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DaReUS-Loop: accurate loop 
modeling using fragments from 
remote or unrelated proteins
Yasaman Karami, Frédéric Guyon, Sjoerd De Vries & Pierre Tufféry

Despite efforts during the past decades, loop modeling remains a difficult part of protein structure 
modeling. Several approaches have been developed in the framework of crystal structures. However, 
for homology models, the modeling of loops is still far from being solved. We propose DaReUS-Loop, 
a data-based approach that identifies loop candidates mining the complete set of experimental 
structures available in the Protein Data Bank. Candidate filtering relies on local conformation profile-
profile comparison, together with physico-chemical scoring. Applied to three different template-based 
test sets, DaReUS-Loop shows significant increase in the number of high-accuracy loops, and significant 
enhancement for modeling long loops. A special advantage is that our method proposes a prediction 
confidence score that correlates well with the expected accuracy of the loops. Strikingly, over 50% of 
successful loop models are derived from unrelated proteins, indicating that fragments under similar 
constraints tend to adopt similar structure, beyond mere homology.

Prediction of protein structures is one of the challenging problems in biology1. This is reflected by the large num-
ber of protein sequences known today (about 109 millions) in the Universal Protein Resource (UniProt)2 versus 
the number of known protein structures (about 139 thousands) deposited in Protein Data Bank (PDB)3. Such 
drastic difference is due to the experimental difficulties of X-ray crystallography or NMR, compared to the rapid 
rate of new sequences being determined by next-generation sequencing methods. Systematic studies of protein 
classification demonstrated that existing proteins can be grouped into very few homologous families4–6. This 
means homology modeling is a crucial technique to obtain structural insight7, and homology modeling methods 
keep significantly improving8,9.

Loops are regions with often crucial roles in protein-protein interactions, protein function, drug design and 
docking of small molecules10–12. On the other hand, in more than one half of deposited structures in PDB missing 
segments (often loops) are reported13, highlighting the importance of loop modeling. Successful loop mode-
ling can lead toward accurate design and engineering of proteins, large peptides, antibodies, drugs or synthetic 
vaccines, to name a few14. Importantly, loop modeling is a crucial step in homology modeling. Loop regions are 
much more variable in sequence and structure than other regions, leading to larger deviations from the homolo-
gous templates15–19. Despite the development of dedicated loop modeling methods, the overall accuracy of homol-
ogy models tends to be considerably lower in loop regions, and loop modeling of homology models remains an 
open problem20–23. Finally, it must be emphasized that loop modeling can encompass different scopes, that range 
from protein modeling, in which the identification of one native conformation is expected, to the modeling 
of protein-protein interactions or protein-ligand interactions, in which information about loop conformational 
variability is desirable24–29.

Existing loop modeling methods can be divided into: ab initio based30–35, knowledge-based36–38 and the com-
bination of both methods39–41.

Ab initio methods determine loop conformations computationally, through the exploration of the conforma-
tional space. They are dependent on energy optimization techniques and are consequently highly time consuming. 
For the completion of crystal structures, Rosetta Next-Generation KIC (NGK)31 and GalaxyLoop-PS232 are two 
state-of-the-art examples of ab initio methods that have been shown to provide accurate loop predictions. Rosetta 
NGK is a robotics-based method using a hybrid energy function with physics-based and knowledge-based energy 
terms, enabling NGK to find accurate loop candidates. GalaxyLoop-PS2 is also based on a hybrid energy function 
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that concurrently employs the strength of different energy components, considering short-range, hydrophobic 
and electrostatic interactions.

Data-based methods are dependent on the geometry of flanking residues and the database used for mining 
candidates40. Flanks are regions before and after the loop to be modeled. For the completion of crystal structures, 
these methods are shown to generate successful results when similar fragments to the loop of interest exist in the 
database41. ArchPRED42 considers the secondary structures flanking the missing loop, their relative orientation 
and the number of missing residues to identify candidate loop conformations. FREAD43 searches for candidate 
fragments matching conditions on distances between Cα of the flanks. LoopIng37 is based on Random Forest 
model and considers sequence and geometry related features to select the candidates. SuperLooper244 mines the 
Loop In Protein (LIP) database45, a comprehensive loop database containing all protein segments up to 35 resi-
dues from the PDB, to identify fragments matching geometrical criteria between the two last atoms of the main 
chain of one flank and the two first of the other.

Hybrid loop modeling methods combine ab initio and data-based methods to improve the quality of loop 
predictions. CODA generates a consensus loop prediction using both ab initio and data-based methods inde-
pendently40. Similar approaches are considered by others to predict complementary determining region (CDR) 
of antibodies46,47. Another recent method is Sphinx, which first performs data-based search to find fragments 
shorter than the loop of interest and obtains structural informations41. Then it applies ab initio methods to gen-
erate fragments of correct length.

Most of the existing loop modeling methods are shown to perform successful loop predictions in 
high-resolution crystal structures with accuracies of about 1-2Å, if the loop is short (3–12 residues)32–34,37,41,43,44 
and increasing up to ~4Å for larger sizes (≤20 amino acids)37,41,43,44. However, in practical applications, loops 
of interest are typically non-homologous regions of a homologous template. For instance, data-based methods 
perform the search considering flank residues. In high-resolution crystal structures, these flanks are perfect. In 
contrast, flanks derived from homologous templates might represent very large root-mean-square deviations 
(RMSD) to the native flanks. Very few studies have tackled method assessment in such perturbed situations and 
their accuracies are about 1–4Å for short loops (3–12 residues)32,37,43 but decrease significantly (4–9Å) for larger 
sizes (13–15 amino acids)43.

Another challenging, yet unsolved problem is the prediction of long loops: many of existing loop modeling 
methods have been designed to predict loops of at most 12 residues.

We previously introduced a fast and efficient approach to mine large collections of structures using a 
Binet-Cauchy kernel, to search for similar fragments without gaps48. It was extended to the search for loop can-
didate given loop flanks, BCLoopSearch49. However, according to our early tests, the following bottlenecks need 
to be tackled. First, to propose a strategy to prune the possibly very large number of candidates. Next, despite the 
fact that Binet-Cauchy kernel can tolerate some distortion, a sub-optimal geometry of the flanks can lead to fail-
ures in returning the right loop conformation. Finally, the accurate scoring of the loops is still an issue.

In this study we propose DaReUS-Loop (Data-based approach using Remote or Unrelated Structures for 
Loop modeling). DaReUS-Loop tackles the practical application of loop modeling in non-ideal conditions. 
Considering the flanks, we mine the entire set of protein entries in the PDB and extract similar fragments. Then 
we prune the set of candidates considering their sequence similarity and conformational profile. Finally, we build 
complete protein models and rank them. Our scoring schema provides us with a final set of 10 best models.

We evaluated our method on three challenging template-based test sets: CASP11, CASP12 and HOMSTRAD. 
The large number of results with RMSD less than 2Å suggests the accuracy of our method predicting loops 
in a homology modeling context. To assess the quality of the results, we compared our approach with two 
state-of-the-art ab initio methods, Rosetta NGK and GalaxyLoop-PS2, one data-based method, LoopIng and 
Sphinx, that is a hybrid method. Comparisons represent that our protocol performs equally or better than those 
other methods. In addition, DaReUS-Loop outperforms the other approaches to predict long loops of at least 15 
residues. A special advantage is that our method proposes a prediction confidence index that correlates well with 
the expected accuracy of the loops. The computing time of our method is substantially less than Rosetta NGK, 
GalaxyLoop-PS2 and Sphinx. Strikingly, almost all successful loop models are derived from unrelated proteins, 
indicating that fragments under similar constraints tend to adopt similar structure, beyond mere homology.

Results
Figure 1 summarizes the workflow of our approach. Given the input of a gapped structure (PDB format) and the 
complete sequence to model, a first step is to identify loop candidates from the loop flanks using BCLoopSearch, 
mining a set of PDB structures. Due to the possibly very large number of candidates, clustering and filtering are 
applied to reduce the number of candidates. Three types of filters involve loop sequence similarity, local geometry 
and conformational profile comparison. Finally, models are built and the 10 best scored models are returned.

Effects of the filtering. In this section we report the effect of filtering over the set of all loop candidates 
retrieved from our dataset for CASP11 test set. The distribution of sequence identity (BLOSUM scores) with 
respect to loop local RMSD are shown in Fig. 2a. 36% of the candidates have positive BLOSUM scores and 62% 
of them have local RMSDs of less than 4Å. In total, this step makes the fraction of fragments with RMSDs less 
than 4Å increase from 49% before filtering up to 62%. Figure 2b depicts the impact of clustering. As expected, it 
results in a drastic decrease of the number of candidates. It also comes with a slight improvement in terms of the 
RMSDs. The mean (resp. median) RMSD is of 3.86 (resp. 3.60)Å before clustering and of 3.60 (resp. 3.24)Å after. 
As an outcome, 70% of the candidates selected have a RMSD value <4Å. Figure 2c represents the distribution of 
remaining loops local RMSD values with respect to their Jensen Shannon Divergence (JSD) values. At this stage, 
52% of the candidates have JSD >0.40 and 65% of candidates with high local RMSD (>4Å), have also high JSD 
(>0.40). Filtering out candidates with JSD values more than 0.40 results in improving the fraction of candidates 
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with a RMSD less than 4Å from 70% up to 74%. Finally, the last filter consists of discarding candidates that have 
clashes after modeling Fig. 2d. This improves the average local RMSDs from 3.29Å to 2.94Å. After all filters have 
been applied, 84% of the final set of candidates have local RMSD <4Å.

Figure 1. DaReUS-Loop workflow. The workflow describes main steps of the loop modeling protocol: loop 
candidate search, candidate filtering, model building and model selection. The inputs are a gapped structure and 
loop sequence. In the final step, two measures are considered for scoring the models. The 5 best models scored 
by each measured are returned as the final predictions.

Figure 2. Analyzing the effect of filtering for CASP11 test sets. Four different filtering methods were 
sequentially applied in our protocol. We report the result of each filter for the loops of CASP11 test sets: (a) 
sequence similarity, (b) geometrical clustering, (c) predicted local conformation, (d) structural clashes. The 
smaller histograms on the top right of b and d, represent the local RMSDs before applying the corresponding 
filters.
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Quality of the predictions. We compared DaReUS-Loop to two state-of-the-art ab initio methods, Rosetta 
NGK and GalaxyLoop-PS2, one data-based method, LoopIng and a hybrid method, Sphinx on the common 
sub-set of loops that could be predicted by all the methods (Commonai and Commondb, respectively). Overall 
statistics on the best of top 10 models are shown in Table 1; more detailed results including per-model local and 
global RMSDs are reported in Table 2. On average, the DaReUS-Loop protocol outperforms Rosetta NGK and 
GalaxyLoop-PS2 by at least 0.25, 0.36, and 0.33Å, for the CASP11, CASP12, and HOMSTRAD benchmark sets, 
respectively. Apart from HOMSTRAD, one also notes that the RMSDs are rather close to the best possible values 
for the CASP11 and CASP12 sets, with a loss of only 0.40 and 0.56Å, respectively. A larger deviation of 0.73Å 
is observed for the HOMSTRAD set. Looking at the comparisons with data-based methods (Commondb set) 
for DaReUS-Loop, one observes an increase of the flanked RMSD values, i.e. 0.21, 0.34, and 0.15Å for CASP11, 
CASP12, and HOMSTRAD, respectively compared to the values obtained for the Commonai subset. This results 
from reducing flank size to only 2 amino acids per loop end, instead of 4. Moreover, DaReUS-Loop outperforms 
LoopIng for all sets, with a gain of at least 1Å in all cases. Finally, DaReUS-Loop outperforms Sphinx by at least 
0.70Å for the CASP11 and CASP12 test sets, while only a slight improvement is observed for the HOMSTRAD 
test set. In addition, we report the average flanked RMSD values, while selecting the top 10 models using either 
JSD or DOPE in Table 2. We observed that both scores result in rather similar predictions, however considering 
the two together, brings improvements.

Considering the performance using only the top models, since DaReUS-Loop is based on both JSD and 
DOPE, we selected for each loop the top sccoring models by DOPE and the top model scored by JSD, and 
chose the best out of the two. To keep the comparison fair, we compared our results with the best of top 2 pre-
dicted by Rosetta-NGK and Sphinx and results are reported in Supplementary Table S1 - the other methods 
(GalaxyLoop-PS2 and LoopIng) do not provide the scores of the models. The results show that DaReUS-Loop 
performs better than Rosetta-NGK and Sphinx in almost all the cases, the only exception being for the 
HOMSTRAD test set, where Sphinx performs slightly better than DaReUS-Loop - note that the loops of the 
HOMSTRAD set are, on average shorter than those of the CASP11 and CASP12 sets.

Prediction confidence index. We now turn to analyzing whether a prediction confidence could be assigned 
based on the min(JSD) score, which indicates the best fit of any candidate loop in terms of conformational pro-
file. Figure 3 shows a clear trend that lower min(JSD) values are associated with lower RMSDs, with a Spearman 
correlation of 0.76. From the figure one also observes a clear jump in the range of RMSD values between min(-
JSD) of 0.20 and 0.25, and for JSD values more than 0.20, the quality of the correlation appears degraded. This 
analysis suggests that min(JSD) can be considered as a measure to assess the overall case-by-case loop modeling 
quality and to detect failures of our protocol. Therefore, for each of the three datasets, a high-confidence subset 
was selected (CommonHC), discarding any loop target for which the min(JSD) is more than 0.20 (14 loops in 
CASP11 and 16 loops in CASP12 test sets) Table 1. For the HOMSTRAD set, all loops of the Common subset 
meet the condition of a JSD less than 0.20, and the results are unchanged. For the CASP11 and CASP12 sets, one 
clearly sees a decrease of the average RMSDs by more than 0.55Å, and the values appear closer to that obtained for 
HOMSTRAD. The performance of DaReUS-Loop compared to other methods (Rosetta NGK, GalaxyLoop-PS2, 
LoopIng and Sphinx) remains almost unaffected.

Subset Method CASP11 CASP12 HOMSTRAD <Å (%) <2Å (%)

Commonai

best 2.18 2.31 1.65 24 66

DaReUS-Loop 2.58 2.87 2.38 19 47

Rosetta NGK 2.96 3.34 2.71 12 35

GalaxyLoop-PS2 2.83 3.23 2.96 13 36

Commondb

DaReUS-Loop 2.79 3.21 2.53 14 44

LoopIng 4.35 4.20 4.50 8 16

Sphinx 3.71 3.94 2.63 12 37

CommonHCai

best 1.43 1.63 1.65 28 76

DaReUS-Loop 1.91 2.30 2.38 22 54

Rosetta NGK 2.59 2.99 2.71 14 38

GalaxyLoop-PS2 2.34 2.88 2.96 15 41

CommonHCdb

DaReUS-Loop 2.05 2.25 2.53 17 53

LoopIng 3.66 3.53 4.50 10 20

Sphinx 2.90 3.19 2.63 14 42

Table 1. Prediction results over the top 10 models. Average flanked RMSD (Å) are reported for the CASP11, 
CASP12 and HOMSTRAD test sets, over the Common and CommonHC subsets. Comparison is between 
DaReUS-Loop, ab initio (ai) methods (Rosetta NGK and GalaxyLoop-PS2) and data-based (db) methods 
(LoopIng and Sphinx). All the RMSD values reported in this table correspond to the best flanked RMSD (Å) 
over 10 models. The “best” row shows the best candidate loop identified by DaReUS-Loop, before applying 
the filters or the top 10 selection. For Commonai and CommonHCai (resp. Commondb and CommonHCdb), 
the flanked RMSDs are calculated using flanks of 4 (reps. 2) amino acids. The percentage of highly accurate 
predictions (<1Å and <2Å) is also reported. Bold values correspond to the best values among all the methods.
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Modeling loops at high accuracy. DaReUS-Loop generates high-accuracy loop models (<1Å) for 23 
(19%) and medium-accuracy models (<2Å) for 57 (47%) of the cases in the Commonai subset (Table 1). This suc-
cess rate is very satisfactory considering the fact that before filtering, for only 29 loops (24%) a high-accuracy can-
didate is found in the fragment database, limiting the maximum success rate. For medium-accuracy models, the 
maximum success rate is 80 cases (66%). The results for high and medium accuracy constitute an improvement by 
7 and 12% over Rosetta NGK and 6 and 11% over GalaxyLoop-PS2. For the Commondb subset, the improvements 
are of 6% (9/153) and 28% (43/153), respectively, over LoopIng and 2% (4/153) and 7% (12/153) over Sphinx. 
Illustrative examples are shown in Fig. 4 and Supplementary Figure S1. For DaReUS-Loop and the other meth-
ods, the CommonHC subset retains essentially all of the high-accuracy and medium-accuracy loop models. For 
DaReUS-Loop, this increases the success rate to 22% and 54% for high-accuracy and medium-accuracy loops, 
respectively.

Modeling long loops. We now analyze more in details the results obtained for long loops, a challenging 
and unsolved problem. To assess it, we consider loops with a size of at least 15 residues. Results are presented in 
Fig. 5, and detailed results for each method are reported in Supplementary Table S2. Since the number of such 
loops common to all methods is very low, to maximize the size of the sample, we present independent pairwise 
comparisons of DaReUS-Loop with NGK, Galaxy, LoopIng and Sphinx. For the Common subset, DaReUs-Loop 

Test-set Subset Method

Local RMSD (Å) Flanked RMSD (Å) Global RMSD (Å)

Average Std Median Average Std Median Average Std Median

CASP11

CommonHCai

best 0.78 0.38 0.74 1.47 0.82 1.30 4.11 3.53 2.52

JSD 1.05 0.59 0.89 1.97 1.37 1.57 4.74 3.99 3.10

DOPE 1.19 0.59 1.09 2.19 1.14 2.04 4.94 3.97 3.31

DaReUS-Loop 1.00 0.53 0.89 1.91 1.33 1.66 4.71 4.08 2.77

Rosetta-NGk 1.44 0.82 1.22 2.59 1.40 2.47 5.33 4.37 3.5

GalaxyLoop-PS2 1.34 0.70 1.16 2.34 1.32 2.54 5.34 4.32 3.07

CommonHCdb

best 0.92 0.66 0.78 1.56 1.15 1.19 3.91 3.26 2.49

JSD 1.23 0.94 0.96 2.11 1.58 1.59 4.57 3.69 2.8

DOPE 1.29 0.80 1.09 2.23 1.46 1.95 4.74 3.70 3.00

DaReUS-Loop 1.19 0.91 0.96 2.05 1.54 1.59 4.54 3.78 2.75

LoopIng 1.94 1.12 1.84 3.66 2.08 3.35 — — —

Sphinx 1.47 1.00 1.24 2.90 2.15 2.40 5.40 4.17 4.14

CASP12

CommonHCai

best 0.90 0.60 0.75 1.63 0.99 1.38 3.07 2.51 2.24

JSD 1.27 0.93 1.04 2.47 1.98 1.82 3.92 2.95 2.84

DOPE 1.25 0.74 1.20 2.46 1.64 2.00 3.84 2.76 2.90

DaReUS-Loop 1.21 0.86 0.97 2.30 1.63 1.87 3.81 2.78 3.21

Rosetta-NGk 1.53 0.98 1.49 2.99 2.88 2.33 4.20 3.81 3.37

GalaxyLoop-PS2 1.43 0.99 1.15 2.88 2.88 1.98 4.34 3.86 3.27

CommonHCdb

best 0.89 0.57 0.75 3.87 3.96 2.36 1.57 0.92 1.33

JSD 1.28 0.87 1.06 2.39 1.81 1.83 4.85 4.71 3.18

DOPE 1.22 0.70 1.17 2.36 1.44 2.03 4.77 4.57 3.12

DaReUS-Loop 1.22 0.80 0.99 2.25 1.54 1.84 4.74 4.53 3.63

LoopIng 1.72 1.06 1.61 3.53 2.24 3.28 — — —

Sphinx 1.47 0.85 1.32 3.19 3.00 2.39 5.25 5.25 3.57

HOMSTRAD

CommonHCai

best 0.93 0.48 0.87 1.65 0.68 1.56 2.24 0.69 2.17

JSD 1.25 0.57 1.14 2.34 1.27 2.16 3.09 1.42 2.94

DOPE 1.23 0.58 1.01 2.12 0.93 2.18 2.68 0.84 2.69

DaReUS-Loop 1.26 0.59 1.16 2.38 1.12 2.55 2.88 1.00 2.92

Rosetta-NGk 1.58 0.65 1.69 2.71 1.36 2.66 3.40 1.51 3.10

GalaxyLoop-PS2 1.34 0.61 1.34 2.96 1.70 2.66 3.68 1.92 2.87

CommonHCdb

best 0.95 0.50 0.87 1.72 0.76 1.61 2.28 0.76 2.16

JSD 1.44 0.68 1.35 2.72 1.44 2.50 3.37 1.53 3.04

DOPE 1.36 0.68 1.19 2.34 1.10 2.16 2.81 0.96 2.79

DaReUS-Loop 1.45 0.71 1.45 2.53 1.16 2.57 2.98 1.09 2.93

LoopIng 2.16 0.58 2.23 4.50 1.74 4.16 — — —

Sphinx 1.51 0.94 1.45 2.63 1.65 2.29 3.53 1.71 2.86

Table 2. Detailed comparison of the results. The average and its standard deviation and median RMSD values 
(10 models, Å) are reported. The RMSDs are calculated as root-mean-square deviation of the candidate loop 
main-chain atoms N, Cα, C and O to the native loop. Bold values correspond to the best average values among 
all the methods.
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outperforms LoopIng and Sphinx, the two methods relying on a databank search, with average improvements 
of 1.83 and 1.5Å, respectively. It performs slightly better than NGK and Galaxy with improvements of 0.21 
and 0.47Å, respectively. One observes some outliers among the predictions of NGK, GalaxyLoop-PS2, Sphinx 
and DaReUS-Loop. Indeed, DaReUS-Loop can model almost all the long loops in the test sets and its failure 
rate is 3% (1/37) compared to 6% (2/37) for Sphinx, 7% (1/15) for GalaxyLoop-PS2 and 9% (3/34) for NGK. 
Excluding those cases, the performance of DaReUS-Loop remains better than Sphinx by 0.81Å n while, NGK and 
GalaxyLoop-PS2 perform better by 0.11 and 0.63Å. Note that, this is an average performance and in some cases, 
DaReUS-Loop is able to provide solutions when NGK and GalaxyLoop-PS2 fail. For the CommonHC subset, on 
the other hand, DaReUS-Loop performs significantly better than GalaxyLoop-PS2, Rosetta NGK, LoopIng and 
Sphinx by 3.01, 3.41, 4.32Å and 3.98Å, respectively. In the absence of the outliers (none for DaReUS-Loop and 
LoopIng) the performance of DaReUS-Loop remains better than Rosetta NGK, GalaxyLoop-PS2 and Sphinx by 
1.82, 0.28 and 1.42Å, respectively. Finally, we conclude that for high-confidence targets, the overall accuracy of 
DaReUS-Loop to model long loops is notably better.

Figure 3. The correlation between min(JSD) and flanked RMSD. For the sake of clarity, min(JSD) values are 
depicted as bins with a width of 0.05. The flanked RMSD is for the best DaReUS-Loop candidate out of top 10 
models. The correlation is shown for 142 loops of the CASP test sets. Boxes span the interquartile range (IQR) 
from 25th to 75th percentile and the thick black lines represent median values (50th percentile). The whiskers 
extend to furthest values within 1.5 times the IQR from the box.

Figure 4. Examples of the predictions. The results of DaReUS-Loop (blue), Rosetta NGK (green), 
GalaxyLoop-PS2 (orange) and crystal structure (red) are illustrated for two loops. The two loops belong to 
target T0807 of CASP11, (a) a loop of length 7 and (b) length 15. The RMSD of each predicted loop compared to 
the native loop is reported as (a) DaReUS-Loop: 0.9Å, NGK: 1.5Å and PS2: 2.9Å and (b) DaReUS-Loop: 1.3Å, 
NGK: 3Å, PS2: 2.9Å. On the right column the side chains of the native and predicted loops by DaReUS-Loop 
are shown.
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Loop candidates are selected from remote or unrelated proteins. Figure 6 shows the distribution 
of the sequence identity between the proteins in which the candidates are selected and the target proteins. For 
58% (79 out of 135) of the cases, loop candidates come from proteins with a sequence identity of at most 10%. 
Considering a sequence identity of at most 20%, this number increases up to 71% (97/135). Only 6% (8/135) 
of the loop candidates are selected from protein chains with more than 50% sequence identity. We have also 
analyzed homology in terms of Class Architecture Topology Homology (CATH) classification5 (http://www.bio-
chem.ucl.ac.uk/bsm/cath/). We observe that 49% (66/135) of the loop candidates come from protein chains that 
have not been assigned to a CATH class. We report the results over the remaining 51% (69/135). For 42% (29/69) 
of the cases, loop candidates were retrieved from other classes, 54% (37/69) from different architecture, 56% 
(39/69) different topologies and 59% (41/69) were retrieved from different homologous superfamilies. This clearly 
shows that a large majority of loop hits are chosen from dissimilar or very distant proteins. The loop themselves 
however have a higher sequence identity, which is not surprising given our filtering procedure.

Discussion
Here, we propose DaReUS-Loop, a data-based approach that identifies loop candidates from remote or unre-
lated proteins. DaReUS-Loop is able to mine the complete PDB, employing filters based on sequence similar-
ity, clustering, conformational profiles (based on a structural alphabet) and local geometry to narrow down 
the candidates. A combination of conformational profiles and atomic-distance-dependent potential (DOPE) is 
then used to select the best candidates. DaReUS-Loop is specifically designed for loop modeling of structures 
modeled from homologous templates, when no crystal structure is available. We tested DaReUS-Loop on three 
challenging template-based test sets and compared the results with the state-of-the-art ab initio and data-based 
loop modeling methods. We also verified that the loops in our benchmarks correspond to surface-exposed loops 
(see Methods). Results suggest that DaReUS-Loop improves the accuracy of template-based loop prediction by 

Figure 5. Flanked RMSD (Å) of long loops in CASP11 and CASP12 test sets. The results are compared with 
GalaxyLoop-PS2, Rosetta NGK, LoopIng and Sphinx. a (resp. b): results obtained for long loops of the Common 
(resp. CommonHC) subset. DaReUS-Loop results are colored in gray and the other methods are shown in 
white. Boxes span the interquartile range (IQR) from 25th to 75th percentile and the thick black lines represent 
median values (50th percentile). The whiskers extend to furthest values within 1.5 times the IQR from the box 
and circles are outliers.

Figure 6. The frequency of sequence identity for all the loops in the test sets (135 loops). The distribution 
of sequence identity between the best over top 10 loop candidate and target proteins is shown (a) over the 
complete sequence and (b) over the loop regions only.

http://www.biochem.ucl.ac.uk/bsm/cath/
http://www.biochem.ucl.ac.uk/bsm/cath/
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0.5Å on average. Specifically, our method showed a considerable increase in the number of high-accuracy (<1Å) 
loops. This increase in the precision of template-based loop modeling has high importance, specially in the field 
of drug design. To assess the significance of the improvement, we have used a Wilcoxon signed-rank test50 over 
the flanked RMSD values. With the exception of GalaxyLoop-PS2 in the Commonai sub set (p-value = 0.17325), 
the evaluations suggest significant differences between DaReUS-Loop and all the other methods (Rosetta NGK, 
GalaxyLoop-PS2, LoopIng and Sphinx) in both common and high confidence common sub-sets with 0%≤ 
p-value < 2%.

In addition, DaReUS-Loop is relatively fast with respect to other loop modeling methods. The proto-
col can take 10–40 minutes (using 40 threads of a 2.2-GHz Intel Xeon processor). The CPU-time needed for 
DaReUS-Loop is in the range of 10 min to 25 hours, (CPU-time: BCLoopSearch 1–10 min, clustering 1–5 min, 
local conformation 3 min, local conformation filtering 15 s per candidate and MODELLER 30–50 s per candi-
date). It has to be stated that in rare cases the number of possible loop candidates might be very large (sev-
eral hundreds of thousands), consequently this leads to proportional increase in the computational time. Such 
increase is mostly due to the computations of MODELLER. It has to be mentioned that we pre-computed the 
local conformation profiles for all the protein chains in our structure dataset, otherwise the computational cost 
of this step is 3 minutes for every candidate. LoopIng webserver is very fast and modeling a loop costs on average 
1 minute. Whereas several days are needed for Rosetta NGK to generate 500 models, depending on the size of 
the loop and protein (CPU-time: 120–1200 hours). The computational time of GalaxyLoop-PS2 varies between 
1 to 4 hours (CPU-time: 8–32 hours) to generate 5 candidates using GalaxyWEB, depending on the size of loop 
and protein. The performance of Sphinx web-server depends on the length of the loop to be modeled and varies 
between 20 minutes up to several hours for long loops.

Until now, very few studies have considered loop modeling of template-based models, which highlights the 
difficulty of the task. While assessing Looping, the authors reported very little performance differences between 
modeling native and template-based loops of CASP1037, which might be explained by (i) the short length of the 
studied loops (between 4 and 8 residues), (ii) quality of the models and (iii) considering the best results for the 
evaluations. Park et al. evaluated their method (GalaxyLoop-PS2) in different environmental conditions (crystal 
structure, side-chain perturbed, backbone perturbed and template-based models) and results demonstrated far 
less accuracy in the case of large environmental errors32. Rather similar observations are reported in43 to compare 
the results of loop modeling on CASP 7 and 8, using template-based models versus crystal structures.

A special advantage is that DaReUS-Loop comes with a prediction confidence score that correlates well with 
the expected accuracy of the loops. This score, based on the best fit in terms of conformational profile, enables 
us to decide if the modeling procedure was successful or not, bringing some insight about the quality of the 
final model. In particular, all high-quality and medium-quality loops modeled by DaReUS-Loop belonged to 
the high-confidence subset. Moreover, for the high-confidence subset, long loops (≥15 residues) modeled by 
DaReUS-Loop tend to be more accurate compared to other methods. Modeling long loops has been an unsolved 
problem, most existing approaches dealing with loops of at most 12 residues. Our protocol tackles this problem 
and improves the accuracy of modeling long loops, as long as high-confidence loop candidates are available from 
the database.

For the CASP test sets, we extended the gaps to regions between two secondary structures. Such extension can 
bring two negative consequences: (i) the loop gets longer (and therefore harder) and (ii) it decreases the chances 
to find a high-confidence loop candidate. However, the results showed that DaReUS-Loop models long loops with 
higher accuracy compared to the other methods. On the other hand, we were able to find high-confidence loop 
candidates in 82% (135/165) of the cases.

Another striking result is that almost all successful loop models are derived from proteins where the homol-
ogy is remote at best, with low sequence identities and considerable differences in structural classification. In fact, 
most successful loop models are derived from completely unrelated proteins, with no detectable homology in 
sequence or structure. The loops themselves have a higher sequence identity, which is expected given our filtering 
procedure. However, even so, the sequence identities remain quite low, and it is the constraints imposed by the 
conformational profile (based on the structural alphabet) and by the chemical environment (as measured by the 
DOPE score) that are the driving force for the selection of the final models. Thus, our results indicate that frag-
ments under similar constraints tend to adopt similar structure, even in the absence of any detectable homology.

Methods
Structure Database. Our database to search for loop candidates consists of the entire set of protein struc-
tures available in the Protein Data Bank (PDB). In March 2017, it consisted of 123,417 PDB entries, correspond-
ing to 338,613 chains in total. Each chain was split into segments that correspond to consecutive regions separated 
by gaps or non-standard residues, but accepting seleno-methionines. This led to a database of 758,143 protein 
segments.

Template-based test sets. To assess the performance of our approach, we have used three test sets. The 
first one (HOMSTRAD) was taken from the study by32. It consists of 23 loops with sizes between 6 and 11 res-
idues. The two other ones correspond to the targets of the CASP11 (http://predictioncenter.org/casp11/) and 
CASP12 (http://predictioncenter.org/casp12/) experiments51,52. For each CASP target, templates were identified 
using HHsearch53 against the PDB70 database (02-04-2016), considering a maximum sequence identity cutoff 
of 50% between template and target. In case of multiple, non-overlapping templates, they were combined into a 
template set. For each target, the template set was aligned to the target using TM-align54, and the template set with 
the highest TM-score was selected. Only targets where this template set had a TM − score > 0.5 were retained. This 
resulted in 12 targets of CASP 11 (out of 46 targets) and 10 targets of CASP 12 (out of 34 targets). For each target, 
one model was built by MODELLER7 using the best template set, with the alignment from TM-align. Then, loops 

http://predictioncenter.org/casp11/
http://predictioncenter.org/casp12/
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were identified as regions of 5 to 30 residues connecting secondary structures of at least 4 residues, as defined by 
DSSP55. Loops that correspond to chain breaks in the experimental structure were excluded. This resulted in a 
collection of 69 loops and 76 loops for the CASP11 and the CASP12 set, respectively.

The average RMSD of the flanks of the template structure compared to that of the experimental structure of 
the target is of 0.97Å, 1.04Å and 0.93Å for the CASP11, CASP12 and HOMSTRAD sets, respectively. Loop sizes 
are between 5–29, 5–28 and 5–11 amino acids for the CASP11, CASP12 and HOMSTRAD test sets, respectively.

Loop candidate search. We previously introduced the BCLoopSearch protocol, to mine large protein 
structure datasets and retrieve loop candidates, given two disjoint fragments (loop flanks)49. It is based on a 
Binet-Cauchy (BC) kernel and a Rigidity score:

=BC X Y det X Y

det X X det Y Y
( , ) ( )

( ) ( ) (1)

T

T T

where X and Y are Cα coordinates of the flanks and dataset fragments, respectively and they are centered at the 
origin. Note that a BC score of 1 indicates a perfect match. Rigidity score R(X, Y) is defined as:

′ = | − |≤ ≤R X Y max X Y( , ) (2)i N i i1

= ′ | − − − |R X Y max R X Y X X Y Y( , ) { ( , ), } (3)N N1 1

where Xi and Yi are Cα coordinates of the ith residues of the flanks and dataset fragments and ||⋅|| is the euclidean 
norm. Rigidity score is the maximum variation of intra-distances between: (i) residues and geometric center and 
(ii) intra-distances between terminal Cα. In addition, we also measured the RMSD between query and candidate 
flanks for the fragments returned.

In total, four cut-offs values related to (i) flank size, (ii) flank BC score, (iii) flank Rigidity and (iv) flank RMSD, 
have been considered to limit the number of loop candidates. In this study we used: a flank size of 4 residues, 
Rigidity ≤ 3 and flank RMSD ≤ 4Å. The minimal flank BC score cut-off was set depending on the size of the loop 
to be modeled: 0.9 for loops of at most 8 residues and 0.8 for longer loops.

For each target protein, prior to the loop modeling homologous proteins with more than 70% chain sequence 
identity were excluded from our search database.

Candidate filtering. In most cases the number of candidates returned by BCLoopSearch is too large to be 
tractable, which implies to limit their number. Three filters were sequentially applied in our protocol to this aim:

Sequence similarity. The sequence similarity of a loop candidate with the query loop sequence using BLOSUM62 
score. Candidates with negative scores were discarded.

Geometrical clustering. We used the python Numpy library to measure the pairwise distances (RMSD) between 
all the candidates56. In addition, we used the python Scipy package to perform hierarchical clustering57. A RMSD 
cut-off of 1Å was used to group similar loop candidates. To consider memory constraints, we applied an iterative 
clustering over subsets of 25,000 candidates, until at most 25,000 clusters were obtained. Finally, one represent-
ative loop candidate with the highest sequence similarity to the query loop was selected for each cluster. The 
computational time of our clustering protocol is in the range of 1–5 minutes, however it depends directly on 
the number of candidates detected by BCLoopSearch. In extreme cases, the needed time may increase up to 
10–15 minutes.

Local conformation. Previously, Shen et al. have shown that local conformation profiles predicted from 
sequence and profile-profile comparison can be employed to accurately distinguish similar structural fragments58. 
Consequently, we pre-computed a collection of profiles for all the protein chains in the structure dataset, and for 
all proteins of the test sets. For each loop candidate, it is thus possible to extract the sub-profiles P and Q, corre-
sponding to the query and candidate loop, and to measure the Jensen Shannon divergence (JS(P, Q)) between 
these profiles:

= +JS P Q D P M D Q M( , ) 1
2

( , ) 1
2

( , ) (4)KL KL

where M corresponds to 1/2(P + Q) and DKL is the Kullback-Leibler divergence:

∑=
≤ ≤

D P Q P i ln P i Q i( , ) ( ) ( ( )/ ( ))
(5)

KL
i1 27

P(i) is the probability of SA letter i. Then we measured the average Jensen Shannon divergence (JSD) over the 
paired series of query and candidate profiles:

∑=
≤ ≤

JSD P Q JS P Q n( , ) ( , )/
(6)i n

i i
1

where Pi and Qj are the two profiles corresponding to positions 1 to L on the query and candidate loop sequences. 
Note that a JSD of 0 indicates a perfect identity of the profiles. This procedure was applied on each loop candidate 
and those with a JSD > 0.40 were discarded from the remaining set.
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steric clash detection. After modeling the complete structure, models with steric clashes were discarded consid-
ering the Cα distance between loop residues and other residues of the protein, using a cut-off value of 3Å.

Model building. Model generation was done using a two stage procedure. First the candidate loops were 
superimposed on the query flanks of the template, then MODELLER was used to generate a model of the 
un-gapped structure with the correct amino acid sequence.

Model selection. To rank the models, we considered two scores. The first one is the JSD score (see above) 
and the second one is the Discrete Optimized Protein Energy (DOPE) score implemented in MODELLER59. 
DOPE is an atomic-distance-dependent statistical potential derived from known protein structures. Our proce-
dure returns a maximum of 10 models per loop, corresponding to the 5 models with the lowest JSD score, and 5 
models with the lowest DOPE score. It has to be mentioned that some degrees of overlap may occur among the 
top 5 models selected by each score. This may lead to smaller number of final models (<10 models).

Loop quality assessment. To assess the quality of the results, we use the RMSD of the loop candidates 
main chain heavy atoms (N, Cα, C′ and O). Consistently with previous studies32,36,43, we use different RMSD 
values. The local RMSD corresponds to the RMSD measured after performing the best fit superimposition of 
the loop region only. In the flanked RMSD, the flanks are first superimposed, excluding the loop atoms, and the 
RMSD is calculated over the loop region. In the global RMSD, the template structure is superimposed on the 
target structure excluding the loop region, then the RMSD is calculated over the loop of interest.

Solvent accessibility of the loops. We measured the solvent accessibility of the loop residues using 
Naccess60. Residues with relative solvent accessibility (RSA) ≤ 20% were considered as buried. Defining a loop as 
buried if less than 25% of its residues are exposed, no loop in the three test sets is buried. The median percentage 
of buried residues are of 29, 33 and 17% for the CASP11, CASP12 and HOMSTRAD sets, respectively.

Comparison with other approaches. In this work we compare the performance of our loop modeling 
protocol with two state-of-the-art ab initio methods - GalaxyLoop-PS232 and Rosetta Next-generation KIC 
(NGK)31, one state-of-the-art data-based approach - LoopIng37 and one hybrid method - Sphinx41. The NGK runs 
were performed using the protocol provided by31, using Rosetta energy values to rank the models. GalaxyWEB 
was used to generate the GalaxyLoop-PS2 results. Since GalaxyWEB returns only 5 models, and does not return 
scores, we repeated the GalaxyWEB protocol two times to obtain 10 models per loop. Furthermore, GalaxyWEB 
does not accept loop modeling for loops of size more than 20 amino acids or loops belonging to proteins of more 
than 500 residues, which made the comparison impossible for 43 loops over the total of 168 (26% of the cases). 
LoopIng results were obtained using the LoopIng web-server. It can generate 10 models per loop, and returns only 
the loop regions, supplemented by two residues on each side of the loop. Since we use flanks of 4 amino acids, 
and to compare our results in a fair manner, we considered a flank size of 2 amino acids for the comparison with 
LoopIng. Furthermore, the web-server accepts loops of size 4 to 23 amino acids. Consequently, the comparison 
is not possible for 14 loops over the total of 168 (8% of the cases). We used Sphinx web-server to obtain loop 
predictions for all the loops in our test sets. Table 3 summarizes the number of loops considered for performance 
comparisons. We distinguish between ab initio and data-based search methods. Loop subsets that could be pre-
dicted by groups of approaches (Common subsets) are identified.

Size

CASP11 CASP12 HOMSTRAD all

69 (21) 76 (18) 23 168 (39)

DaReUS-Loop 67 (20) 75 (17) 23 165 (37)

NGK 66 (18) 76 (18) 23 165 (36)

GalaxyLoop-PS2 50 (9) 56 (9) 19 125 (18)

Commonai 47 55 19 121

LoopIng 63 (15) 69 (13) 22 154 (28)

Sphinx 69 (21) 76 (18) 23 168 (39)

Commondb 62 69 22 153

min(JSD) ≤ 0.2 53 (8) 59 (6) 23 135 (14)

NGK 51 (6) 59 (6) 23 133 (12)

GalaxyLoop-PS2 40 (1) 46 (4) 19 105 (5)

CommonHCai 40 46 19 105

LoopIng 51 (6) 55 (4) 22 128 (10)

Sphinx 53 (8) 59 (6) 23 135 (14)

CommonHCdb 51 55 22 128

Table 3. Loop number for CASP11, CASP12 and HOMSTRAD test sets. size: number of loops identified. 
DaReUS-Loop, NGK, GalaxyLoop-PS2, LoopIng and Sphinx: number of loops that could be modeled using 
each approach. The number of long loops (at least 15 residues) are reported within parentheses. Common: 
number of target loops predictable by all different approaches, distinguishing ab initio (_ai) and data-based 
approaches (_db). CommonHC: subset of Common corresponding to loops predicted with a high confidence 
index (JSD leq 0.2, see below).
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Availability of materials and data
The set of all gapped models for CASP11 and CASP12 generated and analysed during the current study are 
available with the sequence of the targets at http://bioserv.rpbs.univ-paris-diderot.fr/public/DaReUS-Loop.tgz. 
It contains, the top 10 predictions of every method (DaReUS-Loop, Rosetta NGK, GalaxyLoop-PS2, LoopIng 
and Sphinx) and the corresponding RMSD values. It also includes a script that can be used to measure the RMSD 
values, as well as a detailed description (README.txt) on the data and how to use the script.
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