noise and
the impact of the attack to remain indistinguishable. This is achieved by employing both
statistical and information-theoretic tools. In this setting, we consider an adversary who not
only aims to discover the information of a dataset but also wants to harm it by inserting data
into the original dataset. Accordingly, we establish stochastic and information-theoretic
relations between the impact of the adversary’s attack and the privacy budget of the
DP mechanism.

1.1. Related Work and Methodology

This part is reserved for a discussion on related work and background of the addressed
problem emphasizing the differences between the existing literature and the current paper
along with the methodology that is used in this paper.

The addressed problem in this work differs from existing work on DP which considers
an adversary model where the goal of the attacker is to solely discover some informa-
tion about the dataset. For instance, the assumption in [5] is that the adversary has the
knowledge of the entire dataset except for one entry. This translates to the implicit strong
adversary assumption. In this paper, our aim is to extend this model with a stronger adver-
sary who also wants to harm the dataset and the output of the mechanism. We consider an
adversary who is able to modify (add, replace, delete, etc.) the published information from
a differentially private mechanism which is a noisy version of the output. The adversary’s
goal in this model is to maximize the possible damage (the induced bias or additional
variance) while remaining undetected. Thus, there are two sides of what the adversary
wants to achieve: (i) s/he gives false data with the biggest possible difference from the real
data, (ii) this modification has to be achieved without being detected. On the defender’s
end, the mechanism wants to preserve DP and correctly detect the attack.

A simpler version of the described problem is addressed by [6] from an adversarial
perspective and the two conflicting goals of the adversary is formulated as an optimization
problem where maximizing the bias induced by the adversary is the objective function.
However, the privacy parameter does not take part in the formulation of this optimization
problem, instead, DP is used in conjunction with anomaly detection for preserving privacy
afterward. We seek a characterization of the trade-off between the attack (the change in the
output induced by the adversary) and the privacy parameter. On the other hand, in [7],
the authors show that the sensitivity of a mechanism has also an impact on the differentially
private output. The noise to be added on the output is calibrated accordingly as a function
of the noise distribution. Such a characterization of the problem described in this paper
introduces a third element as the value of the attack to be included in this adjustment of
the DP noise with respect to (w.r.t.) the sensitivity of the system. This will allow us to be
able to determine a threshold for detecting the attacker, alternatively, for the attacker to
remain undetected.

As for the methodology, we will use the framework of statistical hypothesis testing
in a similar vein to [8] where the authors determine an appropriate value of the privacy
parameter as a function of false alarm and mis-detection probabilities in deciding on the
presence or absence of a particular record in a dataset. Similarly, in [9], the author studies
the differentially private hypothesis testing in the local setting where users locally add the
DP noise on their personal data before submitting them to the dataset. In this paper, we
tailor this approach as a first attempt for a solution for anomaly detection in Laplace and
Gaussian mechanisms under global DP where the personal sensitive data are transmitted
to a central server by the users and the server applies DP noise on the data before their
release. The major difference from the existing literature that employs statistical inference
to differential privacy lies in our new attacker model which considers an adversary who
not only aims to discover but also wants to alter the information in the dataset. We present
a statistical threshold of detecting the attacker as a function of the impact of the attack
(the effect of the additional data on the overall dataset) and the privacy parameter(s).
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Additionally, in the case of Laplace mechanism, we propose an interval for the privacy
budget, so that the defender detects the attack.

For the case of Gaussian mechanism, besides the aforementioned statistical approach,
we also derive the mutual information between the datasets before and after the attack
(considered as neighbors) in order to bound the second-order statistics of the additional
data. This yields an information-theoretic threshold for correctly detecting the attack.
Originally, the lossy source-coding approach in the information-theoretic DP literature has
mostly been used to quantify the privacy guarantee [10] or the leakage [11,12]. Ref. [13]
stands out in the way that the rate-distortion perspective is applied to DP, where various
fidelity criteria is set to determine how fast the empirical distribution converges to the actual
source distribution. We present an adaptation of the so-called Kullback–Leibler (KL)-DP [5]
for detecting misclassification attacks in Laplace and Gaussian mechanisms, where the
corresponding distributions in relative entropy were considered as the differentially private
noise with and without the adversary’s advantage. Lastly, this work introduces a novel DP
metric based on Chernoff information along with its application to adversarial classification.

Aside from statistical and information-theoretic approaches as employed in this paper,
the literature on adversarial examples and attempts to correctly classify and detect them is
rather rich. For instance, ref. [14] offers a game-theory-based risk analysis approach that
was originally introduced by [15], whereas [16] introduce efficient algorithms for reverse
engineering linear classifiers for adversarial classification. Adversarial classification dates
back to [17], which assumes (somewhat unrealistically) that the adversary has the perfect
knowledge of the classifier and attempt to detect these attacks by computation of the
adversary’s optimal strategy. The novelty of the current paper lies in its methodology that
makes use of information-theoretic quantities to solve a privacy and security problem.

1.2. Contributions and Outline

Our contributions are summarized in the following list.

• We consider a new attacker model whereby the adversary takes advantage of the
underlying differentially private mechanism in order to remain undetected.

• We derive a trade-off between the privacy protected adversary’s advantage and the
security of the system for the adversary to remain undetected while giving as much
damage as possible to the system or, alternatively, for the defender to preserve the
privacy of the system and detect the attacker. This trade-off is defined in the framework
of statistical hypothesis testing similarly to [8].

• We adopt the Kullback–Leibler DP definition of [5] to the addressed problem for
adversarial classification in differentially private mechanisms and present numerical
comparisons of different cases where the sensitivity of the system is less and greater
than the bias induced by the adversary on the published information.

• We apply a source-coding approach to anomaly detection under differential privacy
to bound the variance of the additional data by the sensitivity of the mechanism
and the original data’s statistics by deriving the mutual information between the
neighboring datasets.

• We introduce a new DP metric, that is called Chernoff DP, as a stronger alternative to
the well-known (ε, δ)-DP and KL-DP for the Gaussian mechanism. Chernoff DP is also
adapted for adversarial classification and numerically shown to outperform KL-DP.

The outline of the paper is as follows. In the upcoming section, we remind the reader of
some important preliminaries from the DP literature which will be used throughout this pa-
per along with the detailed problem definition and performance criteria. In Sections 3 and 4,
we present statistical and information-theoretic thresholds for anomaly detection in Laplace
and Gaussian mechanisms, respectively. Section 5 introduces divergence-based definitions
of DP adapted for anomaly detection. We present numerical evaluation results in Section 6
and draw our final conclusions in Section 7.
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2. System Model and Its Components

In this part, we revisit certain notions from the literature on DP which will also be
employed in this paper. These preliminaries will be followed by a detailed definition of the
addressed problem. We begin with defining the notion of neighborhood between datasets
and sensitivity of DP.

Definition 1 (Neighboring datasets). Any two datasets that differ only in one row are called
neighbors [4]. For two neighboring datasets, the following equality holds

d(x, x̃) = 1 (1)

where d(., .) denotes the Hamming (or l1) distance between two datasets.

Definition 2 (L1 norm sensitivity [7]). Global sensitivity, denoted by s of a function (or a query)
q: D → Rk is the smallest possible upper bound on the distance between the images of q when
applied to two neighboring datasets, i.e., the l1 distance is bounded by ‖q(x)− q(x̃)‖1 ≤ s .

Basically, sensitivity of a DP mechanism is the smallest possible upper bound on the
images of a query function for neighbors. Hence it is a function of the type of the query
having an opposite relationship with the privacy. Higher sensitivity of the query refers to a
stronger requirement for privacy guarantee, consequently more noise is needed to achieve
that guarantee.

Definition 3 ((ε, δ)-DP [4]). A randomized algorithm Y is (ε, δ)-differentially private if
∀S ⊆ Range(Y) and for all neighboring datasets x and x̃ within the domain of Y the follow-
ing inequality holds.

Pr[Y(x) ∈ S] ≤ Pr[Y(x̃) ∈ S] exp{ε}+ δ (2)

Next, we remind the reader of the Laplace distribution and Laplace mechanism. A
differentially private system is named after the probability distribution of the perturbation
applied onto the query output in the global setting. The Laplace distribution, also known
as the double exponential distribution, is defined as

Lap(x; µ, b) =
1
2b

exp
{
−|x− µ|

b

}
(3)

with the location parameter equal to its mean µ ∈ R and variance 2b2 where b > 0 denotes
the scale parameter.

Definition 4. Laplace mechanism [7] is defined for a function (or a query) q : D → Rk as follows

Y(x, q(.), ε) = q(x) + (Z1, · · · , Zk) (4)

where Zi ∼ Lap(b = s/ε), i = 1, · · · , k denote i.i.d. Laplace random variables.

We will refer to the parameters ε and δ as privacy budget throughout the paper. Next
definition reminds the reader of the L2 norm global sensitivity.

Definition 5. L2 norm sensitivity denoted s refers to the smallest possible upper bound on the L2
distance between the images of a query q : D → Rk when applied to two neighboring datasets X
and X̃ as

s = sup
d(X,X̃)=1

||q(X)− q(X̃)||2. (5)
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Definition 6. Gaussian mechanism [7] is defined for a function (or a query) q : D → Rk as follows

M(X, q(.), ε, δ) = q(X) + (Z1, · · · , Zk) (6)

where Zi ∼ N (0, σ2), i = 1, · · · , k denote independent and identically distributed (i.i.d.) Gaussian

random variables with the variance σ2
z =

2s2 log(1.25/δ)
ε2 .

Theorem 1 ([4]). The Laplace mechanism satisfies (ε, 0)-differential privacy.

Theorem 2 ([4]). For any ε, δ ∈ (0, 1), the Gaussian mechanism satisfies (ε, δ)-differential privacy.

Application of Gaussian noise results in a more relaxed privacy guarantee contrary to
Laplace mechanism, which brings about (ε, 0)-DP.

2.1. Problem Definition

Within the scope of this paper, we use two different approaches to study adversarial
classification under differential privacy, namely the statistical approach to bound the first-
order statistics of the additional data and an information-theoretic approach to characterize
the second-order statistics of the attack. We define the original dataset in the following
form X = Xn = {X1, · · · , Xn}. The query function takes the aggregation of this dataset as
q(X) = ∑n

i Xi and the DP-mechanism adds Laplacian or Gaussian noise Z on the query
output leading to the noisy output in the following formM(X, q(.), ε, δ) = Y = ∑n

i Xi + Z.
This public information is altered by an adversary, who adds a single record denoted
Xa to this dataset. The modified output of the DP-mechanism becomes ∑n

i Xi + Xa + Z.
The reader should note that, we do not make any assumptions on the value of Xa.

2.1.1. First-Order Statistics of Xa

Our first approach is inspired by [8] where the authors determine statistical thresholds
for the adversary’s hypothesis problem which is set to decide a given dataset entry is
included in a dataset D or its neighbor D̃. This approach is adapted to the problem of
detecting a strong adversary who does not only want to discover all the entries of a dataset
but also wants to harm it. Accordingly, we set the following hypotheses where the null
and alternative hypotheses are respectively translated into DP noise distribution with and
without the bias induced by the attacker.

H0 : defender fails to detect the attack

H1 : defender detects the attack
(7)

The hypothesis testing problem defined above in (7) can be translated into deciding
on the DP noise distribution with its parameters. Here H0 and H1 correspond to DP noise
following the probability distributions p0 with mean µ0 and p1 with mean µ1, respec-
tively. Therefore, the decision boils down to choosing between Y0 − ∑n

i=1 Xi = Z and
Y0 − [∑n

i=1 Xi + Xa]. Hence the shift in the location due to the addition of Xa to the dataset
is ∆µ = µ1 − µ0. The corresponding likelihood ratio for this problem yields

Λ =
L(p1)

L(p0)

H0
<>
H1

κ (8)

where L(.) denotes the likelihood function for the corresponding hypothesis and κ is some
positive number to be determined. Such a threshold defines the critical region in statistical
hypothesis tests where the null hypothesis is rejected. This approach results in a precise
trade-off between the attacker’s advantage (or the bias induced by the adversary) ∆µ,
the sensitivity s and the privacy parameter ε of the differentially private mechanism to
characterize the threshold for rejecting the null hypothesis, i.e., detecting the attack, as a
function of the error probabilities.
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α and β respectively denote type I and type II error probabilities which are defined for
the hypothesis testing problem in (7) as follows:

PFA = α = Pr[H0 reject|H0 is true] (9)

PMD = β = Pr[H1reject|H1is true]. (10)

Based on the definition of α, also called the probability of false-alarm, we denote its
complement by ᾱ = 1− α. Similarly, due to (10), the complement of type II error probability
(or the probability of mis-detection) is denoted by β̄ = 1− β. The probability of detection β̄
(i.e., correctly deciding H1) is also called the power of the test in the statistics or the recall in
machine learning terminology.

According to the Neyman–Pearson Theorem [18], the likelihood ratio compared
against some positive integer defines the best critical region of size α for testing a simple
hypothesis against an alternative simple hypothesis with the largest (or equally largest)
power of the test. An extension of this result to testing against a composite alternative
hypothesis is also possible. Such an extension is called uniformly most powerful test since
such a test with the best critical region of size α is conducted for each possible value of the
alternative hypothesis. Once we define the critical region for deciding between H0 and H1
in (7) as a function of ∆µ, the privacy parameter ε and the sensitivity s, we will derive the
error probabilities and the power of the test analytically as well as compute and depict
them numerically.

2.1.2. Second-Order Statistics of Xa-Information-Theoretic Approach

Our second approach is inspired by rate-distortion theory. For Gaussian mechanism,
we employ the biggest possible difference between the images of the query for the datasets
with and without the additional data Xa (i.e., neighboring inputs) as the fidelity criterion
(Definition 5). Accordingly, we derive the mutual information between the original dataset
and its neighbor in order to bound the additional data’s second-order statistics so that the
defender fails to detect the attack. We assume that Xa follows a normal distribution with
the variance σ2

Xa
. To simplify our derivations, we also assume that the original dataset

Xn = {X1, X2, · · · , Xi, · · · , Xn} and its neighbor X̃n = {X1, X2, · · · , Xi, · · · , Xn + Xa} have
the same dimension n. Alternatively, the attack would change the size of the dataset as
n + 1 where the additional data are not added to either of the Xi’s.

3. Adversarial Classification in Laplace Mechanisms

We separate our results in two main groups for (ε, 0)-DP in Laplace mechanisms for
one-sided and two-sided hypothesis tests.

One-Sided Test

We will investigate both cases of setting the alternative hypothesis H1 as either µ1 > µ0
(i.e., ∆µ > 0) or µ1 < µ0 (i.e., ∆µ < 0). This corresponds to a one-sided hypothesis
testing problem. The decision of choosing between the hypotheses in (7) boils down to
deciding between Y0 − ∑n

i=1 Xi = Z ∼ Lap(z; µ0, s/ε) and Y0 − [∑n
i=1 Xi + Xa] = Z ∼

Lap(z; µ1, θ(s/ε)) where θ ≥ 1 as the measure of the change in the privacy budget of the
system whereas s and ε denote the sensitivity and privacy parameter, respectively. It should
be noted that setting θ = 1 translates the hypothesis test in (7) into testing only the location
parameter of the Laplacian DP noise. Our goal is to derive a relationship between the
privacy parameter, the significance level (or the probability of false alarm), type II error
probability (or the probability of mis-detection) for the attacker to be successful, i.e., to
fail to reject H0, as a function of the bias ∆µ. The corresponding likelihood ratio to (7) is
given by

Λ =
L(p1(µ1, b1); z)
L(p0(µ0, b0); z)

H0
<>
H1

κ, (11)
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where κ is some positive number to be determined and (µi, bi) for i = 0, 1 represent the
location and scale parameters of the distributions to be tested.

The next theorem states our first main result which presents a threshold of cor-
rectly detecting the adversary for a given level of privacy budget, sensitivity and type I
error probability.

Theorem 3. The threshold of the best critical region of size α defined in (9) for deciding between the
null hypothesis and its alternative of the one-sided hypothesis testing problem in (7) for a Laplace
mechanism with the largest power β̄ is given as a function of the probability of false alarm α, privacy
parameter ε and global sensitivity s as follows

k =

{
µ0 +

s
ε ln(2(1− α)) if α ∈ [0, 0.5]

µ0 − s
ε ln(2α) if α ∈ [0.5, 1]

(12)

Then according to the adversary’s hypothesis testing problem, the defender detects the attack
for ∆µ > 0 if the output of the Laplace mechanism Y0 exceeds (k + q(x)) where q(.) is the noiseless
query output. Similarly, for ∆µ < 0, the attack is detected if Y0 < q(x) + k.

Remark 1. The decision rule given by Theorem 3 is equivalent to comparing the Laplace noise to the
threshold k as it will be shown by the following proof. For positive bias, the critical region becomes

(k, ∞) thus, z
H0
<>
H1

k. By analogy if ∆µ < 0, the critical region for the Laplace noise becomes (−∞, k).

Proof. According to the Neyman–Pearson theorem [18], each point where Λ ≥ κ composes
the best critical region of size α as defined in (9) for this simple hypothesis testing problem.
Using the ratio in (11), we will determine the threshold k as a function of the best critical
region, the power of the test, the privacy budget and lastly, the attack.

We expand Λ as follows.

Λ =

1
2θ(s/ε)

exp
{
− |z−µ1|

θ(s/ε)

}
1

2s/ε exp
{
− |z−µ0|

s/ε

} (13)

=
1
θ

exp
{

ε|z− µ0|
s

− ε|z− µ1|
θs

}
(14)

The likelihood ratio in (13) can be summarized by the following piecewise function
based on the possible relationships between µ1 and z due to the absolute value in the
exponent of the probability distribution for µ1 < µ0.

ΛI =


1
θ exp

{
ε
θs (z(1− θ) + θµ0 − µ1)

}
if z < µ1

1
θ exp

{
− ε

θs (z(1 + θ)− θµ0 − µ1)
}

if z ∈ [µ1, µ0]
1
θ exp

{
− ε

θs (z(1− θ) + θµ0 − µ1
}

if z ≥ µ0

(15)

Equivalently, ΛI is confined in the interval[
1
θ

exp
{
− ε

θs
(z(1− θ) + θµ0 − µ1

}
,

1
θ

exp
{ ε

θs
(z(1− θ) + θµ0 − µ1)

}]
.

On the other hand, for µ1 > µ0, the corresponding likelihood ratio for the hypotheses
in (7) yields

ΛI I =


1
θ exp

{
ε
θs (z(1− θ) + θµ0 − µ1)

}
if z < µ0

1
θ exp

{
ε
θs (z(1 + θ)− θµ0 − µ1)

}
if z ∈ [µ0, µ1]

1
θ exp

{
− ε

θs (z(1− θ) + θµ0 − µ1)
}

if z ≥ µ1

(16)
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To be able to determine a threshold for deciding between the hypotheses in (7), we
compute the false alarm rate α and the mis-detection error β (and the power of the test, that
is 1− β) applying the Neyman–Pearson lemma that guarantees maximizing the power of
the hypothesis test for a given false alarm rate α.

Derivation of α:

Based on the definition in (9), for ∆µ > 0 the probability of raising a false-alarm is
derived by integrating the following probability distribution over the critical region

α = Pr[H0 reject|H0 is true] (17)

=
∫ ∞

k

ε

2s
exp

{
− ε|z− µ0|

s

}
dz, (18)

which is further expanded out in two possible ways. First for k < µ0, we get

α = 1−
∫ k

−∞

ε

2s
exp

{ ε

s
(z− µ0)

}
dz (19)

= 1− 1
2

exp
{ ε

s
(k− µ0)

}
(20)

Second, we have for k ≥ µ0

α =
∫ ∞

k

ε

2s
exp

{
− ε

s
(z− µ0)

}
dz (21)

=
1
2

exp
{
− ε

s
(k− µ0)

}
(22)

Rewriting (20) and (22) as an equality for k, we obtain the piecewise function (12)
as the threshold in Theorem 3 as a function of α. If the bias induced by the adversary is
negative, i.e., ∆µ < 0, then the conditions to obtain (20) and (22) are swapped. For ∆µ < 0
and k < µ0, we get (22) for the probability of false-alarm.

How to determine κ?:

According to the piecewise expansions of likelihood ratio functions in (16) and (15)
respectively for ∆µ < 0 and ∆µ > 0, we have the intervals for κ given by (23) and (24) on

top of the next page since Λ
H0
<>
H1

κ.

1
θ

exp
{
− ε

θs
(z(1− θ) + θµ0 − µ1

}
< κ <

1
θ

exp
{ ε

θs
(z(1− θ) + θµ0 − µ1)

}
, for ∆µ < 0

(23)

1
θ

exp
{ ε

θs
(z(1− θ) + θµ0 − µ1)

}
< κ <

1
θ

exp
{
− ε

θs
(z(1− θ) + θµ0 − µ1)

}
, for ∆µ > 0

(24)

Therefore, the null hypothesis is rejected for

1
θ

exp
{
− ε

θs
(z(1 + θ)− θµ0 − µ1)

}
< κ for ∆µ < 0 (25)

or
1
θ

exp
{ ε

θs
(z(1 + θ)− θµ0 − µ1)

}
> κ for ∆µ > 0 (26)
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Due to the threshold of the critical region defined in Theorem 3, we finally get κ
as follows

κ =
1
θ

exp
{
− ε

θs
(k(1 + θ)− θµ0 − µ1)

}
for ∆µ < 0 (27)

κ =
1
θ

exp
{ ε

θs
(k(1 + θ)− θµ0 − µ1)

}
for ∆µ > 0 (28)

Derivation of the power of the test:

The power of the hypothesis test is the probability of rejecting the null hypothesis H0
given that the alternative hypothesis H1 is true. Let β̄ denote the complement of the type II
error β, we have using the definition in (10) for ∆µ > 0 and k < µ1

β̄ = 1− Pr[H1reject|H1is true] (29)

=
∫ ∞

k

ε

2θs
exp

{
ε(µ1 − z)

θs

}
dz (30)

=
1
2

exp
{

ε(µ1 − k)
θs

}
(31)

As for k > µ1, the power function becomes

β̄ = 1−
∫ k

−∞

ε

2θs
exp

{
ε(z− µ1)

θs

}
dz (32)

= 1− 1
2

exp
{

ε(k− µ1)

θs

}
(33)

On the contrary for negative bias ∆µ < 0, the conditions based on k and µ1 to ob-
tain (29) and (32) are swapped. In Section 6, we present numerical evaluation results for
Theorem 3 using the probability of false-alarm PFA and power of the test 1− PMD = β̄ to
draw receiving operating characteristic curves (ROC) as performance analysis.

Remark 2. Special case of θ = 1 and |∆µ1| ≤ s: Setting θ = 1 in (13), it can be easily
observed that both likelihood ratios ΛI in (15) and ΛI I in (16) are included in the following interval
[exp

{
−∆µ ε

s
}

, exp
{

∆µ ε
s
}
]. Applying also |∆µ1| ≤ s onto the likelihood ratio Λ in (13), we get

exp{−ε} ≤ Λ ≤ exp{ε} which is the (ε, 0)-DP.

3.1. Two-Sided Test

As an alternative solution to the same problem of detecting the attacker through
determining the shifts and changes in the location and deviation of the DP noise using a
one-sided hypothesis test, a two-sided test could provide a more realistic solution where
it is not possible to assume the direction of the shift induced by the adversary. Hence
the hypothesis test in (7) can be conducted for determining the (possible) change in the
distribution of the DP noise in both directions where the null hypothesis remains the same
as H0 : Z ∼ Lap(µ0, s/ε) to test against the alternative H1 : Z ∼ Lap(µ1, θs/ε).

This translates to choosing between

H0 : µ = µ0, b = s/ε (34)

H1 : at least one of the equalities does not hold (35)

where µ denotes the location parameter and b denoted the scale parameter of any Laplace
distribution. The alternative hypothesis can also be stated with the parameters µ = µ1,
b = θs/ε where θ ≥ 1.

In this two-sided test, there are two thresholds on each side of the origin to be deter-
mined for the critical region each with a size of α/2. Let k1 and k2 denote the threshold
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greater and smaller than the origin, respectively. The next theorem presents the thresholds
for detecting the attack as a function of the probability of false-alarm and the privacy budget
of the differentially private mechanism as its one-sided counterpart given by Theorem 3.

Theorem 4. The threshold of the best critical region of size α defined in (9) for choosing between
the null hypothesis and its alternative of the two-sided hypothesis testing problem in (34) and (35)
for a Laplace mechanism with the largest power β̄ is

k1 = µ0 − (s/ε) log α (36)

k2 = µ0 + (s/ε) log α (37)

Then according to the adversary’s hypothesis testing problem, the defender fails to detect the
attack when the output of the Laplace mechanism Y0 is confined in (q(x) + k2, q(x) + k1) where
q(.) is the noiseless query output.

Proof. The null hypothesis cannot be rejected if the noisy output of the Laplace mechanism
is confined in the interval (k2, k1). First, we begin with the derivation of threshold for the
output of the DP mechanism. The probability of raising a false-alarm or having a type I
error is derived as follows.

α = Pr[H0 reject|H0 is true] (38)

=
∫ k2

−∞

ε

2s
exp

{
ε(z− µ0)

s

}
dz +

∫ ∞

k1

ε

2s
exp

{
− ε(z− µ0)

s

}
dz (39)

Each addend of α corresponds to one half of the probability of false-alarm. Equating
each integral to α/2 and rewriting the equalities in terms of k1 and k2, we get the thresholds
in (37).

3.2. A Trade-off between µ1, s and ε for Detecting the Attacker-Two-Sided Test

Using the threshold presented in Theorem 4, we can determine an interval to confine
the mean of the attacker’s advantage to be detected by the DP mechanism, i.e., for the null
hypothesis H0 to be rejected. Alternatively, such an interval can be converted for the privacy
parameter ε as a function of error probabilities, the attack and the sensitivity. The following
result, Corollary 1, presents upper and lower bounds on the attacker’s advantage so that
the defender detects the attack.

There are two possible cases w.r.t. the relationship between µ0 and µ1. The alterna-
tive hypothesis in this two-sided test also states that these two parameters are unequal.
As we have discussed earlier in the derivation of the threshold for determining the critical
region in Laplace mechanisms, whether µ0 > µ1 or µ1 > µ0 directly effects the likeli-
hood ratio function, and thus the condition to reject the null hypothesis. Let us then
consider the first possible case of µ0 < µ1. In this case, we have either k2 < µ0 < k1 < µ1
or k2 < µ0 < µ1 < k1. On the contrary for µ1 < µ0, we have for the thresholds either of
the cases µ1 < k2 < µ0 < k1 or k2 < µ1 < µ0 < k1. These different cases can be used for
deriving an interval to include ∆µ as a function of the error probabilities, privacy budget
and the sensitivity.

Corollary 1. The absolute bias |∆µ| = |µ1 − µ0| induced by the adversary is confined in the
following interval so that the defender detects Xa and preserves (ε, 0)- DP

s
ε

log
(

αβ̄θ
)
< ∆µ <

s
ε

log
(

1
αβ̄θ

)
(40)

for θ ≥ 1 where α and β̄ respectively are the significance level and the power of the test of (35).
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Proof. We begin with deriving the power of the two-sided test (35) as a function of
the thresholds of the critical region. The probability of correctly detecting the attacker
is as follows.

β̄ =
∫ k2

−∞

ε

2θs
exp

{
ε(z− µ1)

θs

}
dz +

∫ ∞

k1

ε

2θs
exp

{
− ε(z− µ1)

θs

}
dz (41)

=
1
2

exp
{

ε(k2 − µ1)

θs

}
+

1
2

exp
{
− ε(k1 − µ1)

θs

}
(42)

Each addend in (41) corresponds to β̄/2 and can be rewritten for the thresholds
as functions of the power of the test as k1 = µ1 − s

ε log(β̄)θ and k2 = µ1 +
s
ε log(β̄)θ .

Combining this with k2 < k1 for the case µ0 < µ1, the bias is lower bounded as follows

µ0 +
s
ε

log α < µ1 −
θs
ε

log β̄ (43)

s
ε

log
(

αβ̄θ
)
< ∆µ (44)

As for the upper bound we have

µ1 +
θs
ε

log β̄ < µ0 −
s
ε

log α (45)

∆µ <
s
ε

log
(

1
αβ̄θ

)
(46)

By analogy, we get the swapped upper and lower bound for −∆µ for the second case
of µ1 < µ0. Finally, we get the interval for the absolute bias as given by (40). This concludes
the proof of the corollary.

4. Adversarial Classification in Gaussian Mechanisms

Next, we apply a source-coding approach to anomaly detection under DP, which
results in an upper bound on the variance of the additional data Xa as a function of the
sensitivity of the mechanism and the original data’s statistics. Additionally, we present a
statistical trade-off between the probability of false alarm, privacy budget and the impact
of the attack for the first-order statistics of the data in Section 4.2.

4.1. Privacy-Distortion Trade-off for Second-Order Statistics

The idea applied here is to render the problem of adversarial classification under DP
as a lossy source-coding problem. Instead of using the mutual information between the input
and output (or the input’s estimate obtained via the output), considering the adversary’s
conflicting goals we derive the mutual information between the datasets before and after
the attack. We present the main result for Gaussian mechanism by the following theorem.

Theorem 5. The privacy-distortion function for a dataset Xn and Gaussian mechanism as defined
by (6) is

P(s) =
1
2

log

(
fn

(
1 +

n

∏
i

σ2
Xi

/s2

))
, (47)

for s ∈
[
0, ∏n

i σ2
Xi

]
and zero elsewhere. σXi denotes the standard deviation of Xi for i = 1, · · · , n,

fn is some constant dependent on the size of the dataset n and σXi is the standard deviation of the
additional data.
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Proof. The first expansion of I(Xn; X̃n) proceeds as follows

I(Xn; X̃n) = h(Xn)− h(Xn|X̃n) (48)

≥ h(Xn)− h(q(Xn)− X̃n|X̃n) (49)

= h(Xn)− h(q(Xn)− q(X̃n)|X̃n) (50)

≥ h(Xn)− h(q(Xn)− q(X̃n)) (51)

≥ 1
2

n

∑
i=1

log
(
(2πe)σ2

Xi

)
− 1

2
log
(

2πes2
)

(52)

=
1
2

log

(
(2πe)n−1

n

∏
i

σ2
Xi

/s2

)
(53)

In (51), we apply the following property due to concavity of entropy function,
h(g(x)) ≤ h(x) for any function g(.) and introduce the lower bound since the condition
conditioning reduces entropy. In (52), we plug in Definition 5 into the second term after
bounding it by Gaussian entropy.

It is worth noting that the additional factor 2πe appears here as opposed to the original
rate-distortion function due to the choice of the query function that aggregates the entire
dataset and returns an output of size 1.

Corollary 2. The second order statistics of the additional data inserted into the dataset by the
adversary is upper bounded by a function of the privacy budget (ε, δ)− and the statistics of the
original dataset as follows

σ2
Xa
≤ 1

(2πe)n−1

[
s2

1− s2/σ2
Xn

]
(54)

where s2 = σ2
z ε2

2 log(1.25/δ)
due to Definition 6 for n ≥ 2.

Proof. For the second expansion of I(Xn; X̃n), we have the following considering the neighbor
that includes Xa has now (n + 1) entries over n rows as X̃n = {X1, X2, · · · , Xn + Xa}.

I(Xn; X̃n) = h(X̃n)− h(X̃n|Xn) (55)

≤
n

∑
i=1

1
2

log(2πe)nσ2
Xi
− 1

2
log
(
(2πe)nσ2

Xa

)
(56)

=
1
2

log

(
(2πe)n

n−1

∏
i=1

σ2
Xi
(σ2

Xn
+ σ2

Xa
)

)
− 1

2
log
(
(2πe)nσ2

Xa

)
(57)

=
1
2

log
n−1

∏
i=1

σ2
Xi

(
1 +

σ2
Xn

σ2
Xa

)
(58)

Due to the adversary’s attack, in the first term of (56), we add up the variances of
(n + 1) Xi’s including Xa. Since (58) ≥ (53), global sensitivity is bounded as follows in
terms of the second-order statistics of the original data and those of the additional data Xa.

s ≥ (2πe)
n−1

2
σXn · σXa(

σ2
Xn

+ σ2
Xa

)1/2 (59)

Alternatively, the lower bound on the sensitivity of the Gaussian mechanism can
be used as an upper bound on σ2

Xa
to yield a threshold in terms of the additional data

Xa’s variance as a function of the privacy budget and the original data Xn’s statistics to
guarantee that the adversary avoids being detected.
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Remark 3. The second expansion of the mutual information between neighboring datasets derived
in (53), can be related to the well-known rate-distortion function of the Gaussian source which,
originally, provides the minimum possible transmission rate for a given distortion balancing (mostly
for the Gaussian case) the squared-error distortion with the source variance. This is in line with
the adversary’s goal in our setting, where the adversary aims to maximize the damage that s/he
inflicts on the DP-mechanism. However, at the same time, to avoid being detected the attack is
calibrated according to the sensitivity which here replaces the distortion. Thus, similar to the classical
rate-distortion theory, here the mutual information between the neighbors is minimized for a given
sensitivity to simultaneously satisfy adversary’s conflicting goals for the problem of adversarial
classification under Gaussian DP-mechanism.

4.2. A Statistical Threshold-First-Order Statistics

Next, we present a statistical trade-off between the privacy budget of the Gaussian
mechanism and the adversary’s advantage.

Theorem 6. The adversary avoids being correctly detected by the defender with the largest possible
power of the test β̄ = 1− β and the best critical region of size α = 1− ᾱ for positive bias, if the
following inequality holds

∆µ ≤
(

Q−1(α)−Q−1(β̄)
)

σz (60)

where Q(.) denotes the Gaussian Q-function defined as Pr[T > t] and for σz =
√

2·s·.5·log(1.25/δ)
ε .

By analogy, for negative bias, we have

∆µ ≥
(

Q−1(ᾱ)−Q−1(β)
)

σZ (61)

Proof. Likelihood ratio function Λ to choose between Y−∑n
i Xi and Y−∑n

i Xi−Xa results

in z > k̃ where k̃ =
σ2

z log k
∆µ + µ1+µ0

2 by setting p0 and p1 as Gaussian distributions with
respective location parameters µ0 and µ1 and the mutual scale parameter σz. Probability of
rejecting H0 in case of an attack is derived using this condition as

α =

Q
(

σz log k
∆µ + ∆µ

2σz

)
∆µ > 0,

1−Q
(

σz log k
∆µ + ∆µ/(2σz)

) (62)

where Q(.) denotes the Gaussian Q-function defined as Pr[T > t] for standard Gaussian
random variables. The threshold of the critical region k for ∆µ > 0 is obtained as a
function of the probability of false-alarm as k = exp

{
∆µ
σz

(
Q−1(α)− ∆µ/2σz

)}
. The second

threshold for negative bias can be obtained similarly. The defender fails to detect the attack
if Y < k + q(X), where q(.) is the noiseless query output. By analogy, for ∆µ < 0, the attack
is not detected if the DP output exceeds k̄ + q(X) where k̄ = exp

{
∆µ
σz

(
Q−1(ᾱ)− ∆µ

2σz

)}
. The

power of the test for both cases is obtained as follows

β̄ =

{
Q
(
Q−1(α)− ∆µ/σz

)
, for ∆µ > 0,

1−Q
(
Q−1(ᾱ)− ∆µ/σz

)
for ∆µ < 0.

(63)

Rewriting (62) and (63), we obtain (60) and (61).

5. Kullback–Leibler DP and Chernoff DP for Adversarial Classification

This part is reserved for adaptation of existing quantities from information theory
such as the relative entropy or Kullback–Leibler (KL) divergence and Chernoff information
to adversarial classification under DP. In [5], KL-DP is defined as follows.
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Definition 7 (KL-DP, [5]). For a randomized mechanism PY|X that guarantees ε-KL-DP, if the
following inequality holds for all its neighboring datasets x and x̃.

D(PY|X=x||PY|X=x̃) ≤ exp{ε} (64)

In [5] (Theorem 1), KL-DP is proven to satisfy the following chain of inequalities

(ε, 0)−DP ≥ KL−DP ≥ (ε, δ)−DP (65)

In the upcoming part, we derive KL-DP in Laplace mechanisms. Additionally, in Section 5.2,
we introduce a new metric of DP based on Chernoff information for adversarial classifica-
tion under Gaussian mechanisms.

5.1. Laplace Mechanisms

This section is dedicated to the derivation of relative entropy or Kullback–Leibler
(KL) divergence between two Laplace distributions and its adaptation to adversarial clas-
sification through KL-DP. For the described problem and the associated model described
in Section 2.1, the neighboring datasets could be imagined as those where the output of
the query is ∑n

i=1 Xi before the attack and (∑n
i=1 Xi + Xa) after the attack in both cases

of Laplace and Gaussian mechanisms.The corresponding distributions are considered as
the DP noise with and without the induced value of Xa by the attacker as in our original
hypothesis testing problem in (7). To be consistent with the hypotheses in (7), we set
PY|X=x Lap(µ0, s/ε) and for the neighbor, we have Lap(µ1, θs/ε).

Hereafter, we derive the relative entropy between p0 ∼ Lap(µ0, b0) and p1 ∼ Lap(µ1, b1).

D(p0||p1) =
∫

p0(z) log
p0(z)
p1(z)

dz (66)

= Ep0

log
1/2b0 exp

{
− |z−µ0|

b0

}
1/2b1 exp

{
− |z−µ1|

b1

}
 (67)

= log
(

b1

b0

)
− 1

b0
Ep0 [|z− µ0|] +

1
b1
Ep0 [|z− µ1|] (68)

(a)
= log

(
b1

b0

)
− 1 +

1
b1
Ep0 [|z− µ1|] (69)

In step (a), we substituted Ep0 [|z− µ0|] by b0 since for z ∼ Lap(µ, b) then |z− µ| ∼
Exp(1/b) and the corresponding mean for the exponential random variable is the inverse
of its parameter. For the last term, 1

b1
Ep0 [|z− µ1|], we must consider two different cases

due to the absolute value in the exponent of the Laplace distribution. In the following first
expansion, the two distributions are centered around µ0 and µ1 where µ0 < µ1.

1
b1
Ep0 [|z− µ1|] =

1
b1

∫
p0

|z− µ1|
1

2b0
exp

{
−|z− µ0|

b0

}
dz (70)

=
b0

2b1
exp

{
µ0 − µ1

b0

}
+

µ1 − µ0

b1
(71)

Substituting (71) into (69), we finally get the KL divergence between two Laplacians as

DI(p0||p1) = log
(

b1

b0

)
− 1 +

b0

b1
exp

{
µ0 − µ1

b0

}
− µ0 − µ1

b1
(72)
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Simplifying (72) for b0 = s/ε and b1 = θ(s/ε) and µ1 − µ0 = ∆µ for the hypothesis
testing problem defined in (7), we finally get

DI(p0||p1)∆µ>0 = log θ − 1 +
1
θ

exp
{
−∆µε

s

}
+

∆µε

θs
(73)

As for the case of µ0 > µ1, we have

1
b1
Ep0 [|z− µ1|] =

1
b1

∫
p0

|z− µ1|
1

2b0
exp

{
−|z− µ0|

b0

}
dz (74)

=
b0

b1
exp

{
µ1 − µ0

b0

}
+

b0

b1
(75)

Finally, substituting (74) into (69), we get the KL divergence between p0 and p1 for
positive µ0 where µ0 > µ1 as follows.

DI I(p0||p1) = log
(

b1

b0

)
− 1 +

b0

b1
exp

{
µ1 − µ0

b0

}
+

b0

b1
(76)

Setting µ1 − µ0 = ∆µ, b0 = s/ε and b1 = θ(s/ε) in (76), DI I(p0||p1) yields

DI I(p0||p1)∆µ<0 = log θ − 1 +
1
θ

exp
{
− ε∆µ

s

}
+

1
θ

(77)

Remark 4. Authors of [6] also seek the maximum bias induced by the adversary where the objec-
tive function is the minimum relative entropy between the probability distribution of the dataset
before (p0) and after the attack (p1). Nevertheless, the choice of the objective function is set as
D(p1||p0) ≤ γ for some γ. For the Laplace distribution, KL divergence is not symmetric, hence
D(p0||p1) 6= D(p1||p0). Therefore, due to Stein’s lemma [19], (72) and (76) should be used instead.

In Section 6, we present numerical evaluation results of (73) for different values privacy
parameter as well as various levels of attack.

5.2. Chernoff DP for Gaussian Mechanism

In the classical approach, the best error exponent in hypothesis testing for choosing
between two probability distributions is the Kullback–Leibler divergence between these two
distributions due to Stein’s lemma [19]. In the Bayesian setting, however, assigning prior
probabilities to each of the hypotheses in a binary hypothesis testing problem minimizes
the best error exponent when the weighted sum probability of error, i.e., π = aα + bβ
for b = 1 − a and a ∈ (0, 1) which corresponds to the Chernoff information/divergence.
The Chernoff information between two probability distributions f0 and f1 with prior
probabilities a and b is defined as

Ca( f0|| f1) = log
∫

x
f0(x)a f b

1 (x)dx (78)

The Renyi divergence denoted Da( f0|| f1) between two Gaussian distributions with
parameters N (µ0, σ2

0 ) and N (µ1, σ2
1 ) is given in [20] by

Da( f0|| f1) = ln
σ1

σ0
+

1
2(a− 1)

ln

(
σ2

1
(σ2)∗a

)
+

1
2

a(µ0 − µ1)
2

(σ2)∗a
(79)
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where (σ2)∗a = aσ2
1 + bσ2

0 . Using the following relation between Chernoff information and
Renyi divergence Da( f0|| f1) =

1
1−a Ca( f0|| f1), we obtain the Gaussian univariate Chernoff

information with different standard deviations σi for i = 0, 1 as follows.

C( f0|| f1) = b ln
σ1

σ0
+

1
2

ln
σ2

1
aσ2

1 + bσ2
0
+

a · b
2

(µ0 − µ1)
2

aσ2
1 + bσ2

0
.

On the other hand, KL divergence between two Gaussian distributions denoted

DKL( f0|| f1) is derived as log
(

σ1
σ0

)
+ 1

2
σ2

0
σ2

1
+ (µ1−µ0)

2

2σ2
1
− 1

2 .

The next definition provides an adaptation of Chernoff information to quantify DP
guarantee as a stronger alternative to KL-DP of Definition 7 and (ε, δ)-DP for Gaussian
mechanisms. We apply this to our problem setting for adversarial classification under
Gaussian mechanisms, where the query output before and after the attack are ∑n

i Xi and
∑n

i Xi + Xa, respectively. The corresponding distributions are considered as the DP noise
with and without the induced value of Xa by the attacker as in our original hypothesis
testing problem in (7) in Section 2.1.1.

Definition 8 (Chernoff DP). For a randomized mechanism PY|X guarantees ε− Chernoff-DP,
if the following inequality holds for all its neighboring datasets x and x̃

Ca(PY|X=x||PY|X=x̃) ≤ exp(ε) (80)

where Ca(.||.) is defined by (78).

Ref. [5] (Theorem 1) proves that KL-DP defined in Definition 7 is a stronger privacy
metric than (ε, δ)-DP that is achieved by Gaussian mechanism. Accordingly, the following
chain of inequalities are proven to hold for various definitions of DP

ε−DP
a
� KL−DP

b
� MI−DP

c
� δ−DP d

= (ε, δ)−DP

where MI-DP refers to the mutual information DP defined by sup
i,PXn

I(Xi; Y|X−i) ≤ ε nats for

a dataset Xn = {X1, · · · , Xn} with the corresponding output Y according to the random-
ized mechanism represented by PY|Xn where X−i denotes the dataset entries excluding Xi.
δ-DP represents the case when ε = 0 in (ε, δ)-DP.

Chernoff-information-based definition of DP is a stronger privacy metric than KL-DP,
and thus (ε, δ)-DP for the Gaussian mechanism due to prior probabilities. Such a compari-
son is presented numerically in Section 6. For the special case of equal standard deviation
of both distributions, Chernoff information C( f0|| f1) is exactly a · b · DKL( f0|| f1).

6. Numerical Evaluation Results
6.1. ROC Curves for Laplace Mechanism

Figures 1 and 2 present the numerical evaluation results of the one-sided hypothesis
test for the Laplace DP noise parameters. The plots depict two different possible scenarios
where the induced bias by the adversary is above and below the sensitivity of the system.
µ0 is set equal to 0 hence ∆µ = µ1. As highlighted in the legend, we plot the ROC curves
for different values of ε and θ. We observe that when the privacy parameter ε is very
small (e.g., ε = 0.015), the test is no longer accurate and detecting the adversary can be
considered similar to random guessing. On the other hand, when the privacy parameter is
very large, the accuracy of the test becomes higher in the expense of the privacy guarantee.
Furthermore, as opposed to [8] (Theorem 5), we notice that ROC curves strongly depend
on the sensitivity s, hence the mapping function (query) applied on the input. Indeed,
when µ1 > s the accuracy of the test becomes less important as the adversary is trying
to harm the system. Figures 1 and 2 also show that the choice of θ affects the power of
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the test. When θ = 1, the test only consists in choosing between two location parameters.
W.r.t. to the choice of θ, numerical evaluation shows that the power of the test on the y-axis
decreases with θ. For each value of ε, ROC curves that correspond to θ = 1 outperform
those with bigger variance as of a certain level of α and as the privacy is decreased (or
equivalently when ε is increased) this flip in performance occurs for much smaller choices
of the probability of false alarm.
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Figure 1. ROC curves for the one-sided hypothesis test (∆µ = µ1 > 0): (20) vs. (29) and (22) vs. (32)
for different values of privacy parameter and s < ∆µ where µ0 = 0.
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Figure 2. ROC curves for the one-sided hypothesis test (∆µ = µ1 > 0): (20) vs. (29) and (22) vs. (32)
for different values of privacy parameter and s > ∆µ where µ0 = 0.

The ROC curves corresponding to two-sided hypothesis test (35) are depicted in
Figures 3 and 4 for same values of privacy budget and θ used in the previous case. As ex-
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pected, ROC curves for the two-tailed test show the same behavior as in Figures 1 and 2
w.r.t. the effect of the change in the privacy budget on the accuracy of the test (β̄ increases
with ε). On the other hand, we observe that in the second case the test is less accurate.
This is justified by the lack of knowledge on the sign of ∆µ. Indeed, the previous test is
considered as being more precise (∆µ > 0).
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Figure 3. ROC curves for the two-sided hypothesis test (∆µ = µ1 > 0): (39) vs. (42) depicted for
different values of privacy parameter, s < ∆µ and θ = 1 vs. θ = 1.5.
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Figure 4. ROC curves for the two-sided hypothesis test (∆µ = µ1 > 0): (39) vs. (42) depicted for
different values of privacy parameter, s > ∆µ and θ = 1 vs. θ = 1.5.

6.2. KL-DP for Adversarial Classification:

KL-DP (73) derived in Section 5.1 is numerically evaluated in Figure 5 for different
levels of attack in comparison to the sensitivity of the system for both θ = 1 and θ = 1.5.
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Accordingly, the effect of the attack is compared with the upper bound exp{ε} in (64).
Figure 5 shows that increasing the impact the attack w.r.t. the sensitivity, closes the gap
with the upper bound and for the case |∆µ| = 4 · s. As for moderate privacy budget, KL-DP
upper bound is violated.
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Figure 5. KL-DP for different values of privacy parameter and θ = 1 vs. θ = 1.5.

6.3. Numerical Evaluation Results for the Gaussian Mechanism

Figures 6 and 7 present ROC curves computed using the threshold of (60) for adver-
sarial classification under Gaussian DP for two different scenarios where the impact of
the attack is greater and less than the L2 norm global sensitivity (in this order) for various
levels of privacy budget. We observe that in the low privacy regime (i.e., when ε is large)
the accuracy of the test is high which comes at the expense of the privacy guarantee since
as the privacy budget is decreased (higher privacy) the test is no longer accurate and the
adversary cannot be correctly detected with high probability. Another observation can
be made based on the effect of the relationship between the attack and sensitivity. Unsur-
prisingly, increasing the bias ∆µ as opposed to s also increases the probability of correctly
detecting the attacker.

6.3.1. Privacy-Distortion Trade-Off

The upper bound (54) on the additional data’s variance presented in Corollary 2, is
tested for two opposing hypothesis in (7) and the corresponding thresholds of the critical
region (to be compared to the chi-square table values) are depicted in Figure 8. Here the
null hypothesis that states that the defender fails to detect the attack corresponds to the
case where σ2

Xa
respects the upper bound (54) whereas the alternative hypothesis claims

the variance of Xa exceeds the proposed bound by factors stated in the legend of the figure.
Increasing the privacy budget also increases the threshold and θσ2

Xa
violates the upper

bound for θ > 1. This is consistent with Figure 8.

6.3.2. KL-DP vs. Chernoff DP

Figure 9 depicts Chernoff DP and KL-DP for various levels of privacy and the impact
of the attack which were set as a function of the global sensitivity. Accordingly, the attack is
compared to the privacy constraint in Definition 8, which is referred as the upper bound in
the legend. Due to prior probabilities, Chernoff information is tighter than KL divergence
consequently, it provides a more strict privacy constraint. Figure 9 confirms that increasing
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the impact of the attack as a function of the sensitivity closes the gap with the upper bound
for Chernoff-DP. Additionally, the KL-DP does not violate the upper bound of the privacy
budget only in the high privacy regime (when ε is small) for the cases of ∆µ = 2 · s and
∆µ = 4 · s.
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Figure 6. Equations (62) and (63) for various values of ε, ∆µ > s and δ = ε/20.
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Figure 8. The upper bound (54) on the additional data’s variance vs. the chi-square table values for
various values of θ.
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7. Conclusions

We characterized statistical trade-offs between the security of the Laplace mechanism
and the privacy protected adversary’s advantage for adversarial classification using one
and two-tailed hypothesis testing. In both settings, we established trade-offs between
the sensitivity of the system, privacy parameter and the damage caused by the attack
(that is the bias due to the attack) using the threshold(s) of the critical region in choosing
between the hypotheses whether or not the defender detects the attack. Such trade-offs are
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presented as functions of corresponding error probabilities. Numerical evaluation results
show that increasing the privacy parameter also increases the accuracy of the hypothesis
test. Additionally, we derived KL-DP for adversarial classification in Laplace mechanism.
According to the numerical evaluation results, the effect of increasing the impact of the
attack closes the gap with the DP upper bound exp{ε} and some even violates it for
moderate privacy budget.

We established statistical and information-theoretic trade-offs between the security of
the Gaussian DP-mechanism and the adversary’s advantage who aims to trick the classifier
that detects anomalies. Accordingly, we determined a statistical threshold that offsets the
DP-mechanism’s privacy budget against the impact of the adversary’s attack to remain
undetected and introduced the privacy-distortion function which we used for bounding
the impact of the adversary’s modification on the original data. We introduced Chernoff DP
and its application to adversarial classification which turned out to be a stronger privacy
metric than KL-DP and (ε, δ)-DP for the Gaussian mechanism.
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