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Christophe Caperaa 3, Sadou Dalhatou 2, Abdoulaye Kane 1,* and Hicham Zeghioud 1,*

1 UniLaSalle-Ecole des Métiers de l’Environnement, Cyclann, Campus de Ker Lann, 35170 Bruz, France
2 Department of Chemistry, Faculty of Science, University of Maroua, Maroua 814, Cameroon
3 Institut de Chimie de Clermont-Ferrand (ICCF), Université Clermont Auvergne, 24 Avenue Blaise Pascal,

63178 Aubiere, France
* Correspondence: abdoulaye.kane@unilasalle.fr (A.K.); hicham.zeghioud@unilasalle.fr (H.Z.)

Abstract: Graphitic carbon nitride (g-C3N4) based photocatalyst was synthesized and the photocat-
alytic performance was investigated for the removal of Eriochrome Black T (EBT) and Bromophenol
Blue (BPB) under UV irradiation. The prepared materials were characterized by SEM-EDX, XRD,
Raman, FTIR and DRS. Higher degradation efficiency for the same initial concentrations of EBT and
BPB in presence of TiO2/g-C3N4 have been achieved within 160 min of irradiation. The kinetic study
showed that the photodegradation of BPB by TiO2/g-C3N4 follows pseudo-first-order kinetics with
an R2 value of 0.98. The addition of persulfate (PS) in BPB solution improved the degradation yield
from 8.81% to 80.14% within 20 min of UV light irradiation. A Box-Behnken model was developed
from three factors and Response surface methodology (RSM) was employed to identify the optimum
conditions for the treatment of BPB solution by TiO2/g-C3N4. The experimental values of degrada-
tion of BPB agreed with predicted values obtained from central composite design (CCD) analysis
with an R2 value of 0.9999. The scavenger study revealed that superoxide radical anion (O2

•−) plays
a key role (68.89% of contribution) followed by OH• and h+ with 22.40% and 15.55% of contribu-
tion, respectively. This study has obviously exhibited the potential of TiO2/g-C3N4 composite as a
promising catalyst for photocatalytic purposes.

Keywords: photocatalysis; TiO2/g-C3N4; bromophenol blue; Eriochrome Black T; dye degradation

1. Introduction

Water is a natural resource essential to human life. However, the scarcity of this
precious resource has become a major problem faced by most countries in the world. This
is usually due to the contamination of its sources by wastewater from human activities,
mainly industry and agriculture [1]. Several pollutants found in water are organic in nature,
such as dyes which are used in the textile and printing industries [2]. About 15–20% of
dyes are lost during the dyeing process and therefore end up in the environment and can
become a source of pollution [3]. Pharmaceutical pollutants such as drugs are also found in
water when they are unmetabolized, and can be considered pollutants if their by-products
are discharged into the environment [4].

The presence of pollutants in the water can be very toxic for living beings, causing
health problems such as cancerogenic diseases, hepatitis, cholera and other diarrheal
disease [5]. Therefore, the removal of these toxic organic pollutants from water is essential
to protect public health. Reverse osmosis, ion exchange, electro-dialysis, electrolysis,
coagulation, flocculation and adsorption are examples of some conventional methods
commonly used for the removal of pollutants from water [6,7]. Adsorption is an effective
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technology for the removal of organic and pharmaceutical pollutants from water [8–11]. In
adsorption, pollutants from water adhere to the surface of an adsorbent to purify the water,
the pollutants are not eliminated but transferred to the surface the adsorbent which may be
considered as another possible future source of pollution [12].

Advanced Oxidation Processes (AOPs) are also promising methods for removal of
contaminants from wastewater effluents due to their fast reaction rate and strong oxidation
capability [13]. There exists a variety of AOPs, such as Fenton [14], ozonation or catalytic
ozonation [15], photocatalysis [16], electrochemical oxidation [17], discharge plasma [18],
Sonolysis [19] and ionizing radiation [20]. Among AOPs, photocatalysis is widely studied
for wastewater treatment. Thus, our interest in this present work to focus on the photo-
catalysis which has is an emerging technology for the degradation of organic pollutants in
wastewater [21,22].

Part of photocatalysis is the use of catalysts to enhance removal of organic pollu-
tants in wastewater. Due to the increase in demand for catalysts with high performance
in photocatalytic degradation of organic compounds, researchers have been looking for
means to synthesize new catalysts or modify the existing ones to increase their photo-
catalytic activities [23]. Various oxidants were used in order to intensify the degradation
performance of photocatalyst as reported in different works such as such as H2O2, O2
and K2S2O8 [24,25]. Photocatalytic activated persulfates system was reported to have the
merits of environmental protection, a great chemical stability and a sustainability [26]. For
example, Sun et al. reported an increase of 75% in quinoline degradation efficiency with
increasing persulfate concentration in WO3-CuFe2O4 Z-scheme system within 150 min [27].

Over these years, researchers have developed an interest in graphitic carbon nitride
(g-C3N4) catalyst in the photocatalytic treatment of pollutants in water [28]. g-C3N4 is a
low-cost metal-free polymer with properties such as facile synthesis, high stability, unique
optical and electronic characteristics which makes g-C3N4-based catalysts suitable candi-
dates for photocatalytic applications [29]. Semiconducting metal oxides such as TiO2 are
known to be efficient in the degradation of organic pollutants and combining it with other
compounds may increase their photocatalytic activities [30,31]. To promote the photocat-
alytic performance of TiO2, different strategies were used, such as surface modification,
doping, morphology control, facet engineering, coupling different semiconductors and
adding oxidants (i.e., H2O2, O3, and persulfate) [32,33]. Herein, the last two strategies were
adopted to achieve these objectives. Indeed, coupling g-C3N4 with TiO2 can increase the
reaction site on the surface of g-C3N4, and can also act as an active site to promote the trans-
fer of radical species [34,35]. Heterojunction composites like TiO2/g-C3N4 help to reduce
electron-hole recombination rate which leads to increase in photocatalytic reactions [36].
Such catalysts have been widely used in the photocatalytic hydrogen production [37], to
enhance visible photocatalytic activity [38] and in the degradation of organic pollutants [39].
Eriochrome Black T (EBT) and Bromophenol Blue (BPB) used in printings, pharmaceutical
and textiles industries as dyes, They are commonly used to evaluate the photocatalytic
performance of semiconductor materials in aqueous media [16,40–42].

In this study, a simple synthesis route of g-C3N4 based catalysts (g-C3N4, 30% TiO2/
g-C3N4) were tested and the degradation performances of obtained photocatalysts were
studied on the removal of EBT and BPB solutions. The behavior of TiO2/g-C3N4 toward
BPB degradation under in influence of a simultaneous different variable parameters was
examined via Response Surface methodology (RSM). Furthermore, the potential of TiO2/
g-C3N4 in the degradation of dye solutions under various conditions (catalyst dosage, dye
concentration, pH values, presence of salt and some oxidants) were also studied. Kinetics
of photocatalytic degradation was studied and the contribution of active species in the
degradation process was investigated.
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2. Materials and Methods
2.1. Materials

Chemicals used for this study were: Bromophenol blue was purchased from REACTIF
RAL (Paris, France), Eriochrome Black T and sodium persulfate (Na2S4O8 ≥ 98.0%) were
obtained from PROLABO (Paris, French), Hydrogen peroxide (H2O2, 30%, from Millipore,
Darmstadt, Germany), sodium chloride (NaCl≥ 99.0%, purchased from SIGMA-ALDRICH,
Missouri, USA), hydrochloric acid (HCl≥ 37%, from Honeywell, Seelze, Germany), sodium
hydroxide (NaOH, 98% purity) were purchased from Sigma–Aldrich (Grenoble, French).
Isopropanol (C3H8O ≥ 99.7%) and methanol (CH4O ≥ 99.8%) obtained from MERCK
company (Darmstadt, Germany) and potassium dichromate (K2Cr2O7 ≥ 99.5%) purchased
from Panreac (Barcelone, Spain). All the solutions were prepared using reverse osmosis
water. Eriochrome black t and Bromophenol blue properties are shown in the Table 1:

Table 1. Physico-chemical properties of Eriochrome black t and Bromophenol blue.

Dye Molecular Formula Structure λ Max

Eriochrome black t C20H12N3O7SNa
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592 nm

2.2. Synthesis of g-C3N4 and TiO2/g-C3N4 Composites

The synthesis of bulk g-C3N4 was done by thermal polymerization based on the
previous work [43,44]. Briefly, g-C3N4 was synthesized by thermal polymerization where
10 g of dicyandiamide was placed into an alumina crucible, and then heated at 550 ◦C
in a muffle furnace during 4 h (20 ◦C/min). Afterward cooled to room temperature, the
obtained solid was grinded into powders for further usage.

The synthesis of TiO2 was done by the sol-gel method inspired by the work of
Askari et al. [45]. Briefly, titanium isopropoxide was dissolved in acetic acid and the mix-
ture was maintained under stirring. The reverse osmosis water was added drop by drop
for the hydrolysis. The resultant gel was dried at 200 ◦C for 2 h. The TiO2 nanoparticles
were obtained after calcination of the sample at 400 ◦C during 4 h in order to improve the
crystallinity of the nanoparticles.

However the TiO2/g-C3N4 composite was prepared by wet- impregnation according
to the literature [46,47]. In which, a suitable quantity of g-C3N4 and TiO2 were dissolved
separately in methanol and then, sonificated in an ultrasonic bath during 30 min. The two
solutions were mixed and stirred at room temperature for 24 h. The resultant powder was
preserved under room temperature for 12 h eliminate solvent by evaporation.

The schematic illustration of the materials preparation was regrouped in Figure 1.
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2.3. Photocatalytic Treatment

EBT and BBP solutions used in the experiments were prepared at different concentra-
tions (2, 5, 10 and 12 ppm). Photodegradation experiments were performed in the batch
system of 1000 mL beaker and stirred at 400 rpm. The mass of the catalyst was dispersed
into a volume of 500 mL solutions. The mixture was left in the dark and continuously
stirred for 30 min to achieve the adsorption-desorption equilibrium before UV irradiation
(UVA lamp of 24 W with wavelength of 365 nm as reported in Figure S1). After reaching
the adsorption-desorption equilibrium, the dye solution was then exposed to UV-light
for 180 min. At 20 min time intervals, 3 mL samples of the solution were collected from
the photoreactor and filtered to remove the photocatalysts by a syringe filter (pore size
0.45 µm).

A dual-beam spectrophotometer (SHIMADZU UV-1800) was used to measure the
absorbance at maximum wavelengths of 535 nm and 592 nm for EBT and BPB, respectively
(example of BPB degradation in Figure S2). The photodegradation rate was estimated using
the following equation:

R (%) =
C0 − Ct

C0
× 100 (1)

where C0 is the initial concentration of pollutant in mg/L and Ct is the concentration of
dyes in mg/L at time t. For all photocatalytic experiments the pH value was adjusted only
at the beginning of the experiment. The pH of the solution was adjusted by HCl and NaOH
(0.01 M).

All figures (at the exception of figures generated from RSM study) was drawn using
OriginPro 2022, from OriginLab Corporation, Northampton, MA, USA.

2.4. Photocatalyst Characterization

- The X-ray diffraction (XRD) patterns of as-prepared catalysts were made using a D8
Bruker spectrometer (Cu Ka radiation with wavelength λ = 0.15418 nm as a wave-
length) the incident angle of 2θ, 5–130◦ using 0.017◦ each step, and the acceleration
tension is 40 kV and current emission equals 30 mA.
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- Raman spectra were acquired by using Raman spectrometer of JobinYvon company
model T64000. The wavelength of laser was 514.5 nm (2.41 eV) and the power was set
at 100 mW. The measurement was carried out in solid state by dispersing the sample
powder upon glass slide under air at room temperature.

- The scanning electron microscopy (SEM) images of the photocatalysts were ob-
tained using an (JEOL 5910 LV) apparatus with EDS elementary analysis using SDD
detector (Bruker)

- The UV–vis diffuse reflectance spectra (UV–vis DRS) of the photocatalysts were
recorded by Cary 300 instrument with scan Rate of 600 nm/min in shifting range of
80 to 500 cm−1.

3. Results and Discussion
3.1. Characterization of Photocatalyst

The SEM images and EDX spectrum of the photocatalytic materials were shown in
Figure 2. It seems that g-C3N4 and TiO2/g-C3N4 were composed of many stacked particles,
which presented an irregular spherical shapes morphology with more homogeneity for
g-C3N4. Moreover, g-C3N4 particles appear as platelets, which is in good agreement with
the 2D structure however in TiO2/g-C3N4 images in addition to the observed platelets
there are small particles which may be attributed to TiO2. Images presented also a porous
surface with various sizes. EDX spectrum confirmed the presences of C, N and O elements
in g-C3N4 sample, and the presence of C, N, O and Ti for TiO2/g-C3N4 composite sample.
This may demonstrate that both photocatalyst composites were well synthesized.
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The crystallinity structure of the synthesized materials g-C3N4 and g-C3N4 modified
TiO2 nanocomposites were characterized and the results were shown in Figure 3a. The XRD
pattern of TiO2/g-C3N4 revealed numerous peaks at 25.3◦, 37.8◦, 48.1◦, 54.0◦, 55.1◦, 62.8◦,
68.9◦, 70.1◦, 75.3◦ and 83.2◦, corresponding to the diffraction planes of (101), (004), (200),
(105), (211), (204), (116), (220) and (215) which corresponds to the anatase phase JCPDS
21-1272 [44,48]. The g-C3N4 shows the diffraction peaks at 12.8◦ and 27.57◦, corresponds
to the inter-plane structural packing motif (100) and the interlayer diffraction plane (002)
of the hexagonal graphitic carbon nitride [49]. However, while adding the g-C3N4 to the
TiO2 the intensity of g-C3N4 peaks was relatively narrowed compared to TiO2 peaks in the
composite. The result confirmed that the crystallinity structure of TiO2 is highly reduced in
TiO2/g-C3N4 composites [50].
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Figure 3. (a) XRD patterns of materials; (b) Raman spectra and (c) FTIR spectra of g-C3N4 and
TiO2/g-C3N4 composites.

Raman spectra of photocatalytic materials are shown in Figure 3b. Theses spectra
were recorded to obtain more structural information on synthesized composite. Three
characteristic Raman active modes of anatase crystalline form of TiO2 with symmetries B1g,
A1g and Eg were detected at 396.7, 514.6 and 638.5 cm−1, respectively [51]. The presence
of these characteristic vibrational frequencies and their relative intensity confirmed the
phase pure anatase TiO2. These results are in an agreement with XRD analyses and confirm
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the formation of phase pure anatase TiO2 [52]. The spectrum of g-C3N4 did not present
exploitable peaks in this zone.

FTIR spectra of g-C3N4 and TiO2/g-C3N4 composites with different g-C3N4 contents
are presented in Figure 3c. Pure g-C3N4 shows characteristic IR peaks similar to those
of the previous results [53,54]. The peak at 1640 cm−1 is assigned to C=N stretching
vibration mode, while those at 1247, 1325 and 1408 cm−1 are associated with C−N hete-
rocycle stretching of g-C3N4, fully condensed C–N moieties/partially condensed C–NH
moieties and aromatic C−N heterocycles, respectively [55]. The peak at 808 cm−1 can be
attributed to the characteristic bending mode of s-triazine ring system [54]. A broad band
in the range of 3150–3300 cm−1 corresponds to the stretching vibration modes of terminal
−NH2 and −NH− groups [56]. Pure TiO2 shows characteristic broad absorption band at
500–700 cm−1 [57]. It can be clearly seen that the main characteristic peaks of g-C3N4 and
TiO2 appeared in TiO2/g-C3N4 sample suggesting the formation of a composite between
g-C3N4 and TiO2 [58].

The UV–Vis DRS spectra of g-C3N4 and TiO2/g-C3N4 were presented in Figure 4. It
can be seen that a combination of TiO2 and g-C3N4 could significantly change the absorption
band of composites compared to that of g-C3N4 or TiO2 components. Accordingly, the
presence of g-C3N4 in the composite gives to TiO2 the capacity for absorbing light in visible
region rather than UV region. Based on these data, the band gap values for g-C3N4 and
TiO2/g-C3N4 were calculated as 2.65 eV and 2.48 eV, respectively.

Water 2022, 14, x FOR PEER REVIEW 7 of 22 
 

 

cm−1 [57]. It can be clearly seen that the main characteristic peaks of g-C3N4 and TiO2 ap-

peared in TiO2/g-C3N4 sample suggesting the formation of a composite between g-C3N4 

and TiO2 [58]. 

The UV–Vis DRS spectra of g-C3N4 and TiO2/g-C3N4 were presented in Figure 4. It 

can be seen that a combination of TiO2 and g-C3N4 could significantly change the absorp-

tion band of composites compared to that of g-C3N4 or TiO2 components. Accordingly, the 

presence of g-C3N4 in the composite gives to TiO2 the capacity for absorbing light in visible 

region rather than UV region. Based on these data, the band gap values for g-C3N4 and 

TiO2/g-C3N4 were calculated as 2.65 eV and 2.48 eV, respectively. 

 
Figure 4. Diffuse Reflectance Spectra (a) and plot of transferred Kubelka-Munk versus energy of the 

light absorbed (b) of pure g-C3N4 and TiO2/g-C3N4. 

3.2. Catalyst Activity 

The photocatalytic performances of the catalysts were evaluated by the photodegra-

dation of 10 ppm solutions of EBT and BPB as pollutants using UV light and 200 mg/L of 

catalyst. For EBT, under UV light irradiation, we obtained a higher degradation efficiency 

after 180 min with TiO2/g-C3N4 followed by g-C3N4, for both dyes. From Figure 5, we ob-

served that degradation efficiencies of EBT are 87.94% and 100% for g-C3N4 and TiO2/g-

C3N4, respectively. 

200 300 400 500 600 700 800

20

40

60

80

100

1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0(a) (b) g-C3N4

 TiO2/g-C3N4

%
R

Wavelength (nm)

(F
h
v
)1

/2
 (

e
V

c
m

−
1
)1

/2

E (eV)

 g-C3N4

 TiO2/g-C3N4

Figure 4. Diffuse Reflectance Spectra (a) and plot of transferred Kubelka-Munk versus energy of the
light absorbed (b) of pure g-C3N4 and TiO2/g-C3N4.

3.2. Catalyst Activity

The photocatalytic performances of the catalysts were evaluated by the photodegra-
dation of 10 ppm solutions of EBT and BPB as pollutants using UV light and 200 mg/L
of catalyst. For EBT, under UV light irradiation, we obtained a higher degradation effi-
ciency after 180 min with TiO2/g-C3N4 followed by g-C3N4, for both dyes. From Figure 5,
we observed that degradation efficiencies of EBT are 87.94% and 100% for g-C3N4 and
TiO2/g-C3N4, respectively.
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Figure 5. Photodegradation of 500 mL of dye solution (10 ppm) with 200 mg/L of catalyst under UV
irradiation and natural pH.

For BPB, we observe a degradation efficiency of 38.53% and 100% for g-C3N4 and
TiO2/g-C3N4, respectively. There is a significant difference in the degradation efficiency of
the dyes when using g-C3N4 with 87.94% and 38.53% for EBT and BPB, respectively. These
results may be attributed to the fact that under UV light irradiation and in the absence of
catalyst, we observe 36% degradation of EBT, while no degradation of BPB. From another
hand, EBT and BPB belong to the Azo and sulphonephthalein families respectively and
therefore differ in their physico-chemical properties. It is easier to break the unsaturated
bonds of BPB than those of EBT (azo bonds).

A comparative table of photocatalytic degradation of dyes with g-C3N4 based photo-
catalyst with different light sources is shown in Table 2 below:

Table 2. Comparison of photocatalytic activity of g-C3N4 based photocatalysts.

Photocatalyst Pollutant Degradation
Efficiency (%) Light Source Reference

40 wt% g-C3N4/Ag3VO Basic Fuchsin 95.0 Visible [59]

g-C3N4/TiO2(NT) Rhodamine B 96.7 Visible [60]

g-C3N4-TiO2 Rhodamine B 99.0 Visible [61]

9 wt% Bi2O3/porous g-C3N4 Reactive Black 5 84.0 UV-vis [62]

NP-GQDs-90/g-C3N4 Methyl Orange 96.0 UV [63]

g-C3N4/TiO2-1.5 Methylene Blue 95.3 UV [64]

Nanosheet g-C3N4/CNMBGt Methylene Blue 98.2 UV [65]

g-C3N4 EBT 87.9 UV Present work

TiO2/g-C3N4 EBT 100.0 UV Present work

g-C3N4 BPB 38.5 UV Present work

TiO2/g-C3N4 BPB 100.0 UV Present work

3.3. Effect of Photocatalyst Dosage

In views of the results obtained during photolysis were BPB showed no sensitivity
to UV-light compared to EBT, it was preferable to continue our studies for more precise
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results with BPB. The effect of photocatalyst dosage was studied using 10 ppm of BPB
solution. An increase in photocatalyst dosage from 50 mg/L to 200 mg/L increases BPB
degradation efficiency from 58.17 to 100% during 180 min irradiation time as shown in
Figure 6.The addition of catalyst results in an increase in the photocatalytic performance
due to an increase in active sites which leads to an increase in radical species formation [66].
Excess dosage of catalyst into the reaction mixture may enhance light reflectance due to
the increase of the solution turbidity, which in turn leads to preventing light absorption by
the catalyst reducing the degradation rate [30,67,68]. The degradation efficiency increases
rapidly with an increase in photocatalyst from 50 to 100 mg/L and increases slightly with
an increase in photocatalyst from 100 to 200 mg/L after 180 min irradiation. In order to
obtain high degradation efficiencies and avoid the use of excess catalyst, the quantity of
photocatalyst chosen to continue our studies was 100 mg/L.
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Figure 6. Effect of catalyst dosage in the photodegradation of BPB solution (10 ppm), natural pH,
under UV irradiation.

3.4. Effect of Initial Dye Concentration

The effect of initial BPB concentration on degradation was explored under concentra-
tions from 2 to 20 ppm with 100 mg/L of catalyst. Figure 7 shows that an increase in dye
concentration from 2 to 20 ppm decreases overall degradation, from 100% to 27.33%.

This can be attributed to the quantity of active sites available when using the same
quantity of catalyst for different dye concentration [69]. With low initial concentration,
TiO2/g-C3N4 provides a sufficient number of active sites for BPB molecules adsorption.
With higher initial concentrations, the number of active sites provided by the TiO2/g-C3N4
reduces, thus decreasing the degradation efficiency of the dye [70].
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Figure 7. Effect of initial dye concentration with 500 mL of BPB solution, 100 mg/L of catalyst, natural
pH, under UV irradiation.

The opacity of the solution at high concentration may also reduce the intensity of
the light travelling through the system which leads to a decrease in the photocatalytic
activity of the photocatalyst. Increasing dye concentration facilitates light adsorption by
the dye molecules and reduces the amount of light reaching the surface of the catalyst, thus
decreasing generation of active sites [71,72].

3.5. Kinetic Study

To determine BPB degradation kinetics, pseudo-first-order kinetic and Langmuir-
Hinshelwood models were investigated. The kinetic parameters of the reaction were
obtained using the pseudo-first-order kinetic model expressed as follows:

ln(
C0

C
) = k1 t (2)

The terms k1, C and C0 are respectively the rate of pseudo-first-order reaction, ex-
pressed in min−1, BPB concentration at the time t, expressed in mg/L, and BPB initial
concentration, also in mg/L.

The pseudo-first-order (k1) reaction rate was obtained from the linear plot of ln(C0/C)
versus time as seen in Figure 8. From Table 3, it can be seen that k1 decreases with increase
in initial concentration which is quite common in photocatalytic degradation of organic
compounds in solution [73]. The correlation coefficients close to 1 (R2 > 0.95) confirmed
that photodegradation of BPB by TiO2/g-C3N4 effectively follows a pseudo first-order
kinetics model [74].
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Figure 8. Pseudo-first-order kinetics for BPB at different initial concentration with 100 mg/L of
catalyst under UV irradiation.

Table 3. Variation of the pseudo-first-order rate constant (k1) at various initial concentration of
BPB (C0).

C0 (mg/L) k1 (min−1) R2

2 0.0561 0.9976
5 0.0200 0.9756
10 0.0072 0.9881
15 0.0024 0.9837
20 0.0011 0.9516

Most heterogeneous photocatalytic degradation reactions follow Langmuir–Hinshelwood
(L-H) kinetics to describe the relationship between initial degradation rate and initial con-
centration [75,76].The L-H model used in this study can be expressed as follow:

1
r0

=
1
k
+

1
kK

1
C0

(3)

where k denotes the reaction rate constant for the process (mg L−1 min−1), K is the adsorp-
tion coefficient of reactants (L mg−1), C0 is the initial concentration of dye (mg/L) and r0 is
the initial rate of disappearance of dye (mg L−1 min−1).

A linear expression can be conveniently obtained by plotting the reciprocal initial rate
against the reciprocal initial concentration. The slope is 1/(kK) and the intercept is 1/K
(Figure 9). The linear transform of this expression yielded k = 0.108 mg L−1 min−1 and
K = 0.0585 L mg−1.
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Figure 9. Linear correlation of 1/r0 versus 1/C0.

3.6. Effect of Persulfate

The effect of persulfate (PS) on the performance of TiO2/g-C3N4 towards BPB degra-
dation was evaluated by introducing 2.4 mmol/L of sodium persulfate (Na2S2O8) in the
suspension. In the first 20 min we observed a removal efficiency of 80.14% and 98.83%
after 180 min irradiation (Figure 10). This improvement in removal efficiency comes from
the presence of PS which inhibits the recombination of electron/hole pairs in the catalyst
by capturing photo induced electrons [77]. Addition of PS accelerates the generation of
radicals, thus boosting decontamination rate [67]. This can be explained by recent studies
of persulfate activation of g-C3N4 and TiO2 based catalysts.
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Figure 10. Effect of persulfate on the photodegradation of 500 mL BPB solution (10 ppm) with
100 mg/L of catalyst, natural pH, under UV irradiation.

A review on the activation of persulfate on g-C3N4-based catalyst for environmental
remediation states that PS-captures photoinduced electrons of g-C3N4 and reduces electron-
hole pairs recombination thereby increasing the formation of radicals which increases the
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photodegradation of the pollutant (bisphenol A; BPA) [78]. This was further explained
through the following reactions:

g-C3N4 + hν→ e− + h+ (4)

e− + O2 → O2
•− (5)

e− + S2O8
−2 → [ S2O8

−2] − (6)

[S2O8
− 2] − + O2 → S2O8

− 2 + O2
•− (7)

O2
•−/h+ + organic pollutants→ organic pollutants (8)

From the recent advances in persulfate-assisted TiO2-based photocatalysis for wastew-
ater treatment, TiO2 can be excited to produce electron-hole pair and persulfate is then
activated by photo-induced e− to generate SO4

•− radicals [33]. The h+ can react with H2O
to produce hydroxyl radicals (•OH). Under UV light, persulfate can also be activated to
form SO4

•− radicals [79] which can also react with OH− ions to form •OH radicals [80].
SO4

•− and •OH radicals with strong oxidation ability can degrade organic pollutants in
water, as explained in these reactions [33]:

TiO2 + hν→ e− + h+ (9)

h+ + H2O→ •OH + H+ (10)

S2O8
2− + hν→ 2SO4

•− (11)

SO4
•− + OH− → SO4

2− + •OH (12)

SO4
•−/•OH + organic pollutants→ degradation products (13)

3.7. Effect of pH, H2O2 and NaCl

Three-level CCD (low, central and high) with three factors was used for create a
model for the photodegradation of BPB in the presence of TiO2/g-C3N4 under UV-light.
Barzegar et al., applied this design to express mathematical relationships among variables
such as process time, catalyst mass and initial concentrations of methylene blue (MB) and
rhodamine B (RhB) in the degradation process with TiO2/g-C3N4 [35]. The model examined
was made of 13 experiments to determine the contribution of the factors (A: pH, B: CH2O2,
C: CNaCl) on photocatalytic degradation of BPB and Table 4 represents the obtained BPB
removal percentage for each experimental run.

The experimental results obtained were represented also as a spider or radar graph
visualization to better highlight the effect of different parameters on the degradation yield
of BPB as shown in Figure 11. To get a good presentation the three studied parameters
(pH, NaCl, and H2O2) was reported with theirs coded values (−1, 0 and 1) however
the degradation yield was reported from zero to one. I t seems that a basic pH and
hydrogen peroxide are suitable for a high BPB molecules degradation, nevertheless, the
NaCl presence in some case have a negative effect and, in another case, have no effect in
the dye elimination.
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Table 4. Experimental design for the mutual effects of pH, NaCl, and H2O2 on photocatalytic
degradation BPB by TiO2/g-C3N4.

Run Factor 1
A: pH

Factor 2
B: CH2O2
(mmol/L)

Factor 3
C: CNaCl (mg/L)

Response
Degradation %

1 7 0.4 5 28.69

2 11 0.4 10 18.44

3 7 2.4 5 14.26

4 11 2.4 10 67.52

5 3 0.4 10 80.60

6 7 2.4 15 6.06

7 3 1.4 15 77.59

8 11 1.4 15 65.87

9 7 1.4 10 10.00

10 7 0.4 15 21.56

11 3 2.4 10 80.70

12 3 1.4 5 80.88

13 11 1.4 5 57.54
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Figure 11. Spider graph visualization of experimental design results for the mutual effects of pH,
NaCl, and H2O2 on photocatalytic degradation BPB by TiO2/g-C3N4.

Response surface methodology (RMS) was applied to determine the best conditions
for BPB degradation. A Box-Behnken design model was used to investigate the effects of
3 independent variables at three pH levels (3, 7, and 11), concentration of H2O2 (0.4, 1.4 and
2.4 mmol L−1) and concentration of NaCl (5,10 and 15 mg L−1). The modified quadratic
model equation was as follows:

%R degradation = +108.56630
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−13.20569 * pH + 31.65992 * CH2O2 +8.74214 * CNaCl

−14.24516 * pH * CH2O2 − 2.76016 * pH * CNaCl

+ 0.916335 * pH2 − 0.370286 * CNaCl
2 (14)

1.23617 * pH2 * CH2O2 + 0.063672 * pH2 * CNaCl

+ 0.100700 * pH * CNaCl
2

The ANOVA results of BPB removal (%) by TiO2/g-C3N4 composite is presented
in the Table 5. As seen, the p-value of <0.0001 for the model signifies that the model is
statistically significant and indicate that the applied mathematical model better fitted to the
experimental data as confirmed by lack of fit [81]. To be determined as significant, p-value
for a model parameter (individual or interaction) must be < 0.05. In this case, all the model
terms are significant [81].

Table 5. ANOVA Table and goodness-of-fit coefficients for response variables.

Source F-Value p-Value

Model 2545.44 0.0004

A-pH 3239.21 0.0003

B-CH2O2 511.38 0.0019

C-CNaCl 134.20 0.0074

AB 1369.07 0.0007

AC 77.05 0.00127

A2 17642.96 < 0.0001

C2 447.28 0.0022

A2B 1785.98 0.006

A2C 118.45 0.0083

AC2 462.95 0.0022

The Predicted R2 of 0.9877 is in reasonable agreement with the Adjusted R2 of
0.9995 (Table 6). Adequate Precision measures the signal to noise ratio. A ratio greater
than 4 is desirable. The obtained ratio of 122,161 indicates an adequate signal, which
confirm that this model can be used to navigate the design.

Table 6. Fit Statistics.

Parameter Value

R2 0.9999

Adjusted R2 0.9995

Predicted R2 0.9877

Adequate Precision 122.1613

A comparison of the experimental data to the predicted values by the refitted model
was made through a predicted vs. actual plot, their closeness can be better observed in
Figure 12. Data points were fragmented consistently on the diagonal line of 45◦ proving
the goodness of fit. These results are similar to those obtained when using optimization
approach in phosphoric acid-treated spent tea residue biochar for wastewater decolor-
ing [82] and the sorption and removal of crude oil spills from seawater using peat-derived
biochar [83].
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Figure 12. Predicted vs. actual measurements for R%.

The 3D surface response graph was plotted against two parameters to illustrate the
combined effects of parameters on simultaneous photocatalytic degradation of BPB by
TiO2/g-C3N4 as shown in Figure 13.

In Figure 13a,b, the degradation efficiency reveals that lower pH leads to more pho-
todegradation efficiency with approximately 75–80% of BPB removal at pH 3 and CH2O2
(0.4–2.4 mmol L−1). At pH > 3 we observe a decrease in degradation and a gradual increase
from pH 9 up to pH 11 where we observed a degradation efficiency of approximately 70%
at CH2O2 ranging between 1.9 to 2.4 mmol/L.

Figure 13c,d showed similar results as the previous plot with photodegradation effi-
ciency of approximately 75–80% of BPB removal at pH 3 and with CNaCl (5–15 mgL−1). At
pH 11 there is a degradation efficiency of approximately 60% at CNaCl (5–15 mgL−1).

3.8. Reactive Oxygen Species Contribution

To determine the contribution of Reactive Oxygen Species (ROS) in the degradation of
BPB by TiO2/g-C3N4 under UV light illumination, different ROS trappers were used at
sufficient concentrations to suppress the corresponding ROS. Isopropanol, methanol and
potassium dichromate were used as specific trappers of hydroxyl radicals (HO•), holes (h+)
and superoxide ions (O2

•−) respectively in bulk solutions [24,84].
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Figure 13. Response surface and contour plots for the mutual effects of pH, CNaCl, and CH2 O2 on
photocatalytic degradation BPB by TiO2/g-C3N4.

The experiments were carried out by addition of 43.5 mM isopropanol (IsoPro), 50 mM
methanol (MeOH), and 1.1 mM potassium dichromate (K2Cr2O7) into a 500 mL BPB
(10 ppm) to examine their impact on photocatalytic degradation of BPB with 100 mg/L
of catalyst.

From Figure 14, the presence of these trappers in the TiO2/g-C3N4 suspensions af-
fected the BPB degradation, which suggested that all of the h+, HO•−and O2

•− contributed
to the BPB degradation. Using IsoPro, MeOH and K2Cr2O7 we obtained a degradation per-
centage of 71.87, 78.22 and 27.89%, respectively. From this result, Figure 14 confirmed that
O2
•− was the primary ROS involved in the photocatalytic degradation of BPB with 68.89%

contribution followed by HO• and h+ with 22.40% and 15.55% contribution, respectively.
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Figure 14. (a) Effect of additives in the degradation of 10 ppm of BPB and (b) Contribution of various
active species in the photodegradation (500 mL of BPB solution, natural pH, under UV irradiation).

The amount of radicals in the system involved in the dye degradation can differ
significantly due to electron-hole recombination and recombination reactions of radical
species [24].

Considering the scavenging tests, the photodegradation of BPB with the TiO2/g-C3N4
catalyst could be described by following steps: TiO2/g-C3N4 was excited by UV-light to
generate electron-hole pairs with photogenerated electrons flowing from g-C3N4 to the
surface of TiO2. Part of the electrons produced by g-C3N4 are captured by the oxygen
adsorbed on the surface, generating superoxide radicals (O2

•−) with strong oxidizing
properties, then decomposing the pollutant in the wastewater, as shown in reactions
below [85]:

TiO2/g-C3N4 + hν→ e− + h+ (15)

O2 + e− → O2
•− (16)

H2O + h+ → OH−+ H+ (17)

h+ + OH− → HO• (18)

HO• + O2
•− + pollution→ degradation products (19)

Researches on photocatalytic degradation of organic pollutants generally align with
the fact that h+ and O2

•− are the main radical species using g-C3N4-based catalyst [78]
which is slightly different from the results obtained.This implies that the presence of g-C3N4
with TiO2 and UV irradiation can affect the physico-chemical properties of the photocatalyst
and influence main radical species in the photocatalytic organic treatment process.

4. Conclusions

In this work, TiO2/g-C3N4 was synthesized by wet- impregnation and applied in
the photodegradation of EBT and BPB dye solutions. The heterojunction phenomenon
in TiO2/g-C3N4 facilitates the photoexcited charges transfer and simultaneously reduces
photogenerated electron-hole recombination, which in turn markedly improves its photo-
catalytic performance which is higher than that of g-C3N4 alone. The degradation efficiency
indicated that a decrease in initial dye concentration and increase in catalyst dosage pos-
itively affects photodegradation. The study of the degradation kinetics showed that the
degradation of BPB follows both the pseudo-first-order kinetic and Langmuir-Hinshelwood
model with an average value of R2 equal to 0.979 and 0.975 respectively. The addition of
Na2S2O8 to the suspension increased the degradation rate in 20 min from 8.8% to 80% yield,
an amplitude of 9.1. The optimization of the photodegradation of BPB was investigated
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using CCD and RSM methodologies where R% reached maximum values at pH 3 in the
presence of NaCl and H2O2. Isopropanol, methanol and potassium dichromate were used
as scavenger radicals and O2

•− were identified to be the predominant radical species in
the photodegradation using TiO2/g-C3N4 catalyst. The present work provides the efficient
photocatalysts as a promising material for environmental remediation purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14203331/s1, Figure S1: UV lamp spectrum (24 W); Figure S2:
Photoctalytic degradation of BPB with TiO2/g-C3N4 under uv light (C0: 10 ppm, Catalyst dose:
200 mg/L,V solution: 500 mL, natural pH).
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